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Abstract

This paper presents a continuous time solution to the problem of the design of
a relatively optimal control, precisely, a dynamic control which is optimal with
respect to a given initial condition and is stabilizing for any other initial state.
This technique provides a drastic reduction of the complexity of the controller
and successfully applies to systems in which (constrained) optimality is necessary
for some “nominal operation” only. The technique is combined with a pole as-
signment procedure. It is shown that once the closed-loop poles have been fixed
and an optimal trajectory originating from the nominal initial state compatible
with these poles is computed, a stabilizing compensator which drives the system
along this trajectory can be derived in closed form. There is no restriction about
the optimality criterion and the constraints. The optimization is carried out over
a finite-dimensional parameterization of the trajectories. The technique has been
presented for state feedback. We propose here a technique based on the Youla–
Kučera parameterization which works for output feedback. The main result is that
we provide conditions for solvability in terms of a set of linear algebraic equa-
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tions.
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1. Introduction

Optimal control under constraints can result in compensators hard to imple-
ment especially in the presence of constraints [1]. The most popular approach
to solve constrained control problems is the well known model predictive con-
trol [2, 3, 4], which requires considerable computational effort even in its explicit
version [5].

An optimal control typically is designed to produce optimal transients for any
initial condition. On the other hand, there are many examples of systems whose
main goal is performing specific tasks or “nominal operations”. This is the case
of elevators, bascule bridges, automatic gates, cranes and robots. In these cases
the control system has to assure stability in any condition, while optimality is
important only for the nominal operation.

This observation motivated the introduction of the concept of relatively opti-
mal control [6, 7]. Basically, the relatively optimal control problem is to design
a control which is optimal for a specific initial condition and is stabilizing for
all other initial states. This problem has been solved in discrete-time [6, 7] and
continuous-time [8] where state-feedback solutions have been proposed. Actually
in [7] it has been shown that an output feedback solution is possible provided that
an observer is adopted which has to be suitably initialized.

Observer initialization is significant in several situations in which the system
has a precise (and known) starting time. It is not suitable in other circumstances.
For instance, one could be interested in optimizing a certain impulse response as-
sociated with an input matrix E. This is obviously equivalent to the optimization
of the transient with initial condition x(0) = E. But the idea of observer initializa-
tion becomes questionable if one wishes to optimize the impulse response.

The main idea of this work is to propose a control scheme with two funda-
mental steps.

• Open-loop: A trajectory parameterization in terms of modal function is
introduced. The modes are assigned by means of a stable matrix P whose
eigenvalues are fixed. An optimal open-loop trajectory with the assigned
initial condition is designed which is a linear combination of the modes. No
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restrictions on the type of optimality criterion. Any of such parameterized
trajectories can be considered as “optimal”.

• Closed-loop: An output feedback compensator is designed which has to
be stabilizing and it must produce the “optimal trajectory” for the nominal
initial condition without observer initialization (i.e., the observer initial state
is 0). Such a compensator is “relatively optimal”.

The essential features of the proposed framework are that:

1. If the considered constraints and cost functional are convex, the open-loop
design requires convex optimization.

2. The existence of the relatively optimal output feedback compensator can be
checked by solving a set of linear algebraic equations which, under some
assumptions on the number of measured outputs, are generically solvable.

The proposed solution is based on the Youla–Kučera [9, 10] parameterization
of all stabilizing compensators. The essential difference with respect the stan-
dard convex-optimization-based control synthesis [11, 12, 13] is that there is a
full separation between the optimal trajectory design, which can be any open loop
trajectory computed regardless of the specific measured output (i.e., the C matrix)
and with no further constraint than being an open-loop feasible system trajectory,
function of the assigned modes and the nominal initial condition. For instance
it could be the trajectory produced by the optimal state-feedback LQ regulator.
Then, if the equations are solvable, the provided output feedback compensator
produces exactly the optimal state feedback trajectory for the nominal initial con-
dition.

We stress that LQ is a possibility, but the optimization criterion is extremely
general. It is possible to consider different types of constraints: pointwise-in-time
output or input constraints, frequency domain constraints or integral constraints.
The objective function can be any convex linear or quadratic cost. Specific prob-
lems such as minimal arrival time to an assigned neighbourhood and model match-
ing can also be addressed.

2. Problem Statement

Let us consider a continuous-time linear time-invariant plant described by

ẋ(t) = Ax(t) + Bu(t), x(0) = x0

y(t) = Cx(t) (1)
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where x(t) ∈ Rn is the state of the plant, u(t) ∈ Rm is the control input, y(t) ∈ Rp

is the controlled output, and A, B, C are real constant matrices of appropriate
dimensions. We assume that the initial state x0 is non-zero and given, and the
system is in minimal form (reachable and observable).

In order to handle the specification on the closed-loop poles in a compact
way, let us introduce a matrix P ∈ R(n+q)×(n+q) whose eigenvalues are λi ∈ C,
i = 1, 2, . . . , n+q. We assume that matrix P is “cyclic”, i.e., the minimal and char-
acteristic polynomials coincide. It is well known that this choice of P is always
possible (for instance P can be chosen in companion form), and implies that there
always exists a vector ξ0 ∈ R(n+q) such that the pair (P, ξ0) is reachable.

Then, we consider a behaviour generated by

ξ̇(t) = Pξ(t), ξ(0) = ξ0 (2)

where ξ(t) ∈ R(n+q). That is,

ξ(t) = ePtξ0. (3)

Since (P, ξ0) is reachable, ξ(t) contains all behaviours of the modes specified.
Therefore we can write an input-state trajectory, say uo(t), x0(t), as

xo(t) = Xξ(t) (4)
uo(t) = Uξ(t) (5)

where X ∈ Rn×(n+q) and U ∈ Rm×(n+q) are appropriate real constant matrices. In-
deed, the representation (4) (5) can be characterized by the coefficient matrices of
the plant and P. From (1) and (2), we have

ẋo(t) = AXξ(t) + BUξ(t),
ẋo(t) = Xξ̇(t) = XPξ(t),

and hence (AX + BU − XP)ePtξ0 = 0, ∀t ≥ 0. Since ξ(t) can take all directions in
R(n+q) we must impose

AX + BU = XP, x0 = Xξ0 (6)

The equations above is the starting point for the two problems that we aim to
tackle. The first one is the optimization problem (high level control problem).

Problem 1. Optimization. Given a stable P with assigned poles, find U, X, ξ0

satisfying (6), such that the pair (uo(t), xo(t)) with initial condition xo(0) = x0

given by equations (4) (5) is optimal under some specified criterion.
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˙̄z = F̄z̄ + Ḡy, z̄(0) = 0
u = H̄z + K̄y

ẋ = Ax + Bu, x(0) = x0
y = Cx
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Figure 1: Closed-loop system

The second problem is to find a compensator that realizes the optimal pair, so-
lution of the previous problem, from the knowledge of U, X, ξ0 satisfying (6).
In other word, considering the closed-loop system in Fig. 1, we aim at finding a
output feedback compensator such that, assuming initial state of the compensator
equal to zero, it is able to impose the optimal pair (uo(t), xo(t)) relative to x0.

Problem 2. Realization. Suppose that P is Hurwitz stable and X, U, ξ0 have
been chosen in accordance to any performance index. Find a linear stabilizing
compensator such that, for x(0) = x0 and initial conditions of the compensator
equal to zero, produces the optimal transient pair (x(t), u(t)) satisfying (4) and (5).

3. Realization of the relatively optimal control

In this section we do not care on how the trajectory has been chosen. Out main
goal is to give conditions such that the assigned trajectories

xo(t) = Xξ(t), uo(t) = Uξ(t), ξ(t) = ePtξ0

under conditions (6) can be achieved by an output feedback compensator with zero
compensator initial conditions, in particular without observer state initialization.
We briefly remind some results proposed in [7, 8] concerning state feedback, and
then we propose the main result of the paper concerning output feedback.

3.1. Solution based on state feedback
For the sake of completeness we recall here the solution based on state feed-

back proposed in [6, 7, 8].
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Assume that the compensator which we want to design is a dynamic state
feedback (i.e., C = I in Fig. 1)

˙̄z(t) = F̄z̄(t) + Ḡx(t), z̄(0) = 0
u(t) = H̄z̄(t) + K̄x(t) (7)

where z̄(t) ∈ Rq is the state of the compensator, and F̄, Ḡ, H̄, and K̄ are real
constant matrices of appropriate dimensions.

Theorem 1. Suppose that matrices (X,U) are given and that X has full row rank.
Let Z be such that

det
[

X
Z

]
, 0, 0 = Zξ0 (8)

Then a compensator which solves Problem 2 is given by[
K̄ H̄
Ḡ F̄

]
=

[
U
V

] [
X
Z

]−1

where V = ZP. Moreover, the closed loop matrix is similar to P, i.e.,[
A + BK̄ BH̄

Ḡ F̄

] [
X
Z

]
=

[
X
Z

]
P.

Remark 1. It has been shown [7] that an output feedback solution can be found
by using an observer which can be exactly initialized so that the initial estimation
error is equal to zero. Initializing an observer is not always possible. For instance
in the case of an impulsive disturbance it would require the a priori knowledge of
the time in which the impulse is going to occur.

3.2. A solution for the output feedback based on pole assignment and Youla–
Kučera parameterization

Let us consider the following observer-based Youla–Kučera parameterization
of all stabilizing compensator:

ẇ(t) = Qw(t) − Ly(t) + Bu(t) (9)
u(t) = Jw(t) + v(t) (10)
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where w(t) ∈ Rn is the observer state,

Q = A + LC

is an arbitrary stable observer state matrix, J is a matrix such that A + BJ is stable,
and v(t) is the output of the Youla–Kučera parameter (to be found) described by

ż(t) = F z(t) + Gσ(t) (11)
v(t) = Hz(t) +Kσ(t) (12)

with z(t) ∈ Rs, for some s ∈ N and

σ(t) = Cw(t) − y(t) = C (w(t) − x(t)) .

With these definitions, the compensator state is z̄(t) =
[

z>(t) w>(t)
]>

and
the compensator matrices (see Fig. 1) are

F̄ =

[
F GC

BH Q + BJ + BKC

]
, Ḡ = −

[
G

L + BK

]
H̄ =

[
H J + KC

]
, K̄ = −K .

Define the state error variable

r(t) = w(t) − x(t) (13)

so that σ(t) = Cr(t). Therefore, the closed-loop system generating the state and
input trajectories of the original system is described by ẋ(t)

ż(t)
ṙ(t)

 =

 A + BJ BH B(J +KC)
0 F GC
0 0 Q


 x(t)

z(t)
r(t)

 , x(0)
z(0)
r(0)

 =

 x0

0
−x0

 (14)

u(t) =
[

J H J +KC
]  x(t)

z(t)
r(t)

 . (15)

Notice that Q is fixed so that r(t) = −eQtx0, t ≥ 0, is a fixed trajectory of the
estimation error.
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Remark 2. As commented earlier, if one could choose the initial state of the filter,
it would be sufficient to set w(0) = x0, so that r(0) = 0 in equation (14). In this
way the movement of the state variable would be described by ẋ(t) = (A + BJ)x(t)
and the “relatively optimal” property x(t) = Xξ(t), u(t) = Uξ(t) would directly
follow from (6).

Now we specify the rules of the game.

• The compensator must be stabilizing;

• For x(0) = x0 assigned and for w(0) = 0 and for z(0) = 0 the trajectory has
to be (4) and (5) for the given X and U.

Notice that the first requirements, i.e., asymptotic stability of the closed-loop sys-
tem, is inherited by the choice of a stable Youla–Kučera parameter. Indeed, as
apparent from (14), stability of F together with the choice of J and L such that
A + BJ and Q = A + LC are stable, entail stability of the closed-loop system (and
vice versa). As for the second point, it is clear that the time evolution of x(t) and
u(t) should depend only on ξ(t). As such, take a new variable

z̃(t) = z(t) −Mξ(t) − Nr(t)

so that

ẋ(t) = (A + BJ)x(t) + BHMξ(t) + BH z̃(t)
+ B(J +KC +HN)r(t), x(0) = x0

˙̃z(t) = F z̃(t) + (FM−MP)ξ(t) + (FN + GC − NQ)r(t),
z̃(0) = N x0 −Mξ0

u(t) = Jx(t) +H z̃(t) +HMξ(t) + (HN + J +KC)r(t)

Therefore if F (Hurwitz matrix), G,H , K ,M, N satisfy

0 = FN + GC − NQ (16)
0 = FM−MP (17)
0 = J +KC +HN (18)
0 = U − JX −HM (19)
0 = N x0 −Mξ0 (20)

8



we have that xo(t), uo(t) are solutions of (4), (5). Indeed, thanks to (6)

ẋo(t) = (AX + BU)ξ(t) = XPξ(t) = Xξ̇(t), Xξ0 = x0

so that xo(t) = Xξ(t) and

uo(t) = (JX + HM)ξ(t) = Uξ(t).

As apparent, equation (17) just says that in the case s ≥ n + q matrix P is a
restriction of F with respect to the subspace given by the columns span ofM. We
can impose thatM is full column rank. Notice however that all equations above
(except (20)) are nonlinear in the 6 unknowns F , G,H , K ,M, and N .

3.3. The case s ≥ n + q
Notice that, if we fix F = F (Hurwitz stable) andM = M (full column rank)

satisfying (17), it is possible to write down a solution forH as follows

H = H = (U − JX)(M>M)−1M> (21)

so that the equations to be satisfied becomes

0 = FN + GC − NQ (22)

0 = J +KC + (U − JX)(M>M)−1M>N (23)
0 = N x0 − Mξ0 (24)

These equations are linear in the unknowns N , G, K .

Remark 3. Setting M =

[
In+q

0

]
is not a restriction with respect to considering a

generic full rank matrix M =

[
M1

M2

]
with invertible M1 of dimensions n+q×n+q.

It is a matter of a state transformation of the Youla–Kučera parameter. Indeed if

the original equations have a solution with some full rank M =

[
M1

M2

]
with certain

matrices F, G, H K, N, then the same equations have a solution with M̂ =

[
I
0

]
,

F̂ = T−1FT , Ĝ = T−1G, Ĥ = HT , N̂ = T−1N, K̂ = K, with T =

[
M1 0
M2 I

]
.
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Therefore we get a linear system with Ne equations and Nu unknowns with

Ne = s × n + m × n + s, Nu = s × n + s × p + m × p.

Then the generic solvability is given by Nu ≥ Ne, i.e.,

s × (p − 1) ≥ m × (n − p) (25)

Note that for SISO systems, being p = m = 1, we would get n = 1. This means
that for SISO systems is generically impossible to match a generic trajectory of
the state and the input. We conclude the section by stating the main result.

Theorem 2. For a fixed choice of F = F stable andM = M full rank satisfying
(17) and s ≥ n + q, if equations (22)–(24) have a solutionN = N, G = G,K = K,
then (F,G,H,K) is a a stable Youla–Kučera parameter and the corresponding
compensator of order n + s satisfies Problem 2, i.e., it is relatively optimal.

It is important to state that the closed-loop system obtained by the realization
design is always asymptotically stable, for all possible data X, U and ξ0 satisfying
(6), for which a solution of the linear equations above (22)–(24) exist. Therefore
there are no problems of possible cancellations of unstable zeros. The interpreta-
tion in terms of model matching is relatively simple. Letting E = x0, the choice
of P, X, U, ξ0 satisfying (6) corresponds to finding a stabilizing output-feedback
controller such that the transfer function Rre f (s) = C̄X(sI − P)−1ξ0 from w to η is
matched, where

ẋ(t) = Ax(t) + Bu(t) + Ew(t)
η(t) = Dx(t).

This is possible if Rre f (s) shares the same structure of unstable zeros of D(sI −
A)−1E.

Remark 4. As it has already been pointed out, the quantities X, U, ξ0 in Problem
2 are considered fixed and given by a high-level optimization problem, and the
problem is the determination of a realization of the optimal input-state pair in
closed-loop through an output-feedback dynamic compensator. One can however,
consider a global optimization problem where also X, U and ξ0 are variables to
be optimized. This amounts to add to (16)–(20) the congruence equations (6)
and solve the nonlinear equations. Notice however that, given x0, if a solution
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(P, X,U, ξ0, F,G,H,K,M,N) exists to equations (16)–(20) and (6), then the same
equations are satisfied by (P̃, X̃, Ũ, ξ̃0, F̃, G̃, H̃, K̃, M̃, Ñ), with P̃ = T PT−1, X̃ =

XT−1, Ũ = UT−1, ξ̃0 = Tξ0, F̃ = T FT−1, G̃ = TG, H̃ = HT−1, K̃ = K, M̃ = T M,
Ñ = T N and T any invertible matrix.

A fundamental role of the optimization problem is played by the initial con-
dition ξ0 of the reference model ξ̇(t) = Pξ(t). In this regard, one might be in-
terested in a relaxed optimization problem where one wants to parameterize all
output-feedback controllers giving rise to input and state trajectories x(t) = Xξ(t),
u(t) = Uξ(t) compatible with ξ̇(t) = Pξ(t). In such a case ξ0 is a variable not fixed
a-priori. In (22)–(24) one can then add the condition Xξ0 = x0 and look for a
solution of the associated linear equation. The generic solvability condition turns
out to be s × (p − 1) ≥ m × (n − p) − q that can be satisfied even in the SISO case
if q ≥ n − 1. The following simple example shows exactly this case.

Example 1. Consider a second order system with transfer function G(s) = (1 −
s)/s2, characterized by x0 =

[
1 −2

]>
and

A =

[
0 0
1 0

]
, B =

[
−1
1

]
, C =

[
0 1

]
.

Let q = 1 with

P =

 0 1 0
0 0 1
−1 −3 −3

 .
Finally consider X, U (satisfying AX + BU = XP) as follows:

X =

[
0.1744 −0.1555 0.0106
−0.8532 −0.3572 −0.1850

]
,

U =
[

0.0106 −0.1426 0.1872
]
.

Now, define the observer matrices as

L =

[
−5
−7

]
, J =

[
4 2

]
.

Once X, U and P are given, system (22)–(24), (6) is linear, characterized by 13
unknowns and 13 equation. The following solution exists:

M = I3, F = P,
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Figure 2: State variables xi(t) and (Xξ(t))i, i = 1, 2

N =

 2.3632 −3.9976
−3.9976 −3.1791
−3.1791 19.1666

 , G =

 19.1666
23.0745
−74.3057


H =

[
1.0192 1.1937 0.5149

]
, K = −4

ξ0 =
[

10.3583 2.3605 −41.5122
]>
.

The compensator order is 5, with eigenvalues −7, −6.1926, −1 ± j, −0.8074. Its
transfer function is C(s) = 4(s + 55)/(s + 7). Fig. 2 gives the behaviors of the two
state variables obtained from the closed-loop system by taking zero initial state
for the compensator and x0 for the system’s state. As apparent, these variables
perfectly coincide with the components of Xξ(t) obtained by taking the given ξ0.

Remark 5. Model matching.
Given a linear system with transfer function G(s) and state-space description

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t),

the classical model matching problem [14] consists in finding a state-space feed-
back

u(t) = Ξx(t) + Ψv(t)

such that the closed loop system transfer function from v to y matches a given
transfer function GM(s), i.e., GM(s) = (C + DΞ)(sI −A− BΞ)−1BΨ + DΨ. A quick
though shows that this equation can be written as

GM(s) = G(s)(I − Ξ(sI − A)−1B)−1Ψ.
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It is well known that Ξ and Ψ solving this problem exist and A + BΞ is Hurwitz if
and only if

(i)
[

G(s) GM(s)
]

and G(s) share the same infinite zero structure,

(ii)
[

G(s) GM(s)
]

and GM(s) share the same infinite zero structure,

(iii)
[

G(s) GM(s)
]

and GM(s) share the same finite zero structure,

(iv)
[

G(s) GM(s)
]

and G(s) share the same unstable zero structure.

The algorithm follows these steps. First find the square system R(s) satisfying
GM(s) = G(s)R(s). Moreover find a constant matrix H such that R(s)−1−R(∞)−1 =

H(sI − A)−1B. Finally set Ψ = R(∞) and Ξ = −ΨH. In the relatively optimal
approach we have that one has to realize with output feedback the output move-
ment y(t) = Cx(x) with dynamics ẋ(t) = (A + BK)x(t) and initial state x0 = BG.
The model transfer function is Gm(s) = CX(sI − P)−1ξ0, where X, P, ξ0 satisfy
AX + BU = XP.

4. Open loop profile design via convex optimization

In this section we consider the first part of the problem, namely the optimiza-
tion of the open-loop trajectory by means of convex optimization.

The constraints of our problems are

AX + BU = XP, x0 = Xξ0 (6)

with (P, ξ0) reachable. Note that this offers a complete parameterization in terms
of modes.

Proposition 1. Let (P, ξ0) a reachable pair. Then any other reachable pair (P̂, ξ̂0)
with P and P̂ similar provide an equivalent parameterization.

Proof. Since (P, ξ0) and (P̂, ξ̂0) are reachable pairs, there exist non-singular ma-
trices T1 and T2 such that (T1PT−1

1 ,T1ξ0) and (T2P̂T−1
2 ,T2ξ̂0) are the reachable

canonical forms. That is, T1ξ0 = T2ξ̂0. Since P and P̂ are similar, T1PT−1
1 =

T2P̂T−1
2 . That is, there always exists a non-singular matrix T = T−1

1 T2 such that
P̂ = T−1PT and ξ̂0 = T−1ξ0. So we would have

AXT + BUT = XTT−1PT

namely we would have the equivalent constraints

AX̂ + BÛ = X̂P̂, ξ̂0 = T−1ξ0
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and denoting by ξ̂(t) = T−1ξ(t), we get the equivalent parameterization

x(t) = X̂ξ̂(t), u(t) = Û ξ̂(t).

In simple words, only the eigenvalues of P have a role. In practice we are
choosing a set of modes eλit as basis for the solution. Once this basis is fixed, it is
possible to optimize the transient from the initial condition x0. Here we have no
restrictions in terms of objective functions and type of constraints.

We present next a summary of possible objective function and constraints
which can be dealt with. We are sure that the reader can find a new one not
included in this list.

1) Quadratic performance index. Given P and ξ0, find X, U satisfying (6) and
minimizing

J(ξ0) =

∫ ∞

0

(
x>(t)Q̄x(t) + u>(t)R̄u(t)

)
dt

= ξ>0

(∫ ∞

0
eP>t

(
X>Q̄X + U>R̄U

)
ePt dt

)
ξ0

with Q̄ ≥ 0 and R̄ > 0. It turns out that

J(ξ0) = ξ>0 Wξ0

where W ≥ 0 solves the Lyapunov equation

WP + P>W = −X>Q̄X − U>R̄

Note here that we can minimize α > 0 such that WP + P>W X> U>

X −Q̄ 0
U 0 −R̄

 < 0,
[
α ξ>0
ξ0 W

]
> 0, W ≥ 0

which describes a convex constraint in W, X, and U.
2) L1 norm. Assume that x0 = E where

ẋ(t) = Ax(t) + Bu(t) + Ew(t), η(t) = Dx(t)

14



and η scalar. If we wish to optimize the L1 of the impulse response from w to
η, then we can look for the minimum of

J(ξ0) =

∫ ∞

0
|DXePtξ0| dt.

Again, one can minimize α > 0 such that J(ξ0) < α that is a convex function
in X.

3) L2 norm. Assume again that x0 = E as above and that we wish to optimize the
L2 of the impulse response of the system D(sI − A)−1E. Then

J(ξ0) = ξ>0

(∫ ∞

0
eP>tX>D>DXePt dt

)
ξ0.

This is a convex function in X. The rationale follows the same lines as in point
1).

4) H∞ norm. Assume we wish to optimize (or attenuate) the transfer H∞ norm of
the transfer function from w to η. Then we can define

J(ξ0) = sup
ω

|DX( jωI − P)−1ξ0|

and consider the convex problem of finding X such that J(ξ0) < α.
5) Minimum time arrival. Assume that we wish to arrive in minimum time to a

(possibly controlled invariant) given ellipsoid x>Wx ≤ ε. This correspond to
solving

min t f > 0 :
[

ε ξ>0 eP>t f X>

XePt f ξ0 W−1

]
> 0.

This is a convex constraint which typically requires to iterate over t f .
6) Smallest ellipsoid at fixed time. Assume t f is given and we wish to arrive to

the smallest ellipsoid x>Wx ≤ ε. This corresponds to solving

min ε > 0 :
[

ε ξ>0 eP>t f X>

XePt f ξ0 W−1

]
> 0.

A possible set of constraints can be also considered.

7) Control pointwise constraints. We want to impose hard bounds on the input
function, i.e., ‖u(t)‖ < γ, for each t ≥ 0. This is cast by imposing

max
t≥0
‖UePtξ0‖ ≤ γ.
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8) Control energy constraints. We want to impose a soft energy constraint to the
input, i.e.,

∫ ∞
0
‖u(t)‖2 dt ≤ γ. This means∫ ∞

0
‖UePtξ0‖

2 dt ≤ γ.

9) Soft starting. We want to impose that the performance output η(t) = Dx(t)
has zero derivative at time zero. This can be achieved by imposing the linear
constraint

DXPξ0 = 0.

10) Output shaping. We may impose e−(t) ≤ e(t) = Dx(t) ≤ e+(t), for each t, that
is

e−(t) ≤ DXePtξ0 ≤ e+(t), ∀t ≥ 0.

All above points 1)–10) represent convex problems and as such can be solved by
means of efficient algorithms.

Remark 6. Concerning the possibility of imposing input and state l∞ constraints,
let us consider a matrix P with an adequate number of modes and such that
‖ePt‖1 ≤ 1. This is possible, for instance by taking A = block diag{Ai} with Ai

either negative scalars or 2 × 2 matrices Ai =

[
−ξ ω
−ω −ξ

]
with 0 < ω ≤ ξ [15].

Now, if ξ0 is chosen in such a way that (P, ξ0) is reachable, ‖ξ0‖1 ≤ 1, and the
following convex constraints on the X and U matrix are imposed

‖X‖1 ≤ xmax and ‖U‖1 ≤ umax

then, the optimal value of any of the convex minimization problems just enumer-
ated will automatically result in

‖x(t)‖1 = ‖XePtξ0‖1 ≤ ‖X‖1‖ePt‖1‖ξ0‖1 ≤ xmax

‖u(t)‖1 = ‖UePtξ0‖1 ≤ ‖U‖1‖ePt‖1‖ξ0‖1 ≤ umax.
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5. Output feedback realization of state-feedback controllers

In some case we can exploit the previous results without imposing the poles.
An idea is to solve a standard optimization problem, and use the closed-loop ma-
trix as P. To this aim we have a surprising result. Let u = KLQx the optimal LQ
controller. Then we may set

P = A + BKLQ, X = I, U = KLQ.

Then assume that x0 = ξ0 is such that (P, x0) is reachable. Taking s = n.

Theorem 3. If the equations (22)–(24) are solvable, then there exist an output
feedback stabilizing compensator which achieves optimality for x(0) = x0.

Note that in general we must assure that J , KLQ otherwise we would have a
singularity in view of the condition

H = U − JX = KLQ − J.

As already said, for the SISO case equations (22)–(24) can be hardly solved, un-
less the initial state ξ0 is not fixed a priori. In the present context this means not
to fix the initial state x0 (relaxed optimal control). To investigates the solvability
condition, let, without any loss of generality,

A =


0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


, C =

[
0 0 · · · 0 1

]

Then the only solutions of (22)–(24) are such that

G = NQen − Pn−1α,

N =
[
α Pα · · · Pn−2α Pn−1α

]
,

α =

 n∑
k=0

Pke>k x0

−1

x0.

Moreover, J and K can be easily found satisfying J+KC+(U−J)N = 0. However
it is likely that all possible congruent J are not such that A + BJ is Hurwitz.
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Example 2. As in the previous example consider a second order system with
transfer function G(s) = (1− s)/s2, characterized by x0 =

[
−0.3568 −0.9342

]>
and

A =

[
0 0
1 0

]
, B =

[
−1
1

]
, C =

[
0 1

]
.

Consider the optimal control law u = KLQx that minimizes J =
∫ ∞

0
x>(t)x(t) +

u(t)2dt. It results in

KLQ =
[

3 1
]

so that the closed-loop matrix is

ALQ = A + BKLQ =

[
−3 −1
4 1

]
.

Define P = ALQ and take

L =

[
−5
−7

]
, J =

[
4 1

]
.

Moreover, let

M = I2, N =

[
4 −1.1459

−10.8541 5.1459

]
.

The Y-K matrices that satisfy (22)–(24) are

F = P, G =

[
−10.2705
17.6869

]
,

H =
[
−1 0

]
, K = −2.1459

The compensator transfer function is C(s) = (0.382 + 2.146s)/(s + 4.528). It
can be easily checked that if the initial state x0 is the same as in Example 1, no
solution exists. As a matter of fact J should be such that J1 + J2 = −0.5 whereas
for stability of A + BJ we need J1 > J2 > 0.

We can extend the results to a more general class of performance indices:

µQ =

∫ ∞

0

(
x>(t)Qx(t) + u>(t)Ru(t) + u̇>(t)Ru̇(t)

)
dt.

18
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Figure 3: Scheme of the cart-pole system.

This problem can be faced by considering an augmented system

Aaug =

[
A B
0 0

]
, Baug =

[
0
I

]
.

Then let [ K1 K2 ] be the optimal gain and take

P =

[
A B
K1 K2

]
, X =

[
I 0

]
, U =

[
0 I

]
.

The equation AX + BU = XP is trivially satisfied. Take ξ0 such that x0 =[
I 0

]
ξ0 Then, again, we can claim optimality for the initial condition x0 of

the YK based compensator.

Theorem 4. If the equations (22)–(24) are solvable, then there exists an output
feedback stabilizing compensator which achieves optimality for x(0) = x0.

We ran numerical experiments on randomly generated matrices, which have shown
that the equations are generically satisfied.

6. Example

Consider the cart-pole system described in [16], whose scheme is reported
in Fig. 3. Let the continuous-time model, linearized around a stable equilibrium
point be:

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

where x(t) =
[
ϑ(t) ϑ̇(t) s(t) ṡ(t)

]>
and

A =


0 1 0 0

−19.62 −0.125 0 −9.886
0 0 0 1
0 0 0 −4.943

 , B =


0

11.53
0

5.767

 ,
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C =

[
1 0 0 0
0 0 1 0

]
.

Take the initial state as

x(0) = x0 =
[

0 0 −0.75 0
]>

and consider the problem of reaching the sphere x>x ≤ ε0 = 0.0049 in minimum
time t f , subject to the input and state constraints:

|u(t)| ≤ umax = 1, ∀t ∈
[
0, t f

]
(26)

|x1(t)| ≤ ϑmax = 0.23, ∀t ∈ [0, t f ]. (27)

To find the optimal open-loop trajectory we take n + q = 8 and the reachable pair
(P, ξ0) as

P =



−2 1 0.4 0 0 0 0 0
−1 −2 0.2 0.1 0 0 0 0
0.1 0.3 −3 0 0 0 0 0
0.2 0.1 0 −5 0 0 0 0
0 0 0 0 −2.5 1 0.4 0
0 0 0 0 −1 −2.5 0.2 0.1
0 0 0 0 0.1 0.3 −3.5 0
0 0 0 0 0.2 0.1 0 −5.5


,

ξ0 =
[

45 −45 −45 0 45 45 0 0
]>
.

The choice of such a P amounts to imposing the (stable) closed-loop poles

σ(P) =
{
−1.95 − 0.998 j, −1.95 + 0.998 j, −3.09, −5,

−2.45 − 0.998 j, −2.45 + 0.998 j, −3.59, −5.5
}
.

Needless to say, the optimality of the open-loop trajectory is restricted to the be-
haviours achievable by those modes. The minimum time trajectory may be found
iteratively, by solving a sequence of optimization problems with fixed t f :

min
X,U,ε

ε (28)

s.t. ε ≥ 0 (29)[
ε ξ>0 eP>t f X>

XePt f ξ0 I

]
> 0 (30)
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AX + BU − XP = 0 (31)
Xξ0 − x0 = 0 (32)∣∣∣UePtξ0

∣∣∣ ≤ 1,

∀t =
k

100
t f , k = 0, 1, . . . , 100 (33)∣∣∣∣[ 1 0 0 0

]
XePtξ0

∣∣∣∣ ≤ 0.23,

∀t =
k

100
t f , k = 0, 1, . . . , 100. (34)

Notice that (33) and (34) represent a finite number of point-wise constraints that
are not equivalent to (26) and (27). This is motivated by the need of avoiding the
intrinsic conservativeness of the approach of Remark 6. From a practical point
of view, the fulfillment of (26) and (27) by the whole optimal trajectory may be
checked after its computation; if needed, satisfaction of (26) and (27) may be
enforced by slightly tightening the constraints (33) and (34).

As far as the iteration scheme is considered, the algorithm is as follows (where
λ is a tolerance):

1. Take t− sufficiently small and t+ sufficiently large1;
2. t f ← (t+ + t−) /2;
3. If (t+ − t−)/t+ < λ and ε ≤ ε0 then exit;
4. Solve (28)–(34);
5. If ε > ε0 then set t− ← t f and go to step 2;
6. Set t+ ← t f and go to step 2.

To solve problem (28)–(34) we used CVX, a package for specifying and solv-
ing convex programs [17, 18]. By choosing t− = 0.1, t+ = 4, λ = 0.01 we found,
in 9 iterations, a minimum time t f = 1.95, achieved by:

X =


28.7 6.175 −43.83 −297.6
−127.5 −26.56 144.2 1489
31.97 7.537 −62.74 −261.7
−130.1 −28.1 202.5 1309

−48.61 −17.74 178.4 129.1
182.9 62.17 −647.5 −712
−59.72 −27.48 218.6 104.5
219.5 85 −794.5 −577.3

 ,
1Meaning that problem (28)–(34) has a solution ε > ε0 for t f = t− and ε ≤ ε0 for t f = t+.
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Figure 4: State variables xi(t) and (Xξ(t))i, i = 1, 2, 3, 4 for the cart-pole system. The dash lines
represent the constraints on the pole angle (variable x1.)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

u

t

Figure 5: Input u(t) and Uξ(t) for the cart-pole system. The dash line represents the maximum
allowed input.

U =
[
−12.6 −3.658 58.24 −13.43

44.46 22.74 −180.6 57.23
]
.

The optimal trajectories of the state and the input (along with the state and input
constraints) are reported, respectively in Fig. 4 and Fig. 5. The phase portraits for
the pairs (x1, x2) and (x3, x4) are shown in Fig. 6 and Fig. 7.

Now it is necessary to assign stable eigenvalues to A + BJ and A + LC by
means of a choice of J and L. Such a choice is arbitrary, provided that the sta-
bility is guaranteed. By solving a standard LQR problem with performance index∫ ∞

0

(
10x2

1(t) + x2
3(t) + u2(t)

)
dt, we get a feedback matrix

J =
[
−2.902 −0.2297 −1 −0.4368

]
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Figure 6: Pole trajectory and intersection of the arrival sphere with the x1–x2 plane.
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Figure 7: Cart trajectory and intersection of the arrival sphere with the x3–x4 plane.
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such that

σ(A + BJ) =
{
−3.128 − 4.635 j, −3.128 + 4.635 j,

−2.574, −1.406
}
.

Now, L is taken as:

L =


−31.1 −16.9
−481.3 −169.2

17.5 −15.01
61.05 3.255

 ,
in order to assign to the observer a dynamics that is five times faster than that of
the controller. Finally, we take the order of the YK parameter s = n + q = 8 and
impose M = I. Thus, from (17) and (19) we get F = P and

H = U − JX

=
[

16.56 3.429 −10.12 −225

−18.44 −4.815 60.09 120.8
]
.

Then, by solving the linear system:

0 = FN + GC − N(A + LC)
0 = J + HN + KC
0 = Nx0 − ξ0

in the unknowns N, G and K we get:

N =



7.333 −1.374 −60 −18.07
−2.464 2.63 60 5.162
−14.63 5.314 60 3.975
−1.523 0.3099 0 −0.5759
8.683 −4.357 −60 −0.001261
8.79 −1.825 −60 −17.27
−2.33 0.3992 0 0.8551
−2.138 0.2018 0 0.4809


,
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G =



−1669 746.7
129.6 −1239
−958.2 −1372
−151.9 −22.58
876.2 1401
−1432 794.8
−86.94 −1.374
−19.59 21.56


, K =

[
−0.05003 0.8601

]
.

The output-feedback state and input trajectories from x0 and zero initial state
for the observer and the YK parameter are reported in Figures 4, 5, 6, and 7. They
are indistinguishable from the open-loop optimal trajectories.

Finally, Figs. 8, 9, 10, and 11 show some perturbed trajectories, i.e., trajecto-
ries obtained from some randomly chosen x(0) : ||x(0)− x0|| ≤ 0.05. It is apparent
that the control system exhibits a small sensitivity to perturbations of the initial
state.

7. Concluding Remarks

In this paper, the relatively optimal control for continuous-time systems via
output feedback has been investigated. The key idea is to fix the closed loop sys-
tem modes (once again, the larger the number of chosen modes, the greater the
flexibility in the optimization stage) and parameterize all the possible trajectories
of the closed-loop system by two matrices X and U. This in turn enables to per-
form the nominal trajectory optimization in a finite-dimensional space and derive
a finite dimensional compensator which achieves the resultant optimal trajectory
for given initial states x0 and 0 of the plant and the compensator. The compensator
matrices have been given by explicit formulas.

Although in this paper the trajectory parameterization by means X and U has
been employed, it is definitely worth recalling that there exists a different approach
to the constraint optimization. One example is a transfer function approach [11]
based on Youla–Kučera parameterization [9, 10].

An advantage of the present method over the transfer function approach is that
the method is formulated in the state space and thus enjoys several flexibilities re-
garding the representation of control problems and allows to use well-established
computational tools for the solution of convex minimization problems, e.g., all
those widely adopted in the linear matrix inequality framework. For instance, it is
possible to extend the presented method to the case in which multiple initial states
of the plant are given, similarly to what has been proposed in [6].
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Figure 8: State trajectories for some non-nominal initial conditions.
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Figure 9: Input trajectories for some non-nominal initial conditions.
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Figure 10: Pole phase portraits for some non-nominal initial conditions.
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Figure 11: Cart phase portraits for some non-nominal initial conditions.
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A few related extensions are currently under investigation.
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