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Abstract

This paper presents an alternative approach for obtaining a converse Lyapunov theorem
for discrete–time systems. The proposed approach is constructive, as it provides an explicit
Lyapunov function. The developed converse theorem establishes existence of global Lyapunov
functions for globally exponentially stable (GES) systems and semi–global practical Lyapunov
functions for globally asymptotically stable systems. Furthermore, for specific classes of sys-
tems, the developed converse theorem can be used to establish non–conservatism of a particular
type of Lyapunov functions. Most notably, a proof that conewise linear Lyapunov functions
are non–conservative for GES conewise linear systems is given and, as a by–product, tractable
construction of polyhedral Lyapunov functions for linear systems is attained.
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1 Introduction

Lyapunov functions are a powerful tool for establishing stability properties of dynamical systems,
such as global asymptotic stability (GAS). The existence of a Lyapunov function is guaranteed by
converse Lyapunov theorems under the assumption that the system is GAS, see e.g., [1, 2, 3, 4, 5, 6,
7, 8, 9], and the references therein. For the discrete–time case, which is of interest in this work, the
abstract construction of a global Lyapunov function for a converse theorem is performed by taking
infinite sums [3] or the supremum over all solutions and all times [8, 5]. As such, these approaches
require the knowledge of solutions for all positive times. For certain classes of dynamics there are
classes of Lyapunov functions that preserve necessity, such as quadratic functions [4] for linear
difference equations and polyhedral functions [1, 10, 11] for linear difference inclusions. However,
for the case of polyhedral Lyapunov functions, developing tractable constructive methods is still
an open problem.

Existing results on constructive converse Lyapunov theorems for general nonlinear systems are
scarce and come with certain limitations, as discussed next. In the monograph [12] converse Lya-
punov theorems for continuous–time systems are obtained via piecewise linear Lyapunov functions
and linear programming. Another relevant result for continuous–time systems can be found in
[13], where the authors show the relation between control Lyapunov functions and solutions to
generalized Zubov equations, i.e., a first order partial differential equation. A result relevant for
discrete–time systems was given in [14], where it was shown that for a globally exponentially stable
(GES) discrete–time system a Lyapunov function can be constructed by a finite sum of solutions.
This was established under the assumption that the system dynamics is continuous and locally
Lipschitz.
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In this paper, an alternative approach to construction of Lyapunov functions for discrete–time
systems is proposed. Continuity of the systems dynamics is not required and the proposed approach
is shown to hold for a larger class of systems than GES systems.

The first ingredient of the proposed approach consists of a relaxation of the Lyapunov function
concept, which was originally introduced in [15]: the Lyapunov function is required to decrease
along the system solutions after a finite number of time steps, and not at every time step. It is
shown that this relaxation, termed finite–time Lyapunov function in this work, still yields sufficient
conditions for establishing GAS of the underlying system, without requiring continuity of the
system dynamics. Secondly, a converse finite–time Lyapunov theorem is derived. This converse
theorem is constructive in that it yields a global finite–time Lyapunov function that is explicitly
given. Then, a way to construct a standard Lyapunov function based on the knowledge of a finite–
time Lyapunov function and a corresponding natural number is given. The construction depends
only on a finite sum and hence, it is straightforward to implement.

Combining the above results yields the first main contribution of this paper, i.e., a novel converse
Lyapunov theorem that provides an explicit construction of a Lyapunov function for a large class of
discrete–time systems. More specifically, global Lyapunov functions for GES discrete–time systems,
and (at least) semi–global practical Lyapunov functions for GAS discrete–time systems can be
constructed. The Lyapunov function construction hinges of finding a suitable natural number
a priori. Several possibilities to find such a suitable number in a systematic way are discussed
for certain classes of systems. Of course, finding such a suitable number may be undecidable or
computationally intractable, as it is well known that stability analysis and hence, also construction
of Lyapunov functions, is an NP–hard problem in general [16].

The second main contribution of this paper is to establish non–conservatism of specific types of
Lyapunov functions via the developed converse theorem. Most notably, it is established that
conewise linear Lyapunov functions are non–conservative for GES conewise linear systems, which
is one of the open problems in stability analysis of hybrid systems [17]. The latter result further
yields, as a by–product, a new method to construct polyhedral Lyapunov functions for linear
systems, which is tractable even in state spaces of high dimension.

The remainder of this paper is structured as follows. The necessary preliminaries are given in
Section 2 and the definition of global (finite–time) Lyapunov functions as well as the problem
statement are given in Section 3. Section 4 contains the main results of this paper. In Section 4.1
global finite–time Lyapunov functions are shown to be sufficient for the system being GAS, whereas
in Section 4.2 also necessity is proven under an appropriate assumption. In Section 4.3 it is shown
how to construct a global Lyapunov function from the knowledge of a global finite–time Lyapunov
function, which combined with the results from Section 4.2 gives a converse Lyapunov theorem in
Section 4.4. Relevant implications of the developed converse theorem are presented in Section 5,
while conclusions are drawn in Section 6.

2 Preliminaries

By N we denote the natural numbers and we assume 0 ∈ N. Let R denote the field of real numbers,
R+ the set of nonnegative real numbers and Rn the vector space of real column vectors of length n.
For a vector x ∈ Rn we denote by [x]i its i-th entry. Accordingly, for a matrix A ∈ Rn×m we denote
by [A]i,j its (i, j)-th entry. Furthermore, the notation [A]i,: denotes the i-th row (respectively, [A]:,j
denotes the j-th column) of matrix A. For matrices A1, . . . , AN ∈ Rn×m we use the abbreviation
(A1; . . . ;AN ) := (A>1 . . . A>N )>.

By ‖·‖ we denote any arbitrary norm on Rn. In particular, we use the 1-norm ‖x‖1 =
∑n
i=1 |[x]i|

and the infinity norm ‖x‖∞ = maxi∈{1,...,n} |[x]i|. To state the stability results, we use standard
comparison functions. We call a function α : R+ → R+ a function of class K (denoted by α ∈ K), if
it is strictly increasing, continuous, and satisfies α(0) = 0. In particular, if α ∈ K is unbounded, it
is said to be of class K∞. A function β : R+×R+ → R+ is called a function of class KL (β ∈ KL),
if it is of class K in the first argument and strictly decreasing to zero in the second argument. A
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function η : R+ → R+ is called positive (semi-)definite, if η(0) = 0 and η(s) > 0 (resp. η(s) ≥ 0)
for all s > 0. For two functions α1, α2 ∈ K∞, we denote α1 < α2 (resp. α1 ≤ α2) if α2 − α1 is
positive (semi-)definite. Furthermore, α1 ◦ α2 denotes the composition, and αk1 := α1 ◦ . . . ◦ α1 is
the k-th iterate of α1. For ρ ∈ K∞, j ∈ Z, M ∈ N, M > 0, we denote by γ := ρj/M a solution
of the equation γM = ρj , that exists by [18, Proposition 3.1]. A function G : Rn → Rn is called
K–bounded, if there exists an ω ∈ K such that

‖G(x)‖ ≤ ω(‖x‖), ∀x ∈ Rn.

3 Problem statement

We consider discrete-time systems of the form

x(k + 1) = G(x(k)), k ∈ N, (1)

where G : Rn → Rn is assumed to satisfy the following standing assumption.

Assumption 1. The function G in (1) is K–bounded.

Compared to the typical assumptions employed in converse Lyapunov theorems, Assumption 1
is not restrictive, as it does not require continuity of the map G(·) (except1 at x = 0). On the
other hand, any continuous map G : Rn → Rn with G(0) = 0 is K-bounded. Also, for any GES
system (1) the map G(·) is K–bounded with a linear function ω, as worked out further on in this
section.

By x(k, ξ) ∈ Rn we denote the solution of system (1) at time instance k ∈ N with initial condition
x(0) = ξ ∈ Rn.

Definition 2. The system (1) is called globally asymptotically stable (GAS) if there exists a KL-
function β such that for all ξ ∈ Rn and all k ∈ N

‖x(k, ξ)‖ ≤ β(‖ξ‖ , k). (2)

If the KL-function in (2) can be chosen as

β(r, t) = Cµtr (3)

with C ≥ 1 and µ ∈ [0, 1), then system (1) is called globally exponentially stable (GES).

Remark 3. The definition of GES is somehow misleading, since global only indicates that (2) with
β as in (3) holds for all ξ ∈ Rn. Since C ≥ 1 in (3) is chosen globally, it does not reflect the local
behavior of a particular solution near 0. Note that this property is also often called exponentially
stable in the large, see e.g., [2].

Note that for a GES system the K-bound ω on G in (1) can always be chosen to be linear. This
follows directly, since ‖G(ξ)‖ = ‖x(1, ξ)‖ ≤ Cµ1 ‖ξ‖ for all ξ ∈ Rn.

Definition 4. A function W : Rn → R+ is a global Lyapunov function for system (1) if

(i) there exist α1, α2 ∈ K∞ such that for all ξ ∈ Rn

α1(‖ξ‖) ≤W (ξ) ≤ α2(‖ξ‖),

(ii) there exists a K-function ρ satisfying ρ < id such that for all ξ ∈ Rn

W (x(1, ξ)) ≤ ρ(W (ξ)).

1Recall that continuity at x = 0 is a necessary condition for Lyapunov stability of the origin.
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Remark 5. In many prior works (e.g., [3]) the definition of a Lyapunov function requires the
existence of a positive definite function α3 such that W (x(1, ξ))−W (ξ) ≤ −α3(‖ξ‖) holds for all
ξ ∈ Rn. Let us briefly explain, that this requirement is equivalent to Definition 4. Note that by
following similar steps as in [19, Theorem 2.3.5] we conclude

W (x(1, ξ)) ≤W (ξ)− α3(‖ξ‖)
≤ (id−α3 ◦ α−1

2 )(W (ξ)) = ρ(W (ξ))

with ρ := (id−α3 ◦ α−1
2 ) positive definite. We further have 0 ≤ W (x(1, ξ)) ≤ (α2 − α3)(‖ξ‖), so

α2 ≥ α3 and therefore ρ < id. Without loss of generality we can assume that ρ ∈ K. On the
other hand for a given ρ < id we obtain W (x(1, ξ)) −W (ξ) ≤ −α3(‖ξ‖) for α3 := (id−ρ) ◦ α1.
Furthermore, for the case α1(s) = asλ, α2(s) = bsλ, α3(s) = csλ for some a, b, c, λ > 0 we have
W (x(1, ξ)) ≤ ρW (ξ) with ρ := (1− c

b ) ∈ [0, 1), see [19, Theorem 2.3.5].

Next, the assumptions on the global Lyapunov function given in Definition 4 is relaxed as fol-
lows.

Definition 6. A function V : Rn → R+ is a global finite–time Lyapunov function for system (1) if

(i) there exist α1, α2 ∈ K∞ such that for all ξ ∈ Rn

α1(‖ξ‖) ≤ V (ξ) ≤ α2(‖ξ‖),

(ii) there exists a finite M ∈ N and a K-function ρ < id such that for all ξ ∈ Rn

V (x(M, ξ)) ≤ ρ(V (ξ)).

It is worth pointing out that the concept of a global finite–time Lyapunov function was originally
introduced in [15], which dealt with stability analysis of time–varying systems, although the term
finite–time was not used therein. Clearly, any global Lyapunov function is a particular global
finite–time Lyapunov function.

4 Main results

The aim of this section is to derive a constructive converse Lyapunov theorem for systems of
the form (1). To this aim we proceed by showing that any global finite–time Lyapunov function
guarantees GAS of the underlying dynamical system. We show that the converse, i.e,. the existence
of a global finite–time Lyapunov function for a GAS system, also holds and, moreover, that under
an appropriate assumption the existence is guaranteed for any scaled norm as a global finite–time
Lyapunov function. In particular, we show that the assumption is satisfied for any GES system of
the form (1). We further prove that any scaled norm is at least a semi-global practical finite–time
Lyapunov function (see Definition 17) for a GAS system of the form (1). To obtain a converse
Lyapunov theorem, an explicit construction of a global Lyapunov function from a global finite–time
Lyapunov function is provided.

4.1 Finite–time Lyapunov functions

This section proceeds by showing that the existence of a global finite–time Lyapunov function is
sufficient to conclude GAS of the underlying system.

Theorem 7. The existence of a global finite–time Lyapunov function implies that system (1) is
GAS.

Proof. Assume that there exists a global finite–time Lyapunov function V as defined in Definition 6.
First note that from the standing Assumption 1 we conclude that for any j ∈ N

‖x(j, ξ)‖ ≤ ωj(‖ξ‖). (4)
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Then for any k = lM + j, l ∈ N, j ∈ {0, . . . ,M − 1} we have

‖x(k, ξ)‖ ≤ α−1
1 (V (x(k, ξ)))

≤ α−1
1 (V (x(lM, x(j, ξ))))

≤ α−1
1 ◦ ρl(V (x(j, ξ)))

≤ α−1
1 ◦ ρl ◦ α2(‖x(j, ξ)‖)

(4)
≤ α−1

1 ◦ ρl ◦ α2 ◦ ωj(‖ξ‖)
≤ max
i∈{0,...,M−1}

α−1
1 ◦ ρl ◦ α2 ◦ ωi(‖ξ‖)

≤ max
i∈{0,...,M−1}

α−1
1 ◦ ρ

k
M −1 ◦ α2 ◦ ωi(‖ξ‖)

=: β(‖ξ‖ , k).

It is easy to see that β is a KL-function. Then by Definition 2 system (1) is GAS.

If the global finite–time Lyapunov function satisfies some conditions on the functions invoked, then
we can conclude GES.

Corollary 8. Let the K-bound on G be ω(s) = ws for all s ≥ 0 and w > 0. Then the existence of
a global finite–time Lyapunov function V satisfying Definition 6 with

α1(s) = a1s
λ, α2(s) = a2s

λ, ρ(s) = cs (5)

with 0 < a1 ≤ a2, λ > 0 and c ∈ [0, 1) implies that system (1) is GES.

Proof. The proof of Theorem 7 implies ‖x(k, ξ)‖ ≤ Cµk ‖ξ‖ with C = maxi∈{1,...,M−1}(
a2
a1c

)1/λωi

and µ = c1/Mλ ∈ [0, 1).

Note that the assumption on ω to be linear is necessary for the system being GES as previously
indicated.

Since any global finite–time Lyapunov function with M = 1 is even a global Lyapunov function,
Lyapunov’s theorem can also be obtained as a corollary of Theorem 7.

Corollary 9. The existence of a global Lyapunov function implies that system (1) is GAS.

The same holds true for the GES case by means of Corollary 8.

The following result establishes that if the map G is a contraction, then system (1) is GAS.

Proposition 10. If the map G in (1) is K-bounded with K-function ω < id, then system (1) is
GAS.

Proof. Take W (ξ) = ‖ξ‖ as a candidate Lyapunov function. Then clearly Definition 4–(i) is
satisfied with α1 = α2 = id and Definition 4–(ii) is satisfied with ρ = ω and ω < id. So Corollary 9
applies, which concludes the proof.

4.2 A converse finite–time Lyapunov function theorem

This section proceeds by showing that the existence of a global finite–time Lyapunov function is
also necessary.

Proposition 11. If system (1) is GAS, then there exists a global finite–time Lyapunov function.
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Proof. Any global Lyapunov function as defined in Definition 4 is a global finite–time Lyapunov
function with M = 1. So with [3, Theorem 1] GAS together with a continuous dynamic map
G(·) implies the existence of a global finite–time Lyapunov function. Note that in [3] the authors
take the Euclidian norm and define stability with respect to a set A. Since the proof holds by
taking any arbitrary norm this result holds with A = {0}. See also [8] for the case when G is
discontinuous.

Proposition 11 ensures the existence of a global finite–time Lyapunov function by using a stan-
dard converse Lyapunov theorem, which is obvious. Indeed, a converse result was not pursued
in [15].

Next, a constructive converse finite–time Lyapunov theorem is stated, which does not rely on a
standard Lyapunov function, but on an appropriate assumption that is discussed in the follow-
ing.

Assumption 12. There exists a KL-function β satisfying (2) for system (1) and

β(r,M) < r (6)

for some M ∈ N and all r > 0.

Under this assumption a global finite–time Lyapunov function can be given explicitly.

Theorem 13. If Assumption 12 is satisfied, then for any function η ∈ K∞ the function V : Rn →
R+ defined by

V (ξ) := η(‖ξ‖) (7)

for all ξ ∈ Rn is a global finite–time Lyapunov function for system (1).

Proof. Take any η ∈ K∞ and let V be defined as in (7). Then clearly Definition 6–(i) is satisfied.
Let β ∈ KL satisfy (2), and M ∈ N satisfy (6). Then for any ξ ∈ Rn

V (x(M, ξ)) = η(‖x(M, ξ)‖)
≤ η ◦ β(‖ξ‖ ,M)

= η ◦ β(η−1(V (ξ)),M)

= ρ̃(V (ξ)),

where ρ̃(·) := η ◦ β(η−1(·),M) satisfies ρ̃ < id by (6). This shows Definition 6–(ii). So V defined
in (7) is a global finite–time Lyapunov function for system (1).

Let us briefly discuss Assumption 12. First of all, by definition, any GES system is bounded by
a KL-function β(r, t) = Cµtr with C ≥ 1, µ ∈ [0, 1), see (3). So we can find an M ∈ N such that
CµM < 1, which immediately yields the following proposition.

Proposition 14. If system (1) is GES, then Assumption 12 is satisfied.

This now implies that for a GES system (1) any scaled norm is a global finite–time Lyapunov
function.

Corollary 15. If system (1) is GES, then for any function η ∈ K∞ the function V : Rn → R+

defined in (7) is a global finite–time Lyapunov function for this system.

Proof. Proposition 14 implies that Assumption 12 holds, so Theorem 13 applies and the result
follows.

If we assume system (1) to be GAS only, then (6) does not have to hold globally, i.e., for all r > 0.
But we can at least show that Assumption 12 is satisfied in a semi–global practical sense.

Lemma 16. Assume system (1) is GAS. Then for any 0 < a < b < ∞ there exists an M ∈ N,
such that (6) holds for all r ∈ [a, b].
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Proof. Let β ∈ KL satisfy (2) for system (1). Using [9, Lemma 4.3] there exist K∞-functions
σ1, σ2 ∈ K∞ such that β(r, t) ≤ σ1(σ2(r)e−t) holds for all r, t ≥ 0. Define for any r > 0

M(r) := min{M ∈ N : σ1(σ2(r)e−M ) < r}.

Note that M(r) is well–defined for any r > 0. Let 0 < a < b < ∞ be given and define M̄ :=
sup {M(r) : r ∈ [a, b]} . We have to show that M̄ <∞, then for all r ∈ [a, b] it holds

β(r, M̄) ≤ σ1(σ2(r)e−M̄ ) ≤ σ1(σ2(r)e−M(r)) < r.

So assume to the contrary that M̄ = ∞. Then there exists a sequence {rl}l∈N ∈ [a, b] such that
{M(rl)}l∈N →∞ for l→∞. Since [a, b] ⊂ R+ is compact, we can without loss of generality assume
that the sequence {rl}l∈N is convergent to a point r∗ ∈ [a, b], else take a convergent subsequence.
But this means that in any open neighborhood U around r∗ there exist infinitely many ri ∈ U
with M(ri) pairwise distinct. On the other hand M(r∗) is well–defined, and, by continuity, there
exists an open neighborhood Ũ around r∗ with M(r̃) ≤M(r∗) for all r̃ ∈ Ũ . But this contradicts
the unboundedness of the sequence {M(ri)}, where ri ∈ U ⊂ Ũ . So M̄ <∞.

This now implies that for any GAS system of the form (1), any scaled norm is a semi–global
practical finite–time Lyapunov function as defined next.

Definition 17. A function V : Rn → R+ is a practical finite–time Lyapunov function for system
(1) if there exist 0 < a < b <∞

(i) there exist α1, α2 ∈ K∞ such that for all ξ ∈ Rn

α1(‖ξ‖) ≤ V (ξ) ≤ α2(‖ξ‖),

(ii) there exists a finite M ∈ N and a K-function ρ < id such that for all ξ ∈ B[a,b] := {ξ ∈ Rn :
‖ξ‖ ∈ [a, b]}

V (x(M, ξ)) ≤ ρ(V (ξ)).

If for any 0 < a < b < ∞ there exists an M ∈ N such that item (ii) holds, then V is a called a
semi–global practical finite–time Lyapunov function.

In this case the function V : Rn → R+ defined in (7) with arbitrary η ∈ K∞ ensures practical
asymptotic stability on [a, b], i.e., any solution x(k, ξ) with ξ ∈ B[a,b] converges to the set B[0,a].
Note that enlarging M ∈ N enlarges the set [a, b] on which practical asymptotic stability may
be ensured. In particular, if b = ∞ the function V is a global practical finite–time Lyapunov
function.

Corollary 18. If system (1) is GAS, then for any function η ∈ K∞ the function V : Rn → R+

defined in (7) is a semi–global practical finite–time Lyapunov function for this system, and the
system is semi–globally practically stable.

Proof. Lemma 16 implies that for any 0 < a < b < ∞ there exists an M ∈ N such that (6) holds
for all r ∈ [a, b]. Hence the K-function ρ̃ in the proof of Theorem 13 satisfies ρ̃(r) < r for all
r ∈ [η(a), η(b)]. So for all ξ ∈ B[a,b] the function V defined in (7) is strictly decreasing at least
any M steps. Since 0 is the only equilibrium point of V this shows that the set [0, a] is attractive
for all initial states ξ ∈ B[a,b]. Since a > 0 and b <∞ in Lemma 16 can be chosen arbitrarily the
system is semi–globally practically stable.

4.3 Construction of a global Lyapunov function from a global finite–time
Lyapunov function

In this section we construct a global Lyapunov function for system (1) from the knowledge of
a global finite–time Lyapunov function V : Rn → R+ as defined in Definition 6. We want to
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emphasize that this construction does not depend on the particular choice of the global finite–time
Lyapunov function in (7), but rather holds in general. The construction is as follows:

W (ξ) :=

M−1∑
j=0

V (x(j, ξ)), (8)

and yields the following result.

Theorem 19. (Construction of a global Lyapunov function I) If V : Rn → R+ is a
global finite–time Lyapunov function for system (1) with M ∈ N satisfying Definition 6-(ii), then
W : Rn → R+ defined in (8) is a global Lyapunov function for system (1).

Proof. For the global finite–time Lyapunov function V let α1, α2, ρ,M satisfy Definition 6. In
the remainder of the proof we will construct α̃1, α̃2, ρ̃ such that they satisfy Definition 4 for the
Lyapunov function candidate W defined in (8). Assume that α1, α2 ∈ K∞ are given such that
α1(‖ξ‖) ≤ V (ξ) ≤ α2(‖ξ‖). Let α̃1 = α1, then by definition ofW we have α̃1(‖ξ‖) ≤ V (ξ) ≤W (ξ).
Since V is a global finite–time Lyapunov function we have for all k ∈ N

‖x(k, ξ)‖ ≤ α−1
1 (V (x(k, ξ))) ≤ max

j∈N
α−1

1 (V (x(j, ξ)))

≤ max
j∈{0,...,M−1}

α−1
1 (V (x(j, ξ)))

≤ max
j∈{0,...,M−1}

α−1
1 ◦α2◦ωj(‖ξ‖)) =: σ(‖ξ‖)

for σ := maxj∈{0,...,M−1} α
−1
1 ◦ α2 ◦ ωj ∈ K∞. Then

W (ξ) ≤M· max
i∈{0,...,M−1}

V (x(i, ξ))

≤M· max
i∈{0,...,M−1}

α2(‖x(i, ξ)‖) ≤Mα2 ◦ σ(‖ξ‖).

Define α̃2 = M id ◦α2 ◦ σ, then we have

α̃1(‖ξ‖) ≤W (ξ) ≤ α̃2(‖ξ‖).

To show the decay of W note that for any ξ ∈ Rn

W (x(1, ξ)) =

M∑
j=1

V (x(j, ξ))

≤
M−1∑
j=1

V (x(j, ξ)) + ρ(V (ξ))

= W (ξ)− (id−ρ)(V (ξ))

≤W (ξ)− (id−ρ)(α1(‖ξ‖))
≤ (id−(id−ρ) ◦ α̃1 ◦ α̃−1

2 )(W (ξ))

=: ρ̃(W (ξ)).

By similar arguments as in Remark 5 we see that 0 < ρ̃ < id. This shows that W is a global
Lyapunov function for system (1) by Definition 4.

An alternative construction to the one given in (8) is given by

W (ξ) := max
j∈{0,...,M−1}

ρj/M
(
V (x(M − 1− j, ξ))

)
. (9)

With this construction we obtain an analogue to Theorem 19.
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Theorem 20. (Construction of a global Lyapunov function II) If V : Rn → R+ is a
global finite–time Lyapunov function for system (1) with M ∈ N satisfying Definition 6–(ii), then
W : Rn → R+ defined in (9) is a global Lyapunov function for system (1).

Proof. The proof follows the lines of the proof of Theorem 19 and is therefore omitted. Note that
we have W (x(M, ξ)) ≤ ρ̃(W (ξ)) with ρ̃ := ρ1/M .

4.4 Converse Lyapunov theorems

Now we can state the main results of this work as a corollary of Theorem 13 and Theorem 19 resp.
Theorem 20.

Corollary 21. (Converse Lyapunov theorem I) Let M ∈ N satisfy Assumption 12. Then for
any function η ∈ K∞ the function W : Rn → R+ defined by

W (ξ) :=

M−1∑
j=0

η(‖x(j, ξ)‖) (10)

for all ξ ∈ Rn is a global Lyapunov function for system (1).

Corollary 22. (Converse Lyapunov theorem II) Let M ∈ N satisfy Assumption 12. Then
for any function η ∈ K∞ the function W : Rn → R+ defined by

W (ξ) := max
j∈{0,...,M−1}

ρj/M ◦ η(‖x(M − 1− j, ξ)‖) (11)

for all ξ ∈ Rn is a global Lyapunov function for system (1).

Remark 23. The main difference of the construction of the Lyapunov functions in Corollary 21
and 22 in contrast to the constructions of Lyapunov functions in other converse theorems, is that
we use a finite sum of solutions instead of an infinite sum [3], and we use the maximum over a
finite set instead of the supremum over all solutions and all times [8, 5].

Since any GES system satisfies Assumption 12 (see Proposition 14), we obtain the following con-
verse Lyapunov theorem for GES systems of the form (1).

Corollary 24. If system (1) is GES then for any η ∈ K∞ the function W defined in (10) resp.
(11) is a global Lyapunov function for system (1) for a suitable M ∈ N.

Proof. Since the system is GES, there exist C ≥ 1, and µ ∈ [0, 1) such that ‖x(k, ξ)‖ ≤ Cµk ‖ξ‖.
Take M ∈ N such that CµM < 1, then Assumption 12 holds. Then by Corollary 21 resp. Corol-
lary 22 the function W defined in (10) resp. (11) is a global Lyapunov function for system (1).

Combining Corollary 18 and Theorem 19 resp. Theorem 20 we immediately obtain a semi–global
practical Lyapunov function.

Corollary 25. If system (1) is GAS, then the function W defined in (10) resp. (11), with suitably
large M ∈ N, is a semi–global practical Lyapunov function for system (1).

In Section 5 we will present several classes of systems for which the results presented in this
section have particular consequences of relevance. For more general systems the following procedure
enables us to check the stability at least semi–globally practically. Note that this procedure may
not be successful for any system.

Remark 26 (Methodology). Given a system of the form (1) we compute x(k, ξ) for k ∈ N and
compute2 an M ∈ N with ‖x(M, ξ)‖ < ‖ξ‖ for ξ ∈ B[a,b] with 0 < a < b < ∞. In this case the
function V : Rn → R+ defined in (7) with arbitrary η ∈ K∞ is a practical finite–time Lyapunov
function, and it in particular ensures practical asymptotic stability on [a, b], see Corollary 18.

2The existence is guaranteed by Lemma 16.
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Defining W : Rn → R+ by (10) or (11) then gives a practical Lyapunov function for the overall
system (1). If a = 0 then we obtain a Lyapunov function and if, additionally, b = ∞, then the
Lyapunov function is even a global one.

Computation of a suitable M can be done by iteratively checking the condition ‖x(M, ξ)‖ < ‖ξ‖
while increasing the value of M . At least, when the dynamics is GES, there always exists an M
large enough for which the condition holds. The difficulty of checking this condition is depending
on the particular map G. Systematic methods for obtaining an M for linear and conewise linear
maps are given in the next section.

5 Relevant implications

This section exploits the developed converse theorems to obtain relevant implications for several
classes of dynamical systems.

We start with a result that is already known (see e.g. [3]), but with the construction of the global
Lyapunov function W in (10) in Corollary 21 (respectively (11) in Corollary 22) the proposed
approach yields a much simpler proof.

Proposition 27. Let system (1) satisfy Assumption 12. If G in (1) is continuous then there exists
a continuous global Lyapunov function for system (1).

Proof. From Corollary 21 we directly obtain the global Lyapunov function

W (ξ) :=

M−1∑
j=0

η(
∥∥Gj(ξ)∥∥) (12)

from (10). Alternatively, from Corollary 22 we directly obtain the global Lyapunov function

W (ξ) := max
j∈{0,...,M−1}

ρj/M ◦ η(
∥∥GM−1−j(ξ)

∥∥)

from (11). In both cases the composition of continuous functions (η, ρ,G) yields a continuous
function, implying that W is a continuous global Lyapunov function.

Note that using smoothing techniques (see e.g. [5, Sec. 3]) the function W from (10) resp. (11)
can be made smooth.

Remark 28. If G : Rn → Rn is a polynomial function satisfying Assumption 12 then there exists
a polynomial global Lyapunov function for system (1). This follows by taking η(s) := s2 in the
global Lyapunov function in (10), and noticing that the sum and the composition of polynomial
functions yields a polynomial function.

The following result can be obtained for another relevant type of map G, which was considered in
[20] and [21].

Proposition 29. Let G in (1) be a positively homogeneous of degree one map3 and let system (1)
be GAS. Then there exists a global Lyapunov function for system (1) that is positively homogeneous
of degree one.

Proof. If the map G is positively homogeneous of degree one and system (1) is GAS, it holds by
Corollary V.3 in [21] that system (1) is GES, i.e., GAS (or equivalently KL–stability as defined in
this work) is equivalent with GES for homogeneous dynamics. Then, by Corollary 24 the function
η in (12) can be taken as a positively homogeneous function of degree one. The proof is completed
by observing that vector norms are positively homogeneous functions of degree one as well and that
the composition of a finite number of such functions remains a positively homogeneous function of
degree one.

3I.e., for any ξ ∈ Rn, G(cξ) = cG(ξ) for any c > 0.
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In the next two sections we consider the cases of conewise linear and linear dynamical systems in
more detail.

5.1 Conewise linear dynamical systems

Next, we focus on a relevant class of hybrid systems, i.e., conewise linear systems, see, e.g., the
survey [22], for which the results in this paper turn out to be quite useful. In [17] it was shown that
conewise linear Lyapunov functions are sufficient for establishing GES of conewise linear systems
and that such functions can be computed by linear programming. See also [23], which focuses on
the discrete–time setting. The open question that remains to be answered is whether conewise
linear Lyapunov functions are also necessary for GES conewise linear systems. In what follows we
make use of the results of this paper to answer this question affirmatively, within the discrete–time
setting.

To this end, firstly, a formal characterization of conewise linear dynamics is given.

Definition 30. A non–empty set C ⊂ Rn is a cone if and only if

(i) int C 6= ∅, where int C denotes the interior of the set C;

(ii) C ∩ −C = {0};

(iii) cξ ∈ C for any ξ ∈ C and c ∈ R+;

(iv) λξ1 + (1− λ)ξ2 ∈ C for any ξ1, ξ2 ∈ C and λ ∈ (0, 1).

A finite set of cones {Ci ⊂ Rn}i∈{1,...,l} defines an l-conic partition of Rn, if the following holds for
i, j ∈ {1, . . . , l}

(i)
⋃
i Ci = Rn;

(ii) int Ci ∩ int Cj = ∅ for all i 6= j.

Next, consider the class of conewise linear dynamics, i.e.

G(x) := Aix if x ∈ Ci; i ∈ {1, . . . , N}, (13)

where N ∈ N, Ai ∈ Rn×n, and the finite set of cones {Ci}i∈{1,...,N} defines an N -conic partition
of Rn. Observe that G of (13) satisfies Assumption 1 with ω(s) := maxi∈{1,...,N} ‖Ai‖s. For any
solution x(k, ξ) of the conewise linear system

x(k + 1) = Aix(k) if x(k) ∈ Ci (14)

with x(0) = ξ ∈ Rn, we associate the k-tuple (j1, . . . , jk), ji ∈ {1, . . . , N}, if x(l, ξ) ∈ Cjl+1
.

Unifying these sets we have

Ik := {(j1, . . . , jk) ∈ {1, . . . , N}k :

Ajk{. . . {Aj2{Aj1Cj1 ∩ Cj2} ∩ Cj3} ∩ . . . ∩ Cjk} 6= ∅}.

Note that the set Ik can be computed by basic operations (image under Aji and intersection)
involving cones and/or via reachability graphs. These operations can be performed efficiently for
the case of polyhedral cones, i.e., cones represented as the convex hull of a finite number of rays,
see. e.g., [24].

Furthermore, we define the set

Ak :=

{[
k−1∏
i=0

Ajk−i

]
: (j1, . . . , jk) ∈ Ik

}
,

where
[∏k−1

i=0 Ajk−i

]
:= AjkAjk−1

. . . Aj1 , and for k = 0 this product is defined as the identity
matrix I.
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The following theorem states that GES of a conewise linear system (14) is equivalent to the existence
of a conewise linear Lyapunov function. Notice also that conewise linear maps are positively
homogeneous maps of degree one and, as such, GAS as defined in this work, or equivalently KL-
stability, is equivalent with GES by Corollary V.3 of [21]. As such, without any loss of generality
we can state the following result in terms of GES.

Theorem 31. The conewise linear system (14) is GES if and only if it admits a global conewise
linear Lyapunov function.

Proof. In [23, Thorem 4.6] it is shown that the existence of a conewise linear Lyapunov function
implies GAS of system (14), and hence even GES. So in this proof we consider the converse
statement.

Let system (14) be GES. Then Corollary 15 implies that the function V : Rn → R+ defined by
V (ξ) := ‖ξ‖1 is a global finite–time Lyapunov for system (14). Furthermore, let M ∈ N satisfy
Definition 6–(ii). Hence, applying Corollary 24 we see that the function W : Rn → R+ defined by
W (ξ) :=

∑M−1
k=0 ‖x(k, ξ)‖1 is a global Lyapunov function for system (14).

For any ξ ∈ Rn let ι := (j1, . . . , jM ) ∈ IM be associated to the solution x(·, ξ). Note that the
number #IM of non–identicalM -tuples in IM is at most NM . Then for any ι = (j1, . . . , jM ) ∈ IM
we define the set

Dι := {ξ ∈ Cj1 : x(k, ξ) ∈ Cjk+1
∀k ∈ {1, . . . ,M − 1}} =

{ξ ∈ Cj1 :

k−1∏
j=0

Ajk−j

 ξ ∈ Cjk+1
∀k ∈ {1, . . . ,M − 1}}.

Consider the union of the sets Dι,
⋃
ι∈IM Dι. Note that this union defines a partition of Rn, since

solutions x(k, ξ) are defined for any time k ∈ N and any initial point ξ ∈ Rn. Since the sets Ci are
cones, it is easy to see that the sets Dι are cones. Furthermore, intDι ∩ intDκ = ∅ for any ι 6= κ,
because the cones Ci define an N -conic partition. Thus,

⋃
ι∈IM Dι defines a conic partition of Rn.

For any cone Dι there exists a matrix Pι ∈ Rp×n with p ≥ n such that

M−1∑
k=0

∥∥∥∥∥
[
k−1∏
i=0

Ajk−i

]
ξ

∥∥∥∥∥
1

= ‖Pιξ‖1

for all ξ ∈ Dι. This matrix Pι ∈ Rp×n can be chosen as

Pι =

(
M−2∏
i=0

AjM−1−i
; . . . ; Aj2Aj1 ; Aj1 ; I

)
,

where I denotes the identity matrix. In particular, p = Mn. Then the global Lyapunov function
takes the explicit form

W (ξ) =

M−1∑
k=0

‖x(k, ξ)‖1 =

M−1∑
k=0

∥∥∥∥∥
[
k−1∏
i=0

Ajk−i

]
ξ

∥∥∥∥∥
1

= ‖Pιξ‖1 if ξ ∈ Dι.

Since weighted 1–norms are conewise linear functions, see, for example, [11], and
⋃
ι∈IM Dι defines a

conic partition of Rn we obtain thatW is a conewise linear function, which concludes the proof.

Remark 32. The proof of Theorem 31 is constructive as it yields a global conewise linear Lyapunov
function W . In this proof we use the sum formulation (10) of Corollary 24 for the 1–norm to con-
struct the Lyapunov functionW . An alternative is to use the max formulation (11) of Corollary 24
for the infinity norm as follows.

Since we have a conewise linear system, the function ρ ∈ K in (11), corresponding to the global
finite–time Lyapunov function V (ξ) = ‖ξ‖∞ in Definition 6, can be chosen linear. Thus ρ(s) = cs
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with c ∈ (0, 1). Using the same conic partition Rn =
⋃
ι∈IM Dι as in the proof of Theorem 31, we

have for ξ ∈ Dι,

W (ξ) = max
k∈{0,...,M−1}

ρk/M (‖x(k, ξ)‖∞)

= max
k∈{0,...,M−1}

ρk/M

(∥∥∥∥∥
[
k−1∏
i=0

Ajk−i

]
ξ

∥∥∥∥∥
∞

)

= max
k∈{0,...,M−1}

∥∥∥∥∥ck/M
[
k−1∏
i=0

Ajk−i

]
ξ

∥∥∥∥∥
∞

= ‖Pιξ‖∞

with

Pι =

(
c
M−1
M

M−2∏
i=0

AjM−1−i
; . . . ; c

2
MAj2Aj1 ; c

1
MAj1 ; I

)
,

where Pι ∈ RnM×n. Hence W is a global conewise linear Lyapunov function for system (14). This
is the infinity norm analogue to the 1–norm construction in Theorem 31.

The above results, besides establishing non–conservatism of conewise linear Lyapunov functions
for stability analysis of conewise linear systems, provide an explicit construction of such Lyapunov
functions. The construction depends on finding an admissible value of the positive integer M ,
related to the finite–time Lyapunov condition, which hinges on computing the set Ak. In the case
of polytopic cones, reachability analysis4 for conewise linear systems can be performed efficiently,
which yields Ak. Hence, finding admissible values ofM for conewise linear dynamics with polytopic
conic partitions is tractable whenever P=NP for the corresponding stability analysis problem [16].
Otherwise, no other stability analysis method can provide a tractable test.

Example 33. To illustrate the above results, consider a discontinuous dynamics that corresponds
to (13), but with N = 4, A1 = A3 =

(
0.197 −0.241
1.845 1.703

)
, A2 = A4 =

(−0.638 −0.823
0.175 0.538

)
, where A1 = A3

is unstable. The corresponding conic partition is defined by {Ci}i∈{1,...,4} with Ci = {x ∈ R2 :

Eix ≥ 0} for all i ∈ {1, . . . , 4}, and where E1 = −E3 =
(

1 −1
1 1

)
, E2 = −E4 =

(
1 −1
−1 −1

)
. To make

use of the results developed in this paper, we first indicate that the function V (x) = ‖x‖1 is a
finite–time Lyapunov function with M = 18, which was established by computing ‖

∏k
i=1Aji‖1

for all (j1, . . . , jk) ∈ Ak for k = 1, . . . , 18. Hence, the function W (ξ) :=
∑M−1
k=0 ‖x(k, ξ)‖1 is a

global Lyapunov function for this system. In Figure 1 we show a contour plot of the constructed
non–convex conewise linear Lyapunov function. Note that W is conewise with respect to a conic
partition Dι, which is fines than that given by C1, . . . , C4. This follows from the trajectorywise
definition of W . The effect can be seen in Figure 1, where discontinuities of W occur along rays.

4As implied by the results in [16], this may be an NP–hard problem for conewise linear systems.
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Figure 1: Contour plot of the Lyapunov function W (ξ) :=
∑17
i=0 ‖x(k, ξ)‖1 for Example 33.

Example 34. Consider Example 6.1 in [22]. In this example the author showed the global expo-
nential stability of a conewise linear system, where two out of three of the linear dynamics5 are
unstable. Similarly as done in the previous example, one can compute M = 4 for the infinity norm
case, and M = 3 for the 1-norm case, for which the corresponding finite–time Lyapunov function
condition is met. Hence, the function V (ξ) := ‖ξ‖1 is a global finite–time Lyapunov function by
Theorem 13, and the function W (ξ) :=

∑2
i=0 ‖x(k, ξ)‖1 is a global Lyapunov function for this

system. A contour plot showing the sublevel sets of W is given in Figure 2.
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Figure 2: A contour plot of the Lyapunov function W (ξ) :=
∑2
i=0 ‖x(k, ξ)‖1 in Example 34.

5.2 Linear dynamical systems

Interestingly, if the conewise linear dynamics reduces to the standard linear dynamics, with the
convention that this dynamics is valid in Rn, Theorem 31 implies that GES is equivalent to the

5Please note the typo in [22]: The matrices A2 and A3 have to be interchanged.
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existence of a global polyhedral6 Lyapunov function of the form W (ξ) := ‖Pξ‖1,∞. In this case
the Lyapunov weight matrix P ∈ Rp×n with p ≥ n is not square in general, but of full column
rank. Polyhedral Lyapunov functions [10], [11] are in fact convex conewise linear functions, which
can be expressed as the maximum over a finite number of linear functions (see also [25] for further
insights).

The above observation is formally stated next.

Corollary 35. A linear system
x(k + 1) = Ax(k) (15)

with k ∈ N, and A ∈ Rn×n is GES if and only if there exists a global polyhedral Lyapunov function
of the form W (ξ) = ‖Pξ‖1 with P ∈ Rp×n, p ≥ n.

In particular, if M ∈ N satisfies CµM < 1 with C ≥ 1, µ ∈ [0, 1) satisfying (3) and (2), then the
number of rows of P can always be chosen as p = Mn.

Proof. It remains to show that GES of the linear system (15) implies the existence of a matrix P ∈
Rp×n such thatW (ξ) = ‖Pξ‖1 is a Lyapunov function. First note that by Corollary 24, GES implies
that there exists an M ∈ N such that the function W (ξ) :=

∑M−1
k=0 ‖x(k, ξ)‖1 =

∑M−1
k=0

∥∥Akξ∥∥
1

is a global Lyapunov function. In particular, M satisfies CµM < 1, where C ≥ 1, µ ∈ [0, 1) stem
from (3) and (2). Exploiting the fact

M−1∑
k=0

∥∥Akξ∥∥
1

= ‖Pξ‖1

with
P :=

(
AM−1; AM−2; . . . ; A; I

)
we obtain that W (ξ) = ‖Pξ‖1 is a global Lyapunov function for the linear system (15). Note that
P has full column rank by the identity matrix in the last row block. In particular, this implies
that for a linear GES system (15) there always exists a Lyapunov function W (ξ) = ‖Pξ‖1, where
P has p = Mn number of rows.

Remark 36. Corollary 35 constructs a suitable global Lyapunov functionW as a weighted 1–norm.
Following Remark 32 it is easy to see that W (ξ) := ‖Pξ‖∞, i.e., a weighted infinity norm, is a
global Lyapunov function as well. In this case, however, the matrix P is defined as

P =
(

(c1/MA)M−1; . . . ; c2/MA2; c1/MA; I
)
,

where c ∈ (0, 1) and ρ(s) := cs satisfies Definition 6-(ii) for the global finite–time Lyapunov function
V (ξ) = ‖ξ‖∞.

Remark 37. In [10], [11] and, among several other works, [25], existence of a polyhedral Lyapunov
function W (ξ) = ‖Pξ‖1,∞ with P ∈ Rp×n is established for GES linear systems. However, the
proofs therein are rather complex and not constructive. In particular, no estimate of an upper
bound on the number of rows p of the Lyapunov weight matrix P is given. This is in fact one of
the non–trivial, open problems in construction of polyhedral Lyapunov functions for linear systems,
see, e.g., [26], [27]. Corollary 35 solves this problem by explicitly giving an admissible value of p for
the 1-norm case, while an admissible value of p for the infinity norm case is given in Remark 36.
In both cases p = Mn, where M is derived from the corresponding global finite–time Lyapunov
function V (ξ) = ‖ξ‖1,∞.

Based on the above results and insights, we are in a position to provide a systematic procedure for
constructing polyhedral Lyapunov functions for linear systems that is applicable in state spaces of
high dimension. Note that this is attained without employing a (Jordan) decomposition of the A
matrix or any further assumptions on the eigenvalues of A, as done in existing works on this topic,
see, e.g., [25] and the references therein. To this end, in view of the proof of Corollary 24, it is

6I.e., the sublevel sets of such a function are convex polyhedra with zero in their interior.
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possible to obtain an admissible value for M analytically, for linear systems. The procedure is as
follows. Consider the matrix inequalities

ρ(A)2P −A>PA � 0,

c2In � P � In, (16)

where c2 ≥ 1 and ρ(A) denotes the spectral radius of A (the dynamics of the linear system).
There exists a matrix P that satisfies the LMIs (16) if and only if the linear system is GES, see,
e.g., [4]. A matrix P that satisfies (16) can be found by solving the LMIs (16) while minimizing
c2. Thus, it follows from standard Lyapunov arguments, see, e.g., [3], that the GES property
‖x(k, ξ)‖2 ≤ Cµk ‖ξ‖2 holds with µ := ρ(A), C :=

√
c2 for the Euclidian norm ‖·‖2. Hence, it

follows from the condition CµM < 1 that any M ∈ N such that M > logµ( 1
C ) is admissible in

the sense that it provides a valid finite–time Lyapunov function. Note that for the 1-norm and
the infinity norm case, we have to choose C :=

√
nc2, which follows by the norm equivalences in

Rn. The polyhedral Lyapunov function is then directly obtained from Corollary 35 or Remark 36,
respectively.

An alternative to the LMI approach to computing a suitable M ∈ N was obtained in [21]. Take
any norm ‖·‖. Then it holds ‖x(k, ξ)‖ =

∥∥Akξ∥∥ ≤ ∥∥Ak∥∥ ‖ξ‖. Hence, we have M := min{k ∈ N :∥∥Ak∥∥ < 1}. As we can see in the following examples, this second approach yields smaller values
for M ∈ N compared to the LMI approach.

Example 38. To illustrate the results for linear dynamics, consider system (15) with A =(
1 0.4
−0.2 0.9

)
. We construct Lyapunov functions both for the 1-norm case and for the infinity norm

case. (i) In the 1-norm case we obtain M = 74 by the LMI approach (16), whereas the second
approach for computing M ∈ N yields ‖x(k, ξ)‖1 ≤

∥∥Ak∥∥
1
‖ξ‖1, and

∥∥A11
∥∥

1
< 1. Hence for

M = 11, the function W1(ξ) = ‖P1ξ‖1 is a conewise linear Lyapunov function for system (15),
where P1 ∈ R22×2 can be computed in a straightforward manner by Corollary 35. In Figure 3 we
provide a contour and surface plot of the Lyapunov function W1.
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Figure 3: Surface plot of the Lyapunov function W1 of Example 38.

(ii) In the infinity norm case, again, we obtain M = 74 by the LMI approach (16). Alternatively,∥∥A11
∥∥
∞ < 1 implies that V (ξ) = ‖ξ‖∞ is a global finite–time Lyapunov function for the linear

system (15) satisfying V (x(11, ξ)) ≤
∥∥A11

∥∥
∞ V (ξ). Hence for M = 11, the function W∞(ξ) =

‖P∞ξ‖∞ is a conewise linear Lyapunov function for system (15), where P∞ ∈ R22×2 can be
computed in a straightforward manner by Remark 36, where we took c = 0.91.
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Example 39. To illustrate the applicability of the developed methods in high dimension state
spaces, consider the linear system (15) with

A =


0 −0.3 0.1 −0.1 −0.3 0 −0.1 −0.1 0 −0.4
−0.4 0.4 −0.3 0.1 −0.2 0.1 −0.4 0 −0.2 0.4
−0.4 −0.1 0.1 0.2 −0.3 −0.3 0 0.2 0.3 0.3
−0.4 −0.3 0.2 −0.1 −0.1 −0.1 0 −0.1 −0.2 0.4
0.3 0.2 0.4 0.2 −0.2 −0.4 −0.3 −0.4 0.1 0.2
−0.4 0.4 0.2 0.3 −0.2 −0.1 0.4 −0.2 −0.3 0.4

0 0.2 0.2 0 0.2 −0.3 −0.3 −0.4 0.2 −0.1
0.4 0.3 0.4 0.3 0 0 0.4 0.3 0.4 0
0.2 0 −0.2 −0.3 −0.3 0 0 0 0.2 0.2
0 0.1 0 −0.1 0.4 0.3 −0.2 0.3 0.4 0.3

 .

This systems is GES as the spectral radius of A is 0.9544, and hence, less than 1. So we can
compute the value M ∈ N by the LMI approach (16) as M = 39. Using the alternative approach,
by computing minimal k ∈ N satisfying

∥∥Ak∥∥ < 1, we obtain for the 1-norm case a value ofM1 = 17,
and for the infinity-norm case a value of M∞ = 20. Thus, by Corollary 35, we obtain the linear
Lyapunov function W1(ξ) = ‖P1ξ‖1, where the matrix P1 ∈ R170×10 is given by Corollary 35.
Following Remark 36, we obtain the linear Lyapunov function W∞(ξ) = ‖P∞ξ‖∞ with matrix
P∞ ∈ R200×10.

6 Conclusions

This paper presented a novel converse Lyapunov theorem for discrete–time systems under a mild
assumption. The developed theorem is constructive, as it provides an explicit Lyapunov function,
whereas other converse Lyapunov theorems only show existence of a Lyapunov function. Moreover,
we showed that for specific classes of systems, the developed converse theorem can be used to
establish non–conservatism of a particular type of Lyapunov functions. Most notably, a proof that
conewise linear Lyapunov functions are non–conservative for GES conewise linear systems was
given and, as a by–product, a tractable construction of polyhedral Lyapunov functions for linear
systems was attained.
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[2] E. A. Barbašin and N. N. Krasovskĭı, “On the existence of Lyapunov functions in the case of asymptotic
stability in the large,” Akad. Nauk SSSR. Prikl. Mat. Meh., vol. 18, pp. 345–350, 1954.

[3] Z.-P. Jiang and Y. Wang, “A converse Lyapunov theorem for discrete-time systems with disturbances,”
Systems Control Lett., vol. 45, no. 1, pp. 49–58, 2002.

[4] R. Kalman and J. Bertram, “Control system analysis and design via the second method of Lyapunov:
(i) continuous-time systems (ii) discrete time systems,” Automatic Control, IRE Transactions on,
vol. 4, pp. 371–393, December 1959.

[5] C. M. Kellett and A. R. Teel, “On the robustness of KL-stability for difference inclusions: Smooth
discrete-time Lyapunov functions,” SIAM Journal on Control and Optimization, vol. 44, no. 3, pp. 777–
800, 2005.

[6] I. G. Malkin, “On the reversibility of Lyapunov’s theorem on asymptotic stability,” Akad. Nauk SSSR.
Prikl. Mat. Meh., vol. 18, pp. 129–138, 1954.

[7] J. L. Massera, “On Liapounoff’s conditions of stability,” Ann. of Math. (2), vol. 50, pp. 705–721, 1949.

[8] D. Nešić, A. R. Teel, and P. V. Kokotović, “Sufficient conditions for the stabilization of sampled-data
nonlinear systems via discrete-time approximations,” Systems and Control Letters, vol. 38, no. 4–5,
pp. 259–270, 1999.

[9] A. R. Teel and L. Praly, “A smooth Lyapunov function from a class-KL estimate involving two positive
semidefinite functions,” ESAIM - Control Optimization and Calculus of Variations, vol. 5, pp. 313–
367, 2000.

[10] A. P. Molchanov and E. S. Pyatnitskii, “Criteria of asymptotic stability of differential and difference
inclusions encountered in control theory,” Systems & Control Letters, vol. 13, pp. 59–64, 1989.

17



[11] H. Kiendl, J. Adamy, and P. Stelzner, “Vector norms as Lyapunov functions for linear systems,” IEEE
Transactions on Automatic Control, vol. 37, no. 6, pp. 839–842, 1992.

[12] S. F. Hafstein, An algorithm for constructing Lyapunov functions, vol. 8 of Electronic Journal of
Differential Equations. Monograph. Texas State University–San Marcos, Department of Mathematics,
San Marcos, TX, 2007.

[13] F. Camilli, L. Grüne, and F. Wirth, “Control Lyapunov functions and Zubov’s method,” SIAM J.
Control Optim., vol. 47, no. 1, pp. 301–326, 2008.

[14] Z. Zhijun, “Converse Lyapunov theorems for nonautonomous discrete-time systems.,” J. Math. Sci.,
New York, vol. 161, no. 2, pp. 337–343, 2009.

[15] D. Aeyels and J. Peuteman, “A new asymptotic stability criterion for nonlinear time-variant differential
equations.,” IEEE Trans. Autom. Control, vol. 43, no. 7, pp. 968–971, 1998.

[16] V. D. Blondel and J. N. Tsitsiklis, “Complexity of stability and controllability of elementary hybrid
systems,” Automatica J. IFAC, vol. 35, no. 3, pp. 479–489, 1999.

[17] M. Johansson, Piecewise linear control systems, vol. 284 of Lecture Notes in Control and Information
Sciences. Springer, 2003.

[18] R. Geiselhart and F. R. Wirth, “Solving iterative functional equations for a class of piecewise linear
K∞-functions.” submitted to J. Math. Anal. Appl., May 2013.

[19] M. Lazar, Model Predictive Control of Hybrid Systems: Stability and Robustness. PhD thesis, Eind-
hoven University of Technology, 2006.

[20] S. Emre Tuna, “Growth rate of switched homogeneous systems,” Automatica, vol. 44, pp. 2857–2862,
2008.

[21] M. Lazar, S. V. Raković, A. I. Doban, and N. Athanasopoulos, “On stability analy-
sis of discrete–time homogeneous dynamics,” tech. rep., Eindhoven University of Technology,
http://www.cs.ele.tue.nl/MLazar/TechReport03.pdf, 2013.

[22] Z. Sun, “Stability of piecewise linear systems revisited,” Annual Reviews in Control, vol. 34, pp. 221–
231, 2010.

[23] M. Lazar and A. Jokić, “On infinity norms as Lyapunov functions for piecewise affine systems,”
in Proc. of the ACM Conference Hybrid Systems: Computation and Control, (Stockholm, Sweden),
pp. 131–139, 2010.

[24] G. M. Ziegler, Lectures on Polytopes, Updated Seventh Printing. Berlin New-York: Springer, 2007.

[25] M. Lazar, “On Infinity Norms as Lyapunov Functions: Alternative Necessary and Sufficient Con-
ditions,” in 49th IEEE Conference on Decision and Control, (Atlanta, GA, USA), pp. 5936–5942,
December 15-17 2010.

[26] O. N. Bobyleva and E. S. Pyatnitskii, “Piecewise-linear Lyapunov functions and localization of spectra
of stable matrices,” Automation and Remote Control, vol. 62, no. 9, pp. 1417–1427, 2001. Translated
from Avtomatika i Telemekhanika, No. 9, 2001, pp. 25–36.

[27] O. N. Bobyleva, “Piecewise-linear Lyapunov functions for linear stationary systems,” Automation and
Remote Control, vol. 63, no. 4, pp. 540–549, 2002. Translated from Avtomatika i Telemekhanika, No.
4, 2002, pp. 26–35.

18


