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1. Introduction

Recently, intensive research efforts have focused on the de-
velopment of distributed Model Predictive Control (MPC) tech-
niques for interacting systems, see e.g. the review paper [1], the
book [2], and the contributions reported in [3–9]. This interest is
motivated by the increasing complexity of industrial systems and
infrastructures, such as power and transport networks or hydro
power plants, which require to distribute the computational effort
as well as to resort to a distributed control structure to enhance
the safety and reliability of the system in front of communication
losses or delays.

With some notable exceptions, see e.g. [3,5,9,10], the majority
of the distributed control algorithms proposed so far have been
developed for discrete-time systems, possibly obtained from an
underlying continuous-time model. The discrete-time framework
is particularly suitable for the design of distributed MPC, since it
also allows to easily develop methods based on distributed op-
timization approaches, see e.g. [11–16], or on agent negotiation,
see e.g. [17,18]. However, some reasons motivate the effort of
developing new and effective distributed MPC methods for
continuous-time systems. First, control in the discrete-time frame-
work does not allow to consider the process inter-sampling be-
havior in the optimization problemunderlying anyMPC algorithm.
Also, a significant problem may concern the relationship between

∗ Corresponding author. Tel.: +39 0223993599.
E-mail addresses: marcello.farina@polimi.it (M. Farina), giulio.betti@polimi.it 

(G. Betti), riccardo.scattolini@polimi.it (R. Scattolini).
the discrete-time model used for distributed control and the orig-
inal continuous-time one. Indeed, under exact discretization, the
continuous-time system sparsity (i.e., the coupling structure be-
tween the subsystems composing the large-scale model) may be
destroyed, which would significantly impact on the underlying
communication graph needed for control implementation. Alter-
native discretization methods for overcoming this problem are
nowadays available (see [19] for a discussion), at the price of in-
troducing some approximation.

The aim of this paper is to formulate in a continuous-time
framework the Distributed Predictive Control (DPC) algorithm re-
cently developed for discrete-time plant models in [20] and ex-
tended to the tracking and output feedback cases in [21,22]. DPC
is based on a non-iterative scheme where the future state and
control reference trajectories are transmitted among neighboring
systems, i.e. systems with direct couplings through their state or
control variables, and the differences between these trajectories
and the true ones are interpreted as disturbances to be rejected by
a proper robust control method. Therefore in DPC it is not neces-
sary for each subsystem to know the dynamical models governing
the trajectories of the other subsystems and the transmission of
information is limited. It is also worth noting that the rationale of
DPC is very similar to the MPC algorithms presently employed in
industry, where reference trajectories tailored on the dynamics of
the system under control are used.

The paper is organized as follows. In Section 2 the problem is
formulated and the main assumptions on the process model are
introduced. In Section 3 we present the continuous-time DPC
algorithm and its properties, while some implementation issues
are tackled in Section 4. A simulation example is discussed in
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Section 5 and in Section 6 we draw some conclusions, while in
Appendix A we present the proof of the main result.

Notation. A matrix is Hurwitz if all its eigenvalues have negative
real part. The short-hand v = (v1, . . . , vs) denotes a column
vector with s (not necessarily scalar) components v1, . . . , vs. The
symbol ⊖ denotes the Pontryagin difference, while ⊕ denotes the
Minkowski sum and

M
i=1 Ai = A1 ⊕ · · · ⊕ AM . For a continuous-

time variable s(t) and a given interval I ⊆ R+ (I can be open
or closed), the trajectory s(t) with t ∈ I is denoted with s(I ).
Finally, B(dim)

ρ̄E
(0) is a ball of radius ρ̄E > 0 centered at the origin in

the Rdim space.

2. Partitioned continuous-time systems

Consider a processmade byM interacting systems described by
the continuous time linear models

ẋ[i](t) = Aii x[i](t) + Biiu[i](t) +


j≠i

{Aijx[j](t) + Biju[j](t)} (1)

where x[i](t) ∈ Xi ⊆ Rni and u[i](t) ∈ Ui ⊆ Rmi are the state
and input vectors, respectively, of the ith system (i = 1, . . . ,M),
while Xi and Ui are convex neighborhoods of the origin. Letting
x(t) = (x[1](t), . . . , x[M](t)), u(t) = (u[1](t), . . . , u[M](t)), the
ensemble of systems (1) can be written in the collective form

ẋ(t) = A x(t) + Bu(t), (2)

where the block matrices A and B are composed by the systems’
matrices Aij, Bij, i, j = 1, . . . ,M . Analogously, it is possible to
define X =

M
i=1 Xi ⊆ Rn and U =

M
i=1 Ui ⊆ Rm, where

n =
M

i=1 ni and m =
M

i=1 mi, which are convex by convexity of
Xi andUi. In the following, subsystem jwill be defined as a neighbor
of subsystem i if and only if the state and/or the input of j affects
the dynamics of subsystem i, i.e. iff Aij ≠ 0 and/or Bij ≠ 0, and Ni
will denote the set of neighbors of subsystem i (which excludes i).

Concerning systems (1), the following stabilizability assump-
tion is introduced.

Assumption 1. There exist matrices K̄i ∈ Rmi×ni , i = 1, . . . ,M ,
such that F̄ii = (Aii + BiiK̄i) are Hurwitz.

Define K̄ = diag(K̄1, . . . , K̄M).
As for the collective system (2), the following assumption on

decentralized stabilizability is made:

Assumption 2. There exists a block-diagonal matrix Kc
=

diag(K c
1 , . . . , K

c
M), with K c

i ∈ Rmi×ni , i = 1, . . . ,M such that: (i)
A+BKc is Hurwitz, (ii) Fii = (Aii + BiiK c

i ) is Hurwitz, i = 1, . . . ,M .

Note that Assumption 2 implies Assumption 1 which can be
trivially satisfied by setting K̄i = K c

i . However, since K̄i and K c
i play

different roles in the design algorithm to be presented, it can be
useful to allow them to be different for performance enhancement.

3. DPC for continuous-time systems

The continuous-time distributed control law described in the
following is composed by two terms, the first one is a standard
state feedback,while the second one is computed by anMPC-based
distributed control algorithm running with sampling period T and
at sampling times tk = kT , k ∈ N. For simplicity of notation, given
the sampling instant tk, the sampling time instant tk + hT will be
denoted by tk+h.
3.1. Models: perturbed, nominal and auxiliary

Similarly to the discrete-time DPC algorithm presented in [20],
we assume that at any time instant tk each subsystem i transmits
to its neighbors its future state and input reference trajectories,
to be later specified, x̃[i](t) and ũ[i](t), t ∈ [tk, tk + (N − 1)T ).
Moreover, by adding suitable constraints in the MPC formulation,
each subsystem will be able to guarantee that its state and control
trajectories lie in specified time-invariant neighborhoods of the
reference trajectories, i.e, for all t ∈ [tk, tk+N−1), x[i](t) ∈ x̃[i](t)⊕Ei
and u[i](t) ∈ ũ[i](t) ⊕ Ui, where 0 ∈ Ei and 0 ∈ Ui. It is possible to
rewrite (1) as the perturbed model

ẋ[i](t) = Aii x[i](t) + Biiu[i](t)

+


j∈Ni

(Aijx̃[j](t) + Bijũ[j](t)) + w[i](t) (3)

where the term


j∈Ni
(Aijx̃[j](t)+Bijũ[j](t)) can be interpreted as a

disturbance, known in advance over the future prediction horizon
of length (N − 1)T (i.e., for all t ∈ [tk, tk + (N − 1)T )), to be
suitably compensated. On the other hand, w[i](t) =


j∈Ni

(Aij

(x[j](t)− x̃[j](t))+Bij(u[j](t)− ũ[j](t))) ∈ Wi is a bounded unknown
disturbance (i.e., Wi =


j∈Ni

{AijEi ⊕ BijUi}) to be rejected.
For the statement of the individual MPC sub-problems (i.e., de-

noted i-DPC problems), we rely on a continuous-time (see,
e.g., [23]) version of the robust MPC algorithm presented in [24]
for constrained discrete-time linear systems with bounded distur-
bances. As a preliminary step, define the ith subsystem nominal
model obtained from equation (3) by neglecting the disturbance
w[i](t):

˙̂x
[i]

(t) = Aii x̂[i](t) + Biiû[i](t) +


j∈Ni

(Aijx̃[j](t) + Bijũ[j](t)). (4)

The control law for the ith perturbed subsystem (3) is given by

u[i](t) = û[i](t) + K c
i (x

[i](t) − x̂[i](t)) (5)

where K c
i is the feedback gain satisfying Assumption 2. Letting

z[i](t) = x[i](t) − x̂[i](t), from (3) and (5), one obtains

ż[i](t) = Fiiz[i](t) + w[i](t) (6)

where w[i](t) ∈ Wi. Since Wi is bounded and Fii is Hurwitz, it is
possible to define the robust positively invariant (RPI) set Zi for (6)
(see, for example, [25] and [26]) such that, for all z[i](tk) ∈ Zi, then
z[i](t) ∈ Zi for all t ≥ tk. Here, we assume that the sets Zi are such
that there exist non-empty sets

X̂i ⊆ Xi ⊖ Zi, Ûi ⊆ Ui ⊖ K c
i Zi. (7)

Given Zi, define the neighborhoods of the origin Ei and Ui, i =

1, . . . ,M such that

Ei ⊕ Zi ⊆ Ei, Ui ⊕ K c
i Zi ⊆ Ui. (8)

Recall now that x̃[j](t) and ũ[j](t), i ∈ Ni are available to subsys-
tem i for t ∈ [tk, tk + (N − 1)T ). In view of this, differently from
the discrete-time DPC algorithm discussed in [20], it is not pos-
sible to compute the final segment of the nominal trajectory for
t ∈ [tk + (N − 1)T , tk + NT ) using (4). Then, with reference to the
time interval t ∈ [tk+N−1, tk+N ], we define an auxiliary ‘‘decentral-
ized’’ model, obtained from equation (4) by neglecting the known
disturbance term, i.e.,

˙̄x
[i]

(t) = Aii x̄[i](t) + Biiū[i](t). (9)

Similarly to (5), the term û[i](t) is set as follows

û[i](t) = ū[i](t) + K̄i(x̂[i](t) − x̄[i](t)) (10)



where K̄i is the feedback gain satisfying Assumption 1. Letting
s[i](t) = x̂[i](t) − x̄[i](t), from (4), (9) and (10) one has

ṡ[i](t) = F̄iis[i](t) + w̄[i](t) (11)

where w̄[i](t) =


j∈Ni
{Aijx̃[j](t) + Bijũ[j](t)}. Assuming that it is

possible to guarantee (by properly-defined constraints) that, for
suitably defined sets Ēi and Ūi and for t ∈ [tk+N−1, tk+N), x̃[i](t) ∈ Ēi
and ũ[i](t) ∈ Ūi, then w̄[i](t) ∈ W̄i =


j∈Ni

{AijĒj ⊕ BijŪj}. Since
W̄i is bounded and F̄ii is Hurwitz, it is possible to define a further
robust positively invariant (RPI) set Si for (11). The sets Ēi and Ūi
must satisfy Ēi ⊕ Si ⊆ X̂i, Ūi ⊕ K̄iSi ⊆ Ûi, Si ⊆ Ei and K̄iSi ⊆ Ui. Al-
though not strictly necessary for the derivation of the properties of
the proposed DPC method, for simplicity in the following it will be
assumed that the feed-forward term ū[i](t) is a piecewise constant
signal, i.e., ū[i](t) = ū[i](tk+N−1) for all t ∈ [tk+N−1, tk+N).

3.2. Statement of the i-DPC problems

At any time instant tk, given the future reference trajectories
x̃[j](t), ũ[j](t), t ∈ [tk, tk+N−1), j ∈ Ni ∪ {i}, for system i = 1, . . . M
we define the following i-DPC problem

min
x̂[i](tk),û[i]([tk,tk+N−1)),x̄[i](tk+N−1),ū[i](tk+N−1)

VN
i (12)

subject to (4), (9), to

x[i](tk) − x̂[i](tk) ∈ Zi (13)

x̂[i](t) − x̃[i](t) ∈ Ei (14)

û[i](t) − ũ[i](t) ∈ Ui (15)

x̂[i](t) ∈ X̂i (16)

û[i](t) ∈ Ûi (17)

for all t ∈ [tk, tk+N−1), to

x̂[i](tk+N−1) − x̄[i](tk+N−1) ∈ Si (18)

x̄[i](t) ∈ Ēi (19)

ū[i](t) ∈ Ūi (20)

for all t ∈ [tk+N−1, tk+N), and to the terminal constraint

x̄[i](tk+N) ∈ X̄F
i (21)

where X̄F
i is a terminal set related to the ith nominal subsystem (9),

specified in the following section. The cost function VN
i is defined

as follows.

VN
i =

1
2

 tk+N−1

tk
(∥x̂[i](t)∥2

Q̂i
+ ∥û[i](t)∥2

R̂i
)dt

+
λ

2

 tk+N

tk+N−1

(∥x̄[i](t)∥2
Q̄i

+ ∥ū[i](t)∥2
R̄i
)dt

+
1
2
∥x̂[i](tk+N−1)∥

2
P̂i

+
λ

2
∥x̄[i](tk+N)∥2

P̄i
(22)

where λ is a positive constant and the symmetric, positive definite
matrices Q̂i, Q̄i, R̂i, R̄i, P̂i, and P̄i are design parameters to be chosen
as specified later. It is worth remarking that, differently from the
discrete-time case, where the terminal cost on the final state is
easily included, here it is necessary to weight the continuous state
and control evolution for t ∈ [tk+N−1, tk+N ]. This motivates the
presence of the terms weighted by λ in (22), and the definition of
the system (9) in addition to the nominal model (4). Denoting by

Xi(tk) = (x̂[i](tk), û[i]([tk, tk+N−1)), x̄[i](tk+N−1), ū[i](tk+N−1))
the arguments of the cost function VN
i , the optimal solution to the

i-DPC problem at time tk is the 4-uple Xi(tk|tk) = (x̂[i](tk|tk), û[i]

([tk, tk+N−1)|tk), x̄[i](tk+N−1|tk), ū[i](tk+N−1|tk)). The signal x̂[i](t|tk),
t ∈ [tk, tk+N−1] (respectively x̄[i](t|tk), t ∈ [tk+N−1, tk+N ]) is the
solution to (4) (respectively to (9)) obtained with x̂[i](tk|tk) as ini-
tial condition and û([tk, tk+N−1)|tk) as input sequence (respectively
with x̄[i](tk+N−1|tk) as initial condition and ū(tk+N−1|tk) as constant
input). According to (5), the control law for the system (1), for
t ∈ [tk, tk+1), is given by

u[i](t) = û[i](t|tk) + K c
i (x

[i](t) − x̂[i](t|tk)). (23)

Finally, the reference trajectories x̃[i](t) and ũ[i](t) are incre-
mentally defined as follows. For t ∈ [tk+N−1, tk+N), we set

x̃[i](t) = x̄[i](t|tk) (24a)

ũ[i](t) = ū[i](t|tk). (24b)

Then, these pieces of trajectories are transmitted to the subsystems
j such that i ∈ Nj, i.e., which need their knowledge to compute the
future predictions x̂[j](t).

Some remarks are due.

(I) In the optimization problem (12) it has been assumed that
û[i]([tk, tk+N−1)) is a generic function of time. However, for
computational reasons, it is usually more convenient to resort
to parameterized functions and to optimize with respect to
the corresponding parameters.

(II) As discussed, the pieces of continuous-time trajectories x̃[i](t)
and ũ[i](t), t ∈ [tk+N−1, tk+N), must be communicated in a
neighbor-to-neighbor fashion. To do so, two possible strate-
gies can be adopted: (i) if we rely on suitable approxima-
tions, e.g., by means of orthonormal basis functions, we can
transmit a continuous-time piece of trajectory by transmit-
ting a suitable parameter vector; (ii) if we allow subsystem
j to know also the dynamical model governing the subsys-
tem i, with i ∈ Nj, by solely transmitting x̄[i](tk+N−1|tk) and
ū[i](tk+N−1|tk), the whole x̄[i](t|tk), t ∈ [tk+N−1, tk+N), can be
exactly reconstructed by subsystem j itself.

(III) Note that the dynamics and the settling time of the real state
trajectories are strongly dependent on how the reference tra-
jectories are initialized and on the length N of the prediction
horizon, in view of the fact that the reference trajectories are
updated as in (24) and cannot be redefined at each iteration
step. This makes the initialization phase crucial for enhanced
performance. Future work will be especially devoted to this,
in line with the results presented in [27] for the discrete-time
case.

3.3. Properties of DPC

Before we establish the main stability and convergence proper-
ties of the proposed distributed control scheme, we formally state
the main requirements of the sets introduced in the previous sec-
tions.

Assumption 3. Given the sets Ei, Ui, and the RPI sets Zi for
equation (6), there exists a real positive constant ρ̄E > 0 such that
Zi ⊕ B

(ni)
ρ̄E

(0) ⊆ Ei and K c
i Zi ⊕ B

(mi)
ρ̄E

(0) ⊆ Ui for all i = 1, . . . ,M .

Assumption 4. For each i = 1, . . . ,M

(i) the set Zi satisfies Zi ⊂ Xi and K c
i Zi ⊂ Ui;

(ii) the sets Si, Ēi, and Ūi satisfy the following inclusions: Ēi ⊕ Si ⊆

X̂i, Ūi ⊕ K̄iSi ⊆ Ûi, Si ⊆ Ei and K̄iSi ⊆ Ui.



A comment on Assumptions 3–4 is due. Concerning the sets Zi,
Ei, andUi, i = 1, . . . ,M , Assumption 3, i.e., Zi ⊂ Ei and K c

i Zi ⊂ Ui is
required for suitably defining Ei and Ui, see (8); on the other hand,
Assumption 4(i), i.e., Zi ⊂ Xi andK c

i Zi ⊂ Ui, is required for properly
introducing X̂i and Ûi, see (7). Finally, Assumption 4(ii), concerning
sets Si, Ēi, and Ūi, i.e., that Ēi ⊕ Si ⊆ X̂i, Ūi ⊕ K̄iSi ⊆ Ûi, Si ⊆ Ei and
K̄iSi ⊆ Ui, is required for properly constraining the final segment
of the nominal and reference trajectories.

Note that, concerning Assumption 3, it is not guaranteed that a
suitable choice of Ei andUi exists. On the other hand, Assumption 4
is constructive: indeed, provided that sets Ei, Ui, Ēi, and Ūi are
scaled by a suitable factor, Assumption 4 can always be verified.

Now we need to define the set of admissible initial conditions
x(t0) = (x[1](t0), . . . , x[M](t0)) and initial reference trajectories
x̃[j](t), ũ[j](t), for all j = 1 . . . ,M and t ∈ [t0, tN−1).

Definition 1. Letting x = (x[1], . . . , x[M]), denote by

XN
:=


x : if x[i](t0) = x[i] for all i = 1, . . . ,M

then ∃(x̃[1](t), . . . , x̃[M](t)), (ũ[1](t), . . . , ũ[M](t))
for all t ∈ [t0, tN−1), Xi(t0|t0) such that (4), (9),
and (13)–(21) are satisfied for all i = 1, . . . ,M}

the feasibility region for all the i-DPC problems. Moreover, for each
x ∈ XN , let

X̃x :=

(x̃[1](t), . . . , x̃[M](t)), (ũ[1](t), . . . , ũ[M](t)) for

all t ∈ [t0, tN−1) if x[i](t0) = x[i] for all i = 1, . . . ,M
then ∃ Xi(t0|t0) such that (4), (9),
and (13)–(21) are satisfied for all i = 1, . . . ,M}

be the region of feasible initial reference trajectories.

We are now in the position to state the following result

Theorem 1. Let Assumptions 1–4 be satisfied; then, there exist com-
putable design parametersλ, Q̂i, Q̄i, R̂i, R̄i, P̂i, P̄i such that, for any ini-
tial reference trajectories in X̃x(t0), the trajectory x(t), starting from
any initial condition x(t0) ∈ XN , asymptotically converges to the ori-
gin.

A detailed discussion on how to select the design parameters
and the sets of interest is reported in the following section.

4. Tuning of the design parameters

In this section we show how to compute design parameters
which guarantee that Theorem 1 holds.

4.1. Choice of the control gains K c
i , K i

The control laws (5), (10) require the knowledge of the gains
K c
i and K i satisfying Assumptions 1 and 2. While the terms K i

can be computed with any standard synthesis method provided
that the pair (Aii, Bi) is stabilizable, the computation of Kc

=

diag(K c
1 , . . . , K

c
M) is more difficult, since both a collective and a

number of local stability conditions must be fulfilled. For instance,
this problem can be easily tackled, similarly to [28,29], in a
centralized fashion by defining two block diagonal matrices P =

(P1, . . . , PM), Pi ∈ Rni×ni , and Y = diag(Y1, . . . , YM), Yi ∈ Rmi×ni ,
and by solving the following set of LMI’s

P ≻ 0
Pi ≻ 0, i = 1, . . . ,M
PAT

+ AP + YTBT
+ BY ≺ 0

PiAT
ii + AiiPi + Y T

i B
T
ii + BiiYi ≺ 0, i = 1, . . . ,M

(25)
Then, Kc
= YP−1 is the required stabilizing block diagonal ma-

trix.
This approach is not scalable and could become critical in case

of very large-scale systems. An alternative and possibly completely
distributed strategy can be adopted, similar to the one discussed
e.g., in [30]: (i) stabilize each subsystem separately (as if it were
decoupled from the rest), possibly using robust design methods
to minimize the mutual interactions between subsystems; (ii)
check decentralized stability using a small-gain like condition,
e.g., based on vector Lyapunov functions [30], that can be applied
in a distributed fashion. As remarked in [30], thismethod proved to
be effective in a number of applications, especially those involving
weakly-interacting subsystems; moreover, similarly to [31], a
similar approach can lead to plug-and-play control system design
and implementation.

It is important to mention that also the fulfillment of Assump-
tion 3 directly depends on how K c

i , i = 1, . . . ,M , are selected. In
our framework, Assumption 3 should be verified after the defini-
tion of the local gainsK c

i , discussed above. Similarly to the discrete-
time case (see [31]), however, it could be possible to devise a
unique (possibly distributed) design procedure for addressing As-
sumptions 1–3 at the same time. Future work will be devoted to
this issue.

4.2. Choice of Q̄i, R̄i, P̄i, X̄F
i

In order to definematrices Q̄i, R̄i, P̄i, and the invariant set X̄F
i , we

must preliminarily define the auxiliary control law for the system
(9),whichmust be consistentwith the simplifying assumption that
ū[i](t) is piecewise constant. Assuming that the terminal constraint
x̄[i](tk+N) ∈ X̄F

i is verified, we define the auxiliary control law, to
be applied to system (9) for all t ∈ [tk+N , tk+N+1), as

ū[i](t) = ū[i](tk+N) = K d
i x̄

[i](tt+N) (26)

where the gain K d
i must stabilize the continuous-time system (9).

Denoting, for all η ∈ [0, T ], Azoh
ii (η) = eAiiη and Bzoh

ii (η) = η

0 eAii(η−ν)Biidν and given x̄[i](tk+N), for all t ∈ [tk+N , tk+N+1] one
has

x̄[i](t) = F zoh
ii (t − tk+N)x̄[i](tk+N)

x̄[i](tk+N+1) = F d
ii x̄

[i](tk+N)

where F zoh
ii (η) = Azoh

ii (η) + Bzoh
ii (η)K d

i and F d
ii = F zoh

ii (T ). Therefore,
the gains K d

i can be computed with any standard stabilization
method to guarantee that F d

ii is Schur. This procedure allows also
one to resort to the results reported in [32], Lemma 1. Specifically,
given the symmetric weighting matrices Q̄i > 0 and R̄i >
0 appearing in (22) and which can be chosen as free design
parameters, define two constants γi1 > 0, γi2 > 0 in such a way
that

γi1 > λM(Q̄i) (27a)

γi2 > T∥K d
i ∥

2λM(R̄i). (27b)

Furthermore, define a matrix Q ∗

i in such a way that λm(Q ∗

i ) > γi1.
Let the symmetricmatrix P̄i be the unique positive definite solution
of the following Lyapunov equation

(F d
ii )

T P̄iF d
ii − P̄i + Q̃i = 0 (28)

where Q̃i =
 T
0 (F zoh

ii (η))TQ ∗F zoh
ii (η)dη + γi2I . Then, for each pair

of sets Ēi, Ūi, it is proven in [32] that there exist a sampling period
T ∈ [0,+∞) and a constant ci > 0 such that the set

X̄F
i (K

d
i , T ) = {x̄[i]

| ∥x̄[i]
∥
2
P̄i

≤ ci} (29)



satisfies, for all x̄[i](tk+N) ∈ X̄F
i and for all t ∈ [tk+N , tk+N+1), the

conditions

x̄[i](t) ∈ Ēi, Kdx̄[i](tk+N) ∈ Ūi (30a)

∥x̄[i](tk+N+1)∥
2
P̄i

− ∥x̄[i](tk+N)∥2
P̄i

≤ −γi1

 tk+N+1

tk+N

∥x̄[i](η)∥2dη

− γi2∥x̄[i](tk+N)∥2. (30b)
Letting

l̄i(x̄[i](t), ū[i](t)) =
λ

2

 t+T

t
(∥x̄[i](η)∥2

Q̄i
+ ∥ū[i](η)∥2

R̄i
)dη (31a)

V̄ F
i (x̄[i](t)) =

λ

2
∥x̄[i](t)∥2

P̄i
(31b)

from the definition of γi1 > 0, γi2 > 0 and V̄ F
i , and

recalling (26), (31b) implies that x̄[i](tk+N+1) ∈ X̄F
i and

V̄ F
i (x̄[i](tk+N+1)) − V̄ F

i (x̄[i](tk+N))

≤ −
λ

2

 tk+N+1

tk+N

(∥x̄[i](η)∥2
Q̄i

+ ∥ū[i](η)∥2
R̄i
)dη

≤ −l̄i(x̄[i](tk+N), ū[i](tk+N)). (32)
Therefore, since properties (30a)–(32) are required to establish the
main properties of themethod (see the proof of Theorem1), for any
pair Q̄i, R̄i it is required to choose the weights P̄i in (22) according
to (28) and the terminal set X̄F

i in (21) according to (29).

4.3. Choice of Q̂i, R̂i, P̂i, λ

The symmetric, positive definite matrices Q̂i, R̂i can be freely
chosen according to specific design criteria, while, in order to
guarantee the stability properties of Theorem 1, given an arbitrary
constant α > 1, the matrix P̂i must be computed to satisfy the
following Lyapunov equation:

Φ̄[i]
x (T )T P̂iΦ̄[i]

x (T ) − P̂i + Q[i]
x + αIn = 0 (33)

where

Q[i]
x =

 T

0
Φ̄[i]

x (η)T Q̂iΦ̄
[i]
x (η) + Φ̄[i]

u (η)T R̂iΦ̄
[i]
u (η)dη

and, for all η = [0, T ], Φ̄[i]
x (η) = eF̄iiη and Φ̄[i]

u (η) = K̄iΦ̄
[i]
x (η).

For the tuning of scalar λ, there exists a positive number λ̄ >
0 such that, if λ ≥ λ̄, then the convergence of the scheme is
guaranteed. For a numerical assessment of λ̄, see the discussion in
Appendix A.3.

5. Simulation example

Assume we have to regulate the levels yi, i = 1, . . . , 5 of the
five flotation tanks system proposed in [33], where a flow of pulp
q enters into the first one. The tanks are connected in cascade
with control valves between subsequent reservoirs (Fig. 1), and the
manipulated inputs are the signals to the valves vi, i = 1, . . . , 5.

The dynamic model of the levels inside the five tanks is [33]:

πr2
dy1
dt

= q − k1v1


y1 − y2 + h1

πr2
dy2
dt

= k1v1


y1 − y2 + h1 − k2v2


y2 − y3 + h2

πr2
dy3
dt

= k2v2


y2 − y3 + h2 − k3v3


y3 − y4 + h3

πr2
dy4
dt

= k3v3


y3 − y4 + h3 − k4v4


y4 − y5 + h4

πr2
dy5
dt

= k4v4


y4 − y5 + h4 − k5v5


y5 + h5

(34)
Fig. 1. Schematic representation of the flotation tanks.

where r is radius of the tanks, ki, i = 1, . . . , 5 are the valves
coefficients and hi, i = 1, . . . , 5 are the physical height differences
between subsequent tanks. We set r = 1 m, ki = 0.1 m2.5/Vs,
i = 1, . . . , 5 and hi = 0.5 m, i = 1, . . . , 5. The value for the
inlet flow is q = 0.1 m3/s. To linearize system (34), we considered
the equilibrium point where ȳi = 2 m, i = 1, . . . , 5, and,
correspondingly, v̄i = 1.4142 V, i = 1, . . . , 4 and v̄5 = 0.6325 V.
Let δyi = yi − ȳi, i = 1, . . . , 5, δvi = vi − v̄i, i = 1, . . . , 5,
x = (δy1, δy2, δy3, δy4, δy5) and u = (δv1, δv2, δv3, δv4, δv5).

The partition of inputs and states, for i = 1, . . . , 5 is:

x[i]
= δyi, u[1]

= δv1.

The constraints on the inputs and the states of the linearized sys-
tem, for i = 1, . . . , 5, have been set as:

x[i]
min = −1, x[i]

max = 1, u[i]
min = −v̄i, u[i]

max = 3 − v̄i.

The inputs have been parameterized as piece-wise constant sig-
nals, where the adopted sampling period is 5 s. The weighting ma-
trices, for i = 1, . . . , 5, are Q̄i = R̄i = Q̂i = R̂i = 1. The initial
state and control reference trajectories have been computed using
an iterative method similar to the one described in [20].

In Fig. 2 the state trajectories are depicted, computed with the
continuous-time nonlinear model in simulation. Fig. 3 shows the
applied inputs. In order to evaluate the results obtained with the
distributed continuous-time method here proposed, Figs. 2–3 also
show the transients of the state and control variables obtained
with (i) the most popular industrial implementation of MPC, i.e,
centralized MPC – denoted cMPC – based on a linearized discrete-
time model of the plant and (ii) the DPC scheme proposed in [20]
for discrete-time systems, where the model used in the control
design is discretized using the approximate method discussed
in [19]. From these plots it is apparent that the performance
deterioration with respect to the centralized approach mainly
consists of a slightly larger settling time and an overshoot of some
state variables. On the other hand, a slight degradation of the
results is witnessed in case of discrete-time DPC, which would
significantly aggravate as the sampling time increases.

6. Conclusions

In this paper we have presented a novel non-cooperative dis-
tributed predictive control algorithm for continuous-time systems
based on robust MPC, whose convergence properties have been
proved. The continuous-time approach proposed in this paper rep-
resents a significant improvement of the method described in [20]
also in view of an easier tuning of the main design parameters
(e.g., the weights in the cost function) which can guarantee sta-
bility and convergence properties. A realistic case study is used for
testing the performance of the algorithm. Future work will focus
on the initialization phase, where computationally scalable auto-
matic tools are needed for the definition of auxiliary control gains,
sets and reference trajectories: this could eventually pave the way
for plug-and-play implementations.



Fig. 2. Trajectories of the states x[1] (solid lines), x[2] (dashed lines), on the left, and x[3] (solid lines), x[4] (dashed lines), x[5] (dash–dot lines), on the right, obtained with
continuous-time DPC (black lines), with cMPC (red lines), and with discrete-time DPC (blue lines) for the control of the floating tanks. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. Inputs u[1] (solid lines), u[2] (dashed lines), on the left, and u[3] (solid lines), u[4] (dashed lines), u[5] (dash–dot lines), on the right, obtained with continuous-time DPC
(black lines), with cMPC (red lines), and with discrete-time DPC (blue lines) for the control of the floating tanks. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
Appendix. Proof of Theorem 1

A.1. Proof of recursive feasibility

First we prove that, given for all i = 1, . . . ,M , an optimal
feasible solution Xi(tk|tk) to (12) at time tk, the 4-uple

Xi(tk+1|tk) = (x̂[i](tk+1|tk), (û[i]([tk+1, tk+N−1)|tk), ū[i](t|tk)
+ K̄i(x̂[i](t|tk) − x̄[i](t|tk)), t ∈ [tk+N−1, tk+N)), x̄[i](tk+N |tk),

K d
i x̄

[i](tk+N |tk)) (A.1)

is a feasible solution to (12) at time tk+1. Recall that, according
to (24), after the solution to (12) is computed at time tk, each sub-
system j transmits x̃[j]([tk+N−1, tk+N)) = x̄[j]([tk+N−1, tk+N)|tk) and
ũ[j]([tk+N−1, tk+N)) = ū[i]([tk+N−1, tk+N)|tk) to all the subsystems i
satisfying j ∈ Ni.

Importantly, in (A.1), for t ∈ [tk+N−1, tk+N), the trajectory
x̂[i](t|tk) is computed, by subsystem i, according to system (4), with
û[i](t) = ū[i](t|tk)+K̄i(x̂[i](t|tk)−x̄[i](t|tk)). Therefore it results that,
for all t ∈ [tk+N−1, tk+N)

˙̂x
[i]

(t|tk) = Aiix̂[i](t|tk) + Bii(ū[i](t|tk) + K̄i(x̂[i](t|tk) − x̄[i](t|tk)))

+


j∈Ni

(Aijx̄[j](t|tk) + Bijū[j](t|tk))

= (Aii + BiiK̄i)x̂[i](t|tk) − BiiK̄ix̄[i](t|tk)

+


j∈Ni

Aijx̄[j](t|tk) +

M
j=1

Bijū[j](t|tk). (A.2)

On the other hand, the trajectory x̄[i](t|tk), for all t ∈ [tk+N , tk+N+1],
is computed according to (9) with ū[i](t|tk) = K d

i x̄
[i](tk+N |tk), and

therefore x̄[i](t|tk) = F zoh
i (t − tk+N)x̄[i](tk+N |tk).

From (13) x[i](tk) − x̂[i](tk) ∈ Zi and, from (14)–(15), for t ∈

[tk, tk+1), it is guaranteed that x̂[j](t) − x̃[j](t) ∈ Ej, û[j](t) −

ũ[j](t) ∈ Uj for all j ∈ Ni and w[i](t) ∈ Wi. Therefore, in view
of the invariance of Zi with respect to (6), it holds that x[i](tk+1) −

x̂[i](tk+1|tk) ∈ Zi.
For t ∈ [tk+1, tk+N−1), constraints (14)–(17) are verified in view

of the feasibility of (12) at time tk.



For t ∈ [tk+N−1, tk+N), recalling (A.2) we have that

˙̂x
[i]

(t|tk) − ˙̄x
[i]

(t|tk) = (Aii + BiiK̄i)(x̂[i](t|tk) − x̄[i](t|tk))

+


j∈Ni


Aijx̄[j](t|tk) + Bijū[j](t|tk)


(A.3)

and recall also that x̃[i](t) = x̄[i](t|tk) and ũ[i](t) = ū[i](t|tk) for
all i = 1, . . . ,M . In view of (18) x̂[i](tk+N−1|tk) − x̄[i](tk+N−1|tk) ∈

Si and from (19)–(20), it is guaranteed that


j∈Ni
(Aijx̄[j](t|tk) +

Bijū[j](t|tk)) ∈ W̄i for all j ∈ Ni. In view of the invariance of Si
with respect to (11), it holds that x̂[i](t|tk) − x̄[i](t|tk) = x̂[i](t|tk) −

x̃[i](t) ∈ Si. Furthermore, since û[i](t|tk) − ū[i](t|tk) = û[i](t|tk) −

ũ[i](t) ∈ K̄iSi and, in view of Assumption 4, Si ⊆ Ei and K̄iSi ⊆ Ui,
then (14) and (15) are also verified for t ∈ [tk+N−1, tk+N). This also
proves that x̂[i](tk+N |tk)− x̄[i](tk+N |tk) ∈ Si and that (18) is satisfied.
Moreover, being Ēi⊕Si ⊆ X̂i and Ūi⊕K̄iSi ⊆ Ûi fromAssumption 4,
constraints (16) and (17) are verified for t ∈ [tk+N−1, tk+N).

Finally, note that x̄[i](tk+N) ∈ X̄F
i in view of (21) and of the

definition (29) of X̄F
i and (30b), the constraints (19), (20), (21) are

also verified at time tk+1.
In viewof this, the 4-upleXi(tk+1|tk) is a feasible solution to (12)

at time tk+1.
This implies that, given the optimal solution X∗

i (tk+1) to the
problem (12) at time tk+1 (which is proved to exist, provided
that (12) is feasible at time tk), for all i = 1, . . . ,M it holds that,
by optimality

VN∗

i (x(tk+1)) = VN
i (X∗

i (tk+1)) ≤ VN
i (Xi(tk+1|tk)). (A.4)

A.2. The collective problem

To prove the convergence to zero of the solution, we nowdefine
the collective problem, equivalent to the one considered in the
previous sections. Define the vectors x̂(t) = (x̂[1](t), . . . , x̂[M](t)),
x̄(t) = (x̄[1](t), . . . , x̄[M](t)), x̃(t) = (x̃[1](t), . . . , x̃[M](t)),
û(t) = (û[1](t), . . . , û[M](t)), ū(t) = (ū[1](t), . . . , ū[M](t)), ũ(t) =

(ũ[1](t), . . . , ũ[M](t)), w(t) = (w[1](t), . . . , w[M](t)), w̄(t) =

(w̄[1](t), . . . , w̄[M](t)), z(t) = (z[1](t), . . . , z[M](t)), s(t) =

(s[1](t), . . . , s[M](t)). and the matrices A∗
= diag(A11, . . . , AMM),

B∗
= diag(B11, . . . , BMM), Ã = A − A∗, B̃ = B − B∗. Collectively,

we write equations (3), (4) and (9) as

ẋ(t) = A∗x(t) + B∗u(t) + Ãx̃(t) + B̃ũ(t) + w(t) (A.5)
˙̂x(t) = A∗x̂(t) + B∗û(t) + Ãx̃(t) + B̃ũ(t) (A.6)
˙̄x(t) = A∗x̄(t) + B∗ū(t). (A.7)

In view of (5) and (10), u(t) = û(t) + Kc(x(t) − x̂(t)) and û(t) =

ū(t) + K̄(x̂(t) − x̄(t)). From this, and in view of (6) and (11),

ż(t) = (A∗
+ B∗Kc)z(t) + w(t) (A.8)

ṡ(t) = (A∗
+ B∗K̄)s(t) + w̄(t). (A.9)

Minimizing (12) at time tk for all i = 1, . . . ,M is equivalent to
solve the following collective minimization problem

VN∗(x(tk)) = min
X(tk)

VN(X(tk)) (A.10)

where X(tk) = (X1(tk), . . . , XM(tk)), subject to the dynamic
constraints (A.6), (A.7) and

x(tk) − x̂(tk) ∈ Z =

M
i=1

Zi (A.11a)

x̂(t) − x̃(t) ∈ E =

M
i=1

Ei (A.11b)
û(t) − ũ(t) ∈ Ũ =

M
i=1

Ui (A.11c)

x̂(t) ∈ X̂ =

M
i=1

X̂i (A.11d)

û(t) ∈ Û =

M
i=1

Ûi (A.11e)

for all t ∈ [tk, tk+N−1), to

x̂(tk+N−1) − x̄(tk+N−1) ∈ S =

M
i=1

Si (A.12)

x̄(t) ∈ Ē =

M
i=1

Ēi (A.13)

x̄(t) ∈ Ū =

M
i=1

Ūi (A.14)

and the terminal constraint

x̄(tk+N) ∈ X̄F
=

M
i=1

X̄ F
i . (A.15)

The collective cost function VN is

VN
=

N−2
h=0

l̂(x̂(tk+h), û(tk+h)) + V̂F 
x̂(tk+N−1)


+ l̄(x̄(tk+N−1), ū(tk+N−1)) + V̄F (x̄(tk+N))

where, from (31):

l̂(x̂(t), û(t)) =
1
2

 t+T

t
(∥x̂(η)∥2

Q̂
+ ∥û(η)∥2

R̂
)dη (A.16a)

l̄(x̄(t), ū(t)) =
λ

2

 t+T

t
(∥x̄(η)∥2

Q̄ + ∥ū(η)∥2
R̄)dη (A.16b)

V̂F (x̂(t)) =
1
2
∥x̂(t)∥2

P̂
(A.16c)

V̄F (x̄(t)) =
λ

2
∥x̄(t)∥2

P̄ (A.16d)

and Q̂ = diag(Q̂1, . . . , Q̂M), R̂ = diag(R̂1, . . . , R̂M), P̂ = diag(P̂1,
. . . , P̂M), Q̄ = diag(Q̄1, . . . , Q̄M), R̄ = diag(R̄1, . . . , R̄M), and P̄ =

diag(P̄1, . . . , P̄M).

A.3. Proof of convergence

Denote with X(tk|tk) = (X1(tk|tk), . . . , XM(tk|tk)) the optimal
solution to (A.10) at time tk, and with X(tk+1|tk) = (X1(tk+1|tk),
. . . , XM(tk+1|tk)) the feasible (non-optimal) solution to (A.10) at
time tk+1, where Xi(tk+1|tk) is defined in (A.1), for all i = 1, . . . ,M .
From (A.4) we have that

VN∗(x(tk+1)) − VN∗(x(tk)) ≤ VN(X(tk+1|tk)) − VN(X(tk|tk))

≤ −l̂(x̂(tk|tk), û(tk|tk)) + (a) + (b) (A.17)

where

(a) = l̂(x̂(tk+N−1|tk), û(tk+N−1|tk)) + V̂F (x̂(tk+N |tk))
−l̄(x̄(tk+N−1|tk), ū(tk+N−1|tk)) − V̂F (x̂(tk+N−1|tk))

(b) = l̄(x̄(tk+N |tk), ū(tk+N |tk))
+V̄F (x̄(tk+N+1|tk)) − V̄F (x̄(tk+N |tk)).



Consider first term (b). If matrices P̄i, i = 1, . . . ,M , are chosen
as the solutions to the Lyapunov equations (28) then, from (32),
for all i = 1, . . . ,M , V̄ F

i (x̄i(tk+N+1|tk)) − V̄ F
i (x̄i(tk+N |tk)) ≤ −l̄i(x̄i

(tk+N |tk), ūi(tk+N |tk)) which, collectively, implies that (b) ≤ 0.
Considering now term (a), define the following collective

quantities: F∗
= diag(F̄11, . . . , F̄MM), Azoh(η) = diag(Azoh

11 (η), . . . ,

Azoh
MM(η)), Bzoh(η) = diag(Bzoh

11 (η), . . . , Bzoh
MM(η)).

Since ū(t|tk) is constant for all t ∈ [tk+N−1, tk+N), and recall-
ing (A.2), for t ∈ [tk+N−1, tk+N ] it results that

x̄(t|tk) = Azoh(t − tk+N−1)x̄(tk+N−1|tk)

+ Bzoh(t − tk+N−1)ū(tk+N−1|tk) (A.18a)

and, from (A.2)

˙̂x(t|tk) = F̄∗x̂(t|tk) + (Ã − B∗K̄)x̄(t|tk)Bū(t|tk)

= F̄∗x̂(t|tk) + (Ã − B∗K̄)Azoh(t − tk+N−1)x̄(tk+N−1|tk)

+


(Ã − B∗K̄)Bzoh(t − tk+N−1) + B


ū(t|tk). (A.18b)

Therefore, solving (A.18b), we obtain

x̂(t|tk) = 8̄x(t − tk+N−1)x̂(tk+N−1|tk)
+ 0̄1x(t − tk+N−1)x̄(tk+N−1|tk)

+ 0̄2x(t − tk+N−1)ū(tk+N−1|tk) (A.19)
û(t|tk) = 8̄u(t − tk+N−1)x̂(tk+N−1|tk)

+ 0̄1u(t − tk+N−1)x̄(tk+N−1|tk)

+ 0̄2u(t − tk+N−1)ū(tk+N−1|tk) (A.20)

where 8̄x(η) = eF
∗η , 0̄1x(η) =

 η

0 eF
∗(η−ν)(Ã − B∗K̄)Azoh(ν)dν,

0̄2x(η) =
 η

0 eF
∗(η−ν)((Ã − B∗K̄)Bzoh(ν) + B)dν, 8̄u(η) = K̄8̄x(η),

0̄1u(η) = K̄(0̄1x(η) − Azoh(η)), 0̄2u(η) = I + K̄(0̄2x(η) −

Bzoh(η)). Denote, for brevity, x̂k+N−1 = x̂(tk+N−1|tk), vk+N−1 =

(x̄(tk+N−1|tk), ū(tk+N−1|tk)), and

0̄x(η) =

0̄1x(η) 0̄2x(η)


0̄u(η) =


0̄1u(η) 0̄2u(η)


Āx(η) =


Azoh(η) Bzoh(η)


Āu(η) =


0 I


.

Then, in view of (A.18a), (A.19), and (A.20) we compute the ele-
ments of term (a) as

l̂(x̂(tk+N−1|tk), û(tk+N−1|tk))

=
1
2
∥x̂k+N−1∥

2 T
0 8̄x(η)T Q̂8̄x(η)+8̄u(η)T R̂8̄u(η)dη

+
1
2
∥vk+N−1∥

2 T
0 0̄x(η)T Q̂0̄x(η)+0̄u(η)T R̂0̄u(η)dη

+ x̂Tk+N−1

 T

0
8̄x(η)T Q̂0̄x(η)

+ 8̄u(η)T R̂0̄u(η)dη

vk+N−1 (A.21a)

V̂F (x̂(tk+N |tk)) =
1
2
∥x̂k+N−1∥

2
8̄x(T )T P̂8̄x(T )

+
1
2
∥vk+N−1∥

2
0̄x(T )T P̂0̄x(T )

+ x̂Tk+N−18̄x(T )T P̂0̄x(T )vk+N−1 (A.21b)

l̄(x̄(tk+N−1|tk), ū(tk+N−1|tk))

=
λ

2
∥vk+N−1∥

2 T
0 Āx(η)T Q̄Āx(η)+Āu(η)T R̄Āu(η)dη

. (A.21c)
Define, for simplicity:

Qv =

 T

0


0̄x(η)T Q̂0̄x(η) + 0̄u(η)T R̂0̄u(η)


dη (A.22a)

Sxv =

 T

0


8̄x(η)T Q̂0̄x(η) + 8̄u(η)T R̂0̄u(η)


dη (A.22b)

Rv =

 T

0


Āx(η)T Q̄Āx(η) + Āu(η)T R̄Āu(η)


dη. (A.22c)

Therefore

(a) =
1
2
∥x̂k+N−1∥

2
8̄x(T )T P̂8̄x(T )−P̂+Qx

+
1
2
∥vk+N−1∥

2
0̄x(T )T P̂0̄x(T )+Qv−λRv

+x̂Tk+N−1(8̄x(T )T P̂0̄x(T ) + Sxv)vk+N−1.

(A.23)

Recall that P̂ is the block-diagonal matrix whose blocks P̂i satisfy
(33) for all i = 1, . . . ,M , i.e., such that P̂ satisfies

8̄x(T )T P̂8̄x(T ) − P̂ + Qx + αI = 0 (A.24)
where α > 1 is an arbitrary scalar parameter. The following pro-
cedure is proposed for defining a suitable scalar λ.

(I) Define SPxv = 8̄x(T )T P̂0̄x(T ) + Sxv and an arbitrary scalar
β > 0 such that

βI ≥ S T
PxvSPxv (A.25)

or equivalently

β ≥ ∥SPxv∥
2
2. (A.26)

(II) Define λ̄ as the smallest value of λ > 0 satisfying

λRv − 0̄x(T )T P̂0̄x(T ) − Qv ≥ βI. (A.27)

Note that, given P̂ and β > 0, since Rv > 0, it is always
possible to define λ̄ > 0. Finally, set λ > λ̄.

According to the sketched procedure and in view of (A.24) and
(A.27), from (A.23) we can write

(a) ≤ −
α

2
∥x̂k+N−1∥

2
−

β

2
∥vk+N−1∥

2

+x̂Tk+N−1SPxvvk+N−1. (A.28)

Since

0 ≤
1
2
∥x̂k+N−1 − SPxvvk+N−1∥

2
=

1
2
∥x̂k+N−1∥

2

+
1
2
∥vk+N−1∥

2
S T

PxvSPxv
− x̂Tk+N−1SPxvvk+N−1

it follows that

x̂Tk+N−1SPxvvk+N−1 ≤
1
2
∥x̂k+N−1∥

2
+

1
2
∥vk+N−1∥

2
S T

PxvSPxv

and, from (A.28)

(a) ≤
1 − α

2
∥x̂k+N−1∥

2
+

1
2
∥vk+N−1∥

2
S T

PxvSPxv−βI. (A.29)

Therefore, since β satisfies (A.25) and α > 1, then (a) ≤ 0.
From (A.17), and having proved that both (a) ≤ 0 and (b) ≤ 0, we
obtain that

VN∗(x(tk+1)) − VN∗(x(tk)) ≤ −l̂(x̂(tk|tk), û(tk|tk)). (A.30)

Therefore l̂(x̂(tk|tk), û(tk|tk)) → 0 as k → ∞. Under suitable
smoothness assumptions on û(t|tk) and x̂(t|tk) and since Q̂ > 0
and R̂ > 0, it follows that x̂([tk, tk+1)|tk) → 0 and û([tk, tk+1)|tk)
→ 0 as k → ∞.



Recalling now system (2) where, for all k ∈ N, t ∈ [tk, tk+1),
u(t) = û(t|tk) + Kc(x(t|tk) − x̂(t)). We can write

ẋ(t) = (A + BKc)x(t) + B(û(t|tk) − Kcx(t|tk)).

Since B(û(t|tk) − Kcx(t|tk)) is an asymptotically vanishing term
and since A + BKc is Hurwitz in view of Assumption 2, we obtain
that x(t) → 0 as t → ∞.
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