
ar
X

iv
:1

40
9.

64
09

v1
  [

m
at

h.
O

C
]  

23
 S

ep
 2

01
4

The Discrete-Time Generalized Algebraic Riccati

Equation: Order Reduction and Solutions’ Structure∗

Lorenzo Ntogramatzidis⋆ Augusto Ferrante†

⋆Department of Mathematics and Statistics,

Curtin University, Perth (WA), Australia

L.Ntogramatzidis@curtin.edu.au

†Dipartimento di Ingegneria dell’Informazione,
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Abstract

In this paper we discuss how to decompose the constrained generalized discrete-time

algebraic Riccati equation arising in optimal control and optimal filtering problems into two

parts corresponding to an additive decompositionX = X0+∆ of each solutionX: The first

part is an explicit expression of the addendX0 which is common to all solutions, and does

not depend on the particularX. The second part can be either a reduced-order discrete-time

regular algebraic Riccati equation whose associated closed-loop matrix is non-singular, or

a symmetric Stein equation.
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1 Introduction

This paper is concerned with the following relations

X = A⊤XA− (A⊤XB+S)(R+B⊤XB)†(S⊤+B⊤XA)+Q, (1)

ker(R+B⊤ X B)⊆ ker(A⊤ X B+S) (2)

where the symbol † denotes the Moore-Penrose pseudo-inverse operation.1 Equation (1) subject

to the constraint (2) arises for example in discrete-time LQproblems – see [18] and [5] for the

finite and infinite-horizon cases, respectively. Here,A∈ Rn×n, B∈ Rn×m, Q∈ Rn×n, S∈ Rn×m

andR∈ R
m×m are such that thePopov matrixΠ satisfies

Π def
=

[

Q S
S⊤ R

]

= Π⊤ ≥ 0. (3)

The set of matricesΣ = (A,B;Π) is often referred to asPopov triple, and (1) is known as

the generalized discrete-time algebraic Riccati equationGDARE(Σ). This equation, together

with the additional constraint (2), is usually referred to asconstrained generalized discrete-time

algebraic Riccati equation, and it is herein denoted by CGDARE(Σ). This equation generalizes

the standarddiscrete-time algebraic Riccati equationDARE(Σ)

X = A⊤XA− (A⊤XB+S)(R+B⊤XB)−1(S⊤+B⊤XA)+Q, (4)

as the natural equation arising in LQ optimal control and filtering problems. In fact, it is only

when the underlying linear system — obtained by a full-rank factorizationΠ =
[

C⊤

D⊤

]

[ C D ]

and considering a system described by the quadruple(A,B,C,D) — is left invertible that the

standard DARE(Σ) admits solutions. The dynamic optimization problem, however, may still

admit solutions in the more general setting where the underlying linear system is not left-

invertible. In these cases, however, the standard DARE(Σ) does not admit solutions and the cor-

rect equation that must be used to address the original optimization problem is the CGDARE(Σ),

see e.g. [5]. As discussed in [1, Chapt. 6], these general situations are particularly relevant in

the context of stochastic control problems, see also [2, 9] and the references cited therein. On

the other hand, whenever the standard DARE(Σ) admits solutions, the set of its solutions co-

incides with the set of solutions of CGDARE(Σ), so that the latter is a genuine generalization

of the former (here and in the rest of the paper, we are only consideringsymmetricsolutionsX

both for the DARE(Σ) and the CGDARE(Σ)).

1We recall that given anarbitrary matrix M ∈ R
h×k, there exists a unique matrixM† ∈ R

k×h that satisfies the

following four properties:(1) M M† M = M; (2) M† M M† = M†; (3) M† M is symmetric;(4) M M† is symmetric.

By definition, the matrixM† is theMoore-Penrose pseudo-inverseof the matrixM.
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In the literature, several efforts have been devoted by manyauthors to the task of reducing

the order and difficulty of the standard DARE(Σ) by means of different techniques, [16, 10, 11,

12, 3, 8]. This interest is motivated by the fact that the standard DARE(Σ) is richer than the

structure of its continuous-time counterpart, the continuous-time algebraic Riccati equation. In

particular, in [3] a method was presented which, differently from earlier contributions presented

on this topic, aimed at iteratively decomposing DARE(Σ) into a trivial part and a reduced DARE

whose associated closed-loop matrix is non-singular. The subsequent contribution [8] achieves

a similar goal by avoiding the need for an iterative procedure.

The development of reduction procedures for generalized Riccati equations has received

much less attention in the literature. This is in part likelyto be due to the technical difficulties

associated with generalized Riccati equations in the discrete time. In [3], a hint is given on

how the iterative reduction detailed therein could be extended to the case of an equation in the

form (1), provided that the attention is restricted to the set of positive semidefinite solutions,

for which condition (2) is automatically satisfied. On the other hand, CGDARE(Σ) may well

admit solutions that are not positive semidefinite, see e.g.[5, 6]. In [12], a Riccati equation in

the form of a CGDARE(Σ) is considered, and a reduction technique is proposed to theend of

computing the stabilizing solution of CGDARE(Σ). The main goal of this paper is to combine

the generality of the framework considered in [12] with the ambition of achieving a reduction

for the entire set of solutions of CGDARE(Σ). This task is accomplished by developing an

iterative procedure that is similar in spirit to that of [3],but which presents a richer and more

articulated structure. Indeed, not only do several technical difficulties and structural differences

arise in extending the results of [3] to the case of CGDARE(Σ) when the set of solutions is

not restricted to semidefinite ones, but also, differently from the iterations needed in [3], which

are essentially performed via changes of coordinates in thestate space, in the general case

of a CGDARE(Σ), it is necessary to also resort to changes of coordinates inthe input space.

The problem of obtaining a systematic procedure to decompose generalized Riccati equations

into a trivial part and a reduced, “well-behaved”, part described by aregular DARE (or at

times, differently from the standard case, by a symmetric Stein equation), becomes much more

interesting and challenging in the case of generalized Riccati equations. Our reduction method

is based on the computation of null spaces of given matrices so that it can be easily implemented

in a software procedure that uses only standard linear algebra procedures which are robust and

available in any numerical software package. Therefore a relevant outcome of the presented

procedure is what we believe to be the first systematic numerical procedure to compute the

solutions of CGDARE.
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2 Problem formulation and preliminaries

First, in order to simplify the notation, for anyX = X⊤ ∈ R
n×n we define the matrices

RX
def
= R+B⊤ X B GX

def
= Im−R†

XRX

SX
def
= A⊤ X B+S KX

def
= R†

XS⊤
X AX

def
= A−BKX

so that (2) in CGDARE(Σ) can be written concisely as kerRX ⊆ kerSX. The termR†
XRX is the

orthogonal projector that projects onto imR†
X = imRX so thatGX is the orthogonal projector that

projects onto kerRX. Hence, kerRX = imGX.

As already mentioned, in this paper we present a procedure that reduces CGDARE(Σ) to

another discrete-time algebraic Riccati equation with thesame structure but smaller order and

in which bothA0
def
= A−BR†S⊤ andR are non-singular. On the other hand, this means that the

Riccati equation thus obtained is indeed a standard DARE, i.e., it has the structure shown in (4),

as the following result shows.

Proposition 1 Suppose that the matrix R is non-singular, and let X= X⊤ be any symmetric

solution of CGDARE(Σ). Then RX = R+B⊤XB is non-singular.

Proof: As shown in [5, Lemma 4.1], for any symmetric solutionX = X⊤ of CGDARE(Σ) the

inclusion kerRX ⊆ kerR holds. As a consequence, ifR is non-singular, its null-space kerR is

zero, and therefore so is the null-space ofRX. This is equivalent to the fact thatRX is non-

singular.

The reduction technique presented in this paper can also be viewed from the perspective of

the so-called extended symplectic pencilNΣ −zMΣ, where

MΣ
def
=









In 0 0

0 −A⊤ 0

0 −B⊤ 0









and NΣ
def
=









A 0 B

Q −In S

S⊤ 0 R









.

The case in which the matrix pencilNΣ − zMΣ is regular (i.e., if there existsz∈ C such that

det(NΣ − zMΣ) 6= 0) corresponds to the case in which CGDARE(Σ) is indeed a DARE(Σ),

whereas the one in whichNΣ − zMΣ is singular (i.e., the determinant ofNΣ − zMΣ is the zero

polynomial) corresponds to a case in which DARE(Σ) does not admit solutions. It is shown in

[3] for DARE(Σ) and in [7] for CGDARE(Σ) that if AX is singular, the Jordan structure ofAX

associated with the eigenvalueλ = 0 is completely determined byNΣ − zMΣ, and is indepen-

dent of the particular solutionX of DARE(Σ) or CGDARE(Σ). It is shown in [3] that in the

case where the matrix pencilNΣ −zMΣ is regular — or, equivalently, the CGDARE(Σ) and the

standard DARE(Σ) have the same solutions— the following statements are equivalent:
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(1) NΣ is singular;

(2) NΣ −zMΣ has a generalized eigenvalue at zero;

(3) there exists a solutionX of CGDARE(Σ) such that the corresponding closed-loop matrix

AX is singular;

(3′) for any solutionX of CGDARE(Σ), the corresponding closed-loop matrixAX is singular;

(4) at least one of the two matricesR andA0 = A−BR†S⊤ is singular.

The case where the matrix pencilNΣ −zMΣ is possibly singular was investigated in [7], where

it was proved that in this more general case these four facts are not equivalent. In particular,

(1) is not equivalent to(2). Moreover, in the case whereNΣ − zMΣ is singular,(1) and(3) are

not equivalent, nor are(3) and(4). However, it was shown in [7, Lemma 3.1] that it is still true

that (1) is equivalent to(4). Furthermore, it is shown in [7, Proposition 3.4] thatr
def
= rankRX

is constant for any solutionX of CGDARE(Σ), and thatAX is singular if and only if at least

one of the following two conditions holds: (i) rankR< r = rankRX and (ii) A0 = A−BR†S⊤ is

singular. It is clear that this condition reduces to(4) in the case whereRX is invertible, i.e., in

the case whereNΣ − zMΣ is regular. Notice also that since both conditions are independent of

the particular solutionX of the CGDARE(Σ), the singularity of the closed-loop matrixAX is

invariant with respect to the particular solutionX.

To summarize, in the case where the matrix pencilNΣ −zMΣ is singular, the following state-

ments are equivalent:

(1′) NΣ is singular;

(2′) at least one of the two matricesR andA0 = A−BR†S⊤ is singular;

and the following statements are equivalent:

(1′′) there exists a solutionX of CGDARE(Σ) such that the corresponding closed-loop matrix

AX is singular;

(2′′) for any solutionX of CGDARE(Σ), the corresponding closed-loop matrixAX is singular;

(3′′) at least one of the two conditions

(a) rankR< r = rankRX; or

(b) A0 = A−BR†S⊤ is singular;

is satisfied.
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We recall again that in [5, Lemma 4.1] it was shown that for anysolution X of CGDARE(Σ),

we have kerRX ⊆ kerR. This means that ifR is non-singular, such is alsoRX, and therefore

the condition rankR< rankRX is not satisfied. Thus, in this case, the closed-loop matrixAX is

non-singular for some solutionX of the CGDARE(Σ) if and only if it is non-singular for each

solutionX of the CGDARE(Σ) and this is in turn equivalent toA0 being non-singular.

3 Mathematical preliminaries

We begin this section by recalling a standard linear algebraresult that is used in the derivations

throughout the paper.

Lemma 1 Consider P=
[P11 P12

P⊤
12 P22

]

= P⊤ ≥ 0. Then,

(i) kerP12 ⊇ kerP22;

(ii) P12P†
22P22 = P12;

(iii) P12(I −P†
22P22) = 0;

(iv) P11−P12P
†
22P

⊤
12 ≥ 0.

We now generalize a well-known result of the classic Riccatitheory — which essentially shows

how to eliminate the cross-penalty matrixS— to the case of a constrained generalized Riccati

equation.

Lemma 2 Let A0
def
= A−BR†S⊤ and Q0

def
= Q−SR†S⊤. Moreover, letΠ0

def
=
[

Q0 0
0 R

]

and Σ0
def
=

(A0,B,Π0). Then, the following statements hold true:

(i) CGDARE(Σ) has the same set of solutions as CGDARE(Σ0)

X = A⊤
0 XA0−A⊤

0 XB(R+B⊤XB)†B⊤XA0+Q0, (5)

ker(R+B⊤ X B)⊆ ker(A⊤
0 X B); (6)

(ii) for any symmetric solution X of CGDARE(Σ), we have

AX = A0X
def
= A0−B(R+B⊤XB)†B⊤XA0;

(iii) Q0 ≥ 0.
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Proof: We start proving(i). Inserting the expressions forA0 andQ0 into (5) yields

X = A⊤ X A−A⊤ X BR†S⊤−SR†B⊤ X A+SR†B⊤ X BR†S⊤

−A⊤X BR†
XB⊤X A+A⊤X BR†

XB⊤X BR†S⊤+SR†B⊤X BR†
XB⊤X A

−SR†B⊤X BR†
XB⊤X BR†S⊤+Q−SR†S⊤

= A⊤ X A−A⊤ X BR†S⊤−SR†B⊤ X A+SR†B⊤ X BR†S⊤

−A⊤X BR†
XB⊤X A+A⊤X BR†

X(B
⊤X B+R−R)R†S⊤

+SR†(B⊤X B+R−R)R†
XB⊤X A

−SR†(B⊤X B+R−R)R†
X(B

⊤X B+R−R)R†S⊤+Q−SR†S⊤

= A⊤ X A−A⊤ X BR†S⊤−SR†B⊤ X A+SR†B⊤ X BR†S⊤

−A⊤X BR†
XB⊤X A+A⊤X BR†

XRX R†S⊤−A⊤X BR†
XS⊤

+SR†RX R†
XB⊤X A−S R†

XB⊤X A−SR†RX R†S⊤

+SR†RX R†
XS⊤+SR†

XRX R†S⊤−SR†
XS⊤+Q−SR†S⊤. (7)

From kerRX ⊆ kerSX, it follows that there existsK such thatSX = K RX, which gives

SX R†
X RX = K RX R†

X RX = K RX = SX. (8)

Using this identity and its transpose, we can develop the terms in the right hand-side of the last

equality sign of (7) as

A⊤X BR†
XRX R†S⊤+SR†

XRX R†S⊤ = SX R†
XRX R†S⊤ = SX R†S⊤,

SR†RX R†
XB⊤XA+SR†RX R†

XS⊤ = SR†RX R†
XS⊤

X = SR†S⊤
X .

and

SR†B⊤ X BR†S⊤−SR†RX R†S⊤ =−SR†RR†S⊤ =−SR†S⊤.

Using these new simplified expressions back into (7) gives

X = −A⊤X BR†−SR†S⊤−SR†B⊤ X A−SR†S⊤+SX R†S⊤−SR†S⊤
X

= A⊤X A−A⊤X BR†
XB⊤X A−SR†

XB⊤X A−A⊤X BR†
XS⊤−SR†

XS⊤+Q

−(A⊤X B+S)R†S⊤−SR†(B⊤ X A+S⊤)+SX R†S⊤−SR†S⊤
X

= A⊤XA− (A⊤XB+S)(R+B⊤XB)†(B⊤XA+S⊤)+Q,

6



which is indeed (1). We conclude the proof of(i) showing that (2) is equivalent to (6). We write

(6) as

kerRX ⊆ ker(A⊤
0 X B)

= ker(A⊤ X B−SR†B⊤ X B)

= ker[A⊤ X B−SR†(R+B⊤X B−R)]

= ker(A⊤ X B+S−SR†RX),

sinceSR†R= S in view of the second point in Lemma 1. Suppose (2) holds. Letω ∈ kerRX.

ThenSX ω = (S+A⊤ X B)ω = 0. Thus, we have also(A⊤ X B+S−SR†RX)ω = 0 sinceω ∈
kerRX. Conversely, suppose that (6) holds true, and takeω ∈ kerRX. Then, (A⊤ X B+S−
SR†RX)ω = 0 implies(S+A⊤ X B)ω = 0.

Let us now consider(ii). We first show that(R†
X RX − Im)R† = 0. To prove this fact — which

is trivial in the case of the standard DARE(Σ) — we use the inclusion kerRX ⊆ kerR, which

holds true for any symmetric solutionX of CGDARE(Σ), see [5, Lemma 4.1]. In a suitable

basis of the input space,RX can be written asRX =
[

RX,1 0

0 0

]

, whereRX,1 is invertible; letµ be

the order ofRX,1. In this basis,R is written asR=
[

R1 0
0 0

]

, whereR1 may or may not be singular,

and we obtain

(R†
X RX − Im)R† =

([

R−1
X,1 0

0 0

][

RX,1 0

0 0

]

−
[

Iµ 0

0 Im−µ

])[

R†
1 0

0 0

]

= 0. (9)

Thus,

A0X = A0−B(R+B⊤XB)†B⊤XA0 = (A−BR†S⊤)−B(R+B⊤XB)†B⊤X(A−BR†S⊤)

= A−BR†S⊤−BR†
XB⊤X A+BR†

X(R+B⊤X B−R)R†S⊤

= AX +B(R†
X RX − Im)R†S⊤ = AX.

To prove(iii) it suffices to observe thatQ0 is the generalized Schur complement ofR in Π. Since

Π is assumed to be positive semidefinite, then such is alsoQ0.

Another useful result is the following generalization of a classic property of DARE(Σ).

Lemma 3 Let T∈ R
n×n be invertible. Let

AT
def
= T−1A0 T, BT

def
= T−1B, QT

def
= T−1Q0 T. (10)

Let alsoΠT
def
=
[

QT 0
0 R

]

and ΣT
def
= (AT,BT,ΠT). Then, X is a solution of CGDARE(Σ) – and

therefore also of CGDARE(Σ0) – if and only if XT = T−1X T is a solution of CGDARE(ΣT)

XT = A⊤
T XT AT −A⊤

T XT BT (R+B⊤
T XTBT)

†B⊤
T XT AT +QT (11)

ker(R+B⊤
T XT BT)⊆ ker(A⊤

T XT BT) (12)

7



Proof: The equations obtained by multiplying (5) to the left byT−1 and to the right byT

coincides with (11) withXT
def
= T−1X T. Moreover, sinceT is invertible, ker(R+B⊤ X B) ⊆

ker(A⊤
0 X B) is equivalent to ker(R+B⊤ X B)⊆ ker(T−1 A⊤

0 X B), which is equivalent to (12).

4 Main results

4.1 Reduction corresponding to a singular A0

In this section, we present the first fundamental result of this paper, that can be exploited as a

basis for an iterative procedure – to be used wheneverA0 is singular – to the end of decomposing

the set of solutions of CGDARE(Σ) into a trivial part and a part given by the set of solutions of

a reduced order CGDARE.

Theorem 1 Let ν def
= dim(kerA0). Let U = [ U1 U2 ] be an orthonormal change of coordi-

nates inRn, where imU2 = kerA0. Let AU
def
= U⊤A0U = [ Ã 0n×ν ] where Ã =

[

A1

A21

]

with

A1 ∈ R(n−ν)×(n−ν) and A21 ∈ Rν×(n−ν). Let also BU = U⊤B and QU = U⊤Q0U be partitioned

conformably, i.e., BU =
[

B1

B2

]

and QU =
[Q11 Q12

Q⊤
12 Q22

]

, with B1 ∈ R(n−ν)×m, B2 ∈ Rν×m, Q11 ∈
R(n−ν)×(n−ν) and Q22∈Rν×ν . Finally, let Q1

def
= Ã⊤ QU Ã, S1

def
= Ã⊤ QU BU and R1

def
= R+B⊤

U QU BU .

1. Let X be a solution of CGDARE(Σ), and partition XU
def
= U⊤X U as XU =

[X11 X12

X⊤
12 X22

]

, with

X11 ∈ R(n−ν)×(n−ν) and X22 ∈ Rν×ν . Then,

(i) there hold

X12 = Q12 and X22 = Q22

(ii) The new Popov matrixΠ1
def
=
[Q1 S1

S⊤1 R1

]

is positive semidefinite.

(iii) Let Σ1
def
= (A1,B1,Π1). Then,∆1

def
= X11−Q11 satisfies CGDARE(Σ1)

∆1 = A⊤
1 ∆1A1− (A⊤

1 ∆1B1+S1)(R1+B⊤
1 ∆1B1)

†(B⊤
1 ∆1A1+S⊤

1 )+Q1 (13)

ker(R1+B⊤
1 ∆1 B1)⊆ ker(S1+A⊤

1 ∆1 B1). (14)

2. Conversely, if∆1 is a solution of (13-14), then

X =U

[

∆1+Q11 Q12

Q⊤
12 Q22

]

U⊤ (15)

is a solution of CGDARE(Σ).
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Proof: We begin proving the first point. In view of Lemma 3,X is a solution of CGDARE(Σ)

if and only if XU =U⊤X U is a solution of CGDARE(ΣU)

XU = A⊤
UXU AU −A⊤

U XU BU (R+B⊤
UXUBU)

†B⊤
UXU AU +QU (16)

ker(R+B⊤
U XU BU)⊆ ker(A⊤

U XU BU), (17)

whereΠU =
[

QU 0
0 R

]

andΣU = (AU ,BU ,ΠU). Multiplying (16) to the left by[ 0 Iν ] yields

[ 0 Iν ]

[

X11 X12

X⊤
12 X22

]

= [ 0 Iν ]

[

A⊤
1 A⊤

21

0 0

]

XU AU

−[ 0 Iν ]

[

A⊤
1 A⊤

21

0 0

]

XU BU (R+B⊤
U XU BU)

†B⊤
U XU AU+[ 0 Iν ]

[

Q11 Q12

Q⊤
12 Q22

]

,

which gives[ X⊤
12 X22 ] = [ Q⊤

12 Q22 ]. This proves the first statement. To prove(ii) we ob-

serve that

Π1 =

[

Q1 S1

S⊤
1 R1

]

=

[

Ã⊤

B⊤

]

Q0[ Ã B ]+

[

0 0

0 R

]

≥ 0, (18)

since, as shown in Lemma 2,Q0 ≥ 0. We now prove(iii). Substitution ofXU = QU +
[

∆1 0
0 0

]

obtained in the proof of(i) into (16) gives
[

∆1 0

0 0

]

=

[

Q1 0

0 0

]

+

[

A⊤
1 ∆1 A1 0

0 0

]

−
[

S1+A⊤
1 ∆1 B1

0

]

(R1+B⊤
1 ∆1 B1)

†[ S⊤
1 +B⊤

1 ∆1 A1 0 ],

which is equivalent to (13). We now prove that∆1 satisfies ker(R1 + B⊤
1 ∆1 B1) ⊆ ker(S1 +

A⊤
1 ∆1 B1). Substitution ofXU = QU +

[

∆1 0
0 0

]

into (17) gives

ker(R1+B⊤
1 ∆1 B1) ⊆ ker

([

Ã⊤

0

]

QU BU +

[

A⊤
1 ∆1 B1

0

])

= ker

[

S1+A⊤
1 ∆1 B1

0

]

,

which is equivalent to (14). We now prove the converse. LetX be as in (15). Substituting

XU =U⊤X U =
[∆1+Q11 Q12

Q⊤
12 Q22

]

into CGDARE(ΣU ) gives

[

∆1+Q11 Q12

Q⊤
12 Q22

]

=

[

A⊤
1 A⊤

21

0 0

][

∆1+Q11 Q12

Q⊤
12 Q22

][

A1 0

A21 0

]

+

[

A⊤
1 A⊤

21

0 0

][

∆1+Q11 Q12

Q⊤
12 Q22

][

B1

B2

](

R+[B⊤
1 B⊤

2 ]

[

∆1+Q11 Q12

Q⊤
12 Q22

][

B1

B2

])†

×
[

B1

B2

][

∆1+Q11 Q12

Q⊤
12 Q22

][

A1 0

A21 0

]

+

[

Q11 Q12

Q⊤
12 Q22

]

9



Developing the products and recalling that we have definedQ1 = Ã⊤ QU Ã, S1 = Ã⊤ QU BU and

R1 = R+B⊤
U QU BU gives

[

∆1+Q11 Q12

Q⊤
12 Q22

]

=

[

A⊤
1 ∆1 A1+Q1 0

0 0

]

−
[

A⊤
1 ∆1 B1+S1

0

]

(R1+B⊤
1 ∆1 B1)

†[ B⊤
1 ∆1 A1+S⊤1 0 ]

+

[

Q11 Q12

Q⊤
12 Q22

]

,

which is satisfied since∆1 is a solution of (13-14).

The following property, which considers the structure of the closed-loop matrix in the basis

described byU , is stated separately from properties(i-iii) in Theorem 1 to emphasize the dif-

ferences between this first reduction and the second reduction that will be presented in the next

section. In fact, while in the standard case of DARE(Σ) this property of the closed-loop matrix

applies to both the first and the second reduction procedure,in the general case of CGDARE(Σ)

the structure of the closed-loop matrix described in the following property is maintained only

for the first reduction procedure.

Proposition 2 Given a solution X of CGDARE(Σ) and the associated solution∆1 of (13-14),

let AX and A∆1
be the associated closed-loop matrices. Then,

U⊤AX U =

[

A∆1
0

⋆ 0ν×ν

]

.

Proof: We first observe that the lastν columns ofU⊤AX U are also zero, i.e.,

U⊤AX U = U⊤(A0−BR†
XB⊤ X A0)U

= AU −BU (R+B⊤
U XU BU)

†B⊤
U XU AU = [ ⋆ 0 ],

in view of the fact that the lastν columns ofAU are zero. Moreover,

U⊤AX U =

[

A1 0

A21 0

]

−
[

B1

B2

][

R+[ B⊤
1 B⊤

2 ]

(

QU +

[

∆1 0

0 0

])[

B1

B2

]]†

BU XU AU

=

[

A1 0

A21 0

]

−
[

B1

B2

]

(R1+B⊤
1 ∆1 B1)

†B⊤
U XU AU

and

A∆1 = A1−B1 (R1+B⊤
1 ∆1 B1)

†(B⊤
1 ∆1 A1+S⊤

1 )−B1 R†
1S⊤

1 +B1 R†
1S⊤

1

= A1−B1 (R1+B⊤
1 ∆1 B1)

†B⊤
1 ∆1 A1−B1 (R1+B⊤

1 ∆1 B1)
†R1 R†

1 S⊤
1

−B1 R†
1S⊤

1 +B1 (R1+B⊤
1 ∆1 B1)

†(R1+B⊤
1 ∆1 B1)R

†
1S⊤

1 ,

10



where the last equality follows from the identity(R1+B⊤
1 ∆1 B1)

†(R1+B⊤
1 ∆1 B1)R

†
1 = R†

1 , which

can be proved exactly in the same way as (9).2 Thus,

A∆1 = A1−B1 (R1+B⊤
1 ∆1 B1)

†B⊤
1 ∆1 A1−BR†

1S⊤
1 −B1 (R1+B⊤

1 ∆1 B1)
†(R1−R1−B⊤

1 ∆1 B1)R
†
1S⊤

1

= A1−BR†
1S⊤

1 −B1 (R1+B⊤
1 ∆1 B1)

†B⊤
1 ∆1 A1+B1 (R1+B⊤

1 ∆1 B1)
†B⊤

1 ∆1 B1 R†
1S⊤

1

= A1−BR†
1S⊤

1 −B1 (R1+B⊤
1 ∆1 B1)

†B⊤
1 ∆1 (A1−B1 R†

1S⊤
1 ).

Then, denoting byΓ the upper-left block submatrix of ordern−ν within U⊤AX U , we find

Γ−A∆1 = B1 (R1+B⊤
1 ∆1 B1)

†(B⊤
1 ∆1 A1−B⊤

U XU Ã)

+B1 R†
1 S⊤

1 −B1 (R1+B⊤
1 ∆1 B1)

†B⊤
1 ∆1 B1 R†

1 S⊤
1 . (19)

A simple calculation shows also that

B⊤
1 ∆1 A1−B⊤

U XU Ã = B⊤
1 ∆1 A1− [ B⊤

1 B⊤
2 ]

[

(Q11+∆1) Q12

Q⊤
12 Q22

][

A1

A21

]

= −[ B⊤
1 B⊤

2 ]

[

Q11 Q12

Q⊤
12 Q22

][

A1

A21

]

−B⊤
U QU Ã=−S⊤

1 .

We can use this identity in (19) and we obtain

Γ−A∆1 = −B1 (R1+B⊤
1 ∆1 B1)

†S⊤
1 +B1 R†

1S⊤
1 −B1 (R1+B⊤

1 ∆1 B1)
†B⊤

1 ∆1 B1 R†
1S⊤

1

= −B1 (R1+B⊤
1 ∆1 B1)

†S⊤
1 +B1 (R1+B⊤

1 ∆1 B1)
†(R1+B⊤

1 ∆1 B1)R†
1S⊤

1

−B1 (R1+B⊤
1 ∆1 B1)

†B⊤
1 ∆1 B1 R†

1S⊤
1

= B1 (R1+B⊤
1 ∆1 B1)

†
[

(R1+B⊤
1 ∆1 B1)R†

1 S⊤
1 −S⊤

1 −B⊤
1 ∆1 B1 R†

1S⊤
1

]

= B1 (R1+B⊤
1 ∆1 B1)

†(R1 R†
1 S⊤

1 −S⊤
1 ) = 0.

In view of (i) of Theorem 1, all solutions of CGDARE(Σ) coincide along the subspaceU
def
=

ker
([

In−ν 0
0 0

]

U⊤
)

. This means that given any two solutionsX andY of CGDARE(Σ), we have

X|U =Y|U = Q0|U .

The following result gives a property of the set of solutionsof CGDARE(Σ), and a procedure

to solve CGDARE(Σ) in terms of the reduced order DARE(Σ).

Corollary 1 The setX of solutions of CGDARE(Σ) is parameterized as the set of matrices that

can be expressed as

X =U
[

∆1 0
0 0

]

U⊤+Q0

where U= [ U1 U2 ] is defined as in Theorem 1 and∆1 is solution of (13-14).

2Indeed, in CGDARE(Σ1) the matricesR1 and R1 + B⊤
1 ∆1 B1 play the same role ofR and R+ B⊤ X B in

CGDARE(Σ), so that ker(R1+B⊤
1 ∆1 B1)⊆ kerR1.
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After the reduction described in Theorem 1, it may still happen thatA1 −B1 R†
1 S1 is sin-

gular. However, since we have proved that CGDARE(Σ1) has exactly the same structure of

CGDARE(Σ), becauseΠ1 = Π⊤
1 ≥ 0, if A1−B1 R†

1 S1 is singular we can iterate the procedure by

rewriting (13-14) as

∆1 = A⊤
0,1∆1A0,1−A⊤

0,1∆1B1(R1+B⊤
1 ∆1B1)

†B⊤
1 ∆1A0,1+Q0,1 (20)

ker(R1+B⊤
1 ∆1 B1)⊆ ker(A⊤

0,1 ∆B1), (21)

whereA0,1
def
= A1−B1 R†

1 S⊤
1 andQ0,1

def
= Q1−S1 R†

1 S⊤
1 , and choosing a basis whereA0,1 = [ Ã1 0 ]

andÃ1 is of full column-rank. By following iteratively the procedure that led from CGDARE(Σ)

to CGDARE(Σ1), we eventually obtain a CGDARE(Σk) of the form

∆k = A⊤
0,k∆k A0,k−A⊤

0,k∆k Bk (Rk+B⊤
k ∆k Bk)

†B⊤
k ∆k A0,k+Q0,k (22)

ker(Rk+B⊤
k ∆k Bk)⊆ ker(A⊤

0,k ∆k Bk), (23)

where nowA0,k is non-singular. Notice also that this reduction procedurecan be carried out

only using the problem dataA,B,Q,R,S, so that it holds for any solutionX of CGDARE(Σ). In

other words, this procedure (and the one that will follow in the next section) can be performed

without the need to compute a particular solution of the Riccati equation.

Once we have obtained the reduced-order CGDARE, if the corresponding matrixR is singu-

lar, we can proceed with the second reduction procedure outlined in the next section.

4.2 Reduction corresponding to a singular R

Consider CGDARE(Σ), either in the form given by (1-2) or (5-6). SupposeR is singular. We

assume that we have already performed the reduction described in the previous section. Hence,

we may assume thatA0 is now non-singular. To deal with this situation, we addressseparately

two different cases: the first leads either to a reduced-order DARE or to a symmetric Stein

equation depending on the rank ofR, and the second leads to a reduced-order CGDARE. We

first consider the case in whichA−1
0 B kerR= {0}, i.e.,B kerR= {0}. This case can in turn be

divided into two sub-cases. The first is the one in whichR is not the zero matrix. In this case,

denoting byr the rank ofR, we can consider a change of coordinates in the input space that

bringsR in the form

R=

[

R1 0

0 0

]

,

whereR1 is non-singular, andr is its order. With respect to this basis, since kerR= im
[

0
Im−r

]

,

matrixB can be written asB= [ B1 0n×(m−r) ], and (5-6) written in this basis

12



X = A⊤
0 X A0−A⊤

0 [ X B1 0 ]

([

R1 0

0 0

]

+

[

B⊤
1 X B1 0

0 0

])†

[ B⊤
1 X 0 ]A0+Q0

ker

([

R1+B⊤
1 X B1 0

0 0

])

⊆ ker(A⊤
0 X [ B1 0 ]),

reduces to

X = A⊤
0 X A0−A⊤

0 X B1(R1+B⊤
1 X B1)

†B⊤
1 X A0+Q0

im

[

0

Im−r

]

⊆ ker[ ⋆ 0n×(m−r) ]

where nowR1 is invertible as required, so thatR1+B⊤
1 X B1 is positive definite. Hence, the latter

is in fact a DARE

X = A⊤
0 X A0−A⊤

0 X B1(R1+B⊤
1 X B1)

−1B⊤
1 X A0+Q0.

If r = 0, i.e., ifR is the zero matrix, thenB kerR= {0} implies thatB is also the zero matrix. In

this case, CGDARE(Σ) reduces to a symmetric Stein equation3

X = A⊤
0 X A0+Q0.

We now consider the case in whichA−1
0 B kerR 6= {0}.

Theorem 2 Let η def
= dim(A−1

0 B kerR). Let V = [ V1 V2 ] be an orthonormal change of co-

ordinates inRn where imV2 = A−1
0 B kerR. Let QV

def
= V⊤ A0V and AV

def
= V⊤A0V =

[

A1 ⋆
⋆ ⋆

]

,

BV
def
= V⊤ B =

[

B1
⋆

]

, R1
def
= R+ B⊤ Q0 B, with A1

def
= V⊤

1 A0V1 ∈ R
(n−η)×(n−η) and B1

def
= V⊤

1 B ∈

R(n−η)×m. Let QV
def
=V⊤Q0V =

[Q11 Q12

Q⊤
12 Q22

]

, A⊤
V QV AV =

[

Q1 ⋆
⋆ ⋆

]

, A⊤
V QV BV =

[

S1
⋆

]

, where Q11,Q1 ∈
R(n−η)×(n−η) and S1 ∈ R(n−η)×m. Then,

1. Let X be a solution of CGDARE(Σ), and partition XV
def
=V⊤X V as XV =

[X11 X12

X⊤
12 X22

]

. Then,

(i) there hold

X12 = Q12 and X22 = Q22

(ii) The Popov matrixΠ1
def
=
[Q1 S1

S⊤1 R1

]

is positive semidefinite.

3For a discussion on the properties of symmetric Stein equations we refer to [17, Section 5.3] and [13, Section

1.5].
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(iii) Let Σ1
def
= (A1,B1,Π1). Then,∆1

def
= X11−Q11 satisfies CGDARE(Σ1)

∆1 = A⊤
1 ∆1A1− (A⊤

1 ∆1B1+S1)(R1+B⊤
1 ∆1B1)

†(B⊤
1 ∆1A1+S⊤

1 )+Q1 (24)

ker(R1+B⊤
1 ∆1 B1)⊆ ker(S1+A⊤

1 ∆B1). (25)

2. Conversely, if∆1 is a solution of (24-25), then

X =V

[

∆1+Q11 Q12

Q⊤
12 Q22

]

V⊤

is a solution of CGDARE(Σ).

Proof: We prove the first point. As already observed in the beginningof Section 4.1,X is

a solution of (1-2) – and therefore also of (5-6) – if and only if XV = V⊤X V is a solution of

CGDARE(ΣV)

XV = A⊤
V XV AV −A⊤

V XV BV (R+B⊤
V XVBV)

†B⊤
V XV AV +QV (26)

ker(R+B⊤
V XV BV)⊆ ker(A⊤

V XV BV), (27)

whereΠV =
[

QV 0
0 R

]

andΣV = (AV,BV,ΠV). We can re-write (26) as

XV = A⊤
V XV V⊤ [ In−B(R+B⊤ X B)†B⊤X]AV+QV.

Post-multiplying the latter by
[

0
Iη

]

and considering a basis matrixKR for kerR, so that we can

write V2 = A−1BKR, gives
[

X12

X22

]

= A⊤
V XV V⊤ [ In−B(R+B⊤ X B)†B⊤X]AV2+

[

Q12

Q22

]

= V⊤ A⊤
0 X B[ Im−R†

X(B
⊤X B+R−R)]KR+

[

Q12

Q22

]

= V⊤ A⊤
0 X B(Im−R†

XRX −R†
X R)KR+

[

Q12

Q22

]

= V⊤ A⊤
0 X B(Im−R†

XRX)KR+

[

Q12

Q22

]

=V⊤ A⊤
0 X BGX KR+

[

Q12

Q22

]

.

Recalling that imGX = kerRX, and that by virtue of (6) there holds kerRX ⊆ ker(A⊤
0 X B), we get

V⊤ A⊤
0 X BGX KR = 0, from which(i) immediately follows. To prove(ii) we observe that

Π1 =

[

In−η 0 0

0 0 Im

][

A⊤
V

B⊤
V

]

QV[ AV BV ]









In−η 0

0 0

0 Im









+

[

0 0

0 R

]

≥ 0. (28)
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In order to prove(iii), we first observe that in view of the previous considerationswe have

XV = QV +
[

∆1 0
0 0

]

. Substitution of this expression into (26-27) yields

[

∆1 0

0 0

]

=

[

Q1 0

0 0

]

+

[

A⊤
1 ∆1 A1 0

0 0

]

−
[

S1+A⊤
1 ∆1 B1

0

]

(R1+B⊤
1 ∆1 B1)

†[ S⊤
1 +B⊤

1 ∆1 A1 0 ],

whose block in position (1,1) is exactly (24). We now prove that ∆1 satisfies (25). Substitution

of XV = QV +
[

∆1 0
0 0

]

into (27) gives

ker(R1+B⊤
1 ∆1 B1)⊆ ker

[

S1+A⊤
1 ∆1 B1

⋆

]

,

from which (25) immediately follows.

The second point can be proved by reversing these arguments along the same lines of the second

part of the proof of Theorem 1.

In view of (i) of Theorem 2, all solutions of CGDARE(Σ) coincide alongV
def
= ker

([

In−η 0

0 0

]

V⊤
)

.

This means that given any two solutionsX andY of CGDARE(Σ), we haveX|V =Y|V = Q0|V .

Corollary 2 The setX of solutions of CGDARE(Σ) is parameterized as the set of matrices

X =V
[

∆1 0
0 0

]

V⊤+Q0

where V= [ V1 V2 ] is defined as in Theorem 2 and∆1 is solution of (24-25).

Remark 1 In [3] it is shown that ifX is a solution of DARE(Σ) and we consider the associated

solution∆1 of the reduced DARE(Σ1), and if we denote byAX andA∆1
the associated closed-loop

matrices, there holds

V⊤AX V =

[

A∆1
0

⋆ 0η×η

]

. (29)

This is a simple consequence of the fact that in the case of a solution X of DARE(Σ), the matrix

RX is invertible. We now show via a simple example that this factdoes not hold in general in

the case of CGDARE(Σ). Consider a Popov tripleΣ described by the matrices

A=

[

0 2 0
2 2 0
0 0 −5

]

, B=

[−1
0
0

]

, Q=

[

0 0 0
0 0 0
0 0 24

]

, R= 0, S=

[

0
0
0

]

.
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In this caseA0 = A is invertible, andA−1
0 B kerR= span

{[

1
−1
0

]}

. Let V2 =

[

−1/
√

2

1/
√

2

0

]

and

V =

[

−1/
√

2 0 −1/
√

2

−1/
√

2 0 1/
√

2

0 1 0

]

. Then, we compute

AV = V⊤ A0V =

[

3 0 −1
0 −5 0
−1 0 −1

]

, BV =V⊤ B=

[

1/
√

2

0

1/
√

2

]

, QV =V⊤ Q0V =

[

0 0 0
0 24 0
0 0 0

]

,

A⊤
V QV AV =

[

0 0 0
0 600 0
0 0 0

]

, A⊤
V QV BV = 0,

so that the matrices of the reduced CGDARE(Σ1) are

A1 =
[

3 0
0 −5

]

, B1 =
[

1/
√

2

0

]

, Q1 =
[

0 0
0 600

]

, S1 =
[

0
0

]

, R1 = 0.

A simple direct calculation shows that the only solution of this reduced CGDARE isX1 =
[

0 0
0 −25

]

. Thus, the only solution of the original CGDARE(Σ) is X =V
(

QV +
[

X1 0
0 0

])

V⊤ =
[

0 0 0
0 0 0
0 0 −1

]

. The corresponding closed-loop matrix coincides withA, i.e.,AX = A. Now,

V⊤ AX V =

[

3 0 −1
0 −5 0
−1 0 −1

]

This shows that neither of the two zero submatrices in the second block-column of (29) is

zero in the general case of CGDARE(Σ). While the submatrix in the upper left block ofAX still

coincides withA∆1
, in the case of CGDARE(Σ) it is also no longer true that the spectrum ofA∆1

is

contained in that ofAX. Indeed, in this caseσ(A∆1
) = {−5,3} whereasσ(AX) = {−5,1±

√
5}.

This difference between DARE and CGDARE is related to the fact that in this generalized case

the reduction can correspond simply to the singularity ofRwhich does not imply the singularity

of AX as discussed in Section 2.

Remark 2 As for the reduction described in Theorem 1, it may occur that, as a result of the

reduction illustrated in Theorem 2,A1−B1 R†
1S⊤

1 and/orR1 be still singular. However, we have

showed thatΠ1 is symmetric and positive semidefinite. This means that ifA1−B1 R†
1S⊤

1 is sin-

gular, we can repeat the reduction procedure described in Theorem 1, while ifA1 −B1 R†
1S⊤

1 is

non-singular butR1 is singular, we can repeat the reduction procedure described in Theorem 2.

Since the order of the Riccati equation lowers at each reduction step, after at mostn steps, either

we have computed the unique solution of the original CGDARE(Σ), or we have obtained a sym-

metric Stein equation (which is linear), or we obtained a “well-behaved” DARE of maximally

reduced order where the correspondingR andA−BR†S⊤ matrices are non-singular.
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5 Numerical examples

Example 5.1 Using the reduction techniques developed in the previous sections, we want to

study the set of solutions of the CGDARE(Σ) whereΣ is given by the matrices

A=

[

0 −4 0
0 3 0
0 0 −1

]

, B=

[

0 −1
3 0
0 0

]

, Q=

[

1 0 0
0 0 0
0 0 0

]

, R=
[

0 0
0 0

]

, S=

[

0 0
0 0
0 0

]

.

First notice that sinceS is the zero matrix,A0 andQ0 coincide withA andQ, respectively. Thus,

in this case bothA0 and R are singular. We begin with a reduction that corresponds to the

singularity ofA0. Since kerA0 = span

{[

1
0
0

]}

, we can consider a basis matrixU = [ U1 U2 ]

given byU =

[

0 0 1
−1 0 0
0 1 0

]

, so that

AU =

[

3 0 0
0 −1 0
4 0 0

]

, Ã=

[

3 0
0 −1
4 0

]

, BU =

[−3 0
0 0
0 −1

]

, QU =

[

0 0 0
0 0 0
0 0 1

]

.

Thus,

A1 =
[

3 0
0 −1

]

, B1 =
[

−3 0
0 0

]

, S1 =
[

0 −4
0 0

]

, Q1 =
[

16 0
0 0

]

, R1 =
[

0 0
0 −1

]

.

In view of Corollary 1,X is a solution of CGDARE(Σ) if and only if it can be written as

X = Q0+U
[

∆1 0
0 0

]

U⊤,

where∆1 is an arbitrary solution of (13-14). To maintain the notations as consistent as possible

to those employed in Section 4.2, we defineA
def
= A1, B

def
=B1, Q

def
= Q1, S

def
= S1, R

def
=R1 andX

def
= ∆1.

With this notation, (13-14) can be re-written as

X = A
⊤
0 X A0−A

⊤
0 X B(R+B

⊤
X B)†B

⊤
X A0+Q0 (30)

ker(R+B
⊤

X B)⊆ ker(A
⊤
0 X B), (31)

whereA0 = A−BR
†
S
⊤
= A andQ0 = Q−SR

†
S
⊤
=
[

0 0
0 0

]

. Matrix A0 is invertible, whereas

R is singular. Thus, we can apply the reduction procedure in Section 4.2 (we will employ

the same notation used in Section 4.2, with the only exception that all the letters will have a

bar, to distinguish this second reduction from the first one). A simple calculation shows that

im(A
−1
0 B kerR) = span

{[

1
0

]}

. Thus, we can consider a basis matrixV = [ V1 V2 ] given by

V =
[

0 1
1 0

]

. Hence, we defineXV
def
=V⊤ X V along with

AV =V⊤ A0V =
[

−1 0
0 3

]

, BV =V⊤ B=
[

0 0
−3 0

]

, QV =V⊤ Q0V =
[

0 0
0 0

]

,

so thatA1 = −1, B1 = [0 0], S1 = [0 0], Q1 = 0, R1 =
[

0 0
0 1

]

. In view of Corollary 2,X is a

solution of (30-31) if and only if

X = Q0+V
[

∆1 0
0 0

]

V⊤
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with ∆1 being an arbitrary solution of

∆1 = A
⊤
1 ∆1A1−A

⊤
1 ∆1B1(R1+B

⊤
1 ∆1B1)

†B
⊤
1 ∆1 A1+Q1 (32)

ker(R1+B
⊤
1 ∆1 B1)⊆ ker(A

⊤
1 ∆1 B1). (33)

We still haveR1 singular, andA1−B1R
†
1S

⊤
1 =A1 is invertible. On the other hand,B1 kerR1 = {0},

so that the reduction associated to the singularity ofR1 cannot be carried out. Using a change

of coordinates in the input space given byΩ =
[

0 1
1 0

]

, we obtain

R̂1 = Ω−1R1 Ω =
[

1 0
0 0

]

, B̂1 = B1 Ω = [0 0] ,

so thatR̂1,0 = 1 andB̂1,0 = 0. Thus, (32-33) can be written in this basis as

∆1 = A
⊤
1 ∆1A1−A

⊤
1 ∆1B̂1,0(R̂1,0+ B̂⊤

1,0∆1B̂1,0)
†B̂⊤

1,0∆1 A1+Q1 (34)

ker(R̂1,0+ B̂⊤
1,0 ∆1 B̂1,0)⊆ kerA

⊤
1 ∆1 B̂1,0. (35)

which reduce to the trivial equation∆1 =∆1 subject to the trivial constraint ker
[

0 0
0 1

]

⊆ ker
[

0 0
0 0

]

.

Any ξ def
= ∆1 ∈ R satisfies this reduced Riccati equation. Thus, the solutions of (30-31) are

given byX = V
[

ξ 0

0 0

]

V⊤ =
[

0 0
0 ξ

]

, ξ ∈ R, so that – recalling thatQ0 = Q =

[

1 0 0
0 0 0
0 0 0

]

and

U =

[

0 0 1
−1 0 0
0 1 0

]

– the set of solutions of the original CGDARE(Σ) is parametrized by

X = Q0+U







0 0

∣

∣

∣
0

0 ξ
∣

∣

∣
0

0 0

∣

∣

∣
0






U⊤ =

[1 0 0
0 0 0
0 0 ξ

]

, ξ ∈ R.

Example 5.2 Using the reduction techniques developed here, we want to study the set of solu-

tions of the CGDARE(Σ) whereΣ is given by the matrices

A=

[

4 0 0
−3 0 0
0 0 −3

]

, B=

[

3 −5
1 1
0 0

]

, Q=

[

3 0 0
0 0 0
0 0 16

]

, R=
[

0 0
0 0

]

, S=

[

0 0
0 0
0 0

]

.

SinceS is the zero matrix,A0 = A andQ0 = Q. Both A0 andR are singular. We begin with a

reduction that corresponds to the singularity ofA0. Since kerA0 = span

{[

0
1
0

]}

, we can consider

a basis matrixU = [ U1 U2 ] given byU =

[

1 0 0
0 0 1
0 1 0

]

, so that

AU =

[

4 0 0
0 −3 0
−3 0 0

]

, Ã=

[

4 0
0 −3
−3 0

]

, BU =

[

3 −5
0 0
1 1

]

, QU =

[

3 0 0
0 16 0
0 0 0

]

.

Hence

A1 =
[

4 0
0 −3

]

, B1 =
[

3 −5
0 0

]

, S1 =
[

36 −60
0 0

]

, Q1 =
[

48 0
0 144

]

, R1 =
[

27 −45
−45 75

]

.
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In view of Corollary 1,X is a solution of CGDARE(Σ) if and only if it can be written as

X = Q0+U
[

∆1 0
0 0

]

U⊤,

where∆1 is an arbitrary solution of (13-14). As in Example 5.1, to maintain the notations as

consistent as possible to those employed in Section 4.2, we defineA
def
= A1, B

def
= B1, Q

def
= Q1,

S
def
= S1, R

def
= R1 andX

def
= ∆1. With this notation, (13-14) can be re-written as in (30-31)where

A0 = A−BR
†
S
⊤
=
[

0 0
0 −3

]

and Q0 = Q−SR
†
S
⊤
=
[

0 0
0 144

]

.

Both A0 andR are singular. We can reapply the reduction procedure in Section 4.1 (we will

employ the same notation used in Section 4.1, with the only exception that all the letters will

have a tilde, to distinguish this reduction from the first one). Now kerA0 = span
{[

1
0

]}

. Thus,

we can consider a basis matrixU = [ U1 U2 ] given byU =
[

0 1
1 0

]

. Hence, we defineXU
def
=

U
⊤

XU along withAU =U
⊤

A0U =
[

−3 0
0 0

]

, BU = U
⊤

B=
[

0 0
3 −5

]

, QU = U
⊤

Q0U =
[

144 0
0 0

]

.

We have thus obtained the matrices of the reduced-order Riccati equation

A1 =−3, B1 = [0 0] , S1 = [0 0] , Q1 = 1296, R1 =
[

0 0
0 0

]

.

In view of Corollary 2,X is a solution of (30-31) if and only if

X = Q0+U
[

∆1 0
0 0

]

U
⊤

with ∆1 being an arbitrary solution of (32-33). We still haveR1 singular, andA1−B1R
†
1S

⊤
1 =A1 is

invertible. On the other hand,B1 kerR1 = {0}, so that the reduction associated to the singularity

of R1 cannot be carried out. SinceR1 is the zero matrix, and so isB1, (34-35) can be written as

the symmetric Stein equation

∆1 = A
⊤
1 ∆1A1+Q1

subject to the trivial constraint ker(0)⊆ ker(0). This equation therefore reduces to

∆1 = 9∆1+1296

which admits the solution∆1 = −162. Thus, the matrixX =U
[

−162 0
0 0

]

U
⊤
+Q0 =

[

0 0
0 −18

]

satisfies (30-31), and, recalling thatQ0 = Q=

[

3 0 0
0 0 0
0 0 16

]

andU =

[

1 0 0
0 0 1
0 1 0

]

, we find

X = Q0+U







0 0

∣

∣

∣
0

0 −18

∣

∣

∣
0

0 0

∣

∣

∣
0






U⊤ =

[

3 0 0
0 0 0
0 0 −2

]

,

which is the only solution of the original CGDARE(Σ).
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Concluding remarks

We have shown how a general CGDARE(Σ) may be reduced to a well-behaved DARE(Σ) of

smaller order featuring a non-singular closed-loop matrix. This reduction may be performed

through repeated steps each of which may be easily implemented via robust linear algebraic

routines thus providing an effective tool to deal with generalized Riccati equations in practical

situations.
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