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Abstract

Repetitive processes are characterized by repeated executions of a task de-
fined over a finite duration with resetting after each execution is complete.
Also the output from any execution directly influences the output produced
on the next execution. The repetitive process model structure arises in the
modeling of physical processes and can also be used to effect in the control of
other systems, such as iterative learning control where experimental verifica-
tion of designs has been reported. The existing systems theory for them is,
in the main, linear model based. This paper considers nonlinear repetitive
processes using a dissipative setting and develops a stabilizing control law
with the required conditions expressed in terms of vector storage functions.
This design is then extended to stabilization plus disturbance attenuation.
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H∞ disturbance attenuation.

1. Introduction

The systems considered in this paper make a series of sweeps, also termed
passes, through dynamics defined over a fixed finite duration termed the pass
length [1]. On completion of each pass, the system resets to the starting
location and the next pass can begin, either immediately after the resetting
is complete or after a period of time has elapsed. Each pass output is termed
the pass profile and the distinguishing feature of these systems is that the
pass profile on the previous pass acts as a forcing function on, and hence
contributes to, the dynamics of the next pass profile. Such systems are
known as repetitive processes.

Repetitive processes propagate information over a subset of the upper-
right quadrant of the 2D plane and in this paper the notation for variables is
of the form yk(t) where y is the scalar or vector valued variable, the nonneg-
ative integer k denotes the pass number and t ∈ [0, T ] denotes the temporal
variable defined over the finite duration pass length T < ∞, where the dy-
namics in the temporal variable can be discrete or differential. An industrial
example described in [1], with references to the original modeling work, is
long-wall coal cutting where the pass profile is the height of the stone/coal
interface above some datum line and the objective is to extract the maximum
amount of coal without penetrating the stone/coal boundary. The cutting
machine rests on the most recently produced pass profile during the pro-
duction of the next pass profile and therefore this is an industrial repetitive
process. The unique control problem is that the sequence of pass profiles
{yk} generated can contain oscillations that increase in amplitude from pass-
to-pass, that is, with k.

If these oscillations occur in a mining or other industrial example, solving
a stabilization problem is the alternative to lost production resulting from a
down time to enable their manual removal. This problem cannot, however, be
solved using standard, or 1D, systems theory/algorithms since this approach
ignores their inherent 2D systems structure, that is, information propagation
occurs from pass-to-pass and along a given pass. Also the initial conditions
are reset before the start of each new pass.

The available results on the control of linear repetitive processes starts
from a stability theory developed [1] using an abstract model of the dynamics
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in a Banach space setting that includes a very large number of processes with
linear dynamics and a constant pass length as special cases. The existence
of this theory has also led to the emergence of problem areas where using a
repetitive process setting for analysis has advantages. An example is classes
of Iterative Learning Control (ILC) laws where experimental verification has
been reported [2]. Another area is the analysis of OL-Nash games with a gas
pipeline application [3].

If a linear model approximation of the dynamics is not possible then
comparatively much less work has been reported on the stability of nonlinear
2D (or nD, n > 2) systems, see, e.g., [4, 5] and references therein. The
continual emergence of new possible application areas, such as ILC applied
to bead morphology in laser metal deposition processes [6], adds further
support to the development of this general area, starting from a stability
theory and leading on to control law design.

It is important to place repetitive processes in context and, in particular,
explain why they cannot be controlled by standard theory. These processes
differ from repetitive control, see, e.g., [7], where the reference signal is peri-
odic and there is no stoppage time between the end of one cycle and the start
of the next one. Repetitive processes do have a resetting after each pass is
complete and moreover the structure of the boundary conditions is critical
to the stability and hence control properties.

In the simplest case, the initial state on each pass is independent of the
previous pass dynamics but in some applications this assumption is too sim-
plistic and it is necessary to have state initial conditions that are an explicit
function of the dynamics produced on the previous pass. Such conditions
arise in the long wall coal cutting example, see [1] for a detailed explanation
that cites the original work in this area. Examples exist [1] where ignor-
ing the resetting and thereby converting the dynamics into an ‘equivalent’
infinite pass length standard system gives incorrect conclusions as does mod-
eling the state initial conditions as pass independent when they are actually
pass dependent. Pass dependent boundary conditions also arise in the use of
repetitive process stability theory to study iterative solution algorithms for
nonlinear dynamic optimal control problems based on the maximum princi-
ple [8]. Hence there is a need in both theory and applications for a rigorous
stability theory for these processes that extends to control law design.

In the case of 1D nonlinear systems, dissipativity theory [9] is one of the
most powerful methods for control design, where a particular form, known
as passivity (and its generalizations) see, e.g., [10] plays a significant role in
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solving the global feedback stabilization problem for a wide class of systems.
This paper gives new results on a dissipativity approach to the stabilization
of discrete and differential nonlinear repetitive processes, where the term ‘dif-
ferential’ refers to dynamics along the pass governed by a matrix differential
equation for which the term continuous could equally be used. The results
are obtained using a vector storage function approach that is different from
that in [11, 12] and results in a control law to guarantee exponential stability
of the controlled process. This design is then extended to stabilization plus
disturbance attenuation.

2. Dissipativity and the stabilization of discrete repetitive pro-
cesses

2.1. Process description and definitions

The discrete nonlinear repetitive processes considered in this section are
described by the following state-space model over 0 ≤ p ≤ T − 1, k ≥ 0,

xk+1(p+ 1) = f1(xk+1(p), yk(p), uk+1(p)),

yk+1(p) = f2(xk+1(p), yk(p), uk+1(p)), (1)

where the integer T <∞ denotes the number of samples over the pass length
and on pass k xk(p) ∈ Rnx is the current pass state vector, yk(p) ∈ Rny is the
pass profile vector, f1, and f2 are nonlinear functions such that f1(0, 0, 0) =
0, f2(0, 0, 0) = 0. This last requirement is necessary to have zero as the
equilibrium state. The boundary conditions, that is, the pass state initial
vector sequence and the initial pass profile, are assumed to be of the form

xk+1(0) = dk+1, k ≥ 0,

y0(p) = f(p), 0 ≤ p ≤ T − 1, (2)

where the entries in dk+1 ∈ Rnx are known constants and the entries in
f(p) ∈ Rny are known functions of p. It is assumed that dk+1 and f(p) have
bounded energy, that is, there exist finite real numbers Mf > 0, κd > 0 and
0 < λd < 1 such that dk+1 and f(p) satisfy

|f(p)|2 ≤Mf , |dk+1|2 ≤ κdλ
k+1
d , k ≥ 0, (3)

where |q| denotes the Euclidian norm of a vector q.
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The scalar |Mf |
1
2 is an upper bound on the norm of the initial pass profile

and κ
1
2
d is an upper bound on the initial pass state vector sequence, which

is assumed to be bounded in norm by an exponentially decreasing sequence
with rate of convergence (in k) λd. In particular, λd represents the rate
of convergence in k of the pass initial state vector sequence. From this
point onwards, all references to the boundary conditions for the processes
considered will assume that they satisfy (3). Moreover, in this paper the
state initial vector on each pass is independent of the previous pass profile
vector but, as discussed in the previous section, there are applications where
this assumption is too strong. Sufficient progress with the case considered in
this paper should prompt further research on this more general case.

In the control and systems theory developed for linear repetitive pro-
cesses, the stability along the pass property has formed the basis for control
law design and experimental verification [1, 2]. This property demands that
a bounded initial pass profile produces a bounded sequence of pass profiles
for all possible values of the pass length and is based on linear operator the-
ory in a Banach space setting. Hence it cannot be directly transferred to the
nonlinear case.

Stability along the pass requires that the sequence (in k) of pass profiles
and state vectors are bounded independent of the pass length. In the case of
nonlinear discrete nonlinear repetitive processes stability should also enforce
boundedness (in k) independent of the pass length of the sequences (in k)
of pass profiles and state vectors and one possible approach would be to use
a Lyapunov function approach as in the stability analysis of 1D nonlinear
systems.

The Lyapunov approach is based on properties of the function itself and
for discrete dynamics of its increments, but the dynamics of repetitive pro-
cesses are determined by the state vector x and the pass profile vector y,
which are functions of the two independent variables p and k. A candidate
Lyapunov function for these processes can be chosen as a scalar function,
V (x, y), but to construct the gradient along the trajectories of (1) it is re-
quired to have xk+1(p) − xk(p) and yk(p + 1) − yk(p) as functions of x and
y. These quantities can only be found by solving (1) but then all of the
advantages of the Lyapunov approach are lost.

A powerful method in the analysis and control of 1D systems is dissi-
pativity theory [9], especially the particular case of passivity theory [9, 10]
where an extension of a Lyapunov function termed a storage function is used.
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Previous work [13, 14] developed a stability theory for discrete nonlinear
repetitive processes based on the use of vector Lyapunov functions and the
discrete counterpart of their divergence along the trajectories to characterize
the property of exponential stability. In this paper the problem considered is
stabilization and disturbance attenuation using a pass profile based control
law, for discrete dynamics in this section and differential in the next.

Consider a control law of the form

u = ψ(x, y), ψ(0, 0) = 0. (4)

Then the following is the definition of exponential stability for the controlled
process.

Definition 1. Consider the discrete nonlinear repetitive process resulting
from the application of the control law of the form (4) to (1) and (2). Then
the resulting controlled process is said to be exponentially stable if there exist
real numbers κ > 0 and 0 < λ < 1 such that

|xk(p)|2 + |yk(p)|2 ≤ κλk+p. (5)

This paper builds on this previous work [13, 14] on stability alone to
develop a dissipativity theory for discrete dynamics in this section and dif-
ferential dynamics in the next. The result is a stabilizing control law with
an extension to disturbance rejection for discrete dynamics.

The analysis uses a vector storage function of the form

V (xk+1(p), yk(p)) =

[
V1(xk+1(p))
V2(yk(p))

]
, (6)

where V1(x) > 0, x 6= 0, V2(y) > 0, y 6= 0, V1(0) = 0, V2(0) = 0. Also
the discrete counterpart of the divergence operator of this function along the
trajectories of (1) is

DdV (xk+1(p), yk(p)) = ∆pV1(xk+1(p)) + ∆kV2(yk(p)),

(7)

where

∆pV1(xk+1(p)) = V1(xk+1(p+ 1))− V1(xk+1(p)),

∆kV2(yk(p)) = V2(yk+1(p))− V2(yk(p)).
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Introduce, for analysis and control law design purposes only, the auxiliary
vector zk(p) ∈ Rnz given by

zk+1(p) = g(xk+1(p), yk(p), uk+1(p)), (8)

where g is a nonlinear function such that g(0, 0, 0) = 0 and define the dissi-
pativity property as follows.

Definition 2. A discrete nonlinear repetitive process described by (1) and (2)
is said to be exponentially dissipative if there exists a vector function (6), a
scalar function S(u, z) and positive scalars c1, c2 and c3 such that

c1|x|2 ≤ V1(x) ≤ c2|x|2, (9)

c1|y|2 ≤ V2(y) ≤ c2|y|2, (10)

DdV (xk+1(p), yk(p)) ≤ S(uk+1(p), zk+1(p))

− c3(|xk+1(p)|2 + |yk(p)|2). (11)

In the particular case when S(u, z) = zTGu, where G is a constant matrix
of compatible dimensions, a discrete nonlinear repetitive process described
by (1) and (2) is said to be exponentially G-passive, see [15] for the 1D
systems case. Since (1) does not involve full increments, as in the case of
ordinary 1D difference equations, it is impossible to use cross terms in the
vector storage function (6).

The auxiliary vector z of (8) can be used to achieve certain dissipativ-
ity properties and for the case of passivity this is known as passivation [16].
Moreover, the choice of this vector depends on the choice of storage function
V and it is a separate complex problem (similar to the choice of a Lyapunov
function for a nonlinear system). The problem is to find a pair (z, V ) satisfy-
ing (11) and, later in this section, it is shown how this pair and a stabilizing
control law can be obtained for a particular applications relevant special case.

2.2. Passivity and stabilization

The following theorem is the first major new result of this paper.

Theorem 1. Suppose that a discrete nonlinear repetitive process described
by (1) and (2) is exponentially G passive. Suppose also that there exists a
function ϕ(z) such that ϕ(0) = 0 and zTGϕ(z) > 0 if z 6= 0. Then the control
law

uk+1(p) = u(zk+1(p)) = −ϕ(zk+1(p)) (12)

results in controlled dynamics that are exponentially stable.
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Proof. It follows from (11) that it is possible to choose c̄3 small enough
such that c̄3 < c3 and

DdV (xk+1(p), yk(p)) ≤ −zTk+1(p)Gϕ(zk+1(p))− c3(|xk+1(p)|2 + |yk(p)|2)

≤ −c̄3(|xk+1(p)|2 + |yk(p)|2). (13)

Using (9), (10) and (11), (13) can be rewritten as

V1(xk+1(p+ 1)) − V1(xk+1(p)) + V2(yk+1(p))− V2(yk(p))

≤ −c̄3(|xk+1(p)|2 + |yk(p)|2)

≤ − c̄3

c2

(V1(xk+1(p) + V2(yk(p)), (14)

or

V1(xk+1(p+ 1)) + V2(yk+1(p)) ≤
(

1− c̄3

c2

)
(V1(xk+1(p) + V2(yk(p)) (15)

Define λ = 1− c̄3
c2

and choose c̄3 to satisfy

λ
1
2
d < λ < 1, (16)

where the left-hand side inequality in this expression is necessary to establish
convergence of the series at the end of the proof. Rewrite (15) as

V1(xk+1(p+ 1)) ≤ λV1(xk+1(p)) + λV2(yk(p))

− V2(yk+1(p)). (17)

Solving recursively inequality (17) with respect to V1(xk+1(p)) we obtain an
expression in terms of the boundary conditions:

V1(xk+1(p)) ≤ V1(xk+1(0))λp

+

p−1∑
h=0

[λV2(yk(h))− V2(yk+1(h))]λp−h−1

(18)

and on introducing Hk(p) :=

p−1∑
h=0

V2(yk(h))λp−1−h it follows from (18) that

Hk+1(p) ≤ λHk(p) + λpV1(xk+1(0)).

− V1(xk+1(p)). (19)
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Solving the inequality (19) gives

Hk(p) ≤ λkH0(p) +
k−1∑
n=0

λk−1−n(λpV1(xn+1(0))

− V1(xn+1(p)), (20)

or
k−1∑
n=0

λk−1−nV1(xn+1(p)) +

p−1∑
h=0

λp−1−hV2(yk(h))

≤ λp
k−1∑
n=0

λk−1−nV1(xn+1(0)) + λk
p−1∑
h=0

λp−1−hV2(y0(h)). (21)

This last inequality is equivalent to

λ−(p−1)

k−1∑
n=0

λ−nV1(xn+1(p)) + λ−(k−1)

p−1∑
h=0

λ−hV2(yk(h))

≤ λ−(k−1)

k−1∑
n=0

λk−1−nV1(xn+1(0))

+λ−(p−1)

p−1∑
h=0

λp−1−hV2(y0(h)) (22)

and evaluating of the right-hand side of (22) and using (3) and (16) gives

λ−(k−1)

k−1∑
n=0

λk−1−nV1(xn+1(0))

+ λ−(p−1)

p−1∑
h=0

λp−1−hV2(y0(h))

≤ c2κd

k−1∑
n=0

λ−nλn+1
d + c2Mf

T∑
h=0

λ−h

≤ c2κd

∞∑
n=0

λ−nλnλn + c2Mf

T∑
h=0

λ−h

=
c2κd
1− λ

+
c2Mf (λ

−T − 1)

λ−1 − 1
= C (23)
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for all k and p. Also it follows immediately from the left-hand side of (22)
that

C ≥ λ−(k−1)

k−1∑
n=0

λk−1−nV1(xn+1(0))

+ λ−(p−1)

p−1∑
h=0

λp−1−hV2(y0(p))

≥ c1λ
−(k−1)λ−(p−1)|xk(p)|2 (24)

for all k and p. Moreover

C ≥ λ−(k−1)

k−1∑
n=0

λk−1−nV1(xn+1(0))

+ λ−(p−1)

p−1∑
h=0

λp−1−hV2(y0(h))

≥ c1λ
−(k−1)λ−(p−1)|yk(p− 1)|2 (25)

for all k and p. Finally, since C <∞ it follows from (22)–(25) that (5) holds
with κ = C

c1λ2
and the proof is complete.

Note that the rate of convergence λ in this result does not depend on
the pass length. The storage function (6) can be considered as a vector
Lyapunov function for the controlled process formed by applying (12) to (1)
that guarantees exponential stability.

2.3. An example application

In many industrial processes, the dynamics can be adequately approxi-
mated as linear for analysis and control law design but in implementation an
actuator (or a sensor) becomes nonlinear due, for example, to saturation or
hysteresis. One possible model for the dynamics in such a case is

xk+1(p+ 1) = A11xk+1(p) + A12yk(p) + φ1(xk+1(p), yk(p))uk+1(p),

yk+1(p) = A21xk+1(p) + A22yk(p) + φ2(xk+1(p), yk(p))uk+1(p), (26)

where φ1 and φ2 are nonlinear vector functions of x and y and in the simplest
case φ1 and φ2 are constant vectors. Let

φ(xk+1(p), yk(p)) = [φT1 (xk+1(p), yk(t)) φ
T
2 (xk+1(p), yk(p))]

T .
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Also consider a square matrix, say H, and let H � 0 (respectively H ≺ 0) de-
note the symmetric positive definite (respectively negative definite) property
and choose a storage function in the form of (6) as

V1(xk+1(p) = xTk+1(p)P1xk+1(p),

V2(yk(p)) = yTk (p)P2yk(p), (27)

where P1 � 0 and P2 � 0, satisfy the Lyapunov inequality

ĀTPĀ− P +Q ≺ 0, (28)

with Ā =

[
A11 A12

A21 A22

]
, P =

[
P1 0
0 P2

]
, Q � 0.

Computing the divergence of the vector function (6) gives

DdV (xk+1(p), yk(p)) = [xTk+1(p), yTk (p)](ĀTPĀ

−P )[xTk+1(p), yTk (p)]T + [2[xTk+1(p), yTk (p)]T ĀTPφ(xk+1(p), yk(p))

+φT (xk+1(p), yk(p))Pφ(xk+1(p), yk(p)]uk+1(p).

Define an auxiliary output vector for (26) as

zk+1(p) = 2φT (xk+1(p), yk(p))PĀ[xTk+1(p) yTk (p)]T

+φT (xk+1(p), yk(p))Pφ(xk+1(p), yk(p))uk+1(p) (29)

and using (28) and (29) gives

DdV (xk+1(p), yk(p)) = [xTk+1(p), yTk (p)](ĀTPĀ

−P )[xTk+1(p), yTk (p)]T + zTk+1(p)uk+1(p) (30)

≤ zTk+1(p)uk+1(p)− [xTk+1(p), yTk (p)]Q[xTk+1(p), yTk (p)]T .

Hence it follows from (30) that a process described by (26) and (29) is ex-
ponentially G-passive with G = I, where I denotes the identity matrix of
compatible dimensions. Then using Theorem 1 the control law

uk+1(p) = −[I + φT (xk+1(p), yk(p))Pφ(xk+1(p), yk(p))]
−1

×2φT (xk+1(p), yk(p))PĀ[xTk+1(p), yTk (p)]T , (31)

applied to (26) results in a controlled process that is exponentially stable.
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3. Passivity and stabilization of differential repetitive processes

Consider differential nonlinear repetitive processes with pass length T <
∞ described over 0 ≤ t ≤ T by the state-space model

ẋk+1(t) = f1(xk+1(t), yk(t), uk+1(t)),

yk+1(t) = f2(xk+1(t), yk(t), uk+1(t)), (32)

where on pass k, xk(t) ∈ Rnx is the state vector, yk(t) ∈ Rny is the pass
profile vector, uk(t) ∈ Rnu is the input vector; f1, f2 and g are nonlinear
functions such that f1(0, 0, 0) = 0 , f2(0, 0, 0) = 0 and hence an equilibrium
at zero.

The boundary conditions, i.e, the pass state initial vector sequence and
the initial pass profile are assumed to be known and to satisfy the differential
equivalent of the conditions given in (3) for discrete processes. Hence they
are of the form

xk+1(0) = dk+1, k ≥ 0, |dk+1|2 ≤ κdλ
k+1
d , k ≥ 0,

y0(t) = f(t), |f(t)|2 ≤Mf , 0 ≤ t ≤ T, (33)

where the entries in dk+1 ∈ Rnx are known constants, the entries in f(t) ∈ Rny

are known functions of t and κd > 0, 0 < λd < 1. This model is the differential
counterpart of the model considered in the Section 2.

Remark 1. In this and the next section, several assumed properties of the
vector storage function will be invoked that are the natural counterparts for
the discrete processes considered previously in this paper. From this point
onwards, references to such properties must be interpreted in the differential
repetitive process sense.

Introduce, in an analogous manner to the discrete case in Section 2, the
auxiliary vector zk(t) ∈ Rnz given by

zk+1(t) = g(xk+1(t), yk(t), uk+1(t)), (34)

where g is a nonlinear function such that g(0, 0, 0) = 0. Suppose also that on
applying the control law

uk+1(t) = ψ(xk+1(t), yk(t)) (35)
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to (32) the function f1 satisfies the following Lipschitz condition with respect
to variables x and y:

|f1(x′, y′, ψ)− fi(x′′, y′′, ψ)| ≤ L(|x′ − x′′|+ |y′ − y′′|),
x′, x′′ ∈ Rnx , y′2, y

′′
2 ∈ Rny , ψ ∈ Rnu . (36)

Exponential stability for the resulting controlled process is defined as follows.

Definition 3. Consider the differential nonlinear repetitive process resulting
from the application of a control law of the form (35) to a process described
by (32) and (33). Then the resulting controlled process is said to be expo-
nentially stable if there exist real numbers κ > 0, λ > 0 and 0 < ζ < 1 such
that

|xk(t)|2 + |yk(t)|2 ≤ κ exp(−λt)ζk. (37)

To construct a control law of the form (35) that ensures exponential
stability of the controlled process, the analysis that follows is based on the
extension of passivity to differential nonlinear repetitive processes that also
makes use of a vector storage function of the form (6). Also the divergence
operator of this function along the trajectories of (32) is defined as

DcV (xk+1(t), yk(t)) =
dV1(xk+1(t))

dt
+ ∆kV2(yk(t)), (38)

where ∆kV2(yk(t)) = V2(yk+1(t))− V2(yk(t)).

Definition 4. A differential nonlinear repetitive process described by (32)
and (33) is said to be exponentially G passive if there exists a vector function
(6) and positive scalars c1, c2 and c3 such that the conditions (9), (10) and

DcV (xk+1(t), yk(t)) ≤ zTk+1(t)Guk+1(t)

− c3(|xk+1(t)|2 + |yk(t)|2) (39)

hold, where G is a constant matrix of compatible dimension and z is given
by (34).

Theorem 2. Suppose that a differential nonlinear repetitive process described
by (32) and (33) is G passive and there exists a positive scalar c4 such that∣∣∣∣∂V1(x)

∂x

∣∣∣∣ ≤ c4|x|. (40)
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Suppose also that i) there exists a function ϕ(z) such that ϕ(0) = 0 and
zTGϕ(z) > 0 if z 6= 0 and ii) on application of a control law of the form (35)
the function f1 satisfies the Lipschitz conditions given in (36). Then the
controlled process is exponentially stable.

Proof. It follows from (4) that there exists c̄3 < c3 such that λ
1
2
d < ζ :=

1− c̄3
c2
< 1 and using (12) gives

DcV (xk+1(t), yk(t)) ≤ −zTk+1(t)Gϕ(zk+1(t))

−c̄3(|xk+1(t)|2 + |yk(t)|2) ≤ −c̄3(|xk+1(t)|2 + |yk(t)|2). (41)

Also it follows from (4) and (41) that

dV1(xk+1(t))

dt
+ λV1(xk+1(t))

+V2(yk+1(t))− ζV2(yk(t)) ≤ 0, (42)

where λ ∈ (0, 1). Solving the inequality (42) with respect to V1(xk+1(t)) gives

V1(xk+1(t)) ≤ V1(xk+1(0))e−λt

−
∫ t

0

e−λ(t−s)[V2(yk+1(s))− ζV2(yk(s))]ds. (43)

Introducing

Wk+1(t) := V1(xk+1(0))e−λt − V1(xk+1(t)),

Hk(t) :=

∫ t

0

e−λ(t−s)V2(yk(s))ds.

enables (43) to be rewritten as

Hk+1(t) ≤ ζHk(t) +Wk+1(t). (44)

Solving the inequality (44) gives

Hn(t) ≤ ζnH0(t) +
n∑
k=1

Wk(t)ζ
n−k (45)
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or

n∑
k=1

V1(xk(t))ζ
n−k +

∫ t

0

e−λ(t−s)V2(yn(s))ds

≤ e−λt
n∑
k=1

V1(xk(0))ζn−k

+ζn
∫ t

0

e−λ(t−s)V2(y0(s))ds.

The last inequality is equivalent to

eλt
n∑
k=1

V1(xk(t))ζ
−k + ζ−n

∫ t

0

eλsV2(yn(s))ds

≤ ζ−n
n∑
k=1

V1(xk(0))ζn−k

+eλt
∫ t

0

e−λ(t−s)V2(y0(s))ds. (46)

Evaluation of the right hand side of (46) (recalling the assumption on the
boundary conditions) gives

ζ−n
n∑
k=1

V1(xk(0))ζn−k + eλt
∫ t

0

e−λ(t−s)V2(y0(s))ds

≤
n∑
k=1

c2κdλ
k
dζ
−k +

∫ t

0

c2Mfe
λsds

≤
n∑
k=1

c2κd(λ
1
2
d )k(λ

1
2
d )kζ−k +

c2Mf (e
λt − 1)

λ

≤
n∑
k=1

c2κdζ
kζkζ−k +

c2Mf (e
λT − 1)

λ

≤
∞∑
k=1

c2κdζ
k +

c2Mf (e
λT − 1)

λ

=
c2κd
1− ζ

+
c2Mf (e

λT − 1)

λ
= C. (47)
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and it follows from (46) and (47) that

c1|xn(t)|2ζ−neλt ≤ C for all t ∈ [0,∞], n = 0, 1, ... (48)

Evaluating dV1(x)
dt

and using the Lipschitz conditions (36) and (40) gives

dV1(xk+1(t))

dt
=
∂V1(xk+1(t))

∂xk+1(t)
f1(xk+1(t), yk(t),−ϕ(zk+1(t))) ≥

≥ −
∣∣∣∣∂V1(xk+1(t))

∂xk+1(t)

∣∣∣∣ |f1(xk+1(t), yk(t),−ϕ(zk+1(t)))| ≥

≥ −c4L(|xk+1(t)|+ ε|yk(t)|)(|xk+1(t)|+ |yk(t)|) ≥
≥ −αV1(xk+1(t)− βεV2(yk(t)), (49)

where α = c4L(ε+1)2

c1ε
, β = c4L

c1
, and ε is arbitrary positive scalar. It follows

from (42) and (49) that

V2(yk+1(t))− z0V2(yk(t)) ≤ αV1(xk+1(t)), (50)

where z0 = ζ + βε. Choosing ε small enough such that 0 < z0 < 1, solving
(50) and using (48) gives

V2(yn(t)) ≤ zn0V2(y0(t)) +
αc2

c1

n∑
k=1

zn−k0 ζke−λt.

This last inequality and (33) establishes that the function V2(yn(t))ζ−n0 eλt

with ζ0 > z0 is bounded for all t ∈ [0,∞], n = 0, 1, ... Moreover, using (10)
gives

|yn(t)|2 ≤ C̄ζn0 e−λt, (51)

where C̄ is a positive constant. It follows immediately from (48) and (51)
that (5) holds and the proof is complete.

Note that as in case of discrete processes both ζ and λ, defining the rate
of convergence, do not depend on the pass length. Moreover, the example
application for the discrete process results given in Section 2.3 extend in a
natural manner to differential dynamics and hence the details are omitted.
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4. H∞ stabilization and disturbance attenuation

In applications, repetitive processes may also be subject to disturbances
and this section extends the stabilizing control law design to also include dis-
turbance rejection. Again, the results derived hold for discrete or differential
dynamics and hence this section only considers the latter case.

Consider a differential nonlinear repetitive processes in the presence of
disturbances described over 0 ≤ t ≤ T <∞ by the state-space model

ẋk+1(t) = f1(xk+1(t), yk(t), uk+1(t), wk(t)),

yk+1(t) = f2(xk+1(t), yk(t), uk+1(t), wk(t)), (52)

where xk(t) ∈ Rnx , yk(t) ∈ Rny and uk(t) ∈ Rnu are as in (32) and wk(t) ∈
Rnw is a disturbance vector, f1 and f2 are nonlinear functions such that
f1(0, 0, 0, 0) = 0 , f2(0, 0, 0, 0) = 0 (and hence an equilibrium at zero) and
both x and y are continuous functions of t. The boundary conditions are
given by (33). In this case the dissipativity property is studied with respect
to the disturbance input w with the pass profile vector y treated as the
output. Assume also that wk(t) ∈ L2([0,∞), [0,∞)) and define

||w||2 =

√√√√√ ∞∑
k=0

∞∫
0

|wk(t)|2dt <∞.

Definition 5. A differential nonlinear repetitive process described by (52)
and uk+1(t) = ψ(xk+1(t), yk(t)), ψ(0, 0) = 0 is said to be exponentially stable
with prescribed H∞ disturbance attenuation level γ if it is exponentially stable
for wk(t) = 0 and for wk(t) ∈ L2([0,∞), [0,∞)) and zero boundary conditions

||y||2 < γ||w||2. (53)

Consider a process described by (52) and wk(t) ∈ L2([0,∞), [0,∞)). Then
the following result can be established.

Theorem 3. Assume that for some u = ψ(x, y), ψ(0, 0) = 0 function f1

satisfies Lipschitz condition (36) and the inequality

DcV (xk+1(t), yk(t)) + |xk+1(t)|2 + |yk(t)|2

−γ2|wk(t)|2 ≤ 0 (54)
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has a solution V (x, y) satisfying (9), (10) and (40). Then the controlled
process resulting from applying uk+1(t) = ψ(xk+1(t), yk(t)) to (52) is expo-
nentially stable with prescribed H∞ disturbance attenuation level γ.

Proof. Let the pair (V (x, y), ϕ(x, y)) be a solution of (54). If wk(t) = 0,
it follows from (54) that

DcV (xk+1(t), yk(t)) ≤ −(|xϕ,k+1(t)|2 + |yϕ,k(t)|2) (55)

and by Theorem 2 the controlled process is exponentially stable. Now con-
sider wk(t) ∈ L2([0,∞), [0,∞)) and then it follows from (55) that

dV1(xk+1(t))

dt
+ V2(yk+1(t))− V2(yk(t))

≤ −(|xk+1(t)|2 + |yϕ,k(t)|2 − γ2|wk(t)|2)

≤ −(|yk(t)|2 − γ2|wk(t)|2). (56)

Integrating and summing both the sides of (56) and rearranging the sum-
mands gives

n∑
k=0

∫ t

0

|yk(s)|2ds ≤
n∑
k=0

∫ t

0

γ2|wk(s)|2ds

−
n∑
k=0

V1(xk+1(t))−
∫ t

0

V2(yk(t))

≤
n∑
k=0

∫ t

0

γ2|wk(s)|2ds. (57)

It follows on letting n, t → ∞ in (57) that (53) holds and the proof is
complete.

5. Conclusions

This paper has developed the first results on the use of passivity in the
stability analysis and control law design for nonlinear repetitive processes.
Repetitive processes are a distinct class of 2D systems that have physical
applications and, in particular, for linear dynamic model based ILC laws de-
fined in this setting have been experimentally verified. Overall, these results
provide a basis for onward research with the long-term aim of providing a
mature setting for control law design. To further enhance the subject area,
further research should also consider the case when the state initial vector or
each pass is an explicit function of the previous pass profile vector.
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