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Abstract. The problem of state-observation is addressednémlinear systems that can be
modelled by an ODE-PDE series association. The @system assumes a triangular structure
while the PDE element is of heat diffusion typeeTdim is to accurately estimate online the
state vector of the ODE subsystem and the dis&tbstate of the PDE element. One major
difficulty is that the state observation must ordyy on the global system output i.e. the PDE
state at the terminal boundary. In particular,dbenection point between the ODE and the PDE
blocs is not accessible to measurements. The aigarvproblem is dealt with by designing a
high-gain type observer. Sufficient conditions ilwieg the PDE domain length are formally

established that ensure the observer exponentiakecgence.

1. Introduction

In the last decades, the problems of nonlinearesystbservability and observer design has
intensively been investigated for systems that bandescribed by ordinaries differential
equations (ODEs). Several types of observers haen lproposed, for several classes of
nonlinear systems, including the high-gain obseevgr (Gauthier et al., 1992; Deza et al., 1992;
Khalil and Esfandiari, 1993; Shim et al., 2001)disig-mode observers e.g. (Slotine, 1987;
Edwards et al., 2000; Fridman et al., 2008), Luegrelike observers e.g. (Andrieu and Praly,
2006). Additional references can be found in reegeahographs e.g. (Besancon, 2007; Khalil,
2015).

The problem of infinite dimensional system (IDS)sebvability and observer design has also
been given a great deal of interest, especiallgdent years. The earliest works have focused on
linear IDSs and a relatively complete theoreticahfework exists since the nineties, including
the infinite dimensional Luenberger observer, @urtain and Zwart, 1995; Lasiecka and
Triggiani, 2000) and reference list therein. Bouydabserver design of bilinear IDSs have been
studied in e.g. (Xu et al., 1995; Bounit and Hammoi997, Vries et al., 2007). A unifying
study of both interior and boundary observation lioear and bilinear systems is found in



(Amann, 1989). In (Smyshlyaev and Krstic, 2005);Kséepping techniques have been used to
design exponentially convergent boundary obserf@rsa class of parabolic partial integro-
differential equations. The problem of initial statecovery has also been given interest. In
(Ramdaniet al., 2010), an iterative algorithm is proposed to vecdhe initial state of a linear
infinite dimensional system. The proposed algoritiemeralizes various algorithms, proposed
earlier for specific classes of systems, and stasdsn alternative to methods based on Gramian
inversion (Tucsnak and Weiss, 2009). The ideasashdni et al. (2010) have been extended to
some nonlinear infinite dimensional systems, u&iklg techniques (Fridman, 2013).

In this paper, we are interested in state obsenvatif cascade systems including a ODE
subsystem followed in series with PDE subsysterg.(E). The aim is to recover the (finite-
dimension) state of the ODE part and the (infimit@ension) state of the PDE part. One major
difficulty of this problem lies in the fact thatdlconnecting point between the two parts is not
accessible to measurements. In (Krstic and Smyst)y2008; Krstic, 2009) a boundary observer
has been developed for a cascade involving a li@E# and a (linear) heat PDE equation that
may represent a distributed state sensor. In thenpbserver assumes a cascade structure with a
finite- and infinite-dimensional parts. The obserdesign relies upon an infinite-dimensional
transformation, inspired from the backstepping @gle, and an exponentially stable target
system. The observer thus obtained is shown taxpenentially convergent in the sense of a
quadratic norm. Inspired by (Krstic and Smyshly@808; Krstic, 2009), a new observer design
is presently developed to address ODE-PDE systéatsirtvolve a triangular nonlinear ODE
subsystem (the PDE part remains a heat equation).

The novelty of the present design approach is tldo{@) it combines the backstepping infinite-
dimensional transformation of (Krstic, 2009) anck thigh-gain observer design principles
(Gauthier et al., 1992; Khalil and Esfandiari, 19%3im et al., 2001); (ii) it involves a quite
different target system (as the ones used in (&r2009) are not usable for the present problem).
The paper is organised as follows: first, the olmtgon problem under study is formulated in
Section 2; then, the observer design and analysisl@alt with in Section 3; a conclusion and

reference list end the paper. To alleviate theguredion, some technical proofs are appended.

Notations. Throughout the paperR" denotes then dimensional real space and the

corresponding Euclidean norm is denoHeHi R™" denotes the set of afilx mreal matrices and
|.| the induced Euclidian norm. Functions that aretinaously differentiable with respect to all

their arguments are denot@l. L,[0, D] is the Hilbert space of square integrable functiand



/
the correspondingL, norm is denoted|.|,. Accordingly, 7], :UODUZ(C)dc)lZ for all

n0OL,[0,D].H'(0,D) is the Sobolev space of absolutely continuoustfons 77:[0,D] — R
with d77/d¢0OL,[0,D]. H?(0,D) is the Sobolev space of scalar functiong0,D] - R with
absolutely continuousl;7/d¢ 0L, [0,D] andd?7/d¢® OL,[0,D ].

V(L ODE u(D,t) g u(o,t)

(Plant) CX (t)t (Sensor) y(t)

Fig. 1. System structure

2. Problem Formulation

Analytically, the system under study is modelledabfinite-order nonlinear ODE connected in
series with a PDE (Fig. 1). The former could repnes the plant dynamics which presently

assume the following triangular-form state-spaqeasentation:

X(t) = AX(t) + Bu(t) + f (X (t)), t=0 (1a)
u(D,t) =CX (t) (1b)
with:
0 .. 00
001 0 ..0
A= c:) OR™, BOR", C=( 0 .. 0)OR™ (1c)
: 1
00 . o . O

wherevOC([0,») : R )denotes the system input,IR" the state vector and : R" - R" isa
vector field with the triangular form:

f(Xy)

Fo (X1 X5)

f(X)= - f:R' =R (1d)

It is supposed thaf (0) = @nd f is classC? with bounded Jacobian matrix i.e.

[A>0,O0XOR": ||f,(X)|<AB (le)



The system PDE part represents a diffusive sensystem modelled by the following heat
equation and associated boundary condition:

u, (x,t) =u,(x,t), 0<x<D (2a)

u, (0,t) =0, u(D,t)=CX () (2b)
whereD is a known scalar representing the length of tb& Plomain. The whole system is
observed through the output signal,

def
y(t) =u(0t) (2¢)
The aim is to design an observer that provides ratewnline estimates of both the finite-
dimension state vectoX t (and the distributed state variahlex t(,,J< x< D. The observer
must only make use of the system input gnd outputy t( ) In particular, the connection signal
u(D,t) is not supposed to be accessible to measurements.

Note that, a similar state observation problem lsn dealt with in (Krstic, 2009) for ODE-

PDE systems where the ODE subsystem is lineaheevector fieldf (.)is identically null.
Before proceeding with the observer design andyaigllet us check that the system described
by (1a-e)-(2a-c) is well posed. This is the subgdbllowing statement proved in Appendix A.
Proposition 1. The system (1a-e)-(2a-c) has a unique classitaticn

u(t) JC([0,0):Y) n C*((0,):Y), X(t)OC*([0,0):R")
provided thatu(0) OY , with Y ={OH?(0,D): £(D) = 0,£,(0) =0} O

3. Observer Design and Analysis

3.1 Observer Design

Inspired by the high-gain observer design approdbke, following observer structure is
considered for the system (1a-d)-(2a-c):

X = AX +Bv(t) + f (X) - 88K (G(O.L) - y(1)) (3a)
G(D,t) =CX (t) (3b)
G, (x,t) = G (xt) - Bk(X) (G O,t) - y(t)) (3¢)
i (0t)=0 (3d)

forall t = 0 and allxI[0, D ], with

A dia {11 i}DR”X” (3¢)
9115 e



where the scalaf > [ a design parameter. The vector and scalar giinsR" andk(x) OR,

have yet to be defined. To this end, introducesthé estimation errors:

~ ~

X=X-X,0=0-u (4)
Then, subtracting each of the system equation®){da-c) from the corresponding equation in

the observer (3a-d), one gets the following erystem:

X = AX +(F(R) - £(X))-oa7K T Q1) (5a)
0(D,t) = CX(t) (5b)
U, (x,t) = U, (x,t) —6k(x) U (O,t) (5¢)
u,(0t)=0 (5d)
Inspired by (Krstic, 2009), the following backstépgptransformation is considered:
Z=MY(D)AX, (6a)
W(x,t) = T(x,t) = CM (X)Z () (6b)

where M &) is matrix function yet to be defined. Then, theoersystem (5a-d) rewrites, in
terms ofZ and W k1), as follows (see Appendix B):
Z = 6(M *(D)AM (D) - LCM (0))Z + M (D)A(f (X) - f (X)) - OLW(O,t) (7a)
w(D,t) =0 (7b)
W, (X,1) = W, (x,t) =CM ()M (D)A(f (X) - (X))

- 6(k()W(O,t) + K(X)CM (0)Z -~ CM (x)LW(O,1))

+ c( d;)'\(" (x) - M (x)(M (D) AM (D) - LCM (0))}2(0 (using (6b)) (7c)

dM

o 0)Z (7d)

W, (0,t)=-C

with:
L=MD)K (7€)
We seek a gairk x( and a matrix functiorM X that make the error system (7a-d) coincide
with the following target system (which will be st to be exponentially convergent in
Subsection 3.2):
Z = B(A-LCM (0))Z + M Y(D)A(f(X) - f (X)) - OLW(O,t) (8a)
w(D,t) =0 (8b)



W (%,1) = Wiy (%) = CM (M "H(D)A(F (X) - (X)) (8c)
W, (0,t) =0 (8d)
Comparing (7a-d) and (8a-d), it is checked that gnyl M & ) must be defined as follows:

k(x) =CM (X)L (9a)

dz'\z" (X) =M (X)A (9b)

dx

M@©)=1, d—M(O):O (9¢)
dx

Indeed, doing so equations (7d) reduces to (8blewfic) further develops as follows:

(%) = W, (1) ~CM ()M (D)A( (X) - f (X))

+ c( d;)'\(" (X) - 6M ()M (D) AM (D)JZ (t) (10)

Additional properties of the matrix functidd x (are given in Lemma 1 (see Appendix C).
Using Part 2 of that Lemma 1, one géts™(D)AM (D) = A. Accordingly, equation (10) boils
down to (8c).

Now, substituting tok X )and K their expressions given by (7e) and (9a), the esg5a-d)

rewrites in the following more suitable form:

X = AX +Bv(t) + f (X) - 8A7M (D)L(G(0,1) - (1)) (11a)

4(D,t) =CX (t) (11b)

G, (xt) = G (x,t) —6CM (X)L(G(O,t) - y(t)) (11c)

(4,0t =0 (11d)
forall t = 0 and allxI[0, D ]. For convenience, (3e) is also rewritten:

Ad;f diag{l%,...,%}DR”*” (11e)

The state observer thus designed is a high-gai ityyolving two design parameters,JR"
and > 1 The analysis of Subsection 3.2 will provide imgy on how to select these

parameters.

Remark 1. a) The above observer design is also a generahzaf the observer design proposed
in (Krstic, 2009). Indeed, both observers addreBE®DE cascaded systems and involve

matrix gains M X ) which play an instrumental role in the achievemehtexponential



convergence properties. The generalisation liethénfact that the ODE part of the present
class of systems (la-e)-(2a-c) is nonlinear, wieay linear systems are considered in
(Krstic, 2009).

b) A major novelty of the present work is the dafon of the new target system (8a-d) which
quite different from the one used in (Krstic, 200Bhe target system in (Krstic, 2009) is not
usable here due to the nonlinearities in the esystem (5a-d).

c) For convenience, the target system based upofiKrstic, 2009) is rewritten here (see
equations (97)-(100)):

X = (A-M(D)LCM *(D))X - M (D)LW(O,t) (12a)
#(D,t) = 0 (12b)
W, (x,t) = W, (x.1) (12c)
W, 0 =0 (12d)

Clearly, the system (12a-d) is linear while (8asdjot. Furthermore(8a-d) involves a feedback
interconnection between the finite dimensional #m&l infinite dimensional parts, whereas
(12a-d) is a cascade structure. Consequently, xpenential stability analysis of the system
(12a-d) is simpler than that of the system (8asjeed, the subsystems (12b-c) as well as the
(autonomous part of) the subsystem (12a) are bethkiwown to be exponentially stable. The
proof of exponential stability is not that easy whiecomes to the target system (8a-d).

d) Also, it is worth noticing that the presentlysaged observer (11a-e) is a High gain type
while that in (Krstic, 2009) is not. However (11pi®not a standard high-gain observer due to

the presence of the matrix gaih x ()

3.2 Observer Analysis
First, the well posedness of the observer (11ae@stablished in the following proposition the

proof of which is placed in Appendix D.

Proposition 2. Let the gainL of the observer (11a-e) be selected so #hatLC has all its

eigenvalues with negative real parts and the imf)t be bounded and piecewise continuous. If
X (0)OR" and ((0) 0{§OH*(0,D):&(D)=0,£,(0)=0} then, the system (1la-e) admits a
strong solutioni(t) 1{& TH?(0,D) : £(D) = 0,&,(0) =0} and X ¢ ) absolutely continuous =

Now, The exponential convergence of the observea-€) is described in the following theorem

which constitutes the main result:



Theorem 1. Letting the gainL of the observer (11a-e) be selected as in Propos, there
exists a scala’ > Guch that, for alld>6" and DO(O,D" @)) with D (8) =1/, the

observer (11a-e) a global exponential observeh®fystem (1a-d). Accordingly, the norm,

(xo- %] + [ wxn -aceoyiex)

Is exponentially vanishing, as - o []

Proof. The observer (11a-e) has been designed so thataiiesponding error system (7a-d)
coincides with the target system (8a-d), which egpes in terms of the variablZsand W &t)

defined by (6a-b). To analyze the system (8a-l®,ftitlowing Lyapunov function candidate is

considered:
V=7"PZ +% jOD W (x,t)dx (13a)

with P any symmetric positive definite matrix satisfyitig following algebraic equation:
P(A-LC)+(A-LC)'P<—ul (13b)
where > 0 is arbitrarily chosen whilea> Owill be selected later in this proof. Time-

derivation of (13a) yields, using (8a), (8c) andi{t

V =ZTPZ +Z"PZ +a W(x, 1) (xt)dx
- o ’ t ’
= —y@HZHZ +2ZTPM Y(D)A(f (X) - (X)) - 26ZT PLW(O,1)

+a” W(x ), (x )ax - af” WX HCM (M *(D)ACF (X) - F X))k (14)

Let us analyse the different terms on the righé ©€l (14), starting with the second term. One

has:

\2ZT PM %(D)A(f (X) - f(x»\ <

277 PM ‘1(D)A( [t (X +sX (t))))? (t)‘ (15)

using (1e) and the mean value theorem, whigredenotes the Jacobian matrix 6f By (6a-b)

on hasX =A™M(D)Z . Then, (11) becomes:

27TPM (D)A(f (X) - f(X))‘ <

277 PM '1(D)A( [t (X +sX (t)))A‘lM (D)Z‘ (16)

Letting the x-domain lengthD be such thaD’8< Jlone gets using Parts 1 and 2 of Lemma 1
(Appendix C) that[IxO[0,D ]

Mels1+y = <o (172



M) <1+ Z (|2£)|, c, <o (17b)

using the fact thatA"| <1, whateverk . Moreover, it is readily checked using (1e) and) @at,

as long a¥? >1, HAUJfX (X() + s)?(t))]A‘l < [. Based on these observations, (16) yields:

[2Z7PM DA (X) - £ (X)) < 200, 8P] | 2] (18)

where the right side of this inequality does ngieted oné (as long a¥g >1). In turn, the third

term on the right side of (14) develops as follows:

ZH‘ZTPLVT/(O,t)‘ = 2«9‘\@? \/EPLVT/(O,t) <
u

S%HHZHZ +%’UPLHZIOD|WX (x,t)|2dx (19)

2
'U_BZZ + ZH”PL” |W(O,t)|2
2 H

where the last inequality is obtained using the fiaat:
~ 2 D 2 .
w1 =‘ [ Wx(x,t)dx‘ (using (7b))
< DLD\va (x,t)dx (using Schwartz inequality)
Using an integration by parts , the fourth terntlomright side of (14) develops as follows:
D - D_,
ajo W(Xx,t)w,, (X, t)dx = —ajo W, (X,t)dx (20)

where the boundary conditions (7b) and (7d) hawnhesed. Finally, the last term on the right

side of (10) can be bounded as follows, whatever : 0
a‘ jODvT/(x,t)CM ()M H(D)A(f (X) - f (X))dx‘
ad (o~ 2 a (b 4 . 2
s7j0 [W(xb)| dx+§j0 HCM ()M H(D)A(f (X) - f(X))H dx
al (O~ .2, . acics o - 2
s7j'0 [W(x,1) dx+7j0 HA(f(X)— f(X))H dx

where the last inequality is obtained using (17.a-bjlowing the same argument as the one used

to get (18) from (16), the above inequality leauts t

B‘UODW(X’UCM (M *(D)A(F (X) - f (X))dx‘

<22 [fiocof e 2255 7] @)



Using (18) to (21), it follows from (14) that:

2 -uof2] zse el |2 + 4212 + PR o

—aj W (xt)dx+—J' W(x,t)|° dx+aD’8C1C2 Hz”

s-(%e ¢ AP - aD’BClCZJHZHZ+%NPL||2J'OD|WX(X,t)|de—ajODvT/f(x,t)dX

2aD Z

j W, (x,t)|* (22)
where we have used Wirtinger's inequality (Haetdsd., 1934):

D~ 4D? (D,

IO W(X, t)|2dxs7 J'O W, (X, t)|2dX (23)

This is presently possible becauséD,t) = afd w(.,t) JH"(0,D ). Rearranging terms on the
right side of (22), one gets:

V< (”_9 ~2¢,A4P| - aDﬂCl % jHZHZ -2 (xax

_[a_20gPL]" 2aD%¢ |0,
[2 . - Jj 2 (x,t)dx

e R L
Terml
~ §_2D6’||P|_||2 2aD*¢ .[ W2 (x,t)x (24)
2 U i

Term2

where the last inequality is obtained using agam).(At this stage, the free parametars 0

and ¢ > 0 and the design parametér> have yet to be chosen. An adequate choice ishate t

makesTerm 1 andTerm 2, on the right side of (24), nonnegative. @s D <1/4/6 <1, Teem 2
IS bounded from below as follows:

2D ?
tamg =3 2P _2a'¢ , (1 20) 2V
2 M
Then, a sufficient condition foferm £ be nonnegative is to let:

(25a)



_2JOPY 2

>0 anda
u -4

(25b)

1 X
”.2

The first inequality in (25b) is satisfied with e.gfz%. Then, Term 1 can be made
nonnegative by letting:

6 4apclcs .
IUT > 2c.c, P +% (usingd< D <1/+/8)
2 s

P (using (25b)) (26)

4[cc?
> 26, P + P

4.2 2
This suggests the choic@>6 with 8*:% 201c2[?||P||+16ﬁﬂCZlCZ 2”'2'” . Doing so,

inequality (26) yields:

. ~|2 D ~9
V<-c, HZH —c4j0 w* (x,t)dx < —c,V (27)
with ¢, =ﬂ, c, =a_n2 andc, = min( 2 , 27722). This ends the proof of TheoremiL
8D 4,...(P) 8D

3.3. Extension
The result of Theorem 1 can be adapted to thewhsee the PDE subsystem is a delay/transport

element. Then, the system (1a-e)-(2a-c) becomes:

X (t) = AX(t) + Bu(t) + f (X (1)) (28a)
u(D,t) =CX (t) (28b)
u,(xt)=u,(x,t), 0<x<D (28c)
y(t) =u(©t) (28d)

where the remaining notations are as in Sectiorh2n, the observer (11a-e) adapts to this case

as follows:
X = AX +Bv(t) + f (X) - 8A7M (D)L(G(0,1) - y(t)) (29a)
(D,t) = CX (t) (29b)
G, (xt) =0, (x,t) —6CM (X)LGO,t) - y(t)) (29¢)

G,(0,t)=0 (29d)



where A is defined by (11e) ant¥ (x) = e®*. Following mutatis-mutandis the proof of Theorem
1, the same result can be established with thenadrs€29a-d) being applied to the system (28a-
d).

4. Conclusion

The problem of state observation is addressechfoclkass of nonlinear systems, represented by
the ODE-PDE association of Fig. 1, analytically rlbed by equations (1a-e). The aim is to get

online estimates of both the finite-dimensionaltestX ¢) and the infinite-dimensional state
u(x,t) over thex-domain (0,D ), for someD > 0 A major difficulty is that the connexion point

(between the ODE and the PDE subsystems), is messaible to measurements making useless
existing observers developed separately for ODERDE systems. The problem is dealt with
using the high-gain type observer defined by equati(1la-e) which is a generalization of
(Krstic, 2009) to the case where the ODE subsyssenonlinear with triangular structure. The

matrix functionM & )emphasizes the difference with standard high-gbservers and plays an

instrumental role in making (11a-e) an exponertmalvergence (Theorem 1). The present study
can be pursued in several directions includingreiflesigning the observer so that to make its

convergence rate dependent on the the design pamsme: and 6; (i) the design of an

adaptive version of the observer and the genetigisto other ODE and PDE subsystems.
Appendices

Appendix A. Proof of Proposition 1.

First notice that, by the standard existence thmptbe solutionX t( )of the ODE subsystems
(1a-e) exists, whatevéiX (0)| < «, becausef is continuous and Lipschitz (due to (1e)). Then, i
remains to show that, in turn the solutionx t( e¥ists. To this end, introduce the following
auxiliary signal:

a(X,t) =u(xt) = p(x,t) X(t) (A1)
where y(x,t) DR™ has yet to be defined. Clearly, x { ,exists if & & t) and y &1 ) do so.
Presently,y Xt )is selected so that x ¢ , yndergoes the following target system:

a (x,t) = w,, (X,t) (A2)

w (0,t)=0 (A3)

a(D,1)=0 (Ad)



This parabolic system is analyzed in many placesitnwell posedness can be established in
many ways. Applying e.g. Theorem 2.6.5 in (Zhen@Q4) it follows that (A2)-(A4) admits a

unique local solution:

wOC([0,%):Y) n C*([0,%0):Y) (A5)
whatevera (0, x) Y , where

Y =D(A) ={¢01H?(0,D): (D) = 0,,(0) = O} (A6)

2

is the dense domain of the operam:%. Note that (A5) is achieved making use of the fac
X

that that A is a closed operator generating ¥na strongly continuous exponentially stable
semigroupT satisfying the inequalityT ()| < k™ (t = 0) for some constand > (e.g. Curtain

and Zwart, 1995).
Similarly, deriving both sides of (A1) with respéottime, one gets using (1a) and (2a):

@ (x,1) = U (X, 1) = (X D(AX () + F(X(©) = 1 (x 1) X (t)
= W, (X, 1) + Vo (D)X (1) = p(X D(AX () + F(X (1)) -y, (X, D)X (1)
= W (%, 1) + Y (K DX (1) — p(X, D) AX (1)

=0 [ (X)X (0 = 1 (x )X O (A7)

where the last equality is obtained using the medne theorem. Equality (A4) suggests the
following model for y &1t )

Vi (%,1) = o (%, 1) = p(X, ) A= p(x Da(t) (A8)
where a(t)=E(fx(sX(t))ds is a bounded matrix function, due to (1e). Equmat{@6) is

completed with the corresponding boundary condstidfirst, one gets from (Al), using (A4)
and (2b):
0=a(D,t) =u(D,t) - y(D,t) X (t) = CX(t) - y(D,t) X(t)
which suggest that one must let
y(D,t)=C (A9)
Also, one gets from (A1), using (A3) and (2b):
0=, (0,1) =u, O1) =y, QDX (1) = -y, O, D)X (1)
which entails:
01 =0 (A10)



In the sequel, the notatiop(t) refers to the family of functions, parameterized bl1[0, ),
defined by:y(t):[0,D] - R; x - y(x,t) —C. This is a usual practice in the semigroups theory
(e.g. Pazy, 1983). Then, equation (A8) rewritethnform of a differential equation defined on
H =L,[0,D] as follows:

Vi (t) = Ap(t) + F(t, y(1)) (A11)
with A as above andF(t, y) = yA+ ja(t) + Ca(t) + CA. Clearly, F (t, y) is affine w.r.t.y and so
it is Lipschitz. Then, again applying Theorem 2.5h5Zheng, 2004) it follows that the system
(A9)-(A11), with y(0) Y , admits a unique local solution:

yOC([0,0):Y) n C'((0,2):Y),
using again the fact that the functiét, y) is Lipschitz and the operatek is generating oryY

a strongly continuous exponentially stable semigrou

Combining the above results ona xt(,)and ykt) one gets that
u=w+ X OC([0,0):Y)n C'((0,»):Y), whatever u(Q)JY. This completes the proof of

Proposition 1

Appendix B. Proof of (7a-b). Deriving Z = M "}(D)AX with respect to time yields, using (5a):
7 = M(D)A(AX + (f(X) - £ (X)) -5 KT QL))
=M {(D)AAX + M I(D)A(f (X) - f (X)) - D)K T (O,t)
=M (D)AAAM (D)Z + M {(D)A(f (X) - f (X)) -6LT (O,1) (B1)

with L =M (D)K. It is readily checked using (1c) and (3e), that:

AAN™ = 6A (B2)
Then, one gets:
M ™ (D)AAA™M (D) = 6M (D) AM (D) (B3)

Then, equation (B1) reduces to:

Z =M "{(D)AM (D)Z + M Y(D)A(f (X) - f (X)) - OLT (O) (B4)
Furthermore, it is readily seen from (6b) that(0,t) + CM (O)Z~ can be substituted 0 0, in
(B4) which then becomes:

Z =M {(D)AM (D)Z + M H(D)A(f (X) - (X)) —eL(\Tv(o,t) +CM (O)Z)

= &M (D)AM (D)Z + M {(D)A(f (X) - f (X)) - OLCM (0)Z — OLW(O,1)

= (M (D) AM (D) - LCM (0))Z + M (D)A(f (X) - f (X)) - LW(O,1) (B5)



Equation (7a) is established.
To prove (7b), write the second equality in (6k) 0= D :

W(D,t) =T(D,t) -CM (D)Z
=CX(t)-CAX (using (5b) and (6a))
=CX(t)-CX() =0
where the last equality is obtained using the flaat CA = C, due to (1c) and (3e). This proves

(7b).
To prove (7c), it follows deriving both sides ob[6with respect to time:

% (xt) =T, (x,t) =CM (X)Z
=U, (xt)-Ok(x)u(0,t)—CM (x)f (using (5¢))

d*M
dx
where the last equality is obtained using (6b).ngsf7a), equation (B6) further develops as

=W, (x,t) +C L (X)Z (t) - k(X) T (0,t) - CM (X)Z (B6)

follows:

d*Mm
dx

M (x)(6(M (D)AM (D) - LM (0))Z + M (D)A(f (X) - (X)) - OLF(O,1))

W, (x,t) = W, (x,t) + C (X)Z(t) - Bk(x) T (0,1)

=W, (X,t) =CM ()M H(D)A(f (X) = f (X))
- 8(k(x)T (0,t) - CM (X)LW(O,1))

+ c( d;'z" (x) - OM (x)(M (D) AM (D) - LCM (0)))2 )

= W, (1) =CM ()M (D)A(f (X) = f(X))

- 6(k()W(O,t) + K(X)CM (0)Z - CM (x)LW(0,1))

+ c( d;'\(" (x) - M (x)(M (D) AM (D) - LCM (0))}2 ®) (B7)

where we have used (6b). Equation (B7) is nothitigerothan (7c). Finally, equality (7d) is
obtained by deriving both sides of (6b) with resgecx and then lettingx = 0n the obtained

equality. Doing so, one gets:

w00=000-cMez=-cM @z
dx dx



where the second equality is an immediate consegueh(5d ). This completes the proof that
the system (7a-d) holds

Appendix C. Properties of the matrix functiokl x (. )

Lemma 1. The functionM X )defined by (9b-c), wheréA is as in (1c), has the following

properties:
1) M(X) =1+ kz 20

2) M (X)A= AM (x)

i} L . 1 a a 1
M) =1+ ax*(BA" with a, =-=,q, =——kL-"k2z  _
M) ; XA ook 20 4l (2Kk)!

4) MH(xX)A= AM *(x)

0 6A

I 0

5) M(X) e (I O)e

(]
( jDR“X“, Ox [
0

Proof. Part 1. This is simply proved by checking that the presdnexpression oM x( )

undergoes the differential equation and border itimmd(9b-c). It is readily checked that the first
derivative is:

n-= k-1

(= z ok @ (c1)

Deriving once again, one gets:

2k-2

« X
(0= Z(2k o

n-1 Xk— -
(Z a2 O j(e/»

k=1

— _ sz_l) n-1
—(M(x) —(Z(n—l))!(eA) J(BA)

=M (x)(6A)

where the last equality is obtained using the flaat the matrixA is nilpotent i.e.A" = 0 This

proves (9b). Furthermore, letting=  On the right side of the equality in Part 1, yteld

M (0) =1 . Also, lettingx = 0Oon the right side of (C1) giveng (0) =0. Part 1 is established.
X

Part 2. This is an immediate consequence of part 1 usiadact thatA(8A)* = (BA)* A.



Part 3. Let us develop the produd¥l (x)M ™ x ( rfeplacing thereM ™ X )by its presumed

expression. Doing so one gets:

M ()M *(X) :(l +§ < (HA)"j[I +nf,akx2"(9A)kj

i (2K)!
2n-2
=1+ BX*(6A) (C2)
k=1
Direct computations yield:
1
B =a +E
a a 1
=aq, +—L+ . L+ k=2...2n-2
P =a 2! 2k -1)!  (2K)! ( )

By definition of thea,'s, it follows that all 8, 's are equal to zero. Then (C2) implies that the
equality M (XYM *(x) =1 does hold.

Part 4. This part is readily obtained from Part 3, preliplying and post-multiplying the
expression oM ™ X Dy A.

Part 5. It readily follows from Part 1 that:
d*m’

—(X) =6A™M " (x) (C3)
dx
Introduce the augmented matrix:
M ™ (x)
I(X) =] gm " (C4)
4 (x)
X
It follows from (C3) that? X )undergoes the differential equation:
dd o |
—(x) = J(X C5
OIX() (HAT OJ() (C5)

with the initial condition(0) = (I O), using Part 4. The solution of (C5) is:

[aiT (l)] I

J(x)=e (OJ
which, together with (C4) yields:
T — [5/% (ljJX I

MT(x)=( 0O)e [oj

which proves Part 5 and completes the proof of Lerhinmh



Appendix D. Proof of Proposition 2.
By Proposition 1, the true system stgte(t),u xt ( ,epists for allt>0,0<x<D. Then, a

sufficient condition for the observer (3a-d) towell posed is that the error system (5a-d) is so.
The well posedness of the latter will now be esshigld. To this end, introduce the following

variable change:

Z=MYD)AX, X=A'M(D)Z (D1)

w(x,t) =T (x,t) —=CM (X)Z (D2)
The last expression is referred to backsteppingstoamation (Krstic, 2009). Then, the error
system (5a-d) rewrites, in terms of anda &t ) as follows:

X = (A-6N"M (D)LCM {(D)A)X + (f (X) - f (X)) - 8™M (D)Lw(0,t) (D3)

=(A-65'M (D)LCM (D)A) X

" ( [t (x®)+X (t))ds))? — "M (D)Lw(0,1) (D4)
a(D,t)=0 (DS5)
@ (%t) = @, (x,t) =CM ()M '%D)A( [[(Fe(x ) +X (t))dsji (D6)
@ (0t)=0 (D7)

where (D4) is obtained using the mean value theotashus define a new function x ¢ , 3s
follows:
1,(xt) = (A= @AM (D)LCM (D)A)7(x1)

+M ’1(D)A( j:( f. (X (t) +s7(x,1))ds [7(x,t) - OLw(O,1) (D8)

17(x0) = X (0) (D9)
Comparing equations (D8-D9) and (D3), it is seat:th

n(x,t) = X(t), Ot=00x0[0, D] (D10)

Therefore, analyzing the well-posedness of (D3-Diipants to analyzing the well posedness of
the following system:

n,(xt) = (A— M (D)LCM (D)A)7(x,t)
M ‘1(D)A( [t (xw+ sn(x,t))ds)n(x, )+ 6L[ @, (x )k (D11)

n(x,0) = X (0) (D12)



a(D,t)=0 (D13)
@ (%t) =W, (x,t) =CM (x)M ’1(D)AU:( o (X(t) + sq(x,t))ds)q(x,t) (D14)

@ (0t)=0 (D15)
where the last term on the right side of (D11) I#amed using the boundary condition

a(D,t) =0. Following closely a similar analysis in (Fridmand Am, 2013, Appendix A), one

n(xt)

defines the augmented staté(x,t) :{ t)} Then, the system (D11-D15) can be represented

by the following differential equation, where
W(t) = W) + FEW(L)), (D16)
defined inL, (0, D) where

A-a\*M(D)LCM Y(D)A 0
n= 02 (D17)
O 2
0Xx

and the nonlineaF (.):R* xH*(0,D) - L,[0,D is defined as follows:

F (W) =at,nn + [gLL @b t)dX] (D18)
M ‘1(D)A( [(f, (X + sq)ds)
@t,n) = (D19)

~CM (XYM ‘1(D)A( jol( f. (X(t)+ sq)ds)
The operatof1 has the dense domain:

D(M) ={W OH?(0,D) :W(D) = O,W, (0) = 0}
At this point, recall that one hasvi(D)A= AM (D , AM (D) =M (D)A and AAA™ = GA.
Then, it is readily checked tha# - a\*M (D)LCM ™*(D)A = &AM (D)(A- LC)M *(D)A. This

shows that the matrixA—-aA\"M (D)LCM (D)A is similar to A-LC which we know it is

2
Hurwitz. Also, it is well known that the operatC}(I;L2 generates a strongly continuous
X

exponentially stable semigroup. Then, it followstt in turn the operatofl generates a

strongly continuous exponentially stable semigrotfurthermore, it is easily checked that the

2

operator—;—2 is positive definite. On the other hand, since ttintrix A—LC has negative
X



real-part eigenvalues, it has a square root. ftstwut that, the operatetl1 has a square root

(-M*Y? in the domain:
Hy, = D((-M)"?) =W OH*(0,D) :W(D) = O,W, (0) = 0}

— / /
which is a Hilbert space with the scalar prodd& P >=< (-M)*a,(-N)*b>

On the other hand, sindeis classC? satisfying (1e) andX t( exists (by Proposition 1), it
follows from (D19) thatg(t,W )is bounded and belongs @'". Then, it follows from (D18) that
F(t,W) is classC' and so the following Lipschitz condition:

F W) - F it Wy)] <ty —t)] + |- ¥2w -wy)]), O W)ORxH,,  (D20)
with some constank; >0, hold locally in RxH,,,. Furthermore, since(t,W )s bounded
there existk, >0 such that:

[F W) < |- w|, OWOH,), (D21)

Thus, Theorem 3.3.3 of Henry (1993) is applicalolg(@16) ensuring that a strong solution
W(t)OH,, n D(M), for all t > 0, initialized withW(0) CH,,,. Then, one gets from (D1)-(D2)

and (D10) that, ii(t) 0{€O0H*(0,D): (D) =0,&,(0) =0} n D(M) and X ¢) is absolutely

continuous. Then, it follows using Proposition latth X is absolutely continuous and

(i=u+T0{f0H?(0,D):&(D)=0,¢,(0) =0} m
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