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1 Introduction
This paper is concerned with the following relations

X = ATXA— (ATXB+S)(R+B"XB)(S"+B"XA) +Q, (1)
ker(R+B" X B) C ker(A"XB+9) (2)

where the symbol T denotes the Moore-Penrose pseudodmpwatiovm Equation[(1) subject
to the constrain{{(2) arises for example in discrete-timedr@blems — see [18] and![5] for the
finite and infinite-horizon cases, respectively. Hé&eg R™", B R™™M Q € R™", S¢ R™M
andR € R™™ are such that thBopov matrix1 satisfies

ne«
ST R

Q S]:rﬂzo. (3)

The set of matricex = (A,B;N) is often referred to a®opov triple and (1) is known as
the generalized discrete-time algebraic Riccati equatteDAREEZ). This equation, together
with the additional constraint(2), is usually referred scanstrained generalized discrete-time
algebraic Riccati equatiorand it is herein denoted by CGDARE( This equation generalizes
the standardliscrete-time algebraic Riccati equati@ARE(Z)

X = ATXA— (A"™XB+S)(R+B"XB) (S +B"XA) +Q, (4)

as the natural equation arising in LQ optimal control aneéffittg problems. In fact, it is only
when the underlying linear system — obtained by a full-readtdrization = [g;] [C D]
and considering a system described by the quadriB,C,D) — is left invertible that the
standard DAREY) admits solutions. The dynamic optimization problem, hesvemay still
admit solutions in the more general setting where the uwithgrllinear system is not left-
invertible. In these cases, however, the standard DAR&ges not admit solutions and the cor-
rect equation that must be used to address the original @atiilon problem is the CGDAREY),
see e.g.[[5]. As discussed in [1, Chapt. 6], these genetdltgins are particularly relevant in
the context of stochastic control problems, see alsol[2n@]the references cited therein. On
the other hand, whenever the standard DAREHdmits solutions, the set of its solutions co-
incides with the set of solutions of CGDARE)( so that the latter is a genuine generalization
of the former (here and in the rest of the paper, we are onlgidenngsymmetricsolutionsX
both for the DAREE) and the CGDAREY)).

1We recall that given aarbitrary matrix M € R"™X, there exists a unique mati’ € R¥*" that satisfies the
following four properties{1) MM™M = M; (2) MTMMT = MT; (3) MTM is symmetric}4) MMT is symmetric.
By definition, the matrixMT is theMoore-Penrose pseudo-inverséthe matrixM.



In the literature, several efforts have been devoted by naaiyors to the task of reducing
the order and difficulty of the standard DARE (by means of different techniques, [16] 10| 11,
12,/3,/8]. This interest is motivated by the fact that the déaid DARER) is richer than the
structure of its continuous-time counterpart, the cordusgitime algebraic Riccati equation. In
particular, in[3] a method was presented which, differefrtm earlier contributions presented
on this topic, aimed at iteratively decomposing DARJifto a trivial part and a reduced DARE
whose associated closed-loop matrix is non-singular. Tbeequent contribution[8] achieves
a similar goal by avoiding the need for an iterative procedur

The development of reduction procedures for generalizedd®i equations has received
much less attention in the literature. This is in part likidyoe due to the technical difficulties
associated with generalized Riccati equations in the elisdime. In[[3], a hint is given on
how the iterative reduction detailed therein could be ed¢einto the case of an equation in the
form (@), provided that the attention is restricted to theafgpositive semidefinite solutions,
for which condition [[2) is automatically satisfied. On thé@thand, CGDAREY) may well
admit solutions that are not positive semidefinite, see[B.¢6]. In [12], a Riccati equation in
the form of a CGDAREY) is considered, and a reduction technique is proposed terttieof
computing the stabilizing solution of CGDARE), The main goal of this paper is to combine
the generality of the framework considered(in/[12] with timebéion of achieving a reduction
for the entire set of solutions of CGDARE). This task is accomplished by developing an
iterative procedure that is similar in spirit to that of [Blut which presents a richer and more
articulated structure. Indeed, not only do several tecdiniificulties and structural differences
arise in extending the results ofl [3] to the case of CGDARE{hen the set of solutions is
not restricted to semidefinite ones, but also, differenthyt the iterations needed in [3], which
are essentially performed via changes of coordinates irstidie space, in the general case
of a CGDARER), it is necessary to also resort to changes of coordinatéseinput space.
The problem of obtaining a systematic procedure to decompeseralized Riccati equations
into a trivial part and a reduced, “well-behaved”, part ddm by aregular DARE (or at
times, differently from the standard case, by a symmetemStquation), becomes much more
interesting and challenging in the case of generalizedd®iegjuations. Our reduction method
is based on the computation of null spaces of given matrwésad it can be easily implemented
in a software procedure that uses only standard linear edgebcedures which are robust and
available in any numerical software package. Therefordewvaat outcome of the presented
procedure is what we believe to be the first systematic nualeprocedure to compute the
solutions of CGDARE.



2 Problem formulation and preliminaries

First, in order to simplify the notation, for any= X" € R™" we define the matrices

der def

Rk ¥ RIB'XB G ¥ |,—RIR
S ¥ ATXB+S K £ RIS A, E A-BK,

Q

so that[(2) in CGDAREY) can be written concisely as K&y C kerS,. The termRiRX is the
orthogonal projector that projects ontoR%: im Ry so thatGy is the orthogonal projector that
projects onto kelRy. Hence, keRy = imGy.

As already mentioned, in this paper we present a procedaterdéduces CGDARE]) to
another discrete-time algebraic Riccati equation withsidume structure but smaller order and
in which bothA, £ A—BR'S™ andR are non-singular. On the other hand, this means that the
Riccati equation thus obtained is indeed a standard DARE jt has the structure shown in (4),
as the following result shows.

Proposition 1 Suppose that the matrix R is non-singular, and leX " be any symmetric
solution of CGDAREY). Then R = R+ B"XB is non-singular.

Proof: As shown in[5, Lemma 4.1], for any symmetric solutin= X' of CGDARE() the
inclusion kelRy C kerR holds. As a consequence,Rfis non-singular, its null-space kiens
zero, and therefore so is the null-spaceRyf This is equivalent to the fact th&; is non-
singular. |

The reduction technique presented in this paper can alsebed from the perspective of
the so-called extended symplectic pemtil- z M, where

, 0 0 A 0 B
MiZ| 0 —A" 0 and N;Z| Q I, S
0 —B" 0 SS 0 R

The case in which the matrix pendk — zM; is regular (i.e., if there existse C such that
det(N; — zM;) # 0) corresponds to the case in which CGDARE(s indeed a DAREY),
whereas the one in whidN; — zM; is singular (i.e., the determinant bk — zM; is the zero
polynomial) corresponds to a case in which DARJE@oes not admit solutions. It is shown in
[3] for DARE(Z) and in [7] for CGDAREE) that if A is singular, the Jordan structure Af
associated with the eigenvalde= 0 is completely determined by — zM;, and is indepen-
dent of the particular solutioX of DARE(X) or CGDAREE). It is shown in [3] that in the
case where the matrix pen®ik — zM; is regular — or, equivalently, the CGDARE)and the
standard DAREY) have the same solutions— the following statements arevalgunt:
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(1) Ns is singular;
(2) N; — zM; has a generalized eigenvalue at zero;

(3) there exists a solutio of CGDARER) such that the corresponding closed-loop matrix
Ay is singular;

(3') for any solutionX of CGDARE(), the corresponding closed-loop mat#Ax is singular;
(4) at least one of the two matricBandA, = A—BR'S' is singular.

The case where the matrix penblf —zM; is possibly singular was investigated in [7], where
it was proved that in this more general case these four faeta@ equivalent. In particular,
(1) is not equivalent tq2). Moreover, in the case whelM — zM; is singular,(1) and(3) are
not equivalent, nor arg3) and(4). However, it was shown in [7, Lemma 3.1] that it is still true
that (1) is equivalent ta4). Furthermore, it is shown in[7, Proposition 3.4] tha€ rankR,
is constant for any solutioX of CGDAREE), and thatAy is singular if and only if at least
one of the following two conditions holds: (i) raRk< r = rankR, and (i) Ay = A—BR'S' is
singular. It is clear that this condition reduceq4) in the case wher® is invertible, i.e., in
the case wherdl; — zM; is regular. Notice also that since both conditions are iedédpnt of
the particular solutiorX of the CGDAREE), the singularity of the closed-loop matrb is
invariant with respect to the particular soluti®n

To summarize, in the case where the matrix peNgi- z M; is singular, the following state-
ments are equivalent:

(1) N; is singular;
(2) at least one of the two matricandA, = A—BR'S' is singular;
and the following statements are equivalent:

(1) there exists a solutiod of CGDAREE) such that the corresponding closed-loop matrix
Ay is singular;

(2") for any solutionX of CGDARE(), the corresponding closed-loop mathx is singular;
(3") at least one of the two conditions

(a) rankR < r =rankRy; or

(b) Ay =A—BR'S' is singular;

is satisfied.



We recall again that in [5, Lemma 4.1] it was shown that for aalution X of CGDAREE),
we have keRy C kerR. This means that iR is non-singular, such is al€y, and therefore
the condition ranR < rankRy is not satisfied. Thus, in this case, the closed-loop maitiis
non-singular for some solutiox of the CGDAREE) if and only if it is non-singular for each
solutionX of the CGDAREE) and this is in turn equivalent #&, being non-singular.

3 Mathematical preliminaries

We begin this section by recalling a standard linear algedsalt that is used in the derivations
throughout the paper.

P11 P2
P, P

Lemmal Consider P= [ ] =P" > 0. Then,
() kerP, 2O kerP,,;

(i) PP}, Py, = Pyy;

(i) P (1 = PLPy,) = 0;

(iv) P, — PLPLPT > 0.

12 —

We now generalize a well-known result of the classic Ridtegory — which essentially shows
how to eliminate the cross-penalty matBx— to the case of a constrained generalized Riccati
equation.

def

Lemma?2 Let A= A—BR'S" and Q £ Q- SR'S". Moreover, letl, £ [%0 g] ands, £
(Ay,B,My). Then, the following statements hold true:

(i) CGDAREE) has the same set of solutions as CGDARJE(

X = AjXAy— Al XB(R+B'XB)'B"X A+ Q,, (5)
ker(R+B' X B) C ker(A; X B); (6)

(i) for any symmetric solution X of CGDARE( we have

def

A = Ax = A, —B(R+B"XB)BTXA;

(iii) Q > 0.



Proof: We start provindi). Inserting the expressions f8g andQ, into (5) yields

X = ATXA-ATXBRS —SRB'XA+SRB'XBRS
~A'XBRB'™XA+A'XBRBXBRS +SRB'XBRB XA
~SRB'XBRB'XBRS +Q-SRS'

= A'XA-A'XBRS —SRB'XA+SRB'XBR'S'
~A™XBRB'™XA+A'XBR(B'XB+R-R)R'S
+SR(B'XB+R—R)RIB'XA
—SR(B'XB+R—R)R!(B'XB+R—-R)R'S' + Q- SRS’

= A'XA-A'XBRS —SRB'XA+SRB'XBR'S
~A™XBRB'™XA+A'XBRRR'S'—A'XBRS'
+SRRRIB'XA-SRB'XA-SRRR'S’
+SRR(RIS +SRRR'S' — SRS +Q—-SRS'. 7)

From keRy C kerS,, it follows that there existK such thatS, = K Ry, which gives
SKRIR =KRRIR( =KR(=S:. (8)

Using this identity and its transpose, we can develop thregeén the right hand-side of the last
equality sign of[(¥) as

AXBRRR'S +SRRR'S = S,RIR(R'S" = SR'S,

SRRRIB'XA+SRRRIS" = SRRRIS, = SRS.
and
SRB'XBR'S' —-SRR(R'S'= -SRRR'S" = SRS
Using these new simplified expressions back ihto (7) gives

X = —~A'XBR -SRS —SRB'XA-SRS +SR'S - SRS
— AXA—A'XBRB'XA-SRB'XA-A'XBRS —SRS +Q
—(A™XB+9)R'S' —SR(B"'XA+S")+SR'S' — SRS,
— ATXA— (ATXB+S)(R+B'XB)"(B'XA+S") +Q,



which is indeed[{{1). We conclude the proof(dfshowing thatl(R) is equivalent tbl(6). We write
©) as
kerR; C ker(A; X B)
— ker(A'XB— SR B" X B)
— kefA"XB—SR (R+B"XB—R)]
— kerf(A"XB+S—SRRy),

sinceSR R = Sin view of the second point in Lemnia 1. Suppdse (2) holds.chetkerR;.
ThenS,w = (S+A"XB)w = 0. Thus, we have alspA" X B+S— SR Ry) w = 0 sincew €
kerR;. Conversely, suppose thaf (6) holds true, and take kerRy. Then, (A"XB+ S—
SR Ry) w=0implies(S+A" X B) w = 0.

Let us now consideii). We first show tha(R}: Ry — ) RT = 0. To prove this fact — which
is trivial in the case of the standard DARB(— we use the inclusion k& C kerR, which

holds true for any symmetric solutiod of CGDAREE), seel[5, Lemma 4.1]. In a suitable
Rx,1 0
0 0

] , whereR; may or may not be singular,

RO _
5 O]_o. 9)

basis of the input spac®; can be written aR; = [

Ry O
00

], whereRy ; is invertible; letu be

the order ofRy ;. In this basisRis written asR = [
and we obtain

(2] o) 5 2)
e o o|| 0 O 0 lny

Ax =A—B(R+B'XB)'B'XA, = (A-BR'S") —B(R+B'XB)'B'X(A-BR'S')
— A—-BR'S'—BRB'XA+BR/(R+B'XB—R)R'S"
= Ac+B(RIR — 1) RTST = A,.

Thus,

To prove(iii) it suffices to observe th&, is the generalized Schur complemenRoh . Since
I is assumed to be positive semidefinite, then such is@so |

Another useful result is the following generalization oflassic property of DAREY).

Lemma3 Let T € R™" be invertible. Let

def

AT:

def

TIAT, B ET'B, Q=T'QT. (10)

def

Let alsol; £ [%T g} and X = (Ar,Br,My). Then, X is a solution of CGDAREY — and

therefore also of CGDARE() —if and only if X = T X T is a solution of CGDARE()

Xr = AlXr Ar — Al X Br (R+BIX:Br) TBIX; Ar + Q; (11)
ker(R+ B X; Br) C ker(A; X; Br) (12)

7



Proof: The equations obtained by multiplyingl (5) to the left By* and to the right byT
coincides with [(1I1) withX; ET-1X T. Moreover, sinceT is invertible, kefR+B'XB) C
ker(A; X B) is equivalent to kdiR+B" X B) C ker(T *Aj X B), which is equivalent td (12).1

4 Main results

4.1 Reduction corresponding toasingular A,

In this section, we present the first fundamental result isfplaper, that can be exploited as a
basis for an iterative procedure —to be used when&yersingular — to the end of decomposing

the set of solutions of CGDARE] into a trivial part and a part given by the set of solutions of
a reduced order CGDARE.

Theorem 1 Let v = dim(kerA,). LetU=[U, U, ] be an orthonormal change of coordi-

def

nates inR", whereimU, = kerA,. Let A, S U'AU=[A 0,, ] where A = [AAzll] with
A, € R-V)*x(0-V) gnd A, e RVX(™V) | Letalso B =U B and Q = U'Q,U be partitioned

conformably, i.e., B= [g;] and Q = [Qf giﬂ with B, € RM-V)xm B ¢ RVXM Q,, €

12
def def def

R(M-V)*("-V) and Q, € RV*". Finally, let @ £ AT Q,A, S A" Q, B, and R £ R+B| Q, By.

e X11 X .
1. Let X be a solution of CGDAREY, and partition X ZU XU as X, = [XlTl Xiﬂ with
12
Xy, € R-V*0=v) and %, € RV*". Then,

(i) there hold

Xo=Qu and X, =Q

.. . def Ql Sl
(ii) The new Popov matrik, = [SI Ry

def

(“l) Let Zl dZEf (Al7 Bl7 I_Il) Then,Al - Xll - Qll SatISfIES CGDARE(l)

] is positive semidefinite.

A = AIAlAl — (AIAlBl +S) (R + BIAlBl)T(BIAlAl + SI) + Q: (13)
ker(R,+ B, A;B;) C ker(S,+ A A, By). (14)

2. Conversely, i\, is a solution of[(I8-14), then

X =U (15)

D;+ Qi Quo ] uT

L Qn

is a solution of CGDAREY).



Proof: We begin proving the first point. In view of Lemra®,is a solution of CGDAREY)
if and only if X, = U "X U is a solution of CGDAREY,)

Xy = A%y Ay — AL X, By (R+B)XuBy) Bl X Ay + Qy (16)
ker(R+Bj X, By) C ker(A} X, By), (17)

wherell, = [QOU g} andX, = (Ay,By,My). Multiplying (16) to the left by] 0 1, | yields

X1 X2 B AI AL

A; T1 T T 11 12
[0 IV][ 1 A ]&BU(R+BU><UBU)*BU><UAU+[0 m[QT N ]

O O 12 QZZ
which gives] X, X, ] =1 QJ, Q. ]. This proves the first statement. To praqii¢ we ob-

serve that
Q S AT " 00

|_|1: - 0 B 20, 18
2ol|a ere s as)

since, as shown in Lemnia 2, > 0. We now proveiii). Substitution ofX, = Q, + [Aol g]
obtained in the proof ofi) into (16) gives

A O
00

Al A A O
0 0

S+AAB
0

N (Ri+B] B[ ST+BIAA O],

_[Qlo

which is equivalent to[(13). We now prove that satisfies keiR; + B; A, B;) C ker(S, +
Al A, B;). Substitution ofX, = Q, + [Al 0] into (17) gives
) = ker

00
AT
which is equivalent to[(14). We now prove the converse. Xdie as in[(1b). Substituting

Al A B, S +A A B,

ker(R,+ B, A, B,) C ker<[ 0

|as-

Xy =UTXU= [AHTQ“ le] into CGDAREGE,) gives
le QZZ
A+Qu Q| _ [Al AL] [814+Qu Q] [ A O
Q, Qu 0 0 Q, Qz||[Ax0
- 1 T
A;r A;rl Al_|—Qll Q12 Bl T T Al—i_Qll QlZ Bl
+ T R+ [ Bl BZ ] T
|0 0| Q) Q]|B Q, Qx]|B:
% | Bl A1—1_Q11 Q12 Al 0 + Qll Q12
B, Q, Qx| |[Ax0 Q, Qz
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Developing the products and recalling that we have defiped AT Q A, S, = A" Q, B, and
R, =R+ B QuBy gives

Al AA+Q, 0 Al AB,+S

(R+B/ AB) [ Bl AA+S 0]

A +Qu le] _

Qb Q 0 0
+ Qi.;. Q12 ,
Q]_z Q22
which is satisfied sincA, is a solution of[(18-14). [

The following property, which considers the structure & ghosed-loop matrix in the basis
described by, is stated separately from propertigsii) in Theorenil to emphasize the dif-
ferences between this first reduction and the second rexutttat will be presented in the next
section. In fact, while in the standard case of DARHhis property of the closed-loop matrix
applies to both the first and the second reduction procedutiee general case of CGDAREX
the structure of the closed-loop matrix described in thefahg property is maintained only
for the first reduction procedure.

Proposition 2 Given a solution X of CGDAREJ and the associated solutiak, of (I3f13),
let Ax and A, be the associated closed-loop matrices. Then,

Ay O

U'AU = [
* OVXV

Proof: We first observe that the lastcolumns ofU "A,U are also zero, i.e.,

UTAU = UT(A,—BRIB"X AU
= A, =By (R+BIXBy) BIX A, =[x 0],

in view of the fact that the last columns ofA, are zero. Moreover,

- 1A T
uau = | M 2 B lRerey B (|20 o] ByxoA
A 0] | B b 0 0/|)|B
A 0] [Bi] ;
= - R, +B;A:By) 1B X Ay
_A21 O_ _Bz_(l 111) U
and

An, = A, —B, (R +B]AB) (B]AA +S) — B RIS +B, RIS
= A,— B, (R +B/AB,)BIAA — B, (R +B/AB)TRR S
—B,R'S +B, (Ri+B;A,;B,) (R, +B]A,B,)RIS,

10



where the last equality follows from the identiti, + B! A, B;)T (R, + B A, Bl)RI = R!, which
can be proved exactly in the same waylasi{9)hus,

An, = A, —B, (R +B]AB,)'B]A A —BRIS] — B, (R +B]A,B,)T(R,— R — B/ A, B))RIS]
— A,—BR'S —B, (R +B/A,B,)'B/A;A +B,; (R +B/A,B,)'B/A, B, RIS
— A, —BR'S - B, (R, +B/A,B,) B/ A, (A, — B,R'S)).
Then, denoting by the upper-left block submatrix of ordar- v within U "A,U, we find
[ —Ax, = By (R +B/AB,) (B & A — Bl X, A)
+B,RI'S — B, (R, +B/A,B,) B/ A,B,R S . (19)

A simple calculation shows also that

~ A A
B, A A —BIX,A =B/ AA—[B] B]] (Qll': 1) Qu 1
QlZ Q22 A21
Qu Q Aq .
=—[8B] B]]| O ¥ _BIQA=-5.
12 QZZ AZl

We can use this identity if (19) and we obtain
r—An, = —B,(Ri+B]AB)'S +B,R'S —B, (R, +B/A,B,) "B/ A, B,RIS]
= —B,(R+B;A,B)'S +B, (R +B]A,B,) (R +B]A, B,) RIS]
—B, (R +B]A,B,)'B/A,B,RS
= B, (R +B/AB)" | (R +B/AB)R S - —B/A,B, RS
= B,(R+B/AB) (RRI'S -5 =0.
|

def

In view of (i) of TheoreniL, all solutions of CGDARE] coincide along the subspa@e =

ker( ['“; g] UT). This means that given any two solutiodsandY of CGDAREE), we have

Xl =Y = Qolu-
The following result gives a property of the set of solutioh€ GDAREE), and a procedure
to solve CGDAREE) in terms of the reduced order DARE)(

Corollary 1 The setZ” of solutions of CGDAREY) is parameterized as the set of matrices that
can be expressed as
x=u % oluT+q

where U=[ U; U, |is defined as in Theorem 1 afd is solution of [18-T4).

2Indeed, in CGDAREY,) the matricesR, and R, + B] A, B, play the same role oR and R+ B" X B in
CGDARE(), so that kefR, + B] A, B;) C kerR;.

11



After the reduction described in Theorém 1, it may still happhatA; — B; R'S is sin-
gular. However, since we have proved that CGDARE (as exactly the same structure of
CGDAREE), becausél, =N, >0, if A, —B, R}LSl is singular we can iterate the procedure by
rewriting (13E14) as

A = A(IlAlAO,l — A(IlAlBl<Rl + BIAlBl)TBIAlAO.l + Qo (20)
ker(R,+Bj A;B;) C ker(Ay,ABy), (21)

whereAo; £ A, — B, R S andQ,; £ Q, — S R!'S], and choosing a basis whetg, = [ A, 0]
andA, is of full column-rank. By following iteratively the procede that led from CGDAREY)
to CGDAREE,), we eventually obtain a CGDARE() of the form

A = A(;kAk Aoy — A(;kAk B (Rc+ B, Ay Bk)T By A Aok + Qo (22)
ker(R+ By AvBy) C ker(Ag, AcBy), (23)

where nowA is non-singular. Notice also that this reduction procediae be carried out
only using the problem data B, Q,R, S, so that it holds for any solutiod of CGDAREE). In
other words, this procedure (and the one that will followha hext section) can be performed
without the need to compute a particular solution of the &icequation.

Once we have obtained the reduced-order CGDARE, if the gporeding matribR is singu-
lar, we can proceed with the second reduction procedur@edtin the next section.

4.2 Reduction corresponding toasingular R

Consider CGDAREY), either in the form given by {[}2) orl(5-6). Suppd’és singular. We
assume that we have already performed the reduction deddritihe previous section. Hence,
we may assume thd, is now non-singular. To deal with this situation, we addie=ssarately
two different cases: the first leads either to a reducedrddddRE or to a symmetric Stein
equation depending on the rankRf and the second leads to a reduced-order CGDARE. We
first consider the case in whidky 1B kerR= {0}, i.e.,BkerR= {0}. This case can in turn be
divided into two sub-cases. The first is the one in whkcis not the zero matrix. In this case,
denoting byr the rank ofR, we can consider a change of coordinates in the input spate th

R 0
R= :
00

whereR; is non-singular, and is its order. With respect to this basis, sinceRet im [Imo_r},

bringsRin the form

matrix B can be written aB = [ B; Oy, (m_r) J, and [3E6) written in this basis

12



0

"
0 D [ B/X 0]A+Qo

+[B}X|31 0

T T Ry
X=AXA-A[XB, o]([o o o

ker(

Ri+B/XB, 0
0 0

]) - ker(AJX[ B, 0]),
reduces to

X = AJ X Ay— Al X Bi(Ry+B]X B)TBIX Ay + Qp

im

0
I ] g ker[ * Onx(m—r) ]

where nowR; is invertible as required, so thRi + B] X B, is positive definite. Hence, the latter
is in fact a DARE

X = A X Ay—Aj X By(Ry + B X B) B[ X Ay + Q.

If r =0, i.e., ifRis the zero matrix, theB kerR = {0} implies thatB is also the zero matrix. In
this case, CGDAREY) reduces to a symmetric Stein equagion

X = Ag XA+ Q.
We now consider the case in whigly 1B kerR # {0}.

Theorem 2 Letn = dim(A; 1BkerR). Let V=1V, V, ] be an orthonormal change of co-
ordinates inR" whereimV, = A;'BkerR. Let Q =V AV and A VAV = [Al *},

*x X
def def def

B, £VTB= [B*l]’ R = R+B'Q,B, with A =V, AV, € R-1*(-1) and B £V, B €

RO-M>M et Q EVTQyV = [Qf Q”] AQA =2 QB = %] where Q. Q: €
Q12 Q22 x x *

R(-Mx(=N) and § € RM—=1*M Then,

X11 X12
Xih Xo2

1. Let X be a solution of CGDAREY, and partition X, =V XV as X = [ ] . Then,

(i) there hold

Xo=Qu and X, =Q

def [Ql S

(if) The Popov matrixl, = s RJ is positive semidefinite.

3For a discussion on the properties of symmetric Stein egusitive refer to[17, Section 5.3] ad [13, Section
1.5].
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def

(“l) Let Zl d:‘ef (Al7 Bl7 I_Il) Then,Al - Xll - Qll SatISfIES CGDAR%)

Ay = ATMA — (AAB, +S) (R +BAB)TBIAA +S)+ Q. (24)
ker(R,+Bj A, B;) C ker(S,+A! AB,). (25)

2. Conversely, if\; is a solution of [([24-25), then

X —V\ A1+TQ11 Q12 vT
Q12 Q22

is a solution of CGDAREY).

Proof: We prove the first point. As already observed in the beginwih§ection 4.1 X is
a solution of [(-R) — and therefore also bil(5-6) — if and orfilyj = V"XV is a solution of
CGDARE(,)

X = AX A, —AX B, (R+B)XB,)BIX A +Q, (26)
ker(R+B) X, By) C ker(A] X, By), (27)

wherell, = [Qo/ g] andx, = (A,,By,ly). We can re-write[(26) as
X, = A% V' [l,—B(R+B"XB)'B"X]AV+Q,.

Post-multiplying the latter b){ S] and considering a basis matix for kerR, so that we can
write \, = A 1B K, gives

X
= AXV[I,—B(R+B"XB)B'X]AV, + Qe
X22 Q22
= V' A XB[l,,— RI(B"XB+R—R)| Kz + Qe
Q2
TAT T T QlZ
= V' A XB(l,— RIR — Rl R) Kg + ]
22
TAT T Q12 TAT Q12
= V' A XB(l,,— RIR) Kr + =V A XBGKg+ .
22 22

Recalling that inGGx = kerRy, and that by virtue of (6) there holds k&r C ker(A, X B), we get
VT A; XBGKg =0, from which(i) immediately follows. To provéii) we observe that

l, O

[, 00][A
R Y e

0
. ] > 0. (28)

Im
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In order to prove(iii), we first observe that in view of the previous consideratimeshave
X, =Qy+ [Aol g} . Substitution of this expression info (26127) yields

pn o] [Qo
ool |0 o0

S +AAB,;

Al AA, O
0 O

(Ri+B.AB)[ S +BI AA;, O],

whose block in position (1,1) is exactly (24). We now provatih, satisfies[(25). Substitution
of X, = Qv+ [Aol g} into (217) gives

S +A A B

*

ker(R, + B, A;B;) C ker

from which (25) immediately follows.
The second point can be proved by reversing these argunientsthe same lines of the second
part of the proof of Theoref 1. [

In view of (i) of Theorent 2, all solutions of CGDARE] coincide along £ ker( ['”*” 0] VT) :

0 0
This means that given any two solutiokeandY of CGDAREE), we haveX |y =Y|y = Qo .

Corollary 2 The setZ” of solutions of CGDARE]) is parameterized as the set of matrices
_ Ay Of T
X =V [ X O] VT +Q,
where V= [V, V, ]is defined as in Theorel 2 aAd is solution of [2ZX-25).

Remark 1 In [3] itis shown that ifX is a solution of DAREX) and we consider the associated
solution4, of the reduced DAREY,), and if we denote b\« andA,, the associated closed-loop
matrices, there holds

VIAV = (29)

*  Opp '
This is a simple consequence of the fact that in the case dbi@oX of DARE(Z), the matrix

Ry is invertible. We now show via a simple example that this thats not hold in general in
the case of CGDAREY). Consider a Popov triplE described by the matrices

02 0 -1 00 0 0
A:{zz 0}, B:{o], Q:[ooo}, R=0, S:{o}

00 -5 0 0 0 24 0

15



1
In this caseA, = A is invertible, andAng kerR = span{ {—1} } LetV, =
0

0
~1/vV2 0 —-1/V2
V=|_1v2 0 yv2 |- Then, we compute
0 1 o0
3 0 -1 1/v2 000
A\,:VTAOV:[O -5 o}, Bh=V'B=| o |, Q\,:VTQOV:lo 24 0},
-1 0 -1 1/v/2 000

0 0 0
A QA = [0 600 0}, A, Q B, =0,
0 0 0
so that the matrices of the reduced CGDARE(are
_[3 0 _[yv2 _[o o _ o _
Al_|:0 75:|7 Bl_|: 0 :|7 Q1_|:0 600]7 Sl_[o]a R]_—O

A simple direct calculation shows that the only solution lostreduced CGDARE i¥; =

[8 _25]. Thus, the only solution of the original CGDARE)(is X =V (Q, + [él g]) VT =

00 0
{o 00 } . The corresponding closed-loop matrix coincides with.e.,Ax = A. Now,
00 -1

3 0 -1
VIAYV = [o -5 o]

-1 0 -1
This shows that neither of the two zero submatrices in thersgblock-column of[(29) is
zero in the general case of CGDARE( While the submatrix in the upper left block Af still
coincides withA, , in the case of CGDAREY) it is also no longer true that the spectrun®gf is
contained in that oA. Indeed, in this case(Ay,) = {5, 3} wherear (A¢) = {-5,1+V/5}.
This difference between DARE and CGDARE is related to thetfzat in this generalized case

the reduction can correspond simply to the singularitR @fhich does not imply the singularity
of A, as discussed in Sectidh 2.

Remark 2 As for the reduction described in Theoré€m 1, it may occur,taata result of the
reduction illustrated in Theorem 2; — B, RISI and/orR; be still singular. However, we have
showed thafl, is symmetric and positive semidefinite. This means that i B, RISlT is sin-
gular, we can repeat the reduction procedure describedeoréhtl, while ifA, — B, RISI is
non-singular buR; is singular, we can repeat the reduction procedure desktiibEheoreni .
Since the order of the Riccati equation lowers at each reatustep, after at moststeps, either
we have computed the unique solution of the original CGDARE{r we have obtained a sym-
metric Stein equation (which is linear), or we obtained altveehaved” DARE of maximally
reduced order where the correspondiigndA — BR'S™ matrices are non-singular.
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5 Numerical examples

Example 5.1 Using the reduction techniques developed in the previoasoses, we want to
study the set of solutions of the CGDARB(whereZ is given by the matrices
0 -4 0 0 -1 100 00 00
A:{o 3 o}, B:{s o}, Q:{o 0 0}, R:[O 0}, S= {o o}.
0 0 -1 0 0 000 00
First notice that sinc8is the zero matrixA, andQ, coincide withA andQ, respectively. Thus,

in this case bottA, and R are singular. We begin with a reduction that correspond$i¢o t
1

singularity ofA,. Since keA, = span{ [o} } we can consider a basis mattix= [ U, ‘ U, ]

0
0 01
givenbyU:{loo},sothat
0 10
3 00 . 30 -3 0 000
A(J:{Olo}, A:{01], BU:[O o], QU:{ooo].
4 00 4 0 0 -1 001

Thus,
3 0 -3 0 0 —4 16 0 _Jo o
Al:|:0 71:|7 Bl:[o 0]7 Sl:[o O:|7 Ql:|:0 0]7 Rl_[o 71i|-
In view of Corollary[1,X is a solution of CGDAREY) if and only if it can be written as
o A O T
X - QO+U [ 0 O] U )

wherel, is an arbitrary solution of (18-14). To maintain the notai@s consistent as possible
en . def - def -~ def -~ def — def def

to those employed in Sectibn 4.2, we deffe A, B=B,, Q= Q,,S=S, R=R, andX =A,.
With this notation,[(13-14) can be re-written as

XAo+Q (30)
XB) C ker(A, XB), (31)
whereA,=A-BR'S =A andQ, = (_Q—EPTET = [8 8}. Matrix A, is invertible, whereas
R is singular. Thus, we can apply the reduction procedure oti@e4.2 (we will employ
the same notation used in Sectlon|4.2, with the only excephat all the letters will have a

bar, to distinguish this second reduction from the first or)simple calculation shows that
im(ﬂo‘lg kerR) = span{ [(1)] } Thus, we can consider a basis mavix [ v, ‘ V, ] given by

V= [(1) é] . Hence, we definX, = VXV along with

A=VIAY =[G B=viB=[5 5] a=viav =[5 ).
sothatA, = —1,B,=[0 0], S =[0 0], Q, =0, R, = |2 ?|. In view of Corollary(2,X is a
01
solution of [30-31) if and only if

Y N E]_O T
X =Q,+V [0 O]v



with A; being an arbitrary solution of
~ AR A ATAB /B  BABVE AR A
A = A MA —A AB (R+BAB;) B AA +Q, (32)
ker(R,+ B, A, B,) C ker(A, A, B,). (33)
We still haveR, singular, andh, —Elﬁféf = A, isinvertible. On the other hanB, kerR, = {0},

so that the reduction associated to the singularitigofannot be carried out. Using a change
of coordinates in the input space givenQy= [(1’ é] , we obtain

éleilﬁlQ: |:(:_!-) 8:|, é:L:ElQ:[O O],

so thatR, , = 1 andB,, = 0. Thus, [3X=33) can be written in this basis as

A = z\zzlﬂl - K\Izl é1.0(@1,0 + éIozl é1.0) 1Ll-s’lozl A +Q (34)
ker(Ryo+ BJ oA Byo) C kerA, A, By (35)

which reduce to the trivial equatidn = A, subject to the trivial constraint k%g g] C ker[g 8}.
def

Any & = A, € R satisfies this reduced Riccati equation. Thus, the solstan(30E31) are

_ _ £ 0 00 . 100
given be:V[ ]VT = [ } ¢ € R, so that — recalling tha®, = Q= [0 0 o| and
00 0 ¢ 000

0 01
U= {1 0 o} — the set of solutions of the original CGDARE(is parametrized by
0 10

X:Q0+U

oO| O o
o|™M o
olo o

100
UT:{OOO],EGR
00¢

Example 5.2 Using the reduction techniques developed here, we wantitty she set of solu-
tions of the CGDAREYX) whereZ is given by the matrices
4 0 0 3 -5 300 0o 00
A:{—s 0 o], B:{l 1}, Q:{o 0 0}, R:[O o]’ S= {o o}.
0 0 -3 00 0 0 16 00
SinceSis the zero matrixA, = A andQ, = Q. Both A, andR are singular. We begin with a

0
reduction that corresponds to the singularitygf Since ke, = span{ {1} } we can consider
0
100
a basis matrixJ = [ U, ‘ U, | given byU = [o 0 1} , SO that
010
4 0 0 . 4 0 3 -5 300
AU:{O -3 o], A:{o —3}, Buz{o o}, QU:[O 16 0}
-3 0 0 -3 0 11 000

Hence
_[4 o0 _[3 -5 __[36 —60 _[48 o0 _[27 -45
Al_[o —3]’ Bl_[o o}’ Si_[o o]’ Ql_[o 144}’ Rl_[—45 75}‘
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In view of Corollary[1,X is a solution of CGDAREY) if and only if it can be written as
_ Ap Of T
X=Q+U [ o]u,

wherel; is an arbitrary solution of (18-14). As in Examplel5.1, to ntain the notations as
. def T def -~ def

consistent as possible to those employed in Se€tidn 4.2,efieedd = A;, B=B;, Q = Qy,
SE5, RER, andX £ A,. With this notation,[18-14) can be re-written as[inl [30-@here

A = A-BRS = [8 _03} and Q,=Q-SR'S = [8 124]'

Both A, andR are singular. We can reapply the reduction procedure ini@gdil (we will
employ the same notation used in Secfiod 4.1, with the ontgption that all the letters will
have a tilde, to distinguish this reduction from the first oriéow kerA, = span{ [(1)] } Thus,

def

we can consider a basis mattix= [ U, ‘ U, | given byU = [(1’ é] Hence, we definXyg =
U'XU along withA; = U AU = | ° 0] By =U'B= |3 ] Q=U"QU=|'3* J|.
We have thus obtained the matrices of the reduced-ordeafReguation

A = -3, El:[o o], S:[O o, 61:1296 ﬁl:[g 8}

In view of Corollary(2,X is a solution of[(30-31) if and only if

a3 o

with A; being an arbitrary solution of (82-83). We still haRkesingular, andh, —ERIST =Ais
invertible. On the other han®&, kerR, = {0}, so that the reduction associated to the singularity
of R, cannot be carried out. Sin€ is the zero matrix, and so B,, (34£3%) can be written as
the symmetric Stein equation

A =AMNA+Q
subject to the trivial constraint k@) C ker(0). This equation therefore reduces to
A, = 9A,+1296
which admits the solutioA, = —162. Thus, the matriX = U [_162 8} U +Q,= [0 0 ]

0 0 -18

30 0 100
satisfies[(3[0-31), and, recallingtl@=Q= |0 0 o] andU = [o 0 1},We find
L0 0 16 010

0O 0 |O 30 0
X=Qy+U [0 -18|0 UT:{OO 0],
0 0 |o 00 -2

which is the only solution of the original CGDARE)
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Concluding remarks

We have shown how a general CGDARE(may be reduced to a well-behaved DARIE of
smaller order featuring a non-singular closed-loop matfikis reduction may be performed
through repeated steps each of which may be easily impleadeand robust linear algebraic
routines thus providing an effective tool to deal with getieed Riccati equations in practical
situations.
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