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Abstract. Maximum hands-off control aims to maximize the length of time over which zero actuator values are applied to a system when executing
specified control tasks. To tackle such problems, recent literature has investigated optimal control problems which penalize the size of the support of the
control function and thereby lead to desired sparsity properties. This article gives the exact set of necessary conditions for a maximum hands-off optimal
control problem using an L0-(semi)norm, and also provides sufficient conditions for the optimality of such controls. Numerical example illustrates that
adopting an L0 cost leads to a sparse control, whereas an L1-relaxation in singular problems leads to a non-sparse solution.

1. Introduction

Motivated by a diverse array of applications in automotive in-
dustry, railway vehicles, and networked control, the recent works
[17, 16] dealt in detail with the concept of maximum hands-off
control. The purpose of maximum hands-off control is to de-
sign actuator signals which are most often zero, but nonetheless
achieve given control objectives. This motivates the use of instanta-
neous cost functions where the control effort is penalized via the
L0-(semi)norm, thereby leading to a sparse control function, cf.
[14, 18, 19, 3, 6, 7, 15]. Sparse controls are of great importance in
situations where a central processor must be shared by different con-
trollers, and sparse control is a new and emerging area of research,
including applications in the theory of control of partial differential
equations [9, 8, 20, 21, 11].

Due to the discontinuous and non-convex nature of the instan-
taneous cost function in L0-optimal control problems, solving such
problems is in general difficult. Hence, the precursor article [16]
focused on relaxations to the problem, akin to methods used in com-
pressed sensing applications [12]. To be more precise, [16] exam-
ined smooth and convex relaxations of the maximum hands-off con-
trol problem, including considering an L1-cost and regularizations
with an L2-cost to obtain smooth hands-off control. (It is a well-
known and classical result that under “nonsingularity” assumptions
on the control system [1, Chapter 8], L1-costs lead to sparse solu-
tions in the control. However, in singular problem instances, it is
unclear whether L1-regularizations lead to sparse solutions.) The
exact L0-optimal control problem was not investigated in [16].

The purpose of the present article is to complement [16] by di-
rectly dealing with the underlying non-smooth and non-convex L0-
optimal control problem without the aid of smooth or convex relax-
ations. We will focus on nonlinear controlled dynamical systems of
the form

(1) ż(t) = φ
(
z(t), u(t)

)
with state z, input u and where φ : Rd×Rm −→ Rd is a continuously
differentiable map describing the open-loop system dynamics. The
maximum hands-off control problem aims to minimize the support
of the control map, or in other words, maximize the time duration
over which the control map is exactly zero.

In other words, given real numbers a, b ∈ R with a < b, vectors
A, B ∈ Rd, a compact set U ⊂ Rm containing 0 ∈ Rm in its interior,

we consider the optimal control problem

(2)

minimize
u

‖u‖L0([a,b])

subject to


ż(t) = φ

(
z(t), u(t)

)
for a.e. t ∈ [a, b],

z(a) = A, z(b) = B,
u : [a, b] −→ U Lebesgue measurable.

Here the L0-(semi)norm1 of a map u : [a, b] −→ U is defined by the
Lebesgue measure of the support of u, i.e.,

‖u‖L0([a,b]) B Leb
({

s ∈ [a, b]
∣∣∣ u(s) , 0

})
.

Observe that if the minimum time to transfer the system states from
z(a) = A to z(b) = B is larger than the given duration b − a, then
the optimal control problem (2) has no solution. Thus, a standing
assumption used throughout this work is that there is a feasible so-
lution to (2). In other words, despite the limited control authority
described by the compact set U, we shall assume that it is possible
to steer the system states from A to B in finite time b − a. Observe
also that, unlike minimum attention control à la [5], the optimal con-
trol problem (2) does not penalize the rate of change of the control.
Nonetheless, (2) can be viewed through the looking glass of least
attention in the sense that the control is ‘active’ for the least dura-
tion of time. The current work investigates optimality in (2) using a
nonsmooth maximum principle as summarized in [10, Chapter 22].

The main contributions and outline of this article are given be-
low:

(i) We show that (2) can be recast in the form of an optimal con-
trol problem involving an integral cost with a discontinuous
cost function. We apply a non-smooth Pontryagin maximum
principle directly to problem (2) and obtain an exact set of nec-
essary conditions for optimality. This result is presented in §2.
It characterizes solutions to (2) provided that they exist.

(ii) §3 sheds further insight into the case where the system dy-
namics in (1) are linear. This section also illustrates that, per-
haps contrary to intuition, in singular problem instances, L1-
relaxations may fail to give sparse controls; cf. [1, Chapter 8].

(iii) The Pontryagin maximum principle gives necessary conditions
for an extremum. Naturally, any state-action trajectory satisfy-
ing the Pontryagin maximum principle is not necessarily opti-
mal. In §2 we provide conditions under which the necessary
conditions are also sufficient for optimality. Our proof of opti-
mality follows from inductive methods in optimal control.

Notation: The notations employed in this article are standard. The
Euclidean norm of a vector z, belonging to the d-dimensional Eu-
clidean space Rd, is denoted by ‖z‖; vectors are treated as column

1Note that our choice of calling the map u 7−→ ‖u‖L0([a,b]) a seminorm is technically not precise because this map does not satisfy the positive homogeneity property despite
being positive definite and satisfying the triangle inequality. However, here we choose to overload the term seminorm in favour of being pedantic.
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2 Maximum Hands-off control: Existence and characterization

vectors. For a set S we let z 7−→ 1S (z) denote the indicator (charac-
teristic) function of the set S defined to be 1 if z ∈ S and 0 otherwise.

Remark 1. The version of the maximum hands-off control problem
posed in [17, 16] is slightly different from the one we examine in (2)
above. Indeed, [16] studies the following problem:

(3)

minimize
u

1
b − a

m∑
i=1

λi ‖ui‖L0([a,b])

subject to


ż(t) = φ

(
z(t), u(t)

)
for a.e. t ∈ [a, b],

z(a) = A, z(b) = B,
u : [a, b] −→ U Lebesgue measurable,

where {λi}
m
i=1 are given positive weights. This cost function features

the controls of a multivariable plant as additive terms. In contrast,
and by noting that∫ b

a
1{0}(u(s)) ds =

∫ b

a

m∏
i=1

1{0}(ui(s)) ds,

(where the 0 on the left-hand side belongs to Rm and the one on the
right-hand side belongs toR,) the cost function (2) features a multi-
plicative form in the controls. The techniques exposed for (2) in the
sequel carry over in a straightforward fashion to (3). In order not to
blur the message of this article, we stick to the simpler case of (2).
�

2. Necessary Conditions for Optimality

By definition, we have

(4) ‖u‖L0([a,b]) = b − a −
∫ b

a
1{0}(u(s)) ds.

Since a and b are fixed, the minimization of ‖u‖L0([a,b]) in (2) is equiv-

alent to the minimization of −
∫ b

a
1{0}(u(s)) ds. In view of this, we

rewrite the optimal control problem (2) as

(5)

minimize
u

−

∫ b

a
1{0}(u(s)) ds

subject to


ż(t) = φ

(
z(t), u(t)

)
for a.e. t ∈ [a, b],

z(a) = A, z(b) = B,
u : [a, b] −→ U Lebesgue measurable.

We have the following Proposition:

Proposition 1. Associated to every solution [a, b] 3 t 7−→(
z?(t), u?(t)

)
to (2) there exist an absolutely continuous curve [a, b] 3

t 7−→ p(t) ∈ Rd and a number η = 0 or 1 such that for a.e. t ∈ [a, b]:

(6)


ż?(t) = φ

(
z?(t), u?(t)

)
, z?(a) = A, z?(b) = B,

ṗ(t) = −
(
∂zφ

(
z?(t), u?(t)

))>
p(t),

u?(t) ∈ arg max
v∈U

{〈
p(t), φ

(
z?(t), v

)〉
+ η1{0}(v)

}
,

and

(7)
(
η, p(t)

)
, (0, 0) ∈ R ×Rd for all t ∈ [a, b].

A proof of Proposition 1 is provided in Appendix A.

Remark 2. Proposition 1 gives a set of necessary conditions for op-
timality of state-action trajectories t 7−→

(
z?(t), u?(t)

)
in the same

spirit as the standard first order necessary conditions for an opti-
mum in a finite-dimensional optimization problem. We see that the
ordinary differential equations (o.d.e.’s) describing the system state
z? and its adjoint p constitute a set of 2d-dimensional o.d.e.’s with
2d constraints. This amounts to a well-defined boundary value prob-
lem in the sense of Carathéodory [13, Chapter 1]. Indeed, the con-
trol map u? is Lebesgue measurable, and depends parametrically

on p; therefore, the right-hand side of (1) under u? satisfies the
Carathéodory conditions [13, Chapter 1] that guarantee existence of
a Carathéodory solution.

Remark 3. Numerical solutions to differential equations such as the
ones in (6) are typically carried out by what are known as the shoot-
ing and multiple shooting methods. This is an active area of re-
search; see [2, Chapter 3] for a detailed discussion.

Remark 4. The quadruple
(
η, p(·), z?(·), u?(·)

)
is known as the ex-

tremal lift of the optimal state-action trajectory
(
z?(·), u?(·)

)
. The

scalar η is known as the abnormal multiplier. If η = 1, then the ex-
tremal t 7−→

(
η, p(t), z?(t), u?(t)

)
is said to be normal; if η = 0, then

the extremal is said to be abnormal. The scalar η is a Lagrange mul-
tiplier associated to the instantaneous cost. Interestingly, the curves
for which η = 0 are not detected by the standard calculus of varia-
tions approach [10]. The reason is that in calculus of variations the
underlying assumption is that there are curves “close” to the optimal
ones satisfying the same boundary conditions. But this assumption
fails whenever the optimal curves are isolated in the sense that there
is only one curve satisfying the given boundary conditions. In that
case, a comparison between the costs corresponding to this optimal
curve and other neighbouring curves turns out to be impossible to
perform. The Pontryagin maximum principle, however, detects such
abnormal curves and characterizes them [10]. At the level of gener-
ality of Proposition 1 we cannot rule out the presence of abnormal
extremals in our setting.

Proposition 1 characterizes the necessary conditions for optimal-
ity of maps [a, b] 3 t 7−→

(
z(t), u(t)

)
when the map φ in (1) is non-

linear. In the following section, we will further examine the special
case of linear plant dynamics.

3. Linear PlantModels

In this section we apply the results of §2 to time-invariant linear
systems described by:

(8) ż(t) = φ
(
z(t), u(t)

)
= Fz(t) + Gu(t),

where F ∈ Rd×d and G ∈ Rd×m are given. As before, we assume
that the time difference b−a is larger than the minimum duration re-
quired to execute the transfer of the state z(a) = A to z(b) = B. Then
we can use Proposition 1 to obtain the following necessary condition
for optimality:

Corollary 2. Consider the optimal control problem (2) with φ of
the form (8). Then associated to every solution [a, b] 3 t 7−→(
z?(t), u?(t)

)
to (2) there exists a number η = 0 or 1 and a vector

p̂ ∈ Rd such that: If η = 1, then

ż?(t) = Fz?(t) + Gu?(t), z?(a) = A, z?(b) = B,

u?(t) ∈

arg max
v∈U

〈
G>e(b−t)F> p̂, v

〉
if max

v∈U

〈
G>e(b−t)F> p̂, v

〉
> 1,

0 otherwise.

If η = 0, then in the above we simply have

u?(t) ∈ arg max
v∈U

〈
G>e(b−t)F> p̂, v

〉
and p̂ , 0.

Observe that in the normal case of η = 1, we have sparse con-
trols since the optimal controls are explicitly set to 0. We provide
a proof of Corollary 2 in Appendix A, and note that the message of
Remark 2 applies accordingly to Corollary 2.
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Remark 5. For the particular case where the control inputs are con-
strained to lie in the closed unit ball (with respect to the Euclidean
norm) centered at 0 ∈ Rm, we have the particularly simple formula
for the optimal control in the context of Corollary 2 if η = 1:

u?(t) =

0 if
∥∥∥G>e(b−t)F> p̂

∥∥∥ < 1,
G>e(b−t)F> p̂∥∥∥∥G>e(b−t)F> p̂

∥∥∥∥ otherwise.

In the further special case of the control dimension being 1 and
U = [−1, 1], we have

(9) u?(t) =


1 if G>e(b−t)F> p̂ > 1,
0 if

∣∣∣G>e(b−t)F> p̂
∣∣∣ < 1,

−1 if G>e(b−t)F> p̂ 6 −1.

Both the optimal controls above illustrate the bang-off-bang nature
of the optimal control mentioned in [16, Section IV.B]. Of course,
the precise combination of the zeros and ones will depend on the
initial and final states, as illustrated below.

4. Examples

We illustrate our results in this section with two examples:

Example 6. Consider the following scalar linear plant

ż(t) = u(t),

with initial and final conditions given by z(0) = 3, z(5) = 0. The set
of admissible controls is given by U = [−1, 1]. We seek a control
that is feasible given the preceding conditions, and that is set to 0
for the maximal duration of time. In the context of this simple ex-
ample it is clear that any control that is equal to −1 on a Lebesgue
measurable subset of [0, 5] of measure 3 and 0 elsewhere is feasi-
ble. In addition, any such control achieves the minimum cost in the
problem (5), and the corresponding minimum cost is precisely −2.

We verify the conditions of Corollary 2 in the above setting: The
adjoint equation is a constant since the Hamiltonian is independent
of the space variable. Therefore, p(t) = p0 for some p0 ∈ R and all
t ∈ [0, 5]. Since

u?(t) ∈ arg max
v∈[−1,1]

{
p0v + η1{0}(v)

}
,

we have

u?(t) ∈



{sgn(p0)} if η = 0,
{0} if |p0| < 1,
{sgn(p0)} if |p0| > 1,
{0, 1} if p0 = 1,
{0,−1} if p0 = −1,

if η = 1.

The first case of η = 0 is ruled out because the corresponding con-
stant control, regardless of the value of the constant, is not feasible.
In other words, our probelm conforms to the normal case. We rule
out the two constant controls corresponding to |p0| < 1 and |p0| > 1
since they too are not feasible. For the same reason we also eliminate
all controls taking values in {0, 1}. The only remaining possibility
corresponds to any feasible control taking values in {0,−1}. We de-
scribed an uncountable family of such controls above, and therefore,
each of these controls satisfies the assertions of Corollary 2.

Example 7. Consider the following linear plant:

(10) ż(t) =

(
0 1
0 0

)
z(t) +

(
0
1

)
u(t), z(0) =

(
ξ1

ξ2

)
.

We seek a control that drives the states t 7−→ z(t) from a given initial
state z(0) to z(T ) = 0. The admissible action set is U = [−1, 1], and
T > 0 is larger than the minimum time required to enable the above

manoeuvre. The control is required to be such that it is equal to 0
for the maximal possible duration of time. In particular, we consider
the following choices

(11) T = 5, ξ1 = 10, ξ2 = −3.

In the above we have

F =

(
0 1
0 0

)
and G =

(
0
1

)
.

It is immediate that F2 = 0; hence

(12) e(b−t)F> =

(
1 0

b − t 1

)
.

In view of (6), we note that the adjoint trajectory satisfies

(13) ṗ(t) = −

(
0 0
1 0

)
p(t),

and hence p1(t) = p̂1 and p2(t) = p̂1(b− t) + p̂2 for some p̂1, p̂2 ∈ R.

We provide a feasible control first: Consider a control of the
form

(14) u◦(t) =


0 if t ∈ [0, θ1[,
1 if t ∈ [θ1, θ2[,
0 if t ∈ [θ2,T ],

for some 0 6 θ1 6 θ2 6 T to be determined. Under this control we
compute the state trajectory, and from the boundary conditions we
can obtain the precise values of θ1 and θ2. In fact, it holds that

z2(t) = −3 +

∫ t

0
u◦(s) ds

and

z1(t) = 10 − 3t +

∫ t

0

∫ s

0
u◦(τ) dτ ds.

Straightforward computations now lead to θ1 = 11
6 and θ2 = 29

6 . The
cost incurred by the above control is, therefore, −2.

We next establish that the minimum cost for our problem is
precisely −3.2 Indeed, consider the evolution of the second state:
ż2(t) = u(t). Since z2(0) = −3, z2(5) = 0, and the admissible control
set is [−1, 1], it follows that any control that achieves this manoeuvre
must spend at least 3 units of time with non-zero control values. In
other words, the minimum cost is, indeed, −2.

Suppose η = 0. Then the optimal control satisfies

u?(t) ∈ arg max
v∈[−1,1]

{v(p1(5 − t) + p̂2)}

according to Corollary 2. Note that both p̂1, p̂2 cannot be zero simul-
taneously. Thus η = 1, i.e., our problem corresponds to the normal
case.

Using the result of Corollary 2 in (9) we obtain the following
necessary conditions for L0-optimal controls in this normal case:

(15) u?(t) ∈



{1} if p̂1(5 − t) + p̂2 > 1,
{0, 1} if p̂1(5 − t) + p̂2 = 1,
{0} if | p̂1(5 − t) + p̂2| < 1,
{−1, 0} if p̂1(5 − t) + p̂2 = −1,
{−1} if p̂1(5 − t) + p̂2 6 −1,

for t ∈ [0, 5] and for some p̂ B (p̂1, p̂2). In view of (7), it is possible
that both p̂1, p̂2 are zero, but in this case u?(t) ≡ 0, which is not a fea-
sible control. Therefore, p̂ , 0. Since the function t 7−→ p̂1(5−t)+ p̂2

is affine, it is monotone — decreasing, increasing, or constant, ex-
cept possibly at the instants t at which p̂1(5 − t) + p̂2 = 1 or −1.

2This slick argument was pointed out to us by Witold Respondek.
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Thus, in this exceptional situation, the control will be monotone al-
most everywhere. Straightforward calculations exhausting all cor-
responding combinations of switching controls show that no such
control is feasible! However if p̂1 = 0 and p̂2 is either 1 or −1, we
have

u?(t) ∈

{0, 1} if p̂2 = 1,
{−1, 0} if p̂2 = −1.

The feasible control u◦(·) in (14) satisfies this situation, and hence
we conclude that p̂1 = 0 and p̂2 = 1.

The L0-optimal control corresponding to this problem is illus-
trated via a solid line in Figure 1.

Interestingly, it follows from [1, Control Law 8-3] that the asso-
ciated L1 control problem will be singular3 if the components of the
initial state satisfy:

ξ1 >
ξ2

2

2
, ξ2 < 0, −

ξ2

2
−
ξ1

ξ2
> T.

in which case the L1-optimal control is not necessarily L0-optimal.
In fact, if we choose parameters as in (11), then the L1-optimal con-
trol (obtained via numerical optimization) is as shown in dashed
lines in Figure 1.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.2

0.4

0.6

0.8

1

time (sec)

u(
t)

Optimal Control

 

 
L1 optimal
L0 optimal

Figure 1. L0 and L1-optimal controls corre-
sponding to Example 7.

Quite evidently and contrary to what one might expect (cf. [1,
Chapter 8]), the L1-optimal controls are not sparse and hence can-
not be L0-optimal. This observation opens the question of inverse
optimality of bang-off-bang solutions. It also relates to the more gen-
eral problem of elucidating how the choice of cost functions leads to
properties of solutions. �

5. Sufficient conditions for optimality

Using a non-smooth maximum principle in §2 we established
the necessary conditions (6) for solutions to (2). The Pontryagin
maximum principle provides necessary conditions for optimality,
and as such, state-action trajectories satisfying these conditions are
not necessarily optimal. In this section we provide conditions under
which, in the case of our maximum hands-off control problem (2),
the necessary conditions of the maximum principle are also suffi-
cient for optimality.

Remark 8. This section does not deal with existence of optimal con-
trols; the latter appears to be a difficult problem in our case. In par-
ticular, the standard existence theorems for Bolza problems, e.g., [4,
Theorem 5.2.1], etc, do not apply directly to (2) on account of the
discontinuous nature of the instantaneous cost function −1{0}(·).

We have the following result:

Theorem 3. Consider the optimal control problem (2) along with
its associated data. Suppose that for each u ∈ U the map φ(·, u) is
affine. Suppose that a normal (η = 1) state-action trajectory

[a, b] 3 t 7−→
(
z?(t), u?(t)

)
∈ Rd ×U

satisfying the conditions of Proposition 1 exists. Then this state-
action trajectory is locally optimal.

Proof. By assumption η = 1, i.e., we have the normal case, and the
map φ(·, u) is affine for every u ∈ U. This leads to concavity4 of the
Hamiltonian function

z 7−→ H
(
z, p(t), u?(t)

)
=

〈
p(t), φ

(
z, u?(t)

)〉
+ 1{0}(u?(t)) ∈ R.

Now [10, Theorem 24.1, Corollary 24.2] asserts that the state-action
trajectory [a, b] 3 t 7−→

(
z?(t), u?(t)

)
satisfying the conditions of

Proposition 1 attains a (local) minimum in (2). �

The difference between the above result and that in §2 lies in
that Proposition 1 establishes a necessary condition, whereas Theo-
rem 3 gives conditions for an optimal solution that satisfies in turn
the conditions of Proposition 1.

We finalize our analysis by noting that the assumptions in The-
orem 3 will be satisfied, e.g., when the problem data in (2) is affine
in the state variable.

6. Conclusions

The present article has derived the exact set of necessary condi-
tions for a control function to solve a maximum hands-off optimal
control problem. The question of optimality of solutions to such
problems was addressed thereafter. L0-cost optimal control prob-
lems are, of course, not limited to the class of exact control prob-
lems that involve execution of manoeuvres under given boundary
conditions in a given time. Indeed, the primary engine behind our
results—the nonsmooth maximum principle—admits more general
boundary conditions than the ones that we have dealt with here. Fu-
ture work may include examining the question of inverse optimality
of bang-off-bang controls and also investigating how the choice of
instantaneous cost function influences the shape of the optimal con-
trol function.

Appendix A. Proofs of Proposition 1 and Corollary 2

We apply the non-smooth Pontryagin maximum principle [10,
Theorem 22.26] to the optimal control problem (5) to characterize
its solutions [a, b] 3 t 7−→

(
z?(t), u?(t)

)
. For the sake of complete-

ness, we adapt the non-smooth Pontryagin maximum principle from
the monograph [10], to which we refer the reader for complete de-
tails including the notations.5

3Here “singularity” is meant in the sense of [1]; it is not a universally accepted terminology!
4Recall that a map ψ : Rd −→ R is concave if for every x1, x2 ∈ R

d and every α ∈ [0, 1] we have ψ
(
(1 − α)x1 + αx2

)
> (1 − α)ψ(x1) + αψ(x2).

5Mention must be made of the fact that the hypotheses of [10, Theorem 22.26] are considerably weaker than the hypotheses of Theorem 4 below (which is why it is an
adaptation of [10, Theorem 22.26]); for the present purpose, further generality is not needed.
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Theorem 4 ([10, Theorem 22.26]). Consider the optimal control
problem

(16)

minimize
u

J(x, u) =

∫ b

a
Λ
(
u(t)

)
dt

subject to


ẋ(t) = f

(
x(t), u(t)

)
for a.e. t ∈ [a, b],

u : [a, b] −→ U Lebesgue measurable,(
x(a), x(b)

)
∈ E ⊂ Rd ×Rd,

where Λ : U −→ R is bounded and lower semicontinuous,6

f : Rd×U −→ Rd is continuously differentiable,U ⊂ Rm compact,
and E is closed. Let [a, b] 3 t 7−→

(
x?(t), u?(t)

)
be a local minimizer

of (16). For a real number η, let the Hamiltonian Hη be defined by

Hη(x, p, u) = 〈p, f (x, u)〉 − ηΛ(u).

Then there exists an absolutely continuous map p : [a, b] → Rn

together with a scalar η equal to 0 or 1 satisfying the nontriviality
condition for all t ∈ [a, b]:

(17)
(
η, p(t)

)
, 0,

the transversality condition:

(18)
(
p(a),−p(b)

)
∈ NL

E
(
x?(a), x?(b)

)
,

where NL
E
(
x?(a), x?(b)

)
is the limiting normal cone to E at the point(

x?(a), x?(b)
)
, the adjoint equation for a.e. t ∈ [a, b]:

(19) − ṗ(t) = ∂xHη(·, p(t), u?(t)
)
(x?(t)),

the Hamiltonian maximum condition for a.e. t ∈ [a, b]:

(20) Hη(x?(t), p(t), u?(t)
)

= sup
v∈U

Hη(x?(t), p(t), v
)
,

as well as the constancy of the Hamiltonian for a.e. t ∈ [a, b]:

Hη(x?(t), p(t), u?(t)
)

= sup
v∈U

Hη(x?(t), p(t), u
)

= h.

The above non-smooth maximum principle can be used to derive
the exact set of necessary conditions for maximum hands-off control
(2) as follows:

Proof of Proposition 1. We apply the non-smooth Pontryagin max-
imum principle Theorem 4 to the optimal control problem (5). For
η > 0 we define the Hamiltonian function (cf. [10, p. 464])

Rd ×Rd ×U 3 (ξ, π, µ) 7−→

Hη(ξ, π, µ) B 〈π, φ(ξ, µ)〉 + η1{0}(µ) ∈ R.

In order to derive the adjoint state equation, we notice that for fixed
π, µ, the function Rd 3 ξ 7−→ Hη(ξ, π, µ) is smooth. It follows that
the adjoint state differential equation (19),7 is given by

(21)
ṗ(t) = −∂ξHη(z?(t), p(t), u?(t)

)
= −

(
∂ξφ

(
z?(t), u?(t)

))>
p(t),

for a.e. t ∈ [a, b].

This o.d.e. is linear in p, and due to continuous differentiability of φ,
admits a unique solution on [a, b].

With E B {(A, B)} ⊂ Rd×Rd being the end-points, the transver-
sality condition (18) to (21) is given by(

p(a),−p(b)
)
∈ NL

E
(
z?(a), z?(b)

)
= NL

E(A, B),

where NL
E(A, B) is the limiting normal cone to E at (A, B) as defined

in [10, p. 244]. Since E is a singleton, it follows from the defini-
tions in [10, p. 244, p. 240] that NL

E(A, B) = Rd × Rd. In other
words, the boundary conditions of the adjoint state equation (21) are
unconstrained.

The Hamiltonian maximization condition (20) is given by

Hη(z?(t), p(t), u?(t)
)

=
〈
p(t), φ

(
z?(t), u?(t)

)〉
+ η1{0}(u?(t))

= sup
v∈U

{〈
p(t), φ

(
z?(t), v

)〉
+ η1{0}(v)

}
for a.e. t ∈ [a, b]. Since the function

U 3 v 7−→
〈
p(t), φ

(
z?(t), v

)〉
+ η1{0}(v) ∈ R

is upper semicontinuous, the supremum is attained in U by Weier-
strass’ theorem. In other words, the optimal control u? is given by,
for a.e. t ∈ [a, b],

u?(t) ∈ arg max
v∈U

{〈
p(t), φ

(
z?(t), v

)〉
+ η1{0}(v)

}
.

Finally, the nontriviality condition (17) states that (η, p(t)) ,
(0, 0) ∈ R × Rd for every t ∈ [a, b]. Thus, solutions [a, b] 3 t 7−→(
z?(t), u?(t)

)
to (5) must satisfy equations (6)-(7). �

Proof of Corollary 2. If η = 1, for the linear case (i.e., φ of the form
(8)), the adjoint state equation is given by

ṗ(t) = −F>p(t) for a.e. t ∈ [a, b],

which leads to the general solution

p(t) = e−(t−a)F> p(a) for all t ∈ [a, b].

The transversality condition p̂ ∈ Rd gives the terminal condition
p(b) = p̂. This condition does not provide any further information
about the end-point conditions for the adjoint equation. However,
from the adjoint state condition and the transversality condition we
have p̂ = p(b) = e−(b−a)F> p(a), which shows that

p(a) = e(b−a)F> p̂.

In terms of the final condition p̂, the solution to the adjoint state
equation thus reduces to

p(t) = e(b−t)F> p̂ for all t ∈ [a, b].

In view of the above, the Hamiltonian maximization condition
becomes8

H
(
z?(t), p(t), u?(t)

)
= 〈p(t), Fz?(t) + Gu?(t)〉 + 1{0}(u?(t))

= sup
v∈U

{
〈p(t), Fz?(t) + Gv〉 + 1{0}(v)

}
for a.e. t ∈ [a, b]. Since {0} is a closed subset of U, the map
U 3 v 7−→ 1{0}(v) ∈ R is an upper semicontinuous function. Due
to upper semicontinuity of U 3 v 7−→ 〈p(t),Gv〉 + 1{0}(v) and com-
pactness ofU (and in view of Weierstrass’ theorem), the supremum
above is attained at some point ofU for a.e. t ∈ [a, b].

We conclude that the optimal control is given by

u?(t) ∈ arg max
v∈U

{〈
G>e(b−t)F> p̂, v

〉
+ 1{0}(v)

}
for all t ∈ [a, b],

which establishes the result.

The case of η = 0 is similar. The only additional observation
here is that the point p̂ cannot be 0 for otherwise the nontriviality
conditon

(
η, p(t)

)
, (0, 0) ∈ R × Rd for all t ∈ [a, b] would be

violated. �

6Recall that a function g : Rν −→ R is lower semicontinuous if for every c ∈ R the set {y ∈ Rν | g(y) 6 c} is closed. A function g : Rν −→ R is said to be upper
semicontinuous if −g is lower semicontinuous.

7If the dynamics in (1) were not smooth, then one would have a differential inclusion instead of the differential equation (21).
8Of course, with the normalization η = 1, and under which we omit the superscript 1 on H.
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