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Robustness of Strong Stability of Discrete Semigroups

Lassi Paunonen∗

Abstract

In this paper we study the robustness of strong stability of a discrete semi-

group on a Hilbert space under bounded finite rank perturbations. As the main

result we characterize classes of perturbations preserving the strong stability of the

semigroup.

1 Introduction

Due to the high level of generality and the many forms of strong stability, finding con-
ditions for preservation of strong stability of a semigroup under perturbations of its
generator is a challenging research problem. However, recent advances in the theory of
nonuniform stability of semigroups [1, 3, 4, 2] have made it possible to study robust-
ness of stability for semigroups that are not exponentially stable [8, 9]. While general
strongly stable semigroups may have no intrinsic robustness properties, the theory of
nonuniform stability of semigroups opens doors for research on robustness properties for
many important subclasses of strongly stable semigroups.

In this short paper we consider the preservation of strong stability of discrete semi-
groups (An)n∈N with A ∈ L(X) under additive finite rank perturbations A + BC with
B ∈ L(Cp, X) and C ∈ L(X,Cp). In particular, we assume that the unperturbed semi-
group (An)n∈N is strongly stable in such a way that A has a finite number of spectral
points on the unit circle T, and the growth of its resolvent operator is polynomially
bounded near these points.

The main result of this paper is a discrete analogue of the set of conditions for preserva-
tion of strong stability of strongly continuous semigroups presented in [9]. The techniques
employed here are similar to those used in [9], but in many situations the proofs can be
greatly simplified due to the fact that the operator A is bounded. The discrete proofs also
require several modifications, mainly in estimating the behaviour of the resolvent opera-
tor near the unit disk D. To the author’s knowledge, the preservation of strong stability
of discrete semigroups has not been studied previously in the literature. Moreover, the
resolvent estimates presented in this paper generalize the results found in the literature
by allowing A to have multiple spectral points on T.

Assumption 1 below states the standing assumptions on the semigroup (An)n∈N and
on the perturbations. The strong stability of (An)n∈N implies that σp(A) ∩ T = ∅. Since
X is a Hilbert space, Theorem 2.9 and Corollary 2.11 in [5] imply that for all ϕ ∈ [0, 2π]

X = N (A − eiϕ) ⊕ R(A − eiϕ) = R(A − eiϕ).
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Therefore, all spectral points of A on the unit circle belong to σc(A).

Assumption 1. Let X be a Hilbert space. Assume that the operators A ∈ L(X), B ∈
L(Cp, X), and C ∈ L(X,Cp) satisfy the following for some α ≥ 1, and β, γ ≥ 0.

1. The discrete semigroup (An)n∈N is strongly stable, σ(A) ∩ T = {eiϕk}N
k=1 for some

N ∈ N and dA = mink 6=l|ϕk − ϕl| > 0. Moreover, there exist constants MA ≥ 1 and
0 < εA ≤ min{π/8, dA/3} such that

sup
0<|ϕ−ϕk|≤εA

|ϕ − ϕk|α‖R(eiϕ, A)‖ ≤ MA, (1)

for all k ∈ {1, . . . , N} and ‖R(eiϕ, A)‖ ≤ MA whenever |ϕ − ϕk| > εA for all k.

2. R(B) ⊂ R((1−e−iϕkA)β) and R(C∗) ⊂ R((1−eiϕkA∗)γ) for every k ∈ {1, . . . , N}.

The second part of Assumption 1 together with the Closed Graph Theorem implies
(1 − e−iϕkA)−βB ∈ L(Cp, X) and (1 − eiϕkA∗)−γC∗ ∈ L(X,Cp).

The following theorem presenting conditions for preservation of the stability of the
semigroup (An)n∈N is the main result of this paper.

Theorem 2. Let Assumption 1 be satisfied with β + γ ≥ α. There exists δ > 0 such that
if

‖(1 − e−iϕkA)−βB‖ < δ, and ‖(1 − eiϕkA∗)−γC∗‖ < δ

for all k ∈ {1, . . . , N}, then the discrete semigroup ((A + BC)n)n∈N is strongly stable.
Moreover, we then have σ(A + BC) ∩ T = σc(A + BC) ∩ T = {eiϕk}N

k=1, and for all k

sup
0<|ϕ−ϕk|≤εA

|ϕ − ϕk|α‖R(eiϕ , A + BC)‖ < ∞.

We begin the paper by studying the behaviour of the resolvent operator R(λ, A) near
the unit disk D in Section 2. These results are required in the proof of Theorem 2, which
is presented subsequently in Section 3.

If X and Y are Banach spaces and A : X → Y is a linear operator, we denote by D(A),
R(A), and N (A) the domain, the range, and the kernel of A, respectively. The space of
bounded linear operators from X to Y is denoted by L(X, Y ). If A : D(A) ⊂ X → X,
then σ(A), σp(A), σc(A) and ρ(A) denote the spectrum, the point spectrum, the continu-
ous spectrum and the resolvent set of A, respectively. For λ ∈ ρ(A) the resolvent operator
is given by R(λ, A) = (λ − A)−1. The inner product on a Hilbert space is denoted by 〈·, ·〉.
We denote T = { z ∈ C | |z| = 1 }, D = { z ∈ C | |z| < 1 }, D = { z ∈ C | |z| ≤ 1 },

2 Resolvent Estimates

In this section we study the behaviour of the resolvent operator R(λ, A) near the unit disk
D. In particular, the proof of Theorem 2 is based on the property that the polynomial
growth of the resolvent operator near the points eiϕk can be cancelled by a suitable op-
erator. The general form of the resolvent estimates follows the recent results for strongly
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continuous semigroups that have appeared in [4, 7, 2], and the results in this section can
be seen as straightforward discrete reformulations of corresponding results in the previous
references. The main difference compared to the previous references is that we allow the
operator A to have multiple spectral points on the unit circle T.

Define Λk = 1 − e−iϕkA for k ∈ {1, . . . , N}. The operators Λk and Λl commute for
every k, l ∈ {1, . . . , N}, we have Λ∗

k = 1 − eiϕkA∗, and the families (Λk)N
k=1 and (Λ∗

k)N
k=1

are uniformly sectorial. Indeed, since the operator A is power bounded, the strong Kreiss
resolvent condition [5] implies ‖R(λ, e−iϕkA)‖ ≤ M/(|λ| − 1) for all λ ∈ C \ D, where
M = supn∈N‖An‖ = supn∈N‖(e−iϕkA)n‖. This implies that for every λ > 0 we have

‖λ(λ + 1 − e−iϕkA)−1‖ ≤ λ
M

|λ + 1| − 1
= M.

Since the bound is independent of ϕk ∈ [0, 2π], by [6, Prop. 2.1.1] the family (Λk)N
k=1

is uniformly sectorial. Since σp(A) ∩ T = ∅, the operators Λk are injective and have
sectorial inverses Λ−1

k : R(Λk) ⊂ X → X. The same conclusions are true for the operators
Λ∗

k = 1−eiϕkA∗. The fractional powers Λβ
k and (Λ∗

k)γ are therefore defined for all β, γ ∈ R.
Consider regions Ωk ⊂ C \ D defined as (see Figure 1).

Ωk =
{

λ ∈ C

∣

∣

∣ |λ| ≥ 1, 0 < |λ − eiϕk | ≤ rA

}

,

where rA = |1 − eiεA|. We have 0 < rA ≤ 1 and |eiϕk − ei(ϕk±εA)| = rA for all k.

Ω1

Ω2

Figure 1: The domains Ωk.

The following is the main resolvent estimate required in the proof of Theorem 2.

Theorem 3. If Assumption 1 is satisfied, there exists M1 ≥ 1 such that

sup
λ∈Ωk

‖R(λ, A)Λα
k ‖ ≤ M1

for all k ∈ {1, . . . , N}.
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The proof of the theorem is based on the following two lemmas. The Moment In-
equality in Lemma 4 is an essential tool used frequently throughout the rest of the paper.

Lemma 4. Let 0 < θ̃ < θ. There exists Mθ̃ ≥ 1 such that for all k ∈ {1, . . . , N}

‖Λθ̃
kx‖ ≤ Mθ̃‖x‖1−θ̃/θ‖Λθ

kx‖θ̃/θ ∀x ∈ X.

If Y is a Banach space and R ∈ L(Y, X), then

‖Λθ̃
kR‖ ≤ Mθ̃‖R‖1−θ̃/θ‖Λθ

kR‖θ̃/θ

for all k. The corresponding results are valid for (Λ∗
k)k.

Proof. For a fixed k the properties follow from [6, Prop. 6.6.4]. However, by [6, Prop.
2.6.11] and the uniform sectoriality of the operator family (Λk)k it is possible to choose
Mθ̃ to be independent of k.

Lemma 5. If Assumption 1 is satisfied, then there exists M0 ≥ 1 such that for all k

sup
λ∈Ωk

|λ − eiϕk |α‖R(λ, A)‖ ≤ M0.

Proof. Let M = supn∈N‖An‖. From Assumption 1 we have

sup
0<|ϕ−ϕk|≤εA

|ϕ − ϕk|α‖R(eiϕ, A)‖ ≤ MA.

The strong Kreiss resolvent condition implies (|λ| − 1)‖R(λ, A)‖ ≤ M whenever |λ| > 1.
Let λ = reiϕ ∈ Ωk. Since |ϕ − ϕk| ≤ εA ≤ π/8, and since |ϕ − ϕk| is equal to the arc

length between points eiϕ ∈ T and eiϕk ∈ T, we have |eiϕ − eiϕk | ≤ |ϕ − ϕk|. For r = 1
the bound |λ − eiϕk |α‖R(λ, A)‖ ≤ |ϕ − ϕk|α‖R(eiϕ, A)‖ ≤ MA follows from (1). On the
other hand, if ϕ = ϕk, 1 < r ≤ 1 + rA and λ = reiϕk , then the strong Kreiss resolvent
condition implies

|λ − eiϕk |α‖R(λ, A)‖ = (r − 1)α‖R(λ, A)‖ ≤ (r − 1)‖R(λ, A)‖ ≤ M

since (r − 1)α ≤ r − 1 due to the fact that α ≥ 1 and 0 < r − 1 ≤ rA ≤ 1. It remains to
consider the case λ = reiϕ ∈ Ωk with r > 1 and ϕ 6= ϕk. We can estimate

|reiϕ − eiϕk | ≤ |reiϕ − eiϕ| + |eiϕ − eiϕk | ≤ r − 1 + |ϕ − ϕk|.

Since α ≥ 1 and 1 < r ≤ 2, we have (r − 1)α ≤ r − 1 and (using the scalar inequality
(a + b)α ≤ 2α(aα + bα) for a, b ≥ 0) we get

|λ − eiϕk |α ≤ 2α (r − 1 + |ϕ − ϕk|α)

and the resolvent identity R(reiϕ, A) = R(eiϕ, A)(1 − (r − 1)eiϕR(reiϕ, A)) implies

|λ − eiϕk |α‖R(λ, A)‖ ≤ 2α (r − 1 + |ϕ − ϕk|α) ‖R(λ, A)‖

= 2α(r − 1)‖R(reiϕ, A)‖ + 2α|ϕ − ϕk|α‖R(eiϕ, A)(1 − (r − 1)eiϕR(reiϕ, A))‖

≤ 2αM + 2α|ϕ − ϕk|α‖R(eiϕ, A)‖(1 + (r − 1)‖R(reiϕ, A)‖)

≤ 2α (M + MA(1 + M)) .

Since in each of the situations the bound for |λ − eiϕk |α‖R(λ, A)‖ is independent of
k ∈ {1, . . . , N}, the proof is complete.
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Proof of Theorem 3. Let k ∈ {1, . . . , N}, λ ∈ Ωk, and denote Rλ = R(λ, A) and λk =
λ − eiϕk for brevity.

We begin by showing that if α = n + α̃ with n ∈ N and 0 ≤ α̃ < 1, then there exists
M̃ ≥ 1 (independent of k) such that

sup
λ∈Ωk

|λk|n‖R(λ, A)Λα̃
k‖ ≤ M̃. (2)

By Lemma 5 there exists M0 ≥ 1 such that |λ − eiϕk |α‖R(λ, A)‖ ≤ M0 for all k. If α = n
and α̃ = 0, we have |λk|n‖RλΛα̃

k ‖ = |λk|α‖Rλ‖ ≤ M0. Thus the claim is satisfied with
M̃ = M0, which is independent of k.

If 0 < α̃ < 1, then by Lemma 4 there exists a constant Mα̃ independent of k and λ
such that ‖RλΛα̃

k ‖ ≤ Mα̃‖Rλ‖1−α̃‖RλΛk‖α̃. Using

eiϕkRλΛk = Rλ(eiϕk − A) = 1 − λkRλ (3)

and the scalar inequality (a + b)α̃ ≤ 2α̃(aα̃ + bα̃) we get

|λk|n‖RλΛα̃
k ‖ ≤ Mα̃|λk|n‖Rλ‖1−α̃‖RλΛk‖α̃ = Mα̃|λk|n‖Rλ‖1−α̃‖1 − λkRλ‖α̃

≤ 2α̃Mα̃|λk|n‖Rλ‖1−α̃(1 + |λk|α̃‖Rλ‖α̃) ≤ 2α̃Mα̃

[

(|λk|
n

1−α̃ ‖Rλ‖)1−α̃ + |λk|n+α̃‖Rλ‖
]

.

Since n = ⌊α⌋ ≥ 1 we have

n

1 − α̃
=

nα

(1 − α̃)(n + α̃)
=

nα

n − α̃(n − 1) − α̃2
≥ α.

Since λ ∈ Ωk, we have |λk| ≤ rA ≤ 1, and thus |λk|
n

1−α̃ ≤ |λk|α, and

|λk|n‖RλΛα̃
k ‖ ≤ 2α̃Mα̃

[

(|λk|α‖Rλ‖)1−α̃ + |λk|α‖Rλ‖
]

≤ 2α̃Mα̃

[

M1−α̃
0 + M0

]

≤ 2α̃+1Mα̃M0,

since M0 ≥ 1. Therefore the claim holds with M̃ = 2α̃+1Mα̃M0, which is independent of
k.

We can now show that there exists M1 ≥ 1 such that (2) is satisfied for all k. Since
(Λk)k is a uniformly sectorial family of operators, by [6, Prop. 3.1.1(a)] there exists K > 0
such that ‖Λr

k‖ ≤ K for all 0 ≤ r ≤ α and k. Using the identity (3) repeatedly, we obtain

einϕkR(λ, A)Λn
k = (−λk)nR(λ, A) +

n−1
∑

l=0

(−λk)n−1−leilϕkΛl
k

and thus for α = n + α̃ (using |λk| ≤ rA ≤ 1)

‖R(λ, A)Λα
k ‖ = ‖einϕkR(λ, A)Λn

kΛα̃
k ‖ ≤ |λk|n‖R(λ, A)Λα̃

k‖ +
n−1
∑

l=0

|λk|n−1−l‖Λl+α̃
k ‖

≤ M̃ + nK.

Since the bound is independent of both λ ∈ Ωk and k, the proof is complete.

Lemma 6. Let Assumption 1 be satisfied. There exists M2 ≥ 1 such that

sup
λ/∈D∪

⋃

k
Ωk

‖R(λ, A)‖ ≤ M2.
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Proof. Let λ = reiϕ ∈ C \ (D ∪
⋃

k Ωk) and let λ0 = r0e
iϕ be such that 1 ≤ r0 ≤ r and λ0

lies on the boundary of D ∪
⋃

k Ωk. Then either λ0 ∈ T, which implies ‖R(λ0, A)‖ ≤ MA

by Assumption 1, or otherwise λ0 ∈ Ωk and |λ0 − eiϕk | = rA for some k ∈ {1, . . . , N}. By
Lemma 5 we have that there exists M0 (independent of k) such that in the latter case

|λ0 − eiϕk |α‖R(λ0, A)‖ ≤ M0 ⇔ ‖R(λ0, A)‖ ≤
M0

rα
A

.

Now, if M = supn∈N‖An‖, then (|λ| − 1)‖R(λ, A)‖ ≤ M by the strong Kreiss resolvent
condition. Using the resolvent identity R(λ, A) = R(λ0, A) + (λ0 − λ)R(λ0, A)R(λ, A)
and |λ − λ0| = r − r0 ≤ r − 1 = |λ| − 1 we have

‖R(λ, A)‖ ≤ ‖R(λ0, A)‖(1 + |λ − λ0|‖R(λ, A)‖)

≤ max{MA, M0/rα
A}(1 + (|λ| − 1)‖R(λ, A)‖) ≤ max{MA, M0/rα

A}(1 + M).

Since the bound is independent of λ, this concludes the proof.

Combining the above results shows that the growth of the resolvent operator R(λ, A)
near the unit disk D is cancelled by the operator Λα

1 · · · Λα
N .

Corollary 7. If Assumption 1 is satisfied, then

sup
λ/∈D∪{eiϕk }k

‖R(λ, A)Λα
1 · · · Λα

N‖ < ∞.

3 The Preservation of Strong Stability

In this section we present the proof of Theorem 2. We begin by studying the change of
the spectrum of A under the perturbations.

Theorem 8. Let Assumption 1 be satisfied with β + γ ≥ α. There exists δ > 0 such that
if

‖Λ−β
k B‖ < δ, and ‖(Λ∗

k)−γC∗‖ < δ,

for every k, then σ(A + BC) ⊂ D ∪ {eiϕk}N
k=1 and {eiϕk}k ⊂ σ(A + BC) \ σp(A + BC).

In particular, under the above conditions we have

sup
λ/∈D∪{eiϕk }k

‖(1 − CR(λ, A)B)−1‖ < ∞. (4)

The proof of Theorem 8 is based on the following two lemmas.

Lemma 9. Let Assumption 1 be satisfied for some β + γ ≥ α and let Y be a Banach
space. There exists a constant MR ≥ 1 such that if B ∈ L(Y, X) and C ∈ L(X, Y ) satisfy
R(B) ⊂ R(Λβ

k) and R(C∗) ⊂ R((Λ∗
k)γ) for some k, then

‖CR(λ, A)B‖ ≤ MR‖Λ−β
k B‖‖(Λ∗

k)−γC∗‖

for all λ ∈ Ωk.
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Proof. Since Λβ
k ∈ L(X), the operators Λ−β

k and Λ−β
k B are closed. Since D(Λ−β

k B) = Y ,
the Closed Graph Theorem implies Λ−β

k B ∈ L(Y, X). Similarly (Λ∗
k)−γC∗ ∈ L(Y, X)

and CΛγ
k extends to a bounded operator Cγ ∈ L(X, Y ) with norm ‖Cγ‖ ≤ ‖(Λ∗

k)γC∗‖.
Choose Mk = ‖(−A)β+γ−α‖ · supλ∈Ωk

‖R(λ, A)Λα
k ‖. Then for all λ ∈ Ωk

‖CR(λ, A)B‖ = ‖CΛ−γ
k R(λ, A)Λα

k Λβ+γ−α
k Λ−β

k B‖ ≤ ‖Cγ‖‖R(λ, A)Λα
k‖‖Λβ+γ−α

k ‖‖Λ−β
k B‖

≤ Mk‖Λ−β
k B‖‖(Λk)−γC∗‖.

Finally, we can choose MR = max{M1, . . . , MN}.

Lemma 10. Let Assumption 1 be satisfied with β + γ ≥ α. There exists δ0 > 0 such that
if ‖Λ−β

k B‖ < δ0 and ‖(Λ∗
k)−γC∗‖ < δ0 for all k, then {eiϕk}k ⊂ σ(A + BC) \ σp(A + BC).

Proof. Choose 0 ≤ β1 ≤ β and 0 ≤ γ1 ≤ γ such that β1 + γ1 = 1. Let k ∈ {1, . . . , N} and
assume ‖Λ−β1

k B‖ < 1 and ‖(Λ∗
k)−γ1C∗‖ < 1. The condition 0 ≤ γ1 ≤ 1 implies R(Λk) ⊂

R(Λγ1

k ) ⊂ X, and thus D(Λ−γ1

k ) = X due to the fact that eiϕk ∈ σc(A). The operator
CΛ−γ1

k has a unique bounded extension Cγ1
with norm ‖Cγ1

‖ = ‖(Λ∗
k)−γ1C∗‖ < 1.

Since ‖eiϕkΛ−β1

k BCγ1
‖ ≤ ‖Λ−β1

k B‖‖Cγ1
‖ < 1, the operator 1−eiϕkΛ−β1

k BCγ1
is bound-

edly invertible, and

eiϕk − A − BC = eiϕkΛβ1

k (1 − e−iϕkΛ−β1

k BCγ1
)Λγ1

k .

Since Λβ1

k and Λγ1

k are injective and at least one of them is not surjective, the operator
eiϕk −A−BC is injective but not surjective. This implies eiϕk ∈ σ(A+BC)\σp(A+BC).

Finally, by [6, Prop. 3.1.1(a)] there exists K > 0 such that ‖Λr
k‖ ≤ K and ‖(Λ∗

k)r‖ ≤
K for all 0 ≤ r ≤ β + γ and k. This in particular implies ‖Λβ−β1

k ‖ ≤ K and ‖(Λ∗
k)γ−γ1‖ ≤

K for all k, and thus ‖Λ−β1

k B‖ ≤ K‖Λ−β
k B‖ and ‖(Λ∗

k)−γ1C∗‖ ≤ K‖(Λ∗
k)−γC∗‖. This

concludes that ‖Λ−β1

k B‖ < 1 and ‖(Λ∗
k)−γ1C∗‖ < 1 can be achieved by choosing a small

enough δ0 > 0.

Proof of Theorem 8. Let β + γ ≥ α. By [6, Prop. 3.1.1(a)] there exists K > 0 such
that ‖Λr

k‖ ≤ K and ‖(Λ∗
k)r‖ ≤ K for all 0 ≤ r ≤ β + γ and k. We therefore have

‖B‖ ≤ K‖Λ−β
k B‖ and ‖C‖ ≤ K‖(Λ∗

k)−γC∗‖. Lemmas 6, 9, and 10 now imply that it is
possible to choose δ > 0 in such a way that if

‖Λ−β
k B‖ < δ, and ‖(Λ∗

k)−γC∗‖ < δ,

for all k, then ‖CR(λ, A)B‖ ≤ c < 1 for every λ /∈ D ∪ {eiϕk}k, and {eiϕk}k ⊂ σ(A +
BC) \ σp(A + BC). The Sherman–Morrison–Woodbury formula

R(λ, A + BC) = R(λ, A) + R(λ, A)B(1 − CR(λ, A)B)−1CR(λ, A) (5)

now implies that σ(A + BC) ⊂ D ∪ {eiϕk}k. Moreover, a standard Neumann series
argument shows that ‖(1 − CR(λ, A)B)−1‖ ≤ 1/(1 − c) for every λ /∈ D ∪ {eiϕk}k, which
in turn concludes that (4) is satisfied.

The following theorem characterizes power boundedness of a discrete semigroup on a
Hilbert space [5].
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Theorem 11. Let A ∈ L(X) on a Hilbert space X be such that σ(A) ⊂ D. The discrete
semigroup (An)n∈N is power bounded if and only if for all x, y ∈ X

sup
1<r≤2

(r − 1)
∫ 2π

0

(

‖R(reiϕ, A)x‖2 + ‖R(reiϕ, A)∗y‖2
)

dϕ < ∞.

Lemma 12. If B̃ ∈ L(Cp, X), then

sup
1<r≤2

(r − 1)
∫ 2π

0
‖R(reiϕ, A)B̃‖2dϕ < ∞, sup

1<r≤2
(r − 1)

∫ 2π

0
‖R(reiϕ, A)∗B̃‖2dϕ < ∞.

Proof. The claim follows directly from the fact that there exist {bj}
p
j=1 ⊂ X such that

B̃u =
∑p

j=1 ujbj for u ∈ Cp, and for any R ∈ L(X) we have ‖RB̃‖2 ≤
∑p

j=1 ‖Rbj‖2 .

Lemma 13. Let Assumption 1 be satisfied for some β + γ ≥ α and let k ∈ {1, . . . , N}.

There exists a function fk : C \
(

D ∪ {eiϕl}N
l=1

)

→ R+ such that

‖R(λ, A)B‖‖CR(λ, A)‖ ≤ fk(λ) ∀λ ∈ Ωk,

and fk(·) has the properties sup0<|ϕ−ϕk|≤εA
|ϕ − ϕk|αfk(eiϕ) < ∞ and

sup
1<r≤2

(r − 1)
∫ 2π

0
fk(reiϕ)2dϕ < ∞. (6)

Proof. Choose 0 ≤ β1 ≤ β and 0 ≤ γ1 ≤ γ such that β1 + γ1 = α. For brevity, denote
Rλ = R(λ, A) and λk = λ − eiϕk . Moreover, denote Bβ1

= Λ−β1

k B ∈ L(Cp, X) and
C̃γ1

= (Λ∗
k)−γ1C∗ ∈ L(Cp, X).

Let M1 ≥ 1 be as in Theorem 3. By Lemma 4 there exist constants Mβ1
, Mγ1

≥ 1
such that for every λ ∈ Ωk we have

‖RλB‖ = ‖Λβ1

k RλBβ1
‖ ≤ Mβ1

‖RλBβ1
‖1−β1/α‖Λα

k RλBβ1
‖β1/α

≤ Mβ1
‖RλBβ1

‖1−β1/α‖Λα
k Rλ‖β1/α‖Bβ1

‖β1/α

‖R∗
λC∗‖ = ‖(Λ∗

k)γ1R∗
λC̃γ1

‖ ≤ Mγ1
‖R∗

λC̃γ1
‖1−γ1/α‖(Λ∗

k)αR∗
λC̃γ1

‖γ1/α

≤ Mγ1
‖R∗

λC̃γ1
‖1−γ1/α‖RλΛα

k ‖γ1/α‖C̃γ1
‖γ1/α.

Therefore for K = Mβ1
Mγ1

M1‖Bβ1
‖β1/α‖C̃γ1

‖γ1/α we have

‖RλB‖‖CRλ‖ ≤ K‖RλBβ1
‖1−β1/α‖R∗

λC̃γ1
‖1−γ1/α.

Define fk(·) by fk(λ) = K‖RλBβ1
‖1−β1/α‖R∗

λC̃γ1
‖1−γ1/α for all λ ∈ C \

(

D ∪ {eiϕl}N
l=1

)

.

We will now show that fk(·) has the desired properties.
Since 1 − β1/α + 1 − γ1/α = 1, for all ϕ ∈ [0, 2π] with 0 < |ϕ − ϕk| ≤ εA we have

from Assumption 1 that

|ϕ − ϕk|αfk(eiϕ) ≤ |ϕ − ϕk|α‖R(eiϕ, A)‖K‖Bβ1
‖1−β1/α‖C̃γ1

‖1−γ1/α

≤ MAK‖Bβ1
‖1−β1/α‖C̃γ1

‖1−γ1/α.
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This concludes that sup0<|ϕ−ϕk|≤εA
|ϕ − ϕk|αfk(eiϕ) < ∞.

Moreover, if we denote q = 1/(1 − β1/α), q′ = 1/(1 − γ1/α), then 1/q + 1/q′ = 1 and
the Hölder inequality implies

∫ 2π

0
fk(reiϕ)2dϕ = K2

∫ 2π

0
‖R(reiϕ, A)Bβ1

‖
2

q ‖R(reiϕ, A)∗C̃γ1
‖

2

q′ dϕ

≤ K2
(

∫ 2π

0
‖R(reiϕ, A)Bβ1

‖2dϕ
)

1

q
(

∫ 2π

0
‖R(reiϕ, A)∗C̃γ1

‖2dη
)

1

q′

which immediately implies (6) by Lemma 12.

Proof of Theorem 2. Let δ > 0 be chosen as in Theorem 8 and assume ‖Λ−β
k B‖ < δ,

and ‖(Λ∗
k)−γC∗‖ < δ for all k. By Theorem 8 there exists MD ≥ 1 such that we have

‖(1 − CR(λ, A)B)−1‖ ≤ MD for all λ /∈ D ∪ {eiϕk}N
k=1. We begin the proof by showing

that the semigroup ((A + BC)n)n∈N is power bounded.
Let x ∈ X and for brevity denote Rλ = R(reiϕ, A) and Dλ = 1 − CR(reiϕ , A)B.

Using the Sherman–Morrison–Woodbury formula (5) and the scalar inequality (a+ b)2 ≤
2(a2 + b2) for a, b ≥ 0 we can estimate

∫ 2π

0
‖R(reiϕ, A + BC)x‖2dϕ =

∫ 2π

0
‖Rλx + RλBD−1

λ CRλx‖2dϕ

≤ 2
∫ 2π

0
‖Rλx‖2dϕ + 2M2

D‖x‖2
∫ 2π

0
‖RλB‖2‖CRλ‖2dϕ.

Similarly, using ‖(RλBD−1
λ CRλ)∗‖ = ‖RλBD−1

λ CRλ‖ ≤ MD‖RλB‖‖CRλ‖ we get

∫ 2π

0
‖R(reiϕ, A + BC)∗x‖2dϕ =

∫ 2π

0
‖R∗

λx + (RλBD−1
λ CRλ)∗x‖2dϕ

≤ 2
∫ 2π

0
‖R∗

λx‖2dϕ + 2M2
D‖x‖2

∫ 2π

0
‖RλB‖2‖CRλ‖2dϕ.

The above estimates together with Theorem 11 imply that the semigroup generated by
A + BC is uniformly bounded if

sup
1<r≤2

(r − 1)
∫ 2π

0
‖RλB‖2‖CRλ‖2dϕ < ∞. (7)

For all k ∈ {1, . . . , N} let fk(·) be the functions in Lemma 13. By Lemma 6 we can
choose M2 ≥ 1 such that ‖R(λ, A)‖ ≤ M2 for all λ /∈ D ∪

⋃

k Ωk. Let 1 < r ≤ 2. For
each k ∈ {1, . . . , N} denote by Er

k ⊂ [0, 2π] the interval such that reiϕ ∈ Ωk if and only
if ϕ ∈ Er

k. Finally, denote Er = [0, 2π] \ (
⋃

k Er
k). Now

∫ 2π

0
‖RλB‖2‖CRλ‖2dϕ =

∫

Er
‖RλB‖2‖CRλ‖2dϕ +

N
∑

k=1

∫

Er
k

‖RλB‖2‖CRλ‖2dϕ

≤
∫

Er
M2

2 ‖B‖2‖C‖2M2
2 dϕ +

N
∑

k=1

∫

Er
k

fk(reiϕ)2dϕ

≤ 2πM4
2 ‖B‖2‖C‖2 +

N
∑

k=1

∫ 2π

0
fk(reiϕ)2dϕ,
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which immediately implies (7) by Lemmas 12 and 13, and therefore the semigroup
((A + BC)n)n∈N is power bounded.

Since the perturbed semigroup is power bounded and X is a Hilbert space, Theorem
2.9 and Corollary 2.11 in [5] imply that σ(A + BC) ∩ T ⊂ σp(A + BC) ∪ σc(A + BC).
However, by Theorem 8 we have that {eiϕk}k ⊂ σ(A+BC)\σp(A+BC). Together these
properties conclude that eiϕk ∈ σc(A + BC) for all k.

Theorem 8 shows that σ(A + BC) ∩T = {eiϕk}N
k=1 is finite and σp(A + BC) ∩T = ∅.

The discrete Arent–Batty–Lyubich–Vũ Theorem [5, Thm. 2.18] therefore concludes that
the semigroup ((A + BC)n)n∈N is strongly stable.

It remains to show that for all k we have

sup
0<|ϕ−ϕk|≤εA

|ϕ − ϕk|α‖R(eiϕ , A + BC)‖ < ∞. (8)

Let k be arbitary. By Lemma 13 there exists Mk ≥ 1 such that |ϕ − ϕk|αfk(eiϕ) ≤ Mk

whenever 0 < |ϕ−ϕk| ≤ εA. The Sherman–Morrison–Woodbury formula (5) implies that
for all ϕ ∈ [0, 2π] satisfying 0 < |ϕ − ϕk| ≤ εA we have

‖R(eiϕ, A + BC)‖ ≤ ‖R(eiϕ, A)‖ + ‖R(eiϕ, A)B‖MD‖CR(eiϕ, A)‖

≤ ‖R(eiϕ, A)‖ + MDfk(eiϕ),

and thus

|ϕ − ϕk|α‖R(eiϕ, A + BC)‖ ≤ |ϕ − ϕk|α‖R(eiϕ, A)‖ + MD|ϕ − ϕk|αfk(eiϕ)

≤ MA + MDMk.

This concludes that (8) is satisfied. On the other hand, if |ϕ − ϕk| > εA for all k, then
a similar estimate yields ‖R(eiϕ, A + BC)‖ ≤ MA + MD‖B‖‖C‖M2

A. This concludes the
proof.
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