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Robustness of Strong Stability of Discrete Semigroups
Lassi Paunonen*

Abstract

In this paper we study the robustness of strong stability of a discrete semi-
group on a Hilbert space under bounded finite rank perturbations. As the main
result we characterize classes of perturbations preserving the strong stability of the
semigroup.

1 Introduction

Due to the high level of generality and the many forms of strong stability, finding con-
ditions for preservation of strong stability of a semigroup under perturbations of its
generator is a challenging research problem. However, recent advances in the theory of
nonuniform stability of semigroups [1, 13, 4, 2] have made it possible to study robust-
ness of stability for semigroups that are not exponentially stable [8,19]. While general
strongly stable semigroups may have no intrinsic robustness properties, the theory of
nonuniform stability of semigroups opens doors for research on robustness properties for
many important subclasses of strongly stable semigroups.

In this short paper we consider the preservation of strong stability of discrete semi-
groups (A")pen with A € L£(X) under additive finite rank perturbations A + BC' with
B e L(CP, X) and C € L(X,CP). In particular, we assume that the unperturbed semi-
group (A™),en is strongly stable in such a way that A has a finite number of spectral
points on the unit circle T, and the growth of its resolvent operator is polynomially
bounded near these points.

The main result of this paper is a discrete analogue of the set of conditions for preserva-
tion of strong stability of strongly continuous semigroups presented in [9]. The techniques
employed here are similar to those used in [9], but in many situations the proofs can be
greatly simplified due to the fact that the operator A is bounded. The discrete proofs also
require several modifications, mainly in estimating the behaviour of the resolvent opera-
tor near the unit disk ID. To the author’s knowledge, the preservation of strong stability
of discrete semigroups has not been studied previously in the literature. Moreover, the
resolvent estimates presented in this paper generalize the results found in the literature
by allowing A to have multiple spectral points on T.

Assumption [ below states the standing assumptions on the semigroup (A"),en and
on the perturbations. The strong stability of (A™),en implies that 0,(A) NT = @. Since
X is a Hilbert space, Theorem 2.9 and Corollary 2.11 in [5] imply that for all ¢ € [0, 27]

X =N(A—e®)@R(A—e%) = R(A— ei#).
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Therefore, all spectral points of A on the unit circle belong to o.(A).

Assumption 1. Let X be a Hilbert space. Assume that the operators A € L(X), B €
L(CP X)), and C € L(X,CP) satisfy the following for some a > 1, and B,~v > 0.

1. The discrete semigroup (A™),en is strongly stable, o(A) N'T = {e™*} | for some
N € N and dy = ming |, — @] > 0. Moreover, there exist constants My > 1 and
0 < ea <min{n/8,ds/3} such that

sup | — @|*||R(e'?, A)|| < May, (1)

0<|p—pr|<ea
forallk € {1,...,N} and |R(e"?, A)|| < Ma whenever |p — 1| > €4 for all k.
2. R(B) C R((1—e % A)%) and R(C*) C R((1—e"tA*)Y) for every k € {1,...,N}.

The second part of Assumption [ together with the Closed Graph Theorem implies
(1—e % A)PB € L(CP, X) and (1 — ¥+ A*)~7C* € L(X,CP).

The following theorem presenting conditions for preservation of the stability of the
semigroup (A™),en is the main result of this paper.

Theorem 2. Let Assumption [l be satisfied with S+~ > «. There exists § > 0 such that
if

1(1— e A)PB| <8, and |(1— ¥ A*)C*| < 3§

for all k € {1,...,N}, then the discrete semigroup ((A+ BC)")nen is strongly stable.
Moreover, we then have o(A+ BC)NT = o.(A+ BC)NT = {e*}1_,, and for all k

sup \(p—(pk\o‘HR(ew,A—l—BC)H < 00.

0<|p—prl<ea

We begin the paper by studying the behaviour of the resolvent operator R(\, A) near
the unit disk D in Section [2l These results are required in the proof of Theorem [2, which
is presented subsequently in Section [3l

If X and Y are Banach spaces and A : X — Y is a linear operator, we denote by D(A),
R(A), and N(A) the domain, the range, and the kernel of A, respectively. The space of
bounded linear operators from X to Y is denoted by £(X,Y). If A: D(A) C X — X,
then o(A), 0,(A), 0.(A) and p(A) denote the spectrum, the point spectrum, the continu-
ous spectrum and the resolvent set of A, respectively. For A € p(A) the resolvent operator
is given by R(\, A) = (A — A)~!. The inner product on a Hilbert space is denoted by (-, -).
Wedenote T={2€C||z|=1},D={2e€C||z|<1},D={z€C]||z| <1},

2 Resolvent Estimates

In this section we study the behaviour of the resolvent operator R(\, A) near the unit disk
D. In particular, the proof of Theorem [2 is based on the property that the polynomial
growth of the resolvent operator near the points €??* can be cancelled by a suitable op-
erator. The general form of the resolvent estimates follows the recent results for strongly



2. Resolvent Estimates 3

continuous semigroups that have appeared in [4, (7, 2], and the results in this section can
be seen as straightforward discrete reformulations of corresponding results in the previous
references. The main difference compared to the previous references is that we allow the
operator A to have multiple spectral points on the unit circle T.

Define A, =1 —e %A for k € {1,..., N}. The operators A;, and A; commute for
every k,l € {1,...,N}, we have A} = 1 — ¢“*A* and the families (A;z)Y_, and (A})Y,
are uniformly sectorial. Indeed, since the operator A is power bounded, the strong Kreiss
resolvent condition [5] implies ||R(\,e~#*A)|| < M/(J]A\| — 1) for all A € C\ D, where
M = sup,,enl|A"|| = sup,enl|(e7** A)"||. This implies that for every A > 0 we have

4 M
M F+1—e@ ) < A\ —— =M
I+ 1 = e A € Ay

Since the bound is independent of ¢, € [0,27], by |6, Prop. 2.1.1] the family (Ag)r_,
is uniformly sectorial. Since 0,(A) N T = &, the operators Aj are injective and have
sectorial inverses A, ! : R(A,) C X — X. The same conclusions are true for the operators
* — 1 —eik A*. The fractional powers A} and (A})7 are therefore defined for all 3,~ € R.
Consider regions €2, C C\ D defined as (see Figure [I).

U ={AeC|A[=1, 0<|A—e¥|<ra},
where 74 = |1 — ¢®4]. We have 0 < r4 < 1 and |e™¥* — ¢/¥x¥24)| = 1 for all k.

A

0

\/

Figure 1: The domains 2.

The following is the main resolvent estimate required in the proof of Theorem

Theorem 3. If Assumption [l is satisfied, there exists My > 1 such that

sup || R(A, A)AR]| < My

AEQy

forallk e {1,...,N}.
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The proof of the theorem is based on the following two lemmas. The Moment In-
equality in Lemma [4]is an essential tool used frequently throughout the rest of the paper.

Lemma 4. Let 0 < 6 < 0. There exists My > 1 such that for all k € {1,..., N}
|ARe] < Mgl AL V€ X.
IfY is a Banach space and R € L(Y, X), then
|ARRI < Mgl|RI™ )| ARR| "
for all k. The corresponding results are valid for (A}).

Proof. For a fixed k the properties follow from [6, Prop. 6.6.4]. However, by [6, Prop.
2.6.11] and the uniform sectoriality of the operator family (Ay); it is possible to choose
Mj to be independent of k. O

Lemma 5. If Assumption [l is satisfied, then there exists My > 1 such that for all k
sup |\ — ek Y| R(A, A)|| < M.
AEQ

Proof. Let M = sup,,cy||A"||. From Assumption [I] we have
sup | — @il R(e", A)|| < Ma.

0<|p—pr|<ea
The strong Kreiss resolvent condition implies (JA| — 1)||R(A\, A)|| < M whenever |A| > 1.
Let A = re™ € Q4. Since |p — ¢| < ea < 7/8, and since |p — ¢i| is equal to the arc
length between points €¥ € T and e'#* € T, we have |e'? — ¢?*| < | — | For r =1
the bound |\ — e™*|*||R(\, A)|| < | — ¢r|*||R(e%, A)|| < My follows from (). On the
other hand, if o = ¢, 1 <7 < 1471y and A\ = re**, then the strong Kreiss resolvent
condition implies
A= YR A = (r = DR A < (r = DR, A)|| < M
since (r — 1) <r — 1 due to the fact that « > 1 and 0 <r — 1 < ry < 1. It remains to
consider the case A = re'? € Q;, with r > 1 and ¢ # ¢;,. We can estimate
[re' — er| < |re™ — €| 4 | — k| <1 — 14 ¢ — il
Since « > 1 and 1 < r < 2, we have (r — 1)®* < r — 1 and (using the scalar inequality
(a+b)* <2%a™ +b*) for a,b > 0) we get
A= < 2% (r — 1+ [ — @[
and the resolvent identity R(re’?, A) = R(e"?, A)(1 — (r — 1)e’?R(re’, A)) implies
A= e RO A < 2% (r = 1+ [0 — i) [R(N, A
=2%(r = D[[R(re”, A)|| + 2% — @[ R(e", A)(1 = (r — 1) R(re’, A))||
< 2°M + 2% — @i | R(e, A) (1 + (r — D[ R(re’, A)]])
< 2% (M 4+ Mu(14+ M)).

Since in each of the situations the bound for |\ — €™|*||R(\, A)|| is independent of
k€ {1,..., N}, the proof is complete. O
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Proof of Theorem Bl Let k € {1,...,N}, A € Q, and denote Ry, = R(\, A) and A\, =
A\ — e%r for brevity.

We begin by showing that if « =n 4+ @ with n € N and 0 < & < 1, then there exists
M > 1 (independent of k) such that

sup [ A" | RO\, A)AZ]| < M. (2)
AEQ

By Lemma [ there exists My > 1 such that |\ — e+ |*||R()\, A)|| < My for all k. If a =n
and @ = 0, we have [M\i|"[|RAAE| = [Me|®||Rx|| < Mp. Thus the claim is satisfied with
M = M, which is independent of k.

If 0 < & < 1, then by Lemma [l there exists a constant My independent of £ and A
such that ||RAAZ|| < Mg||Ry||*~%|| RaAg||®. Using

ek RyNy = Ry (e — A) =1 — ARy, (3)
and the scalar inequality (a + b)* < 2%(a® + b%) we get
A" IRAAL < Mal Xl [ BAIT I RAARNT = Mal A" [ BT [I1 = AeRa[|*
< 25 Ma MR (1 4 IIFRAlI®) < 2% M [(IM] T2 [ Rl + [ Ball]

Since n = |a] > 1 we have

n no no

l-a (1-a)n+a) n—an-1)—a>"

Since A € Q, we have |\| <74 <1, and thus [M\g|T7 < [A]®, and
Il I RAATN < 2% M (Il IRAID ™+ [Nl Ball] < 25Ms [ M=%+ My < 2%+ MM,

since My > 1. Therefore the claim holds with M = 20+ V. My, which is independent of
k.

We can now show that there exists M; > 1 such that (2)) is satisfied for all k. Since
(Ag) is a uniformly sectorial family of operators, by |6, Prop. 3.1.1(a)] there exists K > 0
such that |[|A}|| < K for all 0 < r < a and k. Using the identity (B]) repeatedly, we obtain

n—1
"R RN, AJAL = (= M) R(N, A) + (=)™ e A

1=0
and thus for « = n + @ (using |A\g| <rys < 1)

n—1
1RO\ AR = [le™ = RO, A)ATAZ < I IR AT+ DI IAG
=0
< M+ nK.

Since the bound is independent of both A € €2 and k, the proof is complete. O
Lemma 6. Let Assumption [l be satisfied. There exists My > 1 such that

sup  [[R(\, A)|| < Mo.
A¢DUl, Qu
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Proof. Let A =re? € C\ (DU U, ) and let Ay = roe’? be such that 1 < ry < r and )\
lies on the boundary of D U U, €. Then either A\g € T, which implies ||R(Ag, A)|| < Ma
by Assumption [, or otherwise A\g € Q) and |\g — e*?*| = r4 for some k € {1,..., N}. By
Lemma [0l we have that there exists M, (independent of k) such that in the latter case

. M,
0 — €[ 05 > Mo 05 > _ao.
Ao — €[ R(Ao, A)|| < My < [[R(0, A < =

Now, if M = sup,,cn||A"|], then (JA| — 1)[|R(A, A)|| < M by the strong Kreiss resolvent
condition. Using the resolvent identity R(A, A) = R(X\o, A) + (Ao — A)R(Xo, A)R(A, A)
and [N — Xo| =7 —19g <7 —1=|A —1 we have

RN, A < [[R(Ao, (X + A = ol [ R(A, A)])
< max{ My, My/r3}(1+ (X = D[R\, A)||) < max{ My, My/r3}(1+ M).

Since the bound is independent of A, this concludes the proof. O

Combining the above results shows that the growth of the resolvent operator R(A, A)
near the unit disk D is cancelled by the operator A{ ---A%.

Corollary 7. If Assumption [l is satisfied, then

sup  [ROVAAT -+ A% | < .

)\iDU{eupk }k

3 The Preservation of Strong Stability

In this section we present the proof of Theorem 2l We begin by studying the change of
the spectrum of A under the perturbations.

Theorem 8. Let Assumption [l be satisfied with B+~ > «. There exists § > 0 such that
if

IA"Bl <6, and [[(A))TC|| <6,

for every k, then o(A + BC) C DU {e**}_, and {e***}; C o(A + BC) \ 0,(A+ BC).

In particular, under the above conditions we have

sup (1= CR(N, A)B)™!| < oo. (4)
AEDU{e™k 1

The proof of Theorem [ is based on the following two lemmas.

Lemma 9. Let Assumption [l be satisfied for some B+ v > « and let Y be a Banach
space. There exists a constant Mp > 1 such that if B € L(Y,X) and C € L(X,Y) satisfy
R(B) € R(AY) and R(C*) € R((AL)Y) for some k, then

ICR(\, A)B|| < Mgl A" BIl[|(A7) 7 C"|

for all X € Q.
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Proof. Since A} € £(X), the operators A;” and A, B are closed. Since D(A,”B) =Y,
the Closed Graph Theorem implies A,”B € £(Y,X). Similarly (A7)~7C* € L(Y, X)
and C'A] extends to a bounded operator C., € L£(X,Y) with norm ||C,|| < [[(A})"C*|.
Choose My, = [|[(—A)?T77|| - supycq, [|R(A, A)AZ||. Then for all X € O

ICR(N, A)B| = [|CALT RO, AJAZAL A B < [[C IR, A)AZIIAL 1AL B
< M|l AL Bl (AR) 77 C7-

Finally, we can choose Mr = max{M;,..., My}. O

Lemma 10. Let Assumption [ be satisfied with S+~ > «. There exists g > 0 such that
if |ALPB| < 60 and ||(AL)~7C*|| < 8y for all k, then {e*};, C o(A+ BC)\ 0,(A+ BC).

Proof. Choose 0 < 81 < fand 0 <~; <~y such that 81+ =1. Let k € {1,..., N} and
assume ||A, "' B|| < 1 and ||(A})""C*|| < 1. The condition 0 < v, < 1 implies R(A;) C
R(A}') € X, and thus D(A,™) = X due to the fact that ¢’ € o.(A). The operator
CA,™ has a unique bounded extension C.,, with norm ||C,,|| = ||(A}) " C*|| < L.

Since ||t A, 7 BC,, || < ||A7 BJ|||Cy, || < 1, the operator 1— ek A, ? BC., is bound-
edly invertible, and

¢ — A— BC = e A (1 — e A BC,, )AL

Since Afl and A}' are injective and at least one of them is not surjective, the operator
e'?r — A— BC is injective but not surjective. This implies e+ € o(A+ BC)\0,(A+ BC).

Finally, by [6, Prop. 3.1.1(a)] there exists K > 0 such that [|A}|| < K and ||(A})"]] <
K forall 0 < r < S+~ and k. This in particular implies ||A; 7| < K and ||(A})* ™| <
K for all k, and thus ||A,”'B| < K||A,”B| and ||(A;) "C*|| < K|(A;)~7C*||. This
concludes that |[A;”*B| < 1 and ||(A})""C*|| < 1 can be achieved by choosing a small
enough dy > 0. 0J

Proof of Theorem 8. Let 84+ v > «. By [6, Prop. 3.1.1(a)] there exists K > 0 such
that ||A}]] < K and |[(A})"]| < K forall 0 < r < §+ v and k. We therefore have
I|B|| < K||A°B| and ||C|| < K||(A;)~"C*|. Lemmas B, @ and 00 now imply that it is
possible to choose § > 0 in such a way that if

IAG"B] <6, and [|(A})7C7| <6,

for all k, then [|[CR(\, A)B|| < ¢ < 1 for every A\ ¢ DU {e**}, and {e"};, C (A +
BC)\ 0,(A+ BC). The Sherman—-Morrison-Woodbury formula

R(\, A+ BC) = R(\, A) + R(\, A)B(1 — CR(\, A)B)'CR(\, A) (5)

now implies that o(A + BC) C D U {e**},. Moreover, a standard Neumann series
argument shows that ||(1 — CR(\, A)B)7|| < 1/(1 — ¢) for every A ¢ DU {e**};, which
in turn concludes that () is satisfied. O

The following theorem characterizes power boundedness of a discrete semigroup on a
Hilbert space [5].
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Theorem 11. Let A € L(X) on a Hilbert space X be such that o(A) C D. The discrete
semigroup (A™)nen is power bounded if and only if for all x,y € X

27 . .
sup (r=1) [ (IR(re’, A)all® + | R(re', 4)'y|?) dp < ox.
0

1<r<2

Lemma 12. If B € £L(C?, X), then

2 . - 27 . ~
sup (r — 1)/O |]R(7’ew,A)BH2dg0 < 00, sup (r — 1)/O |]R(7’ew,A)*BH2dg0 < 00.

1<r<2 1<r<2

Proof. The claim follows directly from the fact that there exist {b;}’_; C X such that
Bu = i u;b; for u € CP, and for any R € L(X) we have |RB|? < S IRb* . O

Lemma 13. Let Assumption [l be satisfied for some B+~ > « and let k € {1,...,N}.
There exists a function fi, : C\ (]D) U {ei‘f’l}lj\il) — R such that

[R(X, A)BI[[[CRA, Al < fu(X) VA ey,

and fi(-) has the properties sup0<|g07%‘§m|g0 — % fr(e??) < 0o and

sup (r—1) /OQF fr(re®)2dy < oo. (6)

1<r<2

Proof. Choose 0 < 8; < g and 0 < v, < v such that 8y + v, = a. For brevity, denote
Ry = R(\A) and )\, = A\ — €. Moreover, denote Bs, = A,”'B € £(C?, X) and
C., = (A})™C* € L(CP, X).

Let M; > 1 be as in Theorem [3l By Lemma Ml there exist constants Mg, , M, > 1
such that for every A € ) we have

| RABI| = | A7 BaBg, || < M, | RaBg, |2/ | AL BB, |/
< M, || Ra By ||'™ /2 |AR Rall” 2| B, |/

IRCH|| = (A B Co, | < My, [|RAC, 1 (AR RR G,
< Mo RS, [ | RAAR] ™ 2| Gy [

Therefore for K = Mg, M., M, || Bg, ||?/*||C., ||"*/® we have

IRABIIICRAll < K| RaBg, '™/ | R3C, |17

Define fi(-) by fu(A) = K| RaBg,[|' 2/ R5C, -7/ for all A € C\ (DU {er}Y,).
We will now show that fi(+) has the desired properties.

Since 1 — f1/a+1—y/a =1, for all ¢ € [0,27] with 0 < |¢ — x| < €4 we have
from Assumption [ that

[0 =@l () < o = @il IR(E, A) KBy |72y [
< MK By [/ oy 7.
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This concludes that supg. |, ,, |<c, 19 — @&l fe(e?) < oo.
Moreover, if we denote ¢ = 1/(1 — f1/a), ¢ =1/(1 —y1/a), then 1/¢+1/¢' = 1 and
the Holder inequality implies
2m

- T (e 2 pie AV (D
[ fre P = K [T R(rei®, By, || RO, ), | F g

[

q

2w ) % 2 . ~
< K ([TIRGe By Pdg) " ([T IRGe, A)C 2
0 0
which immediately implies (@) by Lemma O

Proof of Theorem . Let § > 0 be chosen as in Theorem 8 and assume ||A,"B|| < 4,
and ||(A;)77C*|| < ¢ for all k. By Theorem [§ there exists Mp > 1 such that we have
(1 = CR(A\, A)B)7Y| < Mp for all A ¢ DU {e"#}1Y_,. We begin the proof by showing
that the semigroup ((A 4+ BC)"),en is power bounded.

Let x € X and for brevity denote Ry = R(re'?, A) and Dy = 1 — CR(re'?, A)B.
Using the Sherman—Morrison-Woodbury formula (&) and the scalar inequality (a+b)? <
2(a? + b*) for a,b > 0 we can estimate

A%MwﬁﬂA+BCmW@ﬁiKWRw+Rﬁﬂa%ﬁwW@o
<2 [TImalde + 203l [N RABIPICRS .
Similarly, using [|[(R\BDy'CRy)*|| = [|[R\BDy'CRy|| < Mp||RyB||[|CRy|| we get
A%wwﬁﬂA+BCﬁww¢:£ﬂmpw«mBD;cmymm¢
<2 [TIBsalPdo + 2M3 el [ IRBIPIC Ry

The above estimates together with Theorem [IT] imply that the semigroup generated by
A+ BC' is uniformly bounded if

27
sup (r — 1)/0 1R BIJ2[|C Ry||2dp < 0. (7)

1<r<2

For all k € {1,...,N} let fi(-) be the functions in Lemma [[3 By Lemma [@ we can
choose My > 1 such that ||R(\, A)|| < My for all A ¢ DU U, Q. Let 1 < r < 2. For
each k € {1,..., N} denote by E} C [0,2n] the interval such that re®? € €, if and only
if ¢ € E}. Finally, denote E” = [0,27] \ (U E}). Now

2 N
[T IBBIPIC R de = [ IRBIFICRde + 3 [ IBABIZ|C R, *dg
k=1""k
N .
< [ MBIBIPICIPMEde + S [ filree)dg
BT k=1"Fj

N 21 .
<2mM|BIFICIP+ Y [ fulre)de,
k=1
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which immediately implies (@) by Lemmas and I3 and therefore the semigroup
((A+ BC)")pen is power bounded.

Since the perturbed semigroup is power bounded and X is a Hilbert space, Theorem
2.9 and Corollary 2.11 in [5] imply that 0(A+ BC)NT C 0,(A+ BC)U o.(A + BC).
However, by Theorem [8 we have that {e*?*}, C o(A+ BC)\ 0,(A+ BC). Together these
properties conclude that ¢+ € o.(A + BC) for all k.

Theorem [/ shows that o(A+ BC)NT = {e**}I_, is finite and 0,(A+ BC)NT = &.
The discrete Arent—Batty—Lyubich-Vu Theorem [5, Thm. 2.18] therefore concludes that
the semigroup ((A + BC)"),en is strongly stable.

It remains to show that for all £ we have

sup | — x| *[|R(e"?, A+ BO)| < oc. (8)

0<|p—pk|<ea

Let k be arbitary. By Lemma [[3 there exists M > 1 such that |¢ — | fr(e™) < M,
whenever 0 < | — x| < €4. The Sherman-Morrison-Woodbury formula () implies that
for all ¢ € [0, 27| satisfying 0 < | — x| < €4 we have

IR(e, A+ BO)| < [|[R(e", A)|| + || R(e™, A) B[ Mp||CR(e"?, A)|
< [[R(e", A)| + Mp fi(e"™),

and thus

lo — @|*|R(e", A+ BC)|| < | — || R(e", A) || + Mp|e — pi]® fr(e™)
< My + MpM;,.

This concludes that (8) is satisfied. On the other hand, if |¢ — ¢y| > €4 for all k, then
a similar estimate yields |R(e*?, A + BC)|| < M4 + Mp||B||||C||M?3. This concludes the
proof. O
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