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a b s t r a c t

In this short note we formulate a infinite-horizon stochastic optimal control problem for jump-diffusions
of Ito–Levy type as a LP problem in a measure space, and prove that the optimal value functions of
both problems coincide. The main tools are the dual formulation of the LP primal problem, which is
strongly connected to the notion of sub-solution of the partial integro-differential equation of Hamil-
ton–Jacobi–Bellman type associated with the optimal control problem, and the Krylov regularization
method for viscosity solutions.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

This short note revisits the infinite-dimensional linear pro-
gramming (LP) approach to stochastic optimal control problems.
We reformulate the problem of minimizing a infinite-horizon cost
functional for controlled jump-diffusions of Ito–Levy type over a
set of admissible controls as a linear program in a certain measure
space. The linear objective function is the integral of the cost func-
tion against the occupation measure of the controlled process. The
main challenge in this LP approach is to prove equality of the op-
timal value functions of the original control problem V (x) and the
associated infinite-dimensional linear program ρ(x), and absence
of duality gap between the primal and dual programs (strong du-
ality).

Using measure-valued (relaxed) controls, Stockbridge [1]
proved the equality ρ = V for ergodic optimal control of Markov
processes and existence of optimal controls. Bhatt and Borkar [2]
and Kurtz and Stockbridge [3] extended these results to the case
of feedback controls for time-inhomogeneous finite horizon and
discounted infinite horizon problems. Cho and Stockbridge [4],
Taksar [5] and Helmes and Stockbridge [6] obtained similar results
for optimal stopping and singular control problems.

More recently, using the dual formulation of the primal LP
problem and viscosity solution theory, Buckdahn et al. [7] proved
the equality ρ = V in the case of optimal control diffusions
with compact state space. Goreac and Serea [8] proved the same
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result for finite-horizon and optimal stopping problems. In this
paper we show that this approach can be easily extended to the
jump-diffusion case.We emphasize that our proof does not present
any significant innovation as we follow closely the arguments
in the proof of Theorem 6.4 in Jakobsen et al. [9]. However, to
the best of our knowledge, this is the first paper that deals with
the LP approach to stochastic optimal control problems for jump-
diffusions.

Let us briefly describe the contents of this paper. In Section 2
we introduce the setting for the optimal control problem of jump-
diffusions of Itô–Levy type and formulate the primal LP problem
associated with the optimal control problem and its dual. In
Section 3 we recall the definition of viscosity solution for partial
integro-differential equations and prove the main result using the
Krylov regularization and results from Jakobsen et al. [9].

2. Optimal control problem and LP formulation

Let (Ω, F , P) be probability space endowed with a filtration
F = {Ft}t≥0 satisfying the usual conditions, and let {Wt}t≥0 be
a standard d-dimensional Brownian motion with respect to F. Let
E = RN

\ {0} and let ν(dz) be a Levy measure on B(E), that is, a
non-negative σ -measure satisfying
E
(|z|2 ∧ 1) ν(dz) < +∞.

Let N(dz, dt) be a homogeneous Poisson random measure with
compensator intensity measure ν(dz) dt , and let Ñ(dz, dt) denote
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the compensated Poisson randommeasure

Ñ(dz, dt) := N(dz, dt) − ν(dz) dt.

Let U be a compact metric space. For each F-adapted U-valued
control process u = {ut}t≥0 consider the controlled Levy–Itô
equation

dXt = b(Xt , ut) dt + σ(Xt , ut) dWt

+


E
η(Xt−, ut−, z) Ñ(dz, dt)

X0 = x.

(2.1)

The coefficients b : RN
× U → RN , σ : RN

× U → RN×d and
η : RN

× U × E → RN satisfy conditions (A2) and (A3) below.
The class U(x) of admissible control policies is defined as the set
of control processes u = {ut}t≥0 for which Eq. (2.1) has an unique
strong solution X x,u

=

X x,u
t


t≥0.

Let c > 0 be a fixed discount rate and h : RN
× U →

(−∞, +∞] denote the cost-to-go function. Let J be the infinite-
horizon discounted cost functional

J(x, u) := E


∞

0
e−ct h(X x,u

t , ut) dt


.

We will use the following norms:

|φ|0 := sup
x∈RN

|φ(x)| , [φ]1 := |Dφ|0 and

|φ|1 := |φ|1 + [φ]1

and assume the following conditions:

1. The Levy measure ν(dz) satisfies
|z|≥1

em|z|ν(dz) < ∞ (A1)

for somem > 0.
2. There exists K > 0 such that for all u ∈ U

|b(·, u)|1 + |σ(·, u)|1 + |c(·, u)|1 + |h(·, u)|1 ≤ K (A2)

and

|η(·, u, z)|1 ≤ K

|z| 1{0<|z|<1}(z) + em|z|1{|z|≥1}(z)


. (A3)

Condition (A1) is equivalent to the Levy processwith Levymeasure
ν(dz) having finite moments of all orders, see e.g. Applebaum
[10, Section 2.5]. It is satisfied, for instance, by one-dimensional
tempered α-stable processes with Levy measure

ν(dz) =
C1e−λ1z

z1+α1
1R+

(z) dz +
C2e−λ2|z|

|z|1+α2
1R−

(z) dz

with C1, C2 ≥ 0, λ1, λ2 > 0 and α1, α2 < 2. Under conditions
(A1)–(A3), for each u ∈ U(x) there exists an unique strong
solution to Eq. (2.1) and satisfies the following estimate, see
e.g. Applebaum [10, Section 6.6]:

E


sup

t∈[0,T ]

X x,u
t

p ≤ C(1 + |x|p) (2.2)

for all p ≥ 2. Themain object of study of this paper is the stochastic
optimal control problem

V (x) := inf
u∈U(x)

J(x, u), x ∈ R
N (2.3)

and the following linear programming (LP) formulation: for each
x ∈ RN and u ∈ U(x), denote with γ x,u the expected discounted
occupation measure on B(RN

× U) defined as

γ x,u(Q ) := E


∞

0
e−ct1Q (X x,u

t , ut) dt


, Q ∈ B(RN
× U).
Using approximation of h by simple functions, it is easy to prove
that the occupation measure γ x,u satisfies

J(x, u) =


RN×U

h(y, u) γ x,u(dy, du).

Let C2
pol(R

N) denote the class of C2-functions f : RN
→ R with

polynomial growth. For each u ∈ U fixed, let Au
+ Ju denote the

partial integro-differential operator

Auf (x) := ⟨b(x, u),Df (x)⟩ +
1
2
Tr[σ(x, u)σ (x, u)∗D2f (x)],

Juf (x) :=


E


f (x + η(x, u, z))

− f (x) − 1{|z|<1} ⟨η(x, u, z),Df (x)⟩

ν(dz)

for f ∈ C2
pol(R

N). Here Df (x) and D2f (x) denote the vector and
square matrix of first and second-order partial derivatives of f
respectively.

Notice that the integral term in the operator Ju is well-defined
due to the exponential decay of the Levy measure ν(dz) at infinity
(see Assumption A.1) and the fact that the singularity at z = 0 is
integrable for any f ∈ C2(RN), see e.g. Applebaum [10, Section
3.3].

Using Itô’s formula for Levy–Itô processes, Kunita’s inequality
and estimate (2.2), for any f ∈ C2

pol(R
N) and T > 0, we have

E[e−cT f (X x,u
T )] − f (x)

= E

 T

0
e−ct 

[(A + J)f ](X x,u
t , ut) − cf (X x,u

t )

dt


.

Also from estimate (2.2) we have

lim
T→∞

E[e−cT f (X x,u
T )] = 0.

By the dominated convergence theorem, taking the limit as T →

∞ it follows:

E


∞

0
e−ct

[cf − (A + J)f ](X x,u
t , ut) dt


= f (x).

We have proved that the occupation measure γ x,u satisfies the
linear constraint,
RN×U

[cf − (Au
+ Ju)f ](y) γ x,u(dy, du) = f (x),

∀f ∈ C2
pol(R

N). (2.4)

This suggests to consider the following LP problem over the vector
space Mb(R

N
× U) of finite signed measures on B(RN

× U):

ρ(x) := inf

RN×U

h(y, u) µ(dy, du)

subject to µ ∈ Mb(R
N

× U), µ ≥ 0

and

RN×U

[cf − (Au
+ Ju)f ](y) µ(dy, du) = f (x),

∀f ∈ C2
pol(R

N). (2.5)

Clearly, we have ρ ≤ V . The main purpose of this note is to prove
that in fact equality ρ = V holds.

In order to formulate a LP problem with the linear constraint
(2.4), and its dual, we recall briefly some facts and notation con-
cerning infinite-dimensional linear programming. Two topological
real vector spaces X, Y are said to form a dual pair if there ex-
ists a bilinear form ⟨·, ·⟩ : X × Y → R such that the mappings
X ∋ x → ⟨x, y⟩ ∈ R for y ∈ Y separate points of X and the
mappings Y ∋ y → ⟨x, y⟩ ∈ R for x ∈ X separate points of Y.

We endow X with the weak topology σ(X, Y), i.e. the coarsest
topology for which the maps X ∋ x → ⟨x, y⟩ ∈ R are continuous
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for all y ∈ Y. For any vector subspace F ⊂ X, let F∗ denote the
vector space of linear functionals on F with respect to the inherited
weak topology. Notice that X∗

= Y according to this notation.
LetX+ be a positive cone inX, that is, a non-empty convex cone

with vertex 0. This induces the vector order

x1 ≥ x2 iff x1 − x2 ∈ X+.

The positive cone Y+ in Y is defined as the negative polar

Y+
:= {y ∈ Y : ⟨x, y⟩ ≥ 0 for all x ∈ X+

}.

Notice that Y+ is closed, and the identity

X+
= {x ∈ X : ⟨x, y⟩ ≥ 0 for all y ∈ Y+

}

holds only if X+ is closed.
Let (Z, W) be another dual pair and let L : X → Z be a

continuous linear operator. We define the adjoint map L∗
: W →

Y via the relation
x, L∗w


:= ⟨Lx, w⟩ , x ∈ X, w ∈ W .

Let b ∈ Z, c ∈ Y be given, and consider the primal linear problem

(π) minimize ⟨x, c⟩
subject to Lx = b, x ≥ 0.

The (algebraic) dual problem of (P) is given by

(π∗) maximize ⟨b, w⟩

subject to − L∗w + c ≥ 0, w ∈ W .

It can be proved that the inequality sup(π∗) ≤ inf (π) holds, see
e.g. Anderson and Nash [11]. If this inequality, usually referred to
as weak duality, is strict, then we say that there is a duality gap
between the primal linear program and its dual.

We now follow the above definitions (see also [12,5]) to
formulate the dual problem to (2.5). We set X = Mb(R

N
× U)

and Y = Cb(R
N

× U), the vector space of bounded continuous
functions onRN

×U . These spaces formadual pairwith the bilinear
form

⟨f , µ⟩ :=


RN×U

f (y, u) µ(dy, du),

f ∈ Cb(R
N

× U), µ ∈ Mb(R
N

× U).

Finally, let A + J : D(A + J) = C2
pol(R

N) → B(RN
× U) denote the

linear operator defined by

[(A + J)f ](x, u) := (Auf + Juf )(x), (x, u) ∈ R
N

× U .

We takeW := D(A+ J) = C2
pol(R

N) andZ := D(A+ J)∗. We define
the operator L : X → Z via its adjoint operator L∗

: W → Y as
follows:

L∗f := cf − (A + J)f , f ∈ W .

With this notation, the linear program (2.5) associated with the
control problem (2.3) now reads as

ρ(x) = inf ⟨h, µ⟩

subject to µ ∈ M+

b (RN
× U)

Lµ = δx.

The dual linear program is given by

ρ∗(x) = sup ⟨f , δx⟩
subject to f ∈ C2

pol(R
N)

− L∗f + h ≥ 0

and the weak duality ρ∗(x) ≤ ρ(x) holds, for all x ∈ RN . Notice
that the restriction −L∗f + h ≥ 0 on f ∈ C2

pol(R
N) is equivalent to

cf (y) − h(y, u) − (A + J)(y, u) ≤ 0, ∀u ∈ U, y ∈ R
N

that is, f is a (smooth) sub-solution with polynomial growth
of the elliptic partial integro-differential equation (PIDE) of
Hamilton–Jacobi–Bellman type

sup
u∈U

{cV (y) − h(y, u) − [(A + J)V ](y)} = 0, x ∈ R
N . (HJB)

Recall that Eq. (HJB) is the equation associated with the dynamic
programming approach to existence of optimal feedback controls
for problem (2.3). Using this equation, we can rewrite the dual
problem as

ρ∗(x) = sup {f (x) : f ∈ D(A + J) is sub-solution of Eq. (HJB)} .

The following is the main result of this paper.

Theorem 2.1. The value function of the control problem (2.3) satisfies
V (x) ≤ ρ∗(x) for all x ∈ RN .

As an immediate consequence, we have V = ρ (optimal values
of the LP problem (2.5) and the control problem (2.3) coincide) and
ρ = ρ∗ (absence of duality gap).

3. Viscosity solutions and Krylov regularization

Notice that Eq. (HJB) can be rewritten in the following form:

H(x, V (x),DV (x),D2V (x), V (·)) = 0, x ∈ R
N (P)

where for any (x, r, p,X) ∈ RN
× R × RN

× SN and sufficiently
regular function V , the nonlinear Hamiltonian H is defined by

H(x, r, p,X, V (·)) = sup
u∈U


cr − h(x, u) − ⟨b(x, u), p⟩

−
1
2
Tr[σ(x, u)σ (x, u)∗X] − JuV (x)


.

Because of the degeneracy in the second order differential
operator and the non-local integral operator Ju, elliptic equation
(P) is expected to have only solutions in the viscosity sense. The
notion of viscosity solution was introduced by P.L. Lions and M.G.
Crandall in the 1980s for first-order Hamilton–Jacobi equations.
This was later generalized to second-order equations and more
recently to equations with integro-differential operators. The
viscosity solution approach provides an appropriate framework to
formulate HJB equations for functions that are only assumed to be
locally bounded, see e.g. Alvarez [13], Bardi [14], Barles et al. [15],
Barles and Imbert [16], Crandall et al. [17], Fleming and Soner [18],
and the references therein.

Definition 3.1. (i) A locally bounded upper semi-continuous
(resp. lower semi-continuous) function V : RN

→ R is a
viscosity sub-solution (resp. super-solution) of (P) iff for every
x ∈ RN and φ ∈ C2

pol(R
N) such that

V − φ attains a global maximum (resp. minimum) at x

then

H(x, V (x),Dφ(x),D2φ(x), φ(·)) ≤ 0 (resp. ≥ 0)

(ii) V is a viscosity solution of (P) if it is both sub- and super-
solution.

We follow the regularization method of N.V. Krylov [19], orig-
inally introduced to estimate the convergence rate of finite-
difference approximations of Eq. (P) in the diffusion case. It has
been systematically improved by Barles and Jakobsen [20], and
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Jakobsen et al. [9], among others, to obtain monotone approxima-
tion schemes for elliptic and parabolic equations of Bellman–Isaacs
type.

For ε ∈ (0, 1), consider the auxiliary perturbed equation

sup
|e|≤ε

H(x + e, V ε(x),DV ε(x),D2V ε(x), V ε(·)) = 0,

x ∈ R
N .

(Pε)

Notice that this is the HJB equation associated with the control
problem with control set U × B(0, ε), cost function h(x, u, e) :=

h(x + e, u) and coefficients b, σ and η defined analogously. Let V ε

denote the optimal value function

V ε(x) = inf
(u,e)∈Uε(x)

E


∞

0
e−cth(X x,u,e

t + et , ut)


, x ∈ R

N ,

where Uε(x) is the set of admissible control policies and, for
each (u, e) ∈ Uε(x), X x,u,e denotes the corresponding controlled
process. Notice that U(x) can be seen as subset of Uε(x) by
identifying u ∈ U(x) with (u, 0) ∈ Uε(x).

Lemma 3.2. V (resp. V ε) is the unique viscosity solution to
Eq. (P) (resp. (Pε)) in C0,1

b (RN) and, for each x ∈ RN , we have
V ε(x) → V (x) as ε → 0.

Proof. Viscosity solution property of the value functions V and V ε

is a standard well-known result that follows from the dynamic
programming principle, see e.g. Pham [21, Section 3], Øksendal
and Sulem [22, Section 10.3] or Bouchard and Touzi [23, Section
5.2]. The second assertion follows from the continuous dependence
result in Theorem 6.2 in Jakobsen et al. [9]. �

We also need the following result. For the proof see Lemma 6.3
in Jakobsen et al. [9].

Lemma 3.3. Convex combination of viscosity sub-solutions of (P) is
also a viscosity sub-solution of (P).

Proof of Theorem 2.1. The proof is largely based on the proof of
Theorem 6.4 in [9]. Using the change of variable y = x + e, the
function V ε(· − e) satisfies

H(y, V ε(y − e),DV ε(y − e),D2V ε(y − e), V (· − e)) ≤ 0

in the viscosity sense, for every |e| ≤ ε. That is, V ε(·−e) is viscosity
sub-solution of (P) for every |e| ≤ ε. Now, for κ, ε ∈ (0, 1), let
Vε,κ := V ε

∗ φκ where

φκ(x) :=
1
εN

φ
 x

κ


and φ is a smooth positive function with unit mass and support in
B(0, 1). For h < κ and α ∈ hZN define

Qh(α) := α +


−

h
2
,
h
2

N

, φκ,h(α) :=


Qh(α)

φκ(y) dy

and

Vε,κ,h(x) :=


α∈hZN

V ε(x − α)φκ,h(α).

By properties of mollifiers, Vε,κ,h → Vε,κ as h → 0. Moreover,
φκ,h(α) > 0 only for finitely many α ∈ hZN since φκ has compact
support, and
α∈hZN

φκ,h(α) =


RN

φκ(y) dy = 1.

By Lemma 3.3, Vε,κ,h is a viscosity subsolution of (P), and so is
its pointwise limit Vε,κ = limh→0 Vε,κ,h by stability results for
viscosity subsolutions, see e.g. Barles and Imbert [16, Section 3].
By the definition of the dual problem, we have Vε,κ ≤ ρ∗(x) for all
x ∈ RN . The desired result follows by taking the limit as ε, κ → 0
in conjunction with Lemma 3.2. �
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