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Abstract

This paper investigates the stability of switched linear systems whose switch-
ing signal is modeled as a stochastic process called a regenerative process. We
show that the mean stability of such a switched system is characterized by
the spectral radius of a matrix. The matrix is obtained by taking the expec-
tation of the transition matrix of the system on one cycle of the underlying
regenerative process. The characterization generalizes Floquet’s theorem for
the stability analysis of linear time-periodic systems. We illustrate the result
with the stability analysis of a linear system with a failure-prone controller
under periodic maintenance.

Keywords: Switched linear system, regenerative process, mean stability,
periodic maintenance

1. Introduction

The stability analysis of stochastic switched linear systems has attracted
a significant amount of attention in the last two decades. In particular, a lot
of effort has been put on their mean stability, which requires that the power
of the norm of the state variable converges to zero in expectation. Some early
results on the mean stability of switched linear systems with an independent
and identically distributed (i.i.d.) switching signal can be found in [1, 2].
The stability characterizations [3, 4] of linear systems subject to switching
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by homogeneous Markov process now form the basis of the various types of
optimal control of so-called Markov jump linear systems [5]. The stability
characterizations of switched linear systems driven by an extension of homo-
geneous Markov processes called homogeneous semi-Markov processes [6] are
available in [7, 8].

It is known that homogeneous Markov processes having certain irre-
ducibility and recurrence properties and also discrete-time i.i.d. stochastic
processes are special cases of a more general class of stochastic processes
called regenerative processes [9]. Firstly introduced by Smith [10], regener-
ative processes have found applications especially in queuing systems [11]
and network reliability analysis [12]. As we will see later in Example 2, re-
generative processes are also suitable to describe a controlled system under
periodic maintenance [13, 14, 15]. Despite the above facts, as far as we are
aware of, no effort has been made to investigate switched linear systems with
a regenerative switching signal in the literature of systems and control theory.

The aim of this paper is to give the characterization of the mean stability
of a switched linear system with a regenerative switching signal, which we
call a regenerative switched linear system. We show that, if the exponent of
the mean stability is even or the system is positive [7, 16], then the mean
stability of the system is characterized by the spectral radius of a matrix.
The matrix is obtained as the expected value of the lift [17] of the transition
matrix of the system over one cycle of the underlying regenerative process.
The proof makes use of a stability-preserving discretization of the system at
the embedded renewal process of the underlying regenerative process. The
characterization in particular generalizes well-known Floquet’s theorem for
the stability analysis of linear time-periodic systems [18].

This paper is organized as follows. After preparing necessary notations
and conventions, in Section 2 we recall the definition of regenerative processes
and then introduce regenerative switched linear systems. Then Section 3
presents the main result of this paper, which is followed by an example. The
proof of the main result is given in Section 4. Then Section 5 discusses the
discrete-time case.

1.1. Mathematical preliminaries

Let (Ω,M, P ) be a probability space. For an integrable random variable
X on Ω its expected value is denoted by E[X]. The random variables that
appear in this paper will be assumed to be integrable.
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When x ∈ Rn is nonnegative entrywise we write x ≥ 0. The standard
Euclidean norm on Rn is denoted by ‖·‖. For m ≥ 1, the m-norm on Rn

is defined by ‖x‖m = (
∑n

i=1|xi|m)1/m. The symbol 1n denotes the column
vector of length n whose entries are all 1. It is easy to see ‖x‖1 = 1>nx if
x ≥ 0. Let I and O denote the identity and the zero matrices, respectively.
We say that A ∈ Rn×n is Schur stable if its spectral radius ρ(A) is less than
one.

The m-lift of x ∈ Rn, denoted by x[m], is defined [17] as the real vector of
length nm =

(
n+m−1

m

)
with its elements being the lexicographically ordered

monomials
√
α!xα indexed by all the possible exponents α = (α1, . . . , αn) ∈

{0, 1, . . . ,m}n such that α1 + · · ·+ αn = m, where α! := m!/(α1! · · ·αn!). It
holds [17] that

‖x[m]‖ = ‖x‖m. (1)

We then define A[m] ∈ Rnm×nm as the unique matrix [17] satisfying (Ax)[m] =
A[m]x[m] for every x ∈ Rn. For any matrix B it holds that

(AB)[m] = A[m]B[m] (2)

provided the product AB is well defined. We also define A[m] ∈ Rnm×nm as
the unique real matrix [19, 20] such that, for every Rn-valued differentiable
function x on R satisfying dx/dt = Ax, it holds that dx[m]/dt = A[m]x

[m]. It
is easy to check that (

eAt
)[m]

= eA[m]t (3)

for every t ≥ 0.

2. Regenerative switched linear systems

Let us first recall the definition of regenerative stochastic processes [9].
Throughout this paper we fix an underlying probability space (Ω,M, P ).

Definition 1. A stochastic process σ = {σt}t≥0 is called a regenerative pro-
cess if there exists a random variable R1 > 0, called a regeneration epoch,
such that the following statements hold.

• {σt+R1}t≥0 is independent of {{σt}t<R1 , R1};

• {σt+R1}t≥0 is stochastically equivalent to {σt}t≥0.
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In the following we quote some consequences of the above definition from
[9]. By repeatedly applying the definition, one can obtain a sequence of
independent and identically distributed random variables {Rk}k≥1 called cy-
cle lengths, which can be used to break σ into independent and identically
distributed cycles {σt}0≤t<R1 , {σt}R1≤t<R1+R2 , . . . . Then the stochastic pro-
cess {Zk}k≥1 defined by Zk = R1 + · · · + Rk is called the embedded renewal
process of σ. Throughout this paper, for the sake of convenience, we set
Z0 = 0 and call {Zk}k≥0 as the embedded renewal process of σ.

The next example presents a regenerative process that is not a homoge-
neous Markov process and is of a systems and control theoretical interest.

Example 2. Consider a dynamical system with a failure-prone controller [21].
Let us model the controlled system as a switched system with the two modes
{1, 2} = {Non-failure,Failure}. Instead of assuming that the transition of
the mode can be described by a homogeneous Markov process (see, e.g.,
[22, 23]), let us consider the scenario when the controlled system is under
periodic maintenance, which is commonly employed in the literature from
reliability theory [13, 14, 15].

Let the stochastic process {Zk}k≥0 represent the times at which a mainte-
nance is performed. For simplicity we assume that σZk = 1 with probability
one for every k ≥ 0, i.e., that every maintenance repairs a failure with prob-
ability one within a negligible time period. We set Z0 = 0. Furthermore
we assume that Rk = Zk − Zk−1 equals T + ∆k, where T > 0 is a constant
and {∆k}∞k=1 are independent and identically distributed random variables.
T represents the designed period of the maintenance and ∆k models its ran-
dom perturbation. We assume that the length of the time for which the
process σ stays at mode 1 after the reset at t = Zk follows an exponential
distribution with parameter λ > 0. In other words we are assuming that, on
any interval of a sufficiently small length h, the probability of the occurrence
of a failure is approximately equal to λh. Then σ is clearly a regenerative
process with a regeneration epoch R1 and the embedded renewal process
{Zk}k≥0.

Notice that σ is not a Markov process because the length of the time
while mode 2 is active depends on past information, i.e., the length of the
last time interval while mode 1 was active.

Then we introduce the class of switched linear systems studied in this
paper. Let {σt}t≥0 be a regenerative process that can take values in a set S.
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Let {As}s∈S be a family of real n × n matrices indexed by S. Then we call
the stochastic differential equation

Σ :
dx

dt
= Aσtx(t)

as a regenerative switched linear system. We assume that x(0) = x0 ∈ Rn is
a constant vector.

The stability of Σ is defined in the following standard manner.

Definition 3. Let m be a positive integer.

• Σ is said to be exponentially mth mean stable if there exist α > 0 and
β > 0 such that E[‖x(t)‖m] ≤ αe−βt‖x0‖m for all x0 and t ≥ 0.

• Σ is said to be stochastically mth mean stable if
∫∞

0
E[‖x(t)‖m] dt <∞

for any x0.

We also introduce the notion of positivity for Σ following [7, 16].

Definition 4. We say that Σ is positive if x0 ≥ 0 implies x(t) ≥ 0 with
probability one for every t ≥ 0.

For Σ to be positive it is clearly sufficient that all the matrices As are
Metzler, i.e., the off-diagonal entries of each As are all nonnegative [18].
However it is not necessary, as illustrated in the following non-trivial example.

Example 5. Consider a switched linear system with S = {1, 2} and

A1 =
1

2

[
1 1
1 1

]
, A2 =

[
0 1
−1 0

]
.

Since eA1t = I+(et−1)A1, a simple calculation shows the existence of T > 0
such that if t ≥ T then, for every x0 ≥ 0, the vector eA1tx0 is in the sector
S = {x ∈ R2 : x ≥ 0, arg x ≥ 1}. Then we construct a regenerative process
σ as follows. Set R1 = T + 1 and let h follow the uniform distribution on
[T, T + 1]. Define σ on the first cycle [0, R1) by

σt =

{
1, 0 ≤ t ≤ h

2, h ≤ t < R1

and extend this definition to the whole interval [0,∞) regeneratively. We
can see that the above defined σ is a regenerative process as in Example 2.
Then, since the second mode decreases the argument of the state vector at
most R1− h < 1, we can see that x(t) stays in the positive orthant for every
t ≥ 0 whenever x0 ≥ 0. Therefore Σ is positive although A2 is not Metzler.
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3. Stability characterization

This section states the characterization of the mean stability of regener-
ative switched linear systems and also presents an example to illustrate the
result. We state the next assumption.

Assumption 6.

A1. Either m is even or Σ is positive.

A2. R1 is essentially bounded.

A3. The set {As}s∈S is bounded.

A1 covers mean square stability (m = 2), which has been the central
stability notion of stochastic switched linear systems in the literature [3,
8, 24]. The second condition A2 on the boundedness of cycle lengths is
crucial. Similar assumptions were employed for the stability analysis of semi-
Markov jump linear systems [7] and stochastic hybrid systems with renewal
transitions [8]. A3 is only to ensure that the state variable does not diverge
in a finite time and thus is not restrictive.

In order to state the main result we need fundamental matrices [18] of the
system Σ. For all ω ∈ Ω, t0 ≥ 0, and t ≥ t0 let us define Φ(ω; t0, t) ∈ Rn×n

by the differential equation

∂Φ

∂t
= Aσt(ω)Φ(ω; t0, t), Φ(ω; t0, t0) = In.

Then define the Rn×n-valued random variables {Mk}k≥0 by

Mk(ω) := Φ(ω;Zk(ω), Zk+1(ω)), (4)

which expresses the transition of x from t = Zk to t = Zk+1.
The next theorem is the main result of this paper.

Theorem 7. The following statements are equivalent.

1. Σ is exponentially mth mean stable.

2. Σ is stochastically mth mean stable.

3. E[M
[m]
0 ] is Schur stable.
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Based on the theorem and continuing from Example 2, the next example
presents the stability analysis of a linear time-invariant system with a failure-
prone controller under periodic maintenance.

Example 8. Consider the internally unstable linear time-invariant system
dx/dt = Ax+Bu with the failure-prone controller

u(t) =

{
0, a fault is occuring

Kx(t), otherwise

where

A =

[
−0.4 0.2
−0.1 0.5

]
, B =

[
0
1

]
, K =

[
−0.1 −1.6

]
.

The stabilizing feedback gain K is obtained by solving a linear quadratic reg-
ulator problem. We assume that the transition between the modes {1, 2} =
{Non-failure,Failure} follows the regenerative process σ described in Exam-
ple 2. With this labeling we have A1 = A+BK and A2 = A. For simplicity
we set λ = 1 and also suppose that each ∆k follows the uniform distribution
on the interval [−0.1T, 0.1T ] independently.

Let the random variable h denote the first time in [0, R1) when the tran-
sition to mode 2 occurs. We set h = R1 when a transition does not occur
on the interval. Then one can see M0 = eA2 max(0,R1−h)eA1 min(R1,h). If we let
Āi := (Ai)[m] (i = 1, 2) then equations (3) and (2) show

M
[m]
0 = eĀ2 max(0,R1−h)eĀ1 min(R1,h).

Here we recall that for square matrices F1, F2 with the same dimensions and
t ≥ 0 it holds that [25]

exp

([
F1 I
O F2

]
t

)
=

[
∗
∫ t

0
e(t−τ)F1eτF2 dτ

0 ∗

]
.

Using this identity and the independence of h and R1, since h follows the
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Figure 1: Spectral radius of E[Φ[2]] as T varies

exponential distribution with mean 1, we can show that

E[M
[m]
0 ] =

∫ 1.1T

0.9T

∫ ∞
0

eĀ2 max(0,t−s)eĀ1 min(t,s)e−sds
dt

0.2T

=
5

T

∫ 1.1T

0.9T

∫ t

0

eĀ2(t−s)e(Ā1−I)s ds dt+
5

T

∫ 1.1T

0.9T

∫ ∞
t

eĀ1te−s ds dt

=
5

T

[
I O

] ∫ 1.1T

0.9T

exp

([
Ā2 I
O Ā1 − I

]
t

)
dt

[
O
I

]
+

5

T

∫ 1.1T

0.9T

e(Ā1−I)t dt.

Figure 1 shows the graph of the spectral radius of E[M
[2]
0 ] as T varies from

0 to 2. As is expected, instability is caused by making the period of the
maintenance longer. We can see that, by Theorem 7, Σ is mean square
stable if and only if T < 1.55. The computation of the matrix E[M

[2]
0 ] is

performed with MATLAB. Figure 2 shows 20 sample paths of ‖x(t)‖2 when
T = 1.25.

Remark 9. Theorem 7 extends celebrated Floquet’s theory [18] for the sta-
bility analysis of linear time-periodic systems. In fact, if the process σ is a
periodic function with the period T then we have ρ(E[M

[m]
0 ]) = ρ(M

[m]
0 ) =

ρ(M0)m. Therefore, by Theorem 7, the linear time-periodic system Σ is stable
in the standard sense if and only if ρ(M0) < 1, which is the main consequence
of Floquet’s theory.
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Figure 2: 20 sample paths of ‖x(t)‖2

4. Proof of the main result

The proof of Theorem 7 is based on the discretization of Σ at the em-
bedded renewal process of the underlying regenerative process. In order to
analyze the stability of the discretization, in the next section we first present
the stability analysis of discrete-time switched linear systems with i.i.d. pa-
rameters. Then in Section 4.2 we give the proof of Theorem 7.

4.1. Stability of discrete-time linear systems with i.i.d. parameters

Let {Fk}k≥0 be independent and identically distributed random variables
following a distribution µ on Rn×n. Consider the discrete-time switched linear
system

Σµ : xd(k + 1) = Fkxd(k), k ≥ 0

where xd(0) = x0 ∈ Rn is a constant vector. The mean stability of Σµ is
introduced as follows.

Definition 10. Let m be a positive integer.

• Σµ is said to be exponentially mth mean stable if there exist α > 0 and
β > 0 such that

E[‖xd(k)‖m] ≤ αe−βk‖x0‖m (5)

for all x0 and k ≥ 0.

• Σµ is said to be stochastically mth mean stable if
∑∞

k=0 E[‖xd(k)‖m] <
∞ for any x0.

Also we define the positivity of Σµ in the same way as for Σ.
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Definition 11. We say that Σµ is positive if x0 ≥ 0 implies x(k) ≥ 0 with
probability one for every k ≥ 0.

When we check the exponential mean stability of a positive Σµ, we can
without loss of generality assume that its initial state is nonnegative.

Lemma 12. Assume that Σµ is positive. Then Σµ is exponentially mth mean
stable if and only if there exist α > 0 and β > 0 such that (5) holds for all
x0 ≥ 0 and k ≥ 0.

Proof. See the proof of [7, Lemma 3.6].

The next proposition characterizes the stability of Σµ in terms of the
spectral radius of a matrix.

Proposition 13. Assume that either

a. m is even or

b. Σµ is positive.

Then the following conditions are equivalent.

1. Σµ is exponentially mth mean stable.

2. Σµ is stochastically mth mean stable.

3. E[F
[m]
0 ] is Schur stable.

Proof. We shall show the cycle [1 ⇒ 2 ⇒ 3 ⇒ 1]. One can easily see [1 ⇒
2].

[2 ⇒ 3]: Let x(·;x0) denote the trajectory of Σµ with the initial state x0.

Since the identity (2) shows E[x(k + 1; x0)[m]] = E[F
[m]
0 ]E[x(k;x0)[m]], an

induction with respect to k yields

E[x(k;x0)[m]] = E[F
[m]
0 ]kx

[m]
0 . (6)

Now assume that Σµ is stochastically mth mean stable. Let λ be an eigen-

value of E[F
[m]
0 ] with a corresponding eigenvector v ∈ Cnm . Since the set

{x[m] : x ∈ Rn} spans Rnm ([7, Lemma 1.5]), there exist y1, . . . , y` ∈ Rn and

c1, . . . , c` ∈ {1,
√
−1} such that v =

∑`
i=1 ciy

[m]
i . Multiplying E[F

[m]
0 ]k to

this equation we obtain λkv =
∑`

i=1 ciE[x(k; yi)
[m]] by (6). Therefore, by the
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triangle inequality and (1), we can see |λ|k‖v‖ ≤
∑`

i=1E[‖x(k; yi)‖m]. Since
the right hand side of this inequality is summable with respect to k by the
stochastic mth mean stability of Σµ and also ‖v‖ 6= 0, we conclude |λ| < 1.

[3 ⇒ 1]: Assume that E[F
[m]
0 ] is Schur stable. By (6), there exist α > 0

and β > 0 such that

‖E[x(k)[m]]‖ ≤ αe−βk‖x[m]
0 ‖ = αe−βk‖x0‖m (7)

for every k ≥ 0. We shall show that Σµ is exponentially mth mean stable.
Let x0 and k ≥ 0 be arbitrary and write y = x(k). We consider the two cases
a and b separately. First assume that m is even. Take positive constants C1

and C2 such that C1‖·‖1 ≤ ‖·‖ ≤ C2‖·‖m. Then

E[‖y‖m] ≤ Cm
2 E[‖y‖mm] = Cm

2

n∑
i=1

|E[ymi ]| . (8)

Since the random vector y[m] has all the monomials ymi (i = 1, · · · , m), we can
see that

∑n
i=1|E[ymi ]| ≤ ‖E[y][m]‖1 ≤ C−1

1 ‖E[y][m]‖. Therefore this inequality
together with (8) and (7) shows that Σµ is exponentially mth mean stable.

Next assume that Σµ is positive. Notice that, by Lemma 12, without
loss of generality we can assume x0 ≥ 0, which implies y ≥ 0 and hence
y[m] ≥ 0 with probability one. Let us take a positive constant C3 such
that ‖·‖ ≤ C3‖·‖1. Then we have ‖y‖m = ‖y[m]‖ ≤ C3‖y[m]‖1 = C31>nmy

[m]

with probability one. Therefore, the Schwartz inequality shows E[‖y‖m] ≤
C31>nmE[y[m]] ≤ C3‖1nm‖ ‖E[y[m]]‖. This inequality and (7) prove the expo-
nential mth mean stability of Σµ.

Remark 14. Proposition 13 improves the stability condition in [26] by reduc-
ing the computational cost for checking mean stability. The size nm of the
matrix E[F

[m]
0 ] is far less than the size nm of the matrix used in [26, The-

orem 5.1]. Also the proof presented above is simpler than the proof of [26,
Theorem 5.1], which needs the approximation of µ by a sequence of finitely
supported probability measures.

4.2. Proof of the main result

Let Σ be a regenerative switched linear system satisfying the conditions
A1 to A3 and let x be the trajectory of Σ. Then the discretized process

11



{xd(k)}k≥0 given by xd(k) = x(Zk) is clearly the solution of the discrete-time
system

SΣ : xd(k + 1) = Mkxd(k), k ≥ 0

where Mk is defined by (4). Proposition 13 immediately gives the next corol-
lary on the stability of SΣ.

Corollary 15. The following conditions are equivalent.

1. SΣ is exponentially mth mean stable.

2. SΣ is stochastically mth mean stable.

3. E[M
[m]
0 ] is Schur stable.

Proof. The random variables {Mk}∞k=0 are independent and identically dis-
tributed by the definition of regenerating processes. Also A1 automatically
ensures that one of the conditions a and b in Proposition 13 is satisfied.

We will also need the next lemma to prove the main result.

Lemma 16. There exists C > 1 such that

C−1‖x(Zk)‖ ≤ ‖x(t)‖ ≤ C‖x(Zk)‖ (9)

for all k ≥ 0 and t ∈ [Zk, Zk+1].

Proof. Let t ∈ [Zk, Zk+1]. By A3 there exists a constant, say, M > 0, such
that ‖As‖ ≤ M for every s ∈ S. Since x(t) =

∫ t
Zk
Aστx(τ) dτ + x(Zk) we

have ‖x(t)‖ ≤
∫ t
Zk
M‖x(τ)‖ dτ+‖x(Zk)‖. Then Gronwall’s inequality and A2

shows ‖x(t)‖ ≤ eM‖R1‖‖x(Zk)‖, where ‖R1‖ denotes the essential supremum
of R1. Similarly we can show e−M‖R1‖‖x(Zk)‖ ≤ ‖x(t)‖. This completes the
proof.

Now we prove the main result of this paper.

Proof of Theorem 7. We shall show the cycle [1⇒ 2⇒ 3⇒ 1]. It is obvious
to prove [1 ⇒ 2].
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[2 ⇒ 3]: By inequality (9) and the definition of regenerative processes,
for every k we can show

E

[∫ Zk+1

Zk

‖x(t)‖m dt
]
≥ C−mE

[
‖x(Zk)‖m

∫ Zk+1

Zk

dt

]
= C−mE[Rk+1]E[‖xd(k)‖m]

= C−mE[R1]E[‖xd(k)‖m],

(10)

where we used the definition of regenerative processes. Since Fubini’s the-

orem shows
∫∞

0
E[‖x(t)‖m] dt =

∑∞
k=0E

[∫ Zk+1

Zk
‖x(t)‖m dt

]
, taking the sum-

mation about k in (10) yields

C−mE[R1]
∞∑
k=0

E[‖xd(k)‖m] ≤
∫ ∞

0

E[‖x(t)‖m] dt <∞.

Therefore SΣ is stochastically mth mean stable because both C and E[R1]

are positive. Hence Corollary 15 implies that E[M
[m]
0 ] is Schur stable.

[3 ⇒ 1]: Here we employ the idea used in the proof of the sufficiency

part for [7, Theorem 2.5]. Assume that E[M
[m]
0 ] is Schur stable. Then SΣ

is exponentially mth mean stable by Corollary 15. Let x0 and t ≥ 0 be
arbitrary. Let us define kt = max{k ∈ N : Zk ≤ t}. Since Zkt ≤ t < Zkt+1,
the inequality (9) gives ‖x(t)‖ ≤ C‖x(Zkt)‖ = C‖xd(kt)‖. Therefore

E[‖x(t)‖m] ≤ CmE[‖xd(kt)‖m]. (11)

On the other hand, since A2 shows t < Zkt+1 ≤ ‖R1‖(kt + 1) we have
kt > ‖R1‖−1t− 1. This implies ‖xd(kt)‖m ≤

∑
k>‖R1‖−1t−1‖xd(k)‖m. Taking

the expectation in this inequality and then using the mth mean stability of
SΣ we obtain E[‖xd(kt)‖m] ≤ α′e−β

′t‖x0‖m, where α′ = αeβ/(1− e−β) and
β′ = β/‖R1‖ are positive constants. This inequality and (11) show the mth
mean exponential stability of Σ.

5. Discrete-time case

This section briefly discusses the stability characterization of regenerative
switched linear systems in discrete-time. Let σ = {σk}∞k=0 be a regenerative
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process taking values in a set S and defined on the set of nonnegative inte-
gers {0, 1, . . . }. Let {As}s∈S be a family of n× n real matrices. Consider the
discrete-time regenerative switched linear system

Σd : x(k + 1) = Aσkx(k), k ≥ 0.

The exponential and stochastic mean stability of Σd are defined as in Def-
inition 10. In addition to the assumptions A1 to A3 we place the next
assumption on Σd:

A4. As is invertible for each s ∈ S and the set {A−1
s }s∈S is bounded.

For each k ≥ 0 we define the transition matrix Md,k for Σd representing the
transition of x from t = Zk to t = Zk+1 in the same way as we defined Mk

for continuous-time regenerative switched linear systems in (4). The next
theorem is a discrete-time counterpart of Theorem 7.

Theorem 17. The following statements are equivalent.

1. Σd is exponentially mth mean stable.

2. Σd is stochastically mth mean stable.

3. E
[
M

[m]
d,0

]
is Schur stable.

Proof. Let {Zk}∞k=0 be the embedded renewal process of σ. Using A3 and A4
we can show the existence of a constant C > 1 such that, for every k ≥ 0,
if Zk ≤ ` ≤ Zk+1 then C−1‖xd(Zk)‖ ≤ ‖xd(`)‖ ≤ C‖xd(Zk)‖. Then we can
prove the desired equivalence in the same way as in the proof of Theorem 7.
The details are omitted.

6. Conclusion

In this paper we investigated the mean stability of regenerative switched
linear systems. A necessary and sufficient condition for the mth mean stabil-
ity of regenerative switched linear systems was established under the assump-
tion that either m is even or the system is positive and that the length of
each cycle of the underlying regenerative process is essentially bounded. The
proof used a discretization of the system at the embedded renewal process of
the underlying regenerative process. A numerical example was presented to
illustrate the result.
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