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Abstract

The paper studies a distributed constrained optimization problem, where multiple agents connected in a network collectively min-
imize the sum of individual objective functions subject to a global constraint being an intersection of the local constraint sets
assigned to the agents. Based on the augmented Lagrange method, a distributed primal-dual algorithm with a projection operation
included is proposed to solve the problem. It is shown that with appropriately chosen constant step size, the local estimates derived
at all agents asymptotically reach a consensus at an optimal solution. In addition, the value of the cost function at the time-averaged
estimate converges with rate O( 1

k ) to the optimal value for the unconstrained problem. By these properties the proposed primal-dual
algorithm is distinguished from the existing algorithms for distributed constrained optimization. The theoretical analysis is justified
by numerical simulations.
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1. Introduction

Distributed computation and estimation recently have re-
ceived much research attention, e.g., consensus problems [1, 2],
distributed estimation [3], sensor localization [4], and dis-
tributed control [5, 6]. In particular, distributed optimization
problems have been extensively investigated in [7]-[19], among
which the distributed subgradient or gradient algorithms [7]-
[11] belong to the primal domain methods while [12]-[19] be-
long to the primal-dual domain methods.

The paper considers a distributed constrained optimization
problem, where n agents connected in a network collectively
minimize the sum of local objective functions f (x) =

∑n
i=1 fi(x)

subject to a global constraint Ωo =
n⋂

i=1
Ωi, where Ωi is a convex

set and fi(x) is a convex function in Ωi. Besides, fi(x) and Ωi are
the local data known to agent i and cannot be shared with other
agents. This problem is equivalent to a convex optimization
problem with single linear coupling constraint and a convex set
constraint.

The main contribution of the paper is to propose a distributed
primal-dual algorithm with constant step size to solve the con-
strained optimization problem over the multi-agent network.
The algorithm is derived on the basis of the gradient algorithm
for finding saddle points of an augmented Lagrange function
[21]. In an iteration each agent updates its estimate only using
the local data and the information derived from the neighboring
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agents. With appropriately chosen constant step size, the esti-
mates derived at all agents are shown to reach a consensus at
an optimal solution. Besides, it is found that the value of the
cost function at the time-averaged estimate converges with rate
O( 1

k ) to the optimal value for the unconstrained problem.
A general constrained convex optimization problem is stud-

ied in [12], where the constraint sets are assumed to be compact.
The problem in the random case is investigated by [10] for non-
smooth objective functions, meanwhile, the convex sets are as-
sumed to be compact and the global constraint set is required to
have a nonempty interior. Here, we study the problem in the de-
terministic case for smooth objective functions, while imposing
weaker assumptions on the convex sets.

When there are no constraints, the problem of the paper be-
comes the one discussed in [7, 11, 15, 16, 17]. The estimates
produced by the distributed gradient descent (DGD) algorithm
with constant step size [7] converge to a neighborhood of the
optimal solution. In contrast to this, our algorithm gives the ac-
curate estimate. To solve the distributed optimization problems,
some continuous-time distributed algorithms are proposed in
[16, 17], while here the discrete-time distributed algorithm is
investigated. The estimates generated by the fast distributed
gradient algorithms [11] and by EXTRA [15] converge to an
optimal solution, but in [11] each cost function is assumed to
be convex with gradients being bounded and Lipschitz contin-
uous, while EXTRA [15] only deals with unconstrained prob-
lems. Though it is shown by [20] that EXTRA [15] is also a
saddle point method, the augmented Lagrange function used in
[15] is different from ours. Besides, the convergence rate O( 1

k )
derived here for the unconstrained case is a new result. The
primal-dual algorithm proposed in the paper can be seen as an
extension of EXTRA [15] to constrained problems.

The rest of the paper is organized as follows: In Section 2,
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some preliminary information about graph theory and convex
analysis is provided and the problem is formulated. In Section
3, a distributed primal-dual algorithm is proposed for solving
the problem, while its convergence is proved in Section 4. Two
numerical examples are demonstrated in Section 5, and some
concluding remarks are given in Section 6.

2. Preliminaries and Problem Statement

We first provide some information about graph theory, con-
vex functions, and convex sets. Then we formulate the dis-
tributed constrained optimization problem to be investigated.

2.1. Graph Theory
Consider a network of n agents. The communication re-

lationship among the n agents is described by an undirected
graph G = {V,EG,AG}, where V = {1, · · · , n} is the node set
with node i representing agent i; EG ⊂ V × V is the undi-
rected edge set, and the unordered pair of nodes (i, j) ∈ EG
if and only if agent i and agent j can exchange information
with each other; AG = [ai j] ∈ Rn×n is the adjacency matrix
of G, where ai j = a ji > 0 if (i, j) ∈ EG, and ai j = 0, other-
wise. Denote by Ni = { j ∈ V : (i, j) ∈ EG} the neighboring
agents of agent i. The Laplacian matrix of graph G is defined as
LG = DG−AG, whereDG = diag{

∑n
j=1 a1 j, · · · ,

∑n
j=1 an j}. For

a given pair i, j ∈ V, if there exists a sequence of distinct nodes
i1, · · · , ip such that (i, i1) ∈ EG, (i1, i2) ∈ EG, · · · , (ip, j) ∈ EG,
then (i, i1, · · · , ip, j) is called the undirected path between i and
j. We say that G is connected if there exists an undirected path
between any i, j ∈ V.

The following lemma presents some properties of the Lapla-
cian matrix L corresponding to an undirected graph G.

Lemma 2.1. [24] The Laplacian matrix L of an undirected
graph G has the following properties:

i) L is symmetric and positive semi-definite;
ii) L has a simple zero eigenvalue with corresponding eigen-

vector equal to 1, and all other eigenvalues are positive if and
only if the graph G is connected, where 1 denotes the vector of
compatible dimension with all entries equal to 1.

2.2. Gradient, Projection Operator and Normal Cone
For a given function f : Rm → [−∞,∞], denote its domain as

dom( f ) , {x ∈ Rm : f (x) < ∞}. Let f (·) be a convex function,
and let x ∈ dom( f ). For a smooth (differentiable) function f (·),
denote by ∇ f (x) the gradient of the function f (·) at point x.
Then

f (y) ≥ f (x) + 〈∇ f (x), y − x〉 ∀y ∈ dom( f ), (1)

where 〈x, y〉 denotes the inner product of vectors x and y.
For a nonempty convex set Ω ⊂ Rm and a point x ∈ Rm,

we call the point in Ω that is closest to x the projection of x
on Ω and denote it by PΩ{x}. If Ω ⊂ Rm is closed, then PΩ{x}
contains only one element for any x ∈ Rm.

Consider a convex closed set Ω ⊂ Rm and a point x ∈ Ω.
Define the normal cone to Ω at x as NΩ{x} , {v ∈ Rm : 〈v, y −

x〉 ≤ 0 ∀y ∈ Ω}. It is shown in [22, Lemma 2.38] that the
following equation holds for any x ∈ Ω:

NΩ{x} = {v ∈ Rm : PΩ{x + v} = x}. (2)

A set C is affine if it contains the lines that pass through any
pairs of points x, y ∈ C with x , y. Let Ω ⊂ Rm be a nonempty
convex set. We say that x ∈ Rm is a relative interior point of Ω

if x ∈ Ω and there exists an open sphere S centered at x such
that S ∩aff(Ω) ⊂ Ω, where aff(Ω) is the intersection of all affine
sets containing Ω. A point x ∈ Rm is called the interior point
of Ω if x ∈ Ω and there exists an open sphere S centered at x
such that S ⊂ Ω. A pair of vectors x∗ ∈ Ω and z∗ ∈ Ψ is called
a saddle point of the function φ(x, z) in Ω × Ψ if

φ(x∗, z) ≤ φ(x∗, z∗) ≤ φ(x, z∗) ∀x ∈ Ω, ∀z ∈ Ψ.

These definitions can be found in [21].

2.3. Problem Formulation

Consider a network of n agents that collectively solve the
following constrained optimization problem

minimize f (x) =

n∑
i=1

fi(x)

subject to x ∈ Ωo =

n⋂
i=1

Ωi,

(3)

where Ωi ⊂ Rm is a closed convex set, representing the local
constraint set of agent i, and fi(x) : Rm → R is a smooth convex
function in Ωi, representing the local objective function of agent
i. Assume that fi and Ωi are privately known to agent i. We
assume that there exists at least one finite solution x∗ to the
problem (3). For the problem (3), denote by f ∗ = minx∈Ωo f (x)
the optimal value, and by Ω∗o = {x ∈ Ωo : f (x) = f ∗} the optimal
solution set.

We use an undirected graph G = {V,EG,AG} to describe
the communication among agents. Let L denote the Laplacian
matrix of the undirected graph G.

Let us introduce the following conditions for the problem.

A1 Ωo has at least one relative interior point.

A2 The undirected graph G is connected.

A3 For any i ∈ V, ∇ fi(x) is locally Lipschitz continuous on Ωi.

3. Algorithm Design

We first give an equivalent form of the problem (3). Then
define a distributed primal-dual algorithm with constant step
size to solve the formulated problem.
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3.1. An Equivalent Problem
Lemma 3.1. [14, Lemma 3] If A2 holds, then the problem (3)
is equivalent to the following optimization problem

minimize f̃ (X) =

n∑
i=1

fi(xi)

subject to (L ⊗ Im)X = 0, X ∈ Ω,

(4)

where X = col{x1, · · · , xn} , (xT
1 , · · · , x

T
n )T , Ω =

∏n
i=1 Ωi de-

notes the Cartesian product, ⊗ denotes the Kronecker product,
Im denotes the identity matrix of size m, and 0 denotes the vec-
tor of compatible dimension with all entries equal to 0.

Remark 3.2. Lemma 3.1 implies that solving the problem (3)
is equivalent to solving the problem (4) when the underlying
graph is undirected and connected. If X∗ = col{x∗1, · · · , x

∗
n) is

a solution to the problem (4), i.e., f ∗ = f̃ (X∗), then x∗i = x∗j =

x∗ ∀i, j ∈ V for some x∗ ∈ Ωo by (L ⊗ Im)X∗ = 0 and X∗ ∈ Ω.
Thus, f̃ (X∗) =

∑n
i=1 fi(x∗) = f ∗, and hence x∗ is an optimal

solution to the problem (3).

Define the Lagrange function φ(X,Λ) = f̃ (X) + 〈Λ, (L ⊗
Im)X〉, where Λ ∈ Rmn is the Lagrange multiplier vector. Then
the original problem (4) can be rewritten as inf

X∈Ω
sup

Λ∈Rmn
φ(X,Λ),

while the dual problem is defined as follows

sup
Λ∈Rmn

inf
X∈Ω

φ(X,Λ). (5)

Lemma 3.3. Assume A1 and A2 hold. Then φ(X,Λ) has at least
one saddle point in Ω × Rmn. A pair (X∗,Λ∗) ∈ Ω × Rmn is the
primal-dual solution to the problems (4) and (5) if and only if
(X∗,Λ∗) is a saddle point of φ(X,Λ) in Ω × Rmn.

Proof: Since fi(·) ∀i ∈ V are continuous and the problem (3)
has at least one finite solution, f ∗ is finite. Moreover, A1 im-
plies that there exists a relative interior X̄ of set Ω such that
(L ⊗ Im)X̄ = 0. Then by [21, Proposition 5.3.3] we know that
the primal and dual optimal values are equal, i.e.,

inf
X∈Ω

sup
Λ∈Rmn

φ(X,Λ) = sup
Λ∈Rmn

inf
X∈Ω

φ(X,Λ), (6)

and there exists at least one dual optimal solution. So, by (6) we
conclude that φ(X,Λ) has at least one saddle point in Ω × Rmn.

Since the minimax equality (6) holds, by [21, Proposition
3.4.1] we know that X∗ is the primal optimal solution and Λ∗ is
the dual optimal solution if and only if (X∗,Λ∗) is a saddle point
of φ(X,Λ) on Ω × Rmn. This completes the proof. �

3.2. Distributed Primal-Dual Algorithm
Denote by xi,k ∈ Rm the estimate for the optimal solution to

the problem (3) given by agent i at time k, and by λi,k ∈ Rm

the corresponding Lagrange multiplier. They are updated as
follows:

xi,k+1 = PΩi {xi,k − α∇ fi(xi,k) − α
∑n

j=1 ai j(λi,k − λ j,k)
−α

∑n
j=1 ai j(xi,k − x j,k)},

λi,k+1 = λi,k + α
∑n

j=1 ai j(xi,k − x j,k).
(7)

Set Xk = col{x1,k, · · · , xn,k}, Λk = col{λ1,k · · · , λn,k}, and
∇ f̃ (Xk) = col{∇ f1(x1,k), · · · ,∇ fn(xn,k)}. Then (7) can be writ-
ten in the compact form as follows:

Xk+1 = PΩ{Xk − α∇ f̃ (Xk) − α(L ⊗ Im)
(
Λk + Xk

)
}, (8)

Λk+1 = Λk + α(L ⊗ Im)Xk. (9)

Note that the algorithm (8) (9) actually is the gradient al-
gorithm for finding saddle points of the augmented Lagrange
function φ̃(X,Λ) = φ(X,Λ) + 1

2 〈X, (L ⊗ Im)X〉 in Ω × Rmn.
By Lemma 3.3 we see that if the algorithm (8) (9) converges
to a saddle point of the augmented Lagrange function, then
it solves the original problem (4). Convergence properties of
the primal-dual method have been studied extensively, see, for
example, [26, 27]. In general, only a subsequence of the se-
quence (Xk,Λk) converges to a saddle point of the augmented
Lagrange function. To obtain the convergence of the whole se-
quence (Xk,Λk), it is often to assume that the augmented La-
grangian function is strictly convex-concave. However, for the
problem studied in the paper, the augmented Lagrange function
is neither strongly convex in X ∈ Ω nor strongly concave in
Λ ∈ Rmn. Thus, the standard analysis of gradient methods for
finding saddle points is not applicable here. Instead, we apply
the Lyapunov function method to analyze convergence.

4. Convergence Analysis

Convergence results for the proposed primal-dual algorithm
are presented in Section 4.1 with the proof given in Sections 4.2
and 4.3.

4.1. Main Results
By A2 from Lemma 2.1 we know that all eigenvalues of L

are nonnegative real numbers, and zero is a simple eigenvalue.
Let us write the eigenvalues of L in the non-decreasing order
as 0 = κ1 < κ2 ≤ · · · ≤ κn.

Set
W = (In − αL + α2L2) ⊗ Im. (10)

Let (X∗,Λ∗) be a saddle point of φ(X,Λ). Define

V1(X) = 〈X − X∗,W(X − X∗)〉, V2(Λ) = ‖Λ − Λ∗‖2.

Construct a candidate Lyapunov function as follows

V(X,Λ) = V1(X) + V2(Λ).

The following theorem shows that the local estimates derived
at all agents asymptotically reach a consensus at an optimal so-
lution to the problem (3).

Theorem 4.1. Assume A1-A3 hold. Let {xi,k} and {λi,k} be pro-
duced by (7) with initial values xi,0, λi,0. Let (X∗,Λ∗) be a sad-
dle point of φ(X,Λ) in Ω × Rmn. Assume, in addition, that the
constant step size α satisfies 0 < α ≤ 1

2κn
and α < 3

2lr
, where

lr is the local Lipschitz constant of ∇ f̃ (X) in the compact set
{X ∈ Ω : ‖X − X∗‖ ≤ r} with r defined by

r =
√

V(X0,Λ1)/λmin(M), (11)
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where λmin(·) denotes the smallest eigenvalue of a symmetric
matrix, andM = diag{Imn,W}. Then

(i) V(Xk,Λk+1) monotonously decreases and converges,
(ii) dk =

√
‖Xk − X∗‖2 + ‖Λk+1 − Λ∗‖2 ≤ r ∀k ≥ 0,

(iii) lim
k→∞

xi,k = lim
k→∞

x j,k = x∗ ∀i, j ∈ V for some x∗ ∈ Ω∗o.

Remark 4.2. The problem considered in [14] is in the same
form as the problem (3), but the local constraint is a hyper-
box or hyper-sphere, which is a special case of A1. Unlike the
discrete-time algorithm (7), the continuous-time distributed al-
gorithm is proposed in [14]. Though the estimates given by all
agents converge to the same optimal solution, some intermedi-
ate sequence might be unbounded, which makes the algorithm
difficult to be implemented.

Denote by X̄k = 1
k+1

∑k
p=0 Xp the time-averaged estimate. In

what follows, the convergence rate of the algorithm (7) for the
case where Ωi = Rm ∀i ∈ V is shown.

Theorem 4.3. Assume Ωi = Rm ∀i ∈ V, A2, and A3 hold. Let
{xi,k} and {λi,k} be produced by the algorithm (7) with initial
values xi,0, λi,0. Let (X∗,Λ∗) be a saddle point of φ(X,Λ) in Ω×

Rmn. If 0 < α ≤ 1
2κn

and α < 3
2lr

, where lr is the local Lipschitz

constant of ∇ f̃ (X) in the compact set {X ∈ Ω : ‖X − X∗‖ ≤ r}
with r defined by (11), then

(i) (L ⊗ Im)X̄k =
Λk+1 − Λ0

(k + 1)α
, (12)

(ii) f̃ (X̄k) ≤ f ∗ +
1

2α(k + 1)

(
‖X0 − X∗‖2 + ‖Λ0‖

2 − ‖Xk+1 − X∗‖2

− ‖Λk+1‖
2
)

+
cr

2α(k + 1)
×

(
V(X0,Λ1) − V(Xk+1,Λk+2)

)
, (13)

(iii) f̃ (X̄k) ≥ f ∗ −
〈Λk+1 − Λ0,Λ

∗〉

(k + 1)α
, (14)

where cr = 1/λmin
(
W−

αlr
2 Imn

)
+ 1.

Remark 4.4. Since ‖Λk − Λ∗‖ ≤ r ∀k ≥ 0 by Theorem 4.1(ii),
Λk is uniformly bounded in k by a constant. Then by (12) we see
that (L ⊗ Im)X̄k converges to 0 with rate O( 1

k ). Since Theorem
4.1(i) implies that V(X0,Λ1) − V(Xk+1,Λk+2) ≤ 0 ∀k ≥ 0, by
(13)(14) the value of the cost function f̃ (·) at X̄k converges to
the optimal value with rate O( 1

k ).

Remark 4.5. Note that Λ1 = Λ0 + α(L ⊗ Im)X0. Then from
Theorems 4.1 and 4.3 we see that for small enough α > 0 de-
pending on the distance between the initial value and the opti-
mal solution, and on the structure of the cost functions in the
neighborhood of the optimal solution, the estimates given by
all agents finally reach a consensus at an optimal solution. If
∇ fi(x) is globally Lipschitz continuous in set Ωi with constant
lc for any i ∈ V, then the results given in Theorems 4.1 and 4.3
hold as well for any α satisfying 0 < α ≤ 1

2κn
and α < 3

2lc
but

independent of the initial values.

4.2. Proof of Theorem 4.1

Prior to proving Theorem 4.1, we give a lemma that will be
used in the proof.

Lemma 4.6. [23, Theorem 2.1.5] If f : Rm → R is a convex
function whose gradient is globally Lipschitz continuous with
constant lc, then

〈x − y,∇ f (x) − ∇ f (y)〉 ≥
1
lc
‖∇ f (x) − ∇ f (y)‖2 ∀x, y ∈ Rm.

Proof of Theorem 4.1: Note that

V(Xk+1,Λk+2) − V(Xk,Λk+1)
= V1(Xk+1) − V1(Xk) + V2(Λk+2) − V2(Λk+1)
= 〈W(Xk+1 − Xk), Xk+1 + Xk − 2X∗〉

+〈Λk+2 − Λk+1,Λk+2 + Λk+1 − 2Λ∗〉

= −‖Λk+2 − Λk+1‖
2 − 〈Xk+1 − Xk,W(Xk+1 − Xk)〉

+2〈Λk+2 − Λk+1,Λk+2 − Λ∗〉

+2〈Xk+1 − X∗,W(Xk+1 − Xk)〉.

(15)

We now estimate the last two terms on the right hand side of
(15).

Since (X∗,Λ∗) is a saddle point of φ(X,Λ), by Lemma 3.3 we
see that X∗ is an optimal solution to the problem (4), and hence

(L ⊗ Im)X∗ = 0. (16)

Since L is symmetric, by (9) (16) we derive

〈Λk+2 − Λk+1,Λk+2 − Λ∗〉

= 〈α(L ⊗ Im)(Xk+1 − X∗),Λk+2 − Λ∗〉

= 〈α(L ⊗ Im)(Λk+2 − Λ∗), Xk+1 − X∗〉.

Thus,

〈Λk+2 − Λk+1,Λk+2 − Λ∗〉 + 〈Xk+1 − X∗,W(Xk+1 − Xk)〉
= 〈Xk+1 − X∗, α(L ⊗ Im)(Λk+2 − Λ∗) +W(Xk+1 − Xk)〉.

(17)
From (9) we derive Λk+2 = Λk +α(L⊗Im)Xk +α(L⊗Im)Xk+1,

and hence by (16)

Λk−Λ∗ = Λk+2−Λ∗−α(L⊗Im)(Xk−X∗)−α(L⊗Im)(Xk+1−X∗).
(18)

Then by multiplying both sides of (18) with (L ⊗ Im), from the
rule of the Kronecker product (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD)
we obtain

(L ⊗ Im)(Λk − Λ∗) = (L ⊗ Im)(Λk+2 − Λ∗)
−α(L2 ⊗ Im)(Xk − X∗) − α(L2 ⊗ Im)(Xk+1 − X∗). (19)

Set

Zk+1 = Xk − α∇ f̃ (Xk) − α(L ⊗ Im)
(
Λk + Xk

)
− Xk+1. (20)

4



Then by (16) (19) (20) we derive

Xk+1 − X∗ = Xk − X∗ − α∇ f̃ (Xk) − α(L ⊗ Im)
(
Xk − X∗

)
−α(L ⊗ Im)

(
Λk − Λ∗

)
− α(L ⊗ Im)Λ∗ − Zk+1

= Xk − X∗ − α
(
∇ f̃ (Xk) − ∇ f̃ (X∗)

)
− α(L ⊗ Im)

(
Xk − X∗

)
−α(∇ f̃ (X∗) + (L ⊗ Im)Λ∗) − Zk+1

−α
(
(L ⊗ Im)

(
Λk+2 − Λ∗

)
− α(L2 ⊗ Im)(Xk − X∗)

−α(L2 ⊗ Im)(Xk+1 − X∗)
)

=
(
(In − αL + α2L2) ⊗ Im

)
(Xk − X∗) − Zk+1

−α(L ⊗ Im)
(
Λk+2 − Λ∗

)
− α

(
∇ f̃ (Xk) − ∇ f̃ (X∗)

)
−α(∇ f̃ (X∗) + (L ⊗ Im)Λ∗) + α2(L2 ⊗ Im)(Xk+1 − X∗).

(21)
Moving the last term at the right-hand side of (21) to the left and
subtractingW(Xk+1−X∗) from both sides of (21) we derive the
following recursion

(αL ⊗ Im − 2α2L2 ⊗ Im)(Xk+1 − X∗)
=W(Xk − Xk+1) − α(L ⊗ Im)

(
Λk+2 − Λ∗

)
− Zk+1

−α
(
∇ f̃ (Xk) − ∇ f̃ (X∗)

)
− α(∇ f̃ (X∗) + (L ⊗ Im)Λ∗),

or in the alternative form

W(Xk+1 − Xk) + α(L ⊗ Im)
(
Λk+2 − Λ∗

)
= −(αL ⊗ Im − 2α2L2 ⊗ Im)(Xk+1 − X∗) − Zk+1

−α
(
∇ f̃ (Xk) − ∇ f̃ (X∗)

)
− α(∇ f̃ (X∗) + (L ⊗ Im)Λ∗).

Then by (17) we derive

〈Λk+2 − Λk+1,Λk+2 − Λ∗〉 + 〈Xk+1 − X∗,W(Xk+1 − Xk)〉
= −〈Xk+1 − X∗,

(
(αL − 2α2L2) ⊗ Im

)
(Xk+1 − X∗)〉

−α〈Xk+1 − X∗,∇ f̃ (Xk) − ∇ f̃ (X∗)〉
−〈Xk+1 − X∗,Zk+1 + α(∇ f̃ (X∗) + (L ⊗ Im)Λ∗)〉.

(22)
By the definition of the saddle point we have

φ(X∗,Λ) ≤ φ(X∗,Λ∗) ≤ φ(X,Λ∗) ∀X ∈ Ω,Λ ∈ Rmn. (23)

Therefore, X∗ minimizes f̃ (X) + 〈X, (L ⊗ Im)Λ∗〉 over Ω. Since
φ(X,Λ) is convex in X ∈ Ω for each Λ, by noticing Xk ∈ Ω ∀k ≥
0 from the optimal condition [21, Proposition 1.1.8 ] we derive

〈∇ f̃ (X∗) + (L ⊗ Im)Λ∗, Xk+1 − X∗〉 ≥ 0 ∀k ≥ 0. (24)

From (8) (20) it follows that PΩ{Xk+1 + Zk+1} = Xk+1, and
hence Zk+1 ∈ NΩ{Xk+1} by (2). Then by the definition of normal
cone we obtain

〈Xk+1 − X∗,Zk+1〉 ≥ 0. (25)

Then by combining (22) (24) (25) we derive

〈Λk+2 − Λk+1,Λk+2 − Λ∗〉 + 〈Xk+1 − Xk,W(Xk+1 − X∗)〉
≤ −〈Xk+1 − X∗,

(
(αL − 2α2L2) ⊗ Im

)
(Xk+1 − X∗)〉

− α〈Xk+1 − X∗,∇ f̃ (Xk) − ∇ f̃ (X∗)〉.

This incorporating with (15) yields

V(Xk+1,Λk+2) − V(Xk,Λk+1)
≤ −‖Λk+2 − Λk+1‖

2 − 〈Xk+1 − Xk,W(Xk+1 − Xk)〉
− 2α〈Xk+1 − X∗,∇ f̃ (Xk) − ∇ f̃ (X∗)〉
− 2〈Xk+1 − X∗,

(
(αL − 2α2L2) ⊗ Im

)
(Xk+1 − X∗)〉.

(26)

Since L is symmetric, there exists an orthogonal matrix U
such that UTLU = diag{0, κ2, · · · , κn}, and hence UTL2U =

diag{0, κ2
2, · · · , κ

2
n}. Then by (10) we know that all possible dis-

tinct eigenvalues of αL − 2α2L2 are 0, and ακi − 2α2κ2
i , i =

2, · · · , n. If 0 < α ≤ 1
2κn
, then 2ακi ≤ 1 ∀i = 1, · · · , n, and

hence ακi − 2α2κ2
i = ακi(1 − 2ακi) ≥ 0 ∀i = 1, · · · , n. There-

fore, for any α with 0 < α ≤ 1
2κn

the matrix αL − 2α2L2 is
positive semi-definite, and hence by (26) we derive

V(Xk+1,Λk+2) − V(Xk,Λk+1)
≤ −‖Λk+2 − Λk+1‖

2 − 〈Xk+1 − Xk,W(Xk+1 − Xk)〉
− 2α〈Xk+1 − X∗,∇ f̃ (Xk) − ∇ f̃ (X∗)〉.

(27)

Let the constant α be such that 0 < α ≤ 1
2κn

and α < 3
2lr

.
In what follows, we show that V(Xk,Λk+1) monotonously de-
creases and dk ≤ r ∀k ≥ 0 by induction.

We first show that d1 ≤ r and V(X1,Λ2) ≤ V(X0,Λ1). By
the definition of the local Lipschitz constant lr, we know that
∇ f̃ (X) is Lipschitz continuous on the compact set {X ∈ Ω :
‖X − X∗‖ ≤ r} with Lipschitz constant lr. Since ‖X0 − X∗‖ ≤ r
by the definition of r, from Lemma 4.6 we see

〈X0 − X∗,∇ f̃ (X0) − ∇ f̃ (X∗)〉 ≥
1
lr
‖∇ f̃ (X0) − ∇ f̃ (X∗)‖2.

This incorporating with xy ≤ x2

4 + y2 leads to

−〈X1 − X∗,∇ f̃ (X0) − ∇ f̃ (X∗)〉
= −〈X0 − X∗,∇ f̃ (X0) − ∇ f̃ (X∗)〉

+〈−X1 + X0,∇ f̃ (X0) − ∇ f̃ (X∗)〉
≤ − 1

lr
‖∇ f̃ (X0) − ∇ f̃ (X∗)‖2 + lr

4 ‖X0 − X1‖
2

+ 1
lr
‖∇ f̃ (X0) − ∇ f̃ (X∗)‖2 ≤ lr

4 ‖X0 − X1‖
2.

(28)

Then from here by (27) we have

V(X1,Λ2) − V(X0,Λ1)
≤ −‖Λ2 − Λ1‖

2 − 〈X1 − X0, (W−
αlr
2 Imn)(X1 − X0)〉.

By (10) we know that all possible distinct eigenvalues ofW−
αlr
2 Imn are 1−ακi+α

2κ2
i −

αlr
2 , i = 1, · · · , n. Since α < 3

2lr
,we have

1−ακi +α
2κ2

i −
αlr
2 = ( 1

2 −ακi)2 + 3
4 −

αlr
2 > 0. Thus,W− αlr

2 Imn

is positive definite. As a result, V(X1,Λ2) ≤ V(X0,Λ1). Then
V(X1,Λ2) ≤ r2λmin(M), and hence d1 ≤ r.

Assume that dp ≤ r and V(Xp,Λp+1) ≤ V(Xp−1,Λp) for p =

1, · · · , k. Since (27) holds and ‖Xk − X∗‖ ≤ r, similar to the
case k = 0, we can show that V(Xk+1,Λk+2) ≤ V(Xk,Λk+1) and
dk+1 ≤ r.

In summary, by the mathematical induction we conclude that
dk ≤ r ∀k ≥ 0, and V(Xk,Λk+1) monotonously decreases.

Since ‖Xk − X∗‖ ≤ r ∀k ≥ 0, by the same procedure for
deriving (28) we obtain

− 〈Xk+1 − X∗,∇ f̃ (Xk) − ∇ f̃ (X∗)〉 ≤
lr
4
‖Xk − Xk+1‖

2 ∀k ≥ 0.

Then from here by (27) we derive

V(Xk+1,Λk+2) − V(Xk,Λk+1) ≤ −‖Λk+2 − Λk+1‖
2

− 〈Xk+1 − Xk, (W−
αlr
2

Imn)(Xk+1 − Xk)〉 ≤ 0.
(29)
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Thus, we conclude that V(Xk,Λk+1) converges since it is non-
negative. Summing up both sides of (29) from 0 to p we derive

V(Xp+1,Λp+2) − V(X0,Λ1) ≤ −
∑p

k=0 ‖Λk+2 − Λk+1‖
2

−
∑p

k=0〈Xk+1 − Xk, (W−
αlr
2 Imn)(Xk+1 − Xk)〉.

(30)
Then by letting p→ ∞ we have

∞∑
k=0

〈Xk+1 − Xk, (W−
αlr
2

Imn)(Xk+1 − Xk)〉 < ∞, (31)

and
∞∑

k=1

‖Λk+1 − Λk‖
2 < ∞. (32)

Consequently, we derive lim
k→∞

(Xk+1 − Xk) = 0 by (31) since

W −
αlr
2 Imn is positive definite, and lim

k→∞
(Λk+1 − Λk) = 0 by

(32). By convergence of V(Xk,Λk+1) we conclude that Xk and
Λk contain convergent subsequences {Xnk } and {Λnk } to some
limits X0 and Λ0, respectively. Since lim

k→∞
(Xnk+1 − Xnk ) = 0 and

lim
k→∞

(Λnk+1 −Λnk ) = 0, by noticing that PΩ{x} is continuous in x

and lim
k→∞

Xnk = X0, lim
k→∞

Λnk = Λ0, from (8) (9) we derive

X0 = PΩ{X0 − α∇ f̃ (X0) − α(L ⊗ Im)
(
Λ0 + X0)}, (33)

(L ⊗ Im)X0 = 0. (34)

Then from (33) (34) by (2) we see α
(
∇ f̃ (X0)+ (L⊗ Im)Λ0) =

α
(
∇ f̃ (X0) + (L ⊗ Im)(Λ0 + X0)

)
∈ −NΩ(X0), and hence by the

definition of normal cone we conclude

〈∇ f̃ (X0) + (L ⊗ Im)Λ0, X − X0〉 ≥ 0 ∀X ∈ Ω.

Since φ(X,Λ) = f̃ (X) + 〈Λ, (L̄ ⊗ Im)X〉 is convex in X ∈ Ω for
each Λ ∈ Rmn, by (1) we have

φ(X,Λ0) ≥ φ(X0,Λ0) + 〈∇ f̃ (X0) + (L ⊗ Im)Λ0, X − X0〉

≥ φ(X0,Λ0) ∀X ∈ Ω.

From (34) we see φ(X0,Λ0) = φ(X0,Λ) = f̃ (X0) ∀Λ ∈ Rmn,
and hence by definition we know (X0,Λ0) is a saddle point of
φ(X,Λ) in Ω × Rmn. Thus, by Lemma 3.3 we see that X0 is an
optimal solution to the problem (4).

Since ‖Λk+1 − Λ∗‖2 + (Xk − X∗)TW(Xk − X∗) converges, by
setting (X∗,Λ∗) = (X0,Λ0) from lim

k→∞
Xnk = X0 and lim

k→∞
Λnk =

Λ0 we conclude that ‖Λk+1 − Λ0‖2 + (Xk − X0)TW(Xk − X0)
converges to zero. Therefore,

lim
k→∞

Xk = X0, lim
k→∞

Λk = Λ0.

Thus, by Remark 3.2 we conclude that lim
k→∞

xi,k = lim
k→∞

x j,k =

x∗ ∀i, j ∈ V for some x∗ ∈ Ω∗o. �

4.3. Proof of Theorem 4.3
Proof: (i) Summing up both sides of (9) from 0 to p leads to

Λp+1 − Λ0 =

p∑
k=0

α(L ⊗ Im)Xk = (p + 1)α(L ⊗ Im)X̄p,

and hence (12) holds.
(ii) When Ωi = Rm ∀i ∈ V, the equation (8) turns to

Xk+1 = Xk − α∇ f̃ (Xk) − α(L ⊗ Im)
(
Λk + Xk

)
. (35)

By (30) we see∑p
k=0

(
‖Λk+2 − Λk+1‖

2 + 〈Xk+1 − Xk, (W−
αlr
2 Imn)(Xk+1 − Xk)〉

≤ −V(Xp+1,Λp+2) + V(X0,Λ1).

Then by noticing thatW−
αlr
2 Imn is positive definite we derive

p∑
k=0

‖Λk+2 − Λk+1‖
2 ≤ −V(Xp+1,Λp+2) + V(X0,Λ1), (36)

and
p∑

k=0

‖Xk+1 − Xk‖
2 ≤
−V(Xp+1,Λp+2) + V(X0,Λ1)

λmin(W−
αlr
2 Imn)

. (37)

By (35) we have

‖Xk+1 − X∗‖2 = ‖Xk − X∗‖2 + ‖Xk+1 − Xk‖
2

+2(Xk − X∗)T (Xk+1 − Xk) = ‖Xk − X∗‖2

+2α〈X∗ − Xk,∇ f̃ (Xk) + (L ⊗ Im)
(
Λk + Xk

)
〉

+‖Xk+1 − Xk‖
2.

(38)

Noticing φ(X,Λ) is convex in X ∈ Ω for any Λ, by (1) we have

〈X∗ − Xk,∇ f̃ (Xk) + (L⊗ Im)Λk〉 ≤ φ(X∗,Λk)− φ(Xk,Λk). (39)

Since Λk is bounded and X∗ is an optimal solution to the prob-
lem (4), by (16) we see φ(X∗,Λk) = f̃ (X∗) = f ∗. Since L is
positive semi-definite by Lemma 2.1, from (16) it follows that

〈X∗ − Xk, (L ⊗ Im)Xk〉 = −〈Xk, (L ⊗ Im)Xk〉 ≤ 0.

Thus, from here by (38) (39) we derive

‖Xk+1 − X∗‖2 ≤ ‖Xk − X∗‖2 + 2α( f ∗ − φ(Xk,Λk)) + ‖Xk+1 − Xk‖
2,

and hence

φ(Xk,Λk)− f ∗ ≤
1

2α
(‖Xk − X∗‖2 − ‖Xk+1 − X∗‖2 + ‖Xk+1 − Xk‖

2).

Summing up both sides of this inequality from 0 to p for p ≥ 1
we obtain∑p

k=0(φ(Xk,Λk) − f ∗)
≤ 1

2α
(
‖X0 − X∗‖2 − ‖Xp+1 − X∗‖2 +

∑p
k=0 ‖Xk+1 − Xk‖

2).
From here by the convexity of f̃ (X) we derive

f̃ (X̄p) ≤ 1
p+1

∑p
k=0 f̃ (Xk) ≤ 1

p+1
∑p

k=0 φ(Xk,Λk)
− 1

p+1
∑p

k=0 XT
k (L ⊗ Im)Λk

≤ f ∗ + 1
2α(p+1)

(
‖X0 − X∗‖2 − ‖Xp+1 − X∗‖2

+
∑p

k=0 ‖Xk+1 − Xk‖
2)

− 1
p+1

∑p
k=0〈Xk, (L ⊗ Im)Λk〉.

(40)

We now give an upper bound for − 1
p+1

∑p
k=0〈Xk, (L⊗ Im)Λk〉.

By (9) we have

‖Λk+1‖
2 = ‖Λk‖

2 + 2α〈Λk, (L ⊗ Im)Xk〉 + ‖α(L ⊗ Im)Xk‖
2.
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Figure 1: The estimates and the residual

Thus, −〈Xk, (L⊗ Im)Λk〉 = 1
2α (‖Λk‖

2 − ‖Λk+1‖
2 + ‖Λk+1 −Λk‖

2),
and hence

−
1

p + 1

p∑
k=0

〈Xk, (L ⊗ Im)Λk〉

=
1

2α(p + 1)
(‖Λ0‖

2 − ‖Λp+1‖
2 +

p∑
k=0

‖Λk+1 − Λk‖
2).

(41)

By substituting (41) into (40) we derive

f̃ (X̄p) ≤ f ∗

+ 1
2α(p+1)

(
‖X0 − X∗‖2 − ‖Xp+1 − X∗‖2 + ‖Λ0‖

2 − ‖Λp+1‖
2
)

+ 1
2α(p+1)

(∑p
k=0 ‖Xk+1 − Xk‖

2 +
∑p

k=0 ‖Λk+1 − Λk‖
2
)
.

Then from here by (36) (37) we obtain (13).
(iii) By (16) (23) we derive φ(X̄p,Λ

∗) ≥ φ(X∗,Λ∗) = f̃ (X∗) =

f ∗, and hence for any dual solution Λ∗

f̃ (X̄p) = f̃ (X̄p) + 〈X̄p, (L ⊗ Im)Λ∗〉 − 〈X̄p, (L ⊗ Im)Λ∗〉
= φ(X̄p,Λ

∗) − 〈X̄p, (L ⊗ Im)Λ∗〉 ≥ f ∗ − 〈X̄p, (L ⊗ Im)Λ∗〉.

Then by (12) we derive (14). �

5. Numerical Simulations

In this section, we give two numerical examples to demon-
strate the obtained theoretic results.

Example 5.1. This example shows that the primal-dual algo-
rithm with constant step size can produce the accurate estimates
for the constrained optimization problem, where gradients of
the cost functions are only locally Lipschitz continuous, and
the agents are equipped with different constraint sets. Besides,
some of the constraint sets are not compact.

Figure 2: The communication topology

Consider an undirected network of three agents with edge set
EG = {(1, 3), (2, 3), (1, 1), (2, 2), (3, 3)}. Objective functions for
the agents are as follows:

f1(x1, x2) =
x2

1

2
+ 3x1 + x2

2 + 2x2 + x1x2 + 0.5ex1+x2 ,

f2(x1, x2) = x2
1 + 2x1 + 2x2

2 + 2x2 + x1x2 + ex2 ,

f3(x1, x2) = 2x2
1 + 4x1 + x2

2 + 2x2 + ex1 ,

(42)

while the constraint sets for agents are Ω1 = {(x1, x2) ∈ R2 :
x2

1 + x2
2 ≤ 2}, Ω2 = {(x1, x2) ∈ R2 : x1 ≥ −1}, and Ω3 =

{(x1, x2) ∈ R2 : x2 ≤ −0.5}. Denote the optimal solution by
(x∗1, x

∗
2), which is at the boundary of the global constraint set.

Let {xi,k} and {λi,k} be produced by the algorithm (7) with ini-
tial values xi,0 = 0, λi,0 = 0, i = 1, 2, 3, and α = 0.4. Denote
by x1

i,k and x2
i,k the estimates for x∗1 and x∗2 by agent i at time

k, respectively. Note that the primal-dual solution pair (X∗,Λ∗)
satisfies (33) and (34). Define the residual of the optimal con-
dition as rk = col{Xk+1 − Xk, (L ⊗ Im)Xk}. The local estimates
of all agents and 2-norm of the residual rk are shown in Figure
1. From the figure it is seen that the estimates for all agents
converge to the same optimal solution.

Example 5.2. Consider a randomly generated undirected
network of n = 10 agents, where each agent has an average
degree 4. Each agent i ∈ V is assigned with a huber loss func-
tion fi : R→ R with

fi(x) =

 1
2 (x − ai)2, if |x − ai| ≤ 1,
|x − ai| −

1
2 , otherwise.

For any i ∈ V, ai is generated according to the uniform dis-
tribution over the interval [1.5, 2.5]. The optimal solution of
f (·) =

∑n
i=1 fi(·) is denoted by x∗. We compare the primal-dual

algorithm (7) with the existing ones by this example.
Set α = 0.8. Denote by xi,k the estimate for x∗ given by agent

i at time k with the initial values xi,0 = 0 ∀i ∈ V. The sim-
ulation is for the case where the communication topology is
shown in Figure 2, and the entries of the adjacency matrix AG
are Metropolis wights [25]. With thisAG we carry out the sim-
ulations for the primal-dual algorithm (7) with λi,0 = 0 ∀i ∈ V,
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Figure 3: The normalized relative error

for the DGD algorithm [7], for EXTRA [15] with constant step
size α, and for the distributed Nesterov gradient (D-NG) algo-
rithm in [11]. The DGD algorithm runs separately for three
cases: constant step size α, diminishing step sizes αk = α/k0.75,
and αk = α/k0.4. The D-NG algorithm, i.e., equations (2)-(4) in
[11], is run with c = α and yi,0 = 0 ∀i ∈ V.

Denote by ek =
‖Xk−1⊗x∗‖
‖X0−1⊗x∗‖ the normalized relative error, where

Xk = col{x1,k, · · · , xn,k}. The numerical results are shown in
Figure 3, where the horizontal axis denotes the number of itera-
tions k and the vertical axis denotes log10(ek). From the figure it
is seen that the DGD algorithms with decreasing step sizes con-
verge to the optimal solution but the rate of convergence are the
slowest in comparisons with other methods. It is also seen that
DGD with constant step size quickly approaches to the neigh-
borhood of the optimal solution. The estimates generated by
D-NG [11], by the algorithm (7), and by EXTRA [15] all con-
verge to the optimal solution. Besides, the algorithm (7) brings
a satisfactory convergence rate for the unconstrained problem
as well.

6. Conclusion

In the paper, a distributed primal-dual algorithm is proposed
for multiple agents in a network to minimize the sum of indi-
vidual cost functions subject to a global constraint, which is the
intersection of the local constraints. The proposed algorithm
with constant step size makes the estimates of all agents con-
verge to the same optimal solution and achieve the convergence
rate O( 1

k ) when there is no constraint. The effectiveness and the
priority of the proposed algorithm have been demonstrated by
two numerical examples.

For further research, it is of interest to consider the primal-
dual algorithm for stochastic optimization, and to see if some
desired properties taking place for the deterministic still remain
true.
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