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Abstract

In this paper, we investigate interpolatory model order reduction for large-scale bilinear descriptor systems. Recently, it was shown
in Wyatt et al. (2013) for linear descriptor systems that directly extending the standard rational interpolation conditions used inH2
optimal model reduction to descriptor systems, in general, yields an unbounded error in the H2-norm. This is due to the possible
mismatch of the polynomial part of the original and reduced-order systems. This conclusion holds for nonlinear systems as well.
In this paper, we deal with bilinear descriptor systems and aim to pay attention to the polynomial part of the bilinear descriptor
system along with interpolation. To this end, we have shown in Goyal et al. (2015) how to determine the polynomial part of each
subsystem of the bilinear descriptor system explicitly, by assuming special structures of the system matrices. Considering the same
structured bilinear descriptor systems, in this paper we first show how to achieve multipoint interpolation of the underlying Volterra
series of bilinear descriptor systems while retaining the polynomial part of each subsystem of the bilinear system. Then, we extend
the interpolation based first-order necessary conditions for H2 optimality to bilinear descriptor systems and propose an iterative
scheme to obtain an H2 optimal reduced-order system. By means of various numerical examples, we demonstrate the efficiency
of the proposed model order reduction technique and compare it with reduced bilinear systems obtained by using linear IRKA, the
Loewner method for bilinear systems and POD-based approximations.

Keywords: Interpolatory model reduction, bilinear descriptor systems, Volterra series,H2 optimality.

1. Introduction

Model order reduction (MOR) plays a vital role in numerical
simulation of large-scale complex dynamical systems. These
dynamical systems are governed by ordinary differential equa-
tions (ODEs), or partial differential equations (PDEs), or both.
To capture the essential information about the dynamics of the
systems, a fine semi-discretization of these governing equations
in the spatial domain is required, leading to a large-scale system
of ODEs or, in general, differential algebraic equations (DAEs).
The simulations, control and optimization studies of such large-
scale complex systems are numerically cumbersome and often
not efficient. Thus, MOR provides a remedy to accelerate the
simulations of such large-scale systems and seeks to determine
low-dimensional surrogate systems with acceptable accuracy.

Model reduction for linear ODE systems has been stud-
ied for many years by now and is very well-established; see,
e.g., [1, 2, 3, 4]. However, there are many open and challenging
problems with regard to model reduction for nonlinear systems.
In this paper, we consider bilinear differential algebraic equa-
tions (DAEs) which are of the form

Eẋ(t) = Ax(t) +
∑m

k=1
Nk x(t)uk(t) + Bu(t),

y(t) = Cx(t),
(1)
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where E, A,Nk ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n, and the matrix
E is singular. It is assumed that the matrix pencil λE − A is
stable, this means that all finite eigenvalues of the matrix pencil
λE − A lie in the negative half plane. Such systems can be con-
sidered as weakly nonlinear systems [5]. They are linear in the
state and input independently, but not jointly. Bilinear systems
appear in various applications, for example, biology, nuclear
fusion, PDE control problems, and electrical circuits [6, 7, 8].
Their applications can also be seen in stochastic control prob-
lems [9] and in parameter-varying linear systems [10]. More-
over, nonlinear systems can be approximated as bilinear sys-
tems via Carleman bilinearization [11, 12].

Many model reduction techniques for linear systems have
been extended to bilinear systems with E = I or E being invert-
ible. For instance, Gramian-based model reduction techniques
such as balanced truncation have been extended for bilinear sys-
tems [13] and interpolation-based model reduction techniques
also have been successfully extended from the linear case to the
bilinear case; see, e.g., [5, 14, 15], where interpolation of the
leading k subsystems is considered. In [16], the Gramian-based
Wilson conditions forH2 optimality were extended from linear
systems [17] to bilinear systems.

Later, the analogue problem of determining an H2 opti-
mal reduced-order system for bilinear systems was considered
in [18], where the first-order necessary conditions for H2 op-
timality are derived by taking derivatives of the H2-norm of
the error system with respect to the entries of the realization of
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the reduced-order system. Based on these conditions, a bilin-
ear iterative rational Krylov algorithm (B-IRKA) was proposed
which on convergence leads to a locally H2 optimal reduced-
order system. Moreover, recently a new framework of interpo-
lation for bilinear systems, the so-called multipoint interpola-
tion, was considered which interpolates the whole underlying
Volterra series at predefined frequency points [19] and therein
also, the first-order necessary conditions for H2 optimality, in
terms of the pole-residue formulation, were proposed. It is also
shown that the reduced-order system, satisfying these H2 op-
timality conditions in the pole- residues form also satisfies the
optimality conditions derived in [18].

As has been noted, many model reduction techniques for lin-
ear systems have been extended to bilinear systems with E = I.
But still, there are ample challenges when it comes to model
reduction of bilinear descriptor systems with singular E, and it
is necessary to study this case due to its omnipresence in ap-
plications [20]. In this paper, we focus on interpolatory model
reduction techniques for bilinear descriptor systems with singu-
lar matrix E. The interpolation conditions for bilinear systems
with E = I can be readily extended to singular E by just replac-
ing I by E. However, it is shown in [21] that directly extend-
ing the interpolation conditions for linear ODEs to linear DAEs
may lead to an unbounded error in theH2-norm due to the mis-
match of the polynomial part of the system. This observation
immediately holds for bilinear descriptor systems as well. As a
consequence, we need to pay a special attention to the polyno-
mial part of the bilinear system along with interpolation.

Model reduction for a special family of bilinear descriptor
systems, whose subsystems have constant polynomial parts,
was recently considered in [22]. It is therein shown how to
achieve the interpolation of the leading k subsystems together
with retaining their polynomial parts. In contrast to this, in
this paper we focus on extending the multipoint Volterra se-
ries interpolation to a similar special family of bilinear descrip-
tor systems while paying attention to the polynomial part of
the system. Secondly, we investigate the first-order necessary
conditions forH2 optimality for a special family of bilinear de-
scriptor systems and propose an iterative scheme to obtain an
optimal reduced-order system.

The structure of the rest of the paper is as follows. We be-
gin with giving a short overview on the multipoint interpola-
tion framework for bilinear ODEs and visit the first-order nec-
essary conditions for H2 optimality in Section 2. In Section
3, we show how to achieve the multipoint interpolation of the
underlying Volterra series of bilinear descriptor systems along
with retaining the constant polynomial part of each subsystem.
Subsequently, in Section 4, we extend the first-order necessary
conditions forH2 optimality to bilinear descriptor systems and
propose an iterative algorithm, the so-called B-IRKA for bilin-
ear descriptor systems which on convergence gives rise to a lo-
cally H2 optimal reduced-order system. Finally in Section 5,
we demonstrate the efficiency of the proposed methodology via
several examples.

2. Multipoint Interpolation of the Volterra Series for Bilin-
ear ODE Systems

In this section, we first briefly overview the multipoint inter-
polation of the Volterra series and the first-order necessary con-
ditions for H2 optimality for bilinear ODE systems. For sim-
plicity, we begin with considering a single-input single-output
(SISO) bilinear system, i.e.,

Σ :
 ẋ(t) = Ax(t) + Nx(t)u(t) + Bu(t),

y(t) = Cx(t), x(0) = 0,
(2)

where the dimensions of A, B and C are the same as defined
in (1) with p = m = 1, and N ∈ Rn×n. Assuming a stationary
and causal bilinear system, the output y(t) can be described by
a nonlinear mapping of the input u(t):

y(t) =

∞∑
k=1

∫ t1

0

∫ t2

0
· · ·

∫ tk

0
gk(t1, t2, . . . , tk)

× u(t − t1 − t2 . . . − tk) · · · u(t − tk)dt1 · · · dtk,

where gk is the regular Volterra kernel, whose corresponding
multivariate transfer function can be given by

Gk(s1, s2, . . . , sk) = C(skI−A)−1N · · · (s2I−A)−1N(s1I−A)−1B.

The transfer function Gk(s1, s2, . . . , sk) is also called the kth or-
der multivariate transfer function associated with the bilinear
system. Analogous to the linear case, the multivariate transfer
function can be written in the pole-residue formulation which
is given by the following proposition.

Proposition 2.1. [19] Consider the multivariate transfer func-
tion Gk(s1, s2, . . . , sk) = C(skI − A)−1N · · · (s2I − A)−1N(s1I −
A)−1B and let {λ1, λ2, . . . , λn} ⊂ C be the n distinct zeros of
det (sI − A). Then, the multivariate transfer function can also
be written in the pole-residues form as follows:

Gk(s1, s2, . . . , sk) =

n∑
l1=1

n∑
l2=1

· · ·

n∑
lk=1

φl1,...,lk
k∏

i=1
(si − λli )

,

where

φl1,...,lk = lim
sk→λlk

(sk − λlk ) lim
sk−1→λlk−1

(sk−1 − λlk−1 ) · · · lim
s1→λl1

(s1 − λl1 )

×Gk(s1, . . . , lk). (3)

Interpolatory model reduction techniques for bilinear sys-
tems have been studied widely in the literature; see, e.g., [5,
14, 15], where the leading k subsystems of the reduced-order
system interpolate the corresponding original subsystem. How-
ever, recently in [19], multipoint interpolation for the whole
Volterra series was considered at selected frequency points. We
now outline the multipoint interpolation of the Volterra series
problem statement for the bilinear system (2).

Consider two sets of interpolation points σ j ∈ C and µ j ∈ C,
for j = 1, . . . , r, along with matrices U, S ∈ Cr×r, and define the
weighted Volterra series

ζ j =

∞∑
k=1

r∑
l1=1

r∑
l2=1

· · ·

r∑
lk−1=1

ηl1,...,lk−1, jGk(σl1 , σl2 , . . . , σ j) (4)
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and

ϕ j =

∞∑
k=1

r∑
l1=1

r∑
l2=1

· · ·

r∑
lk−1=1

ϑl1,...,lk−1, jGk(µ j, µl1 , . . . , µlk−1 ), (5)

where ηl1,...,lk−1, j and ϑl1,...,lk−1, j are the weights associated to each
subsystem in the Volterra series, and are defined in terms of the
elements of the matrices U and S as follows:

ηl1,...,lk−1, j = u j,lk−1 ulk−1,lk−2 · · · ul2,l1 for k ≥ 2 and ηl1 = 1,
ϑl1,...,lk−1, j = s j,lk−1 slk−1,lk−2 · · · sl2,l1 for k ≥ 2 and ϑl1 = 1.

(6)

The goal of the new interpolation framework is to construct a
reduced-order system of dimension r:

Σ̂ :

 ˙̂xr(t) = Âx̂(t) + N̂ x̂(t)u(t) + B̂u(t),

ŷ(t) = Ĉ x̂(t), x̂(0) = 0,
(7)

where Â, N̂ ∈ Rr×r and B̂, ĈT ∈ Rr, such that the following
interpolation conditions are satisfied for each j = 1, . . . , r:

ζ j =

∞∑
k=1

r∑
l1=1

r∑
l2=1

· · ·

r∑
lk−1=1

ηl1,...,lk−1, jĜk(σl1 , σl2 , . . . , σ j) (8)

and

ϕ j =

∞∑
k=1

r∑
l1=1

r∑
l2=1

· · ·

r∑
lk−1=1

ϑl1,...,lk−1, jĜk(µ j, µl1 , . . . , µlk−1 ), (9)

where Ĝk(µl1 , . . . , µk) is the kth order multivariate transfer func-
tion associated with the reduced-order bilinear system (7). Sim-
ilar to the linear case, the reduced-order system matrices are
constructed via projection matrices V and W, assuming WT V
being invertible, as follows:

Â = (WT V)−1WT AV, N̂ = (WT V)−1WT NV,

B̂ = (WT V)−1WT B, Ĉ = CV.
(10)

Then, the problem of identifying these projection matrices is
considered in [19] which provides the reduced-order system
such that the interpolation conditions are satisfied. The follow-
ing theorem suggests the choice of the projection matrices.

Theorem 2.2. [19] Consider a SISO bilinear system Σ :=
(A,N, B,C) of dimension n and the interpolation points σ j ∈ C
and µ j ∈ C, j = 1, . . . , r, along with matrices U, S ∈ Cr×r. Let
the projection matrices V and W be the solutions of the follow-
ing Sylvester equations

VΩ − AV − NVUT = BeT (11)

and

WΞ − AT W − NT WS T = CT eT , (12)

where Ω = diag (σ1, . . . , σr), Ξ = diag (µ1, . . . , µr), and e is
the vector of ones in Rr. Assume WT V ∈ Rr×r to be invertible
and that the reduced-order system Σ̂ := {Â, N̂, B̂, Ĉ} of order r
is computed using the projection matrices V and W as shown
in (10). Then, the interpolation conditions (8) and (9) are ful-
filled.

Furthermore, the H2-norm of the error system can be given
in terms of the weighted sum of the multivariate transfer func-
tions evaluated at all possible combinations of the poles of the
original and reduced-order systems; see, [19]. Analogous to
the linear case, the error in the H2-norm of the error system,
due to the mismatch at the reduced-order system singularities,
is eliminated. This leads to the following first-order necessary
conditions for optimality:
∞∑

k=1

r∑
l1=1

· · ·

r∑
lk=1

φ̂l1,...,lk

(
Gk(−λ̂l1 , . . . ,−λ̂lk )

−Ĝk(−λ̂l1 , . . . ,−λ̂lk )
)

= 0

(13)

and
∞∑

k=1

r∑
l1=1

· · ·

r∑
lk=1

φ̂l1,...,lk

 k∑
j=1

∂

∂s j
Gk(−λ̂l1 , . . . ,−λ̂lk )


=

∞∑
k=1

r∑
l1=1

· · ·

r∑
lk=1

φ̂l1,...,llk

 k∑
j=1

∂

∂s j
Ĝk(−λ̂l1 , . . . ,−λ̂lk )

 ,
(14)

where the λ̂i’s are the zeros of det(sÎ − Â) and φ̂l1,...,lk are the
residues of the kth order transfer functions Ĝk(s1, s2, . . . , sk), as
defined in (3). Here, the operator ∂

∂s j
Gk(−λ̂l1 , . . . ,−λ̂lk ) denotes

the partial derivative of Gk(s1, . . . , sk) with respect to s j, evalu-
ated at (s1, . . . , sk) = (−λ̂l1 , . . . ,−λ̂lk ).

It is also shown in [19] that the first-order necessary con-
ditions for H2 optimality in terms of the pole-residues form
are satisfied, if the projection matrices V and W are computed
by setting the interpolation points as mirror image of the poles
of the reduced-order system across the imaginary axis, i.e.,
Ω = Ξ = −Θ in (11) and (12), respectively, where Θ = R−1ÂR;
the matrices U and S are given by the bilinear term N̂ as
U = R−1N̂R and S = RT N̂T R−T ; and the vector e in (11)
and (12) is replaced with R−1B̂ and ĈR, respectively. For de-
tails, we refer to [19, 23].

Remark 2.3. The multipoint interpolation of the underlying
Volterra series can be extended to bilinear descriptor systems
by replacing I by E. This yields a reduced-order system which
satisfies the interpolation conditions. However, directly extend-
ing the interpolation conditions to descriptor systems without
any modifications, may lead to poor reduced-order systems with
theH2-norm error blowing up, occuring due to the unmatched
polynomial part of the system. This statement is based on the
analysis in [21] for linear descriptor systems.

Motivated by the work done in [21], we pay a special atten-
tion to the polynomial part of the bilinear descriptor system in
this paper along with interpolation. In the following section we
show how to achieve multipoint interpolation of the underlying
Volterra series along with matching the polynomial part of the
multivariate transfer function of each subsystem.

3. Multipoint Interpolation of the Volterra Series for Bilin-
ear Descriptor Systems

Here, we deal with a special family of bilinear descriptor sys-
tems (DAEs). The considered family consists of those systems
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with all associated multivariate transfer functions having con-
stant polynomial parts. For simplicity, we begin with a single-
input single-output bilinear descriptor system, i.e.,

Eẋ(t) = Ax(t) + Nx(t)u(t) + Bu(t),
y(t) = Cx(t),

(15)

where the dimensions of E, A, B and C are as defined in (1) with
p = m = 1 and N1 = N ∈ Rn×n. Similar to bilinear ODEs, the
kth order multivariate transfer function of the bilinear descriptor
systems (15) can be given by

Hk(s1, s2, . . . , sk) = C(skE−A)−1N · · · (s2E−A)−1N(s1E−A)−1B.
(16)

Our goal is to extend interpolation based model reduction tech-
niques to bilinear DAEs. Therefore, we first intend to determine
an explicit expression for the polynomial part of the multivari-
ate transfer function Hk(s1, s2, . . . , sk), by assuming a special
structure of the matrices E and A in (15) as follows:

E =

[
E11 E12
0 0

]
and A =

[
A11 A12
A21 A22

]
, (17)

where A22 and E11 − E12A−1
22 A21 are invertible. This means that

the matrix pencil λE − A has nilpotency index-1. It is shown
in [22] that the kth order multivariate transfer function of the
bilinear system, having the structure of the matrices as shown
in (17), has a constant polynomial part which can be determined
by the following lemma.

Lemma 3.1. [22] Let Hk(s1, s2, . . . , sk) = C(skE −

A)−1N · · · (s2E − A)−1N(s1E − A)−1B be the Laplace trans-
form of the kth order subsystem. Then, the polynomial part
of Hk(s1, s2, . . . , sk) is constant and can be given as

Dk = C(MN)k−1MB,

where M =

0 E−1
A E12A−1

22

0 −A−1
22

(
I + A21E−1

A E12A−1
22

) and EA = E11 −

E12A−1
22 A21.

Now, we discuss the interpolation based model reduction
techniques for bilinear descriptor systems that also retain the
explicitly computed constant polynomial parts of the subsys-
tems together with interpolation. Recently, the problem of the
interpolation of the leading k subsystems of bilinear descrip-
tor systems while retaining their polynomial parts is considered
in [22], i.e.,

Hi(σ1, σ2, . . . , σi) = Ĥi(σ1, σ2, . . . , σi), for i = 1, . . . , k,

where {σi} ⊂ C are the interpolation points and
Ĥk(s1, s2, . . . , sk) is the regular kth order multivariate transfer
function of the reduced-order system, which is of the form

Ĥk(s1, s2, . . . , sk) = Ĉ(skÊ − Â)−1N̂ · · · (s2Ê − Â)−1N̂

× (s1Ê − Â)−1B̂ + Dk
(18)

with invertible Ê. It can be easily seen that the polynomial parts
of Hk(s1, s2, . . . , sk) and Ĥk(s1, s2, . . . , sk) are equal to Dk.

In contrast to this, we focus on interpolating the underlying
Volterra series and at the same time retaining the polynomial
part of each subsystem. Therefore, we revisit the following
multipoint Volterra interpolation problem. We consider two sets
of interpolation points σ j ∈ C and µ j ∈ C, j = 1, 2, . . . , r, along
with matrices U, S ∈ Cr×r, and define the weighted Volterra
series as follows:

ν j =

∞∑
k=1

r∑
l1=1

· · ·

r∑
lk−1=1

ηl1,l2,...,lk−1, jHk(σl1 , σl2 , . . . , σ j) (19)

and

γ j =

∞∑
k=1

r∑
l1=1

· · ·

r∑
lk−1=1

ϑl1,l2,...,lk−1, jHk(µ j, µl1 , . . . , µlk−1 ), (20)

where the weights ηl1,l2,...,lk−1, j are defined in (6) in terms of the
elements of the matrix U and similarly for ϑl1,l2,...,lk−1, j. It is as-
sumed that ν j and γ j converge for each j = 1, 2, . . . , r. The goal
of the multipoint Volterra series interpolation is to determine
a reduced-order system, with its kth order multivariate transfer
function being of the form (18), so that the following are satis-
fied for each j = 1, . . . , r:

ν j =

∞∑
k=1

r∑
l1=1

· · ·

r∑
lk−1=1

ηl1,l2,...,lk−1, jĤk(σl1 , σl2 , . . . , σ j) (21)

and

γ j =

∞∑
k=1

r∑
l1=1

· · ·

r∑
lk−1=1

ϑl1,l2,...,lk−1, jĤk(µ j, µl1 , . . . , µlk−1 ). (22)

As a first step in this direction, we establish the relation between
the weighted Volterra series and the generalized Sylvester equa-
tion for the bilinear descriptor systems in the following lemma,
similar to the case of bilinear ODEs in [19, Lemma 3.1].

Lemma 3.2. Consider Σ := {E, A,N, B,C} to be a SISO bilin-
ear descriptor system and let σ j ∈ C and µ j ∈ C, j = 1, . . . , r,
be two sets of interpolation points. Given matrices U, S ∈ Cr×r,
and assume the following series:

v j =

∞∑
k=1

r∑
l1=1

· · ·

r∑
lk−1=1

ηl1,l2,...,lk−1, j(σ jE − A)−1

× N · · · (σl2 E − A)−1N(σl1 E − A)−1B

(23)

and

w j =

∞∑
k=1

r∑
l1=1

· · ·

r∑
lk−1=1

ϑl1,l2,...,lk−1, j(σ jE − A)−T

× NT · · · (σl2 E − A)−T NT (σl1 E − A)−T CT

converge for each j = 1, 2, . . . , r. Then, the matrices V and
W, whose jth columns are v j and w j, respectively, solve the
following generalized Sylvester equations:

EVΩ − AV − NVUT = BeT (24)

4



and
ET WΞ − AT W − NT WS T = CT eT , (25)

respectively, where Ω = diag(σ1, σ2, . . . , σr) and Ξ =

diag(µ1, µ2, . . . , µr).

The proof of the above lemma is analogous to [19, Lemma
3.1] where E = I was considered. Nevertheless, it can be easily
extended to E , I in a similar fashion. Therefore, for brevity of
the paper, we skip the proof.

Next, in the following theorem, we discuss the construc-
tion of a reduced-order system with required modifications so
that (21) and (22) can be satisfied.

Theorem 3.3. Consider a SISO bilinear descriptor system (15)
of order n. Assume for some r < n that two sets of interpola-
tion points σ j ∈ C and µ j ∈ C, j = 1, 2, . . . , r, and matrices
U, S ∈ Cr×r such that Λ(U) ∩ Λ(S ) = ∅, where Λ(·) denotes
the spectrum of a matrix. Let the matrices V and W be the so-
lutions of (24) and (25), respectively, and LA, LN , LB and Lc be
the solutions to

LAV + LNVUT + LBeT = 0, (26a)

LT
AW + LT

NWS T + LT
c eT = 0, (26b)

WT LB + [α1, α2, . . . , αr]T = 0, (26c)
LCV + [β1, β2, . . . , βr] = 0, (26d)

where

α j =

∞∑
k=1

r∑
l1=1

· · ·

r∑
lk−1=1

ϑl1,l2,...,lk−1, jDk

and

β j =

∞∑
k=1

r∑
l1=1

· · ·

r∑
lk−1=1

ηl1,l2,...,lk−1, jDk.

If the matrices of the reduced-order system are computed as

Ê = WT EV, Â = WT (A + LA)V, N̂ = WT (N + LN)V,

B̂ = WT (B + LB), Ĉ = (C + LC)V,
(27)

then, the interpolation conditions (21) and (22) are satisfied
for each j = 1, . . . , r. Furthermore, if Ê is invertible, then the
polynomial part of each subsystem is also matched.

Proof. We begin with the Sylvester equation, determining the
projection matrix V

EVΩ − AV − NVUT − BeT = 0. (28)

Subtracting (28) and (26a) yields

EVΩ − (A + LA)V − (N + LN)VUT − (B + LB)eT = 0.

Premultiplying the above equation by WT , we obtain

WT
(
EVΩ − (A + LA)V − (N + LN)VUT − (B + LB)eT

)
= 0.

This implies
ÊΩ − Â − N̂UT − B̂eT = 0.

From the above equation, it follows that Ψ = Î solves the fol-
lowing projected Sylvester equation:

ÊΨΩ − ÂΨ − N̂ΨUT − B̂eT = 0,

where Î is the identity matrix of the appropriate dimension. The
above projected Sylvester equation has a structure similar to the
one in Lemma 3.2. So, using Lemma 3.2, the jth column of Ψ,
denoted by ψ j, can be given as

ψ j =

∞∑
k=1

r∑
l1=1

· · ·

r∑
lk−1=1

ηl1,l2,...,lk−1, j(σ jÊ − Â)−1

× N̂ · · · (σl2 Ê − Â)−1N̂(σl1 Ê − Â)−1B̂.

(29)

Now, we multiply ψ j by Ĉ to obtain

Ĉψ j = (C + LC)Vψ j = CVψ j + LCVψ j. (30)

The vector ψ j is the jth column of the identity matrix. There-
fore, Vψ j gives the jth column of the matrix V , given in (23)
and multiplication with C gives

CVψ j =

∞∑
k=1

r∑
l1=1

· · ·

r∑
lk−1=1

ηl1,l2,...,lk−1, jHk(σl1 , σl2 , . . . , σ j) = ν j.

(31)
By (26d), we get

LcVψ j = −

∞∑
k=1

r∑
l1=1

· · ·

r∑
lk−1=1

ηl1,l2,...,lk−1, jDk. (32)

Finally, we substitute (31), (32) and the expression for ψ j

from (29) in (30) to have

ν j =

∞∑
k=1

r∑
l1=1

· · ·

r∑
lk−1=1

ηl1,l2,...,lk−1, jĈ(σ jÊ − Â)−1N̂ · · · (σl2 Ê − Â)−1

× N̂(σl1 Ê − Â)−1B̂ +

∞∑
k=1

r∑
l1=1

· · ·

r∑
lk−1=1

ηl1,l2,...,lk−1, jDk

=

∞∑
k=1

r∑
l1=1

· · ·

r∑
lk−1=1

ηl1,l2,...,lk−1, jĤk(σl1 , σl2 , . . . , σ j).

Using a similar argument, we can prove

γ j =

∞∑
k=1

r∑
l1=1

· · ·

r∑
lk−1=1

ϑl1,l2,...,lk−1, jĤk(µ j, µl1 , . . . , µlk−1 ).

Since we have assumed the form of the kth order multivariate
transfer function of the reduced-order system as shown in (18)
and Ê being invertible, this means that the polynomial parts of
each subsystem of the original and reduced-order systems are
equal to Dk. This concludes the proof.

Remark 3.4. Theorem 3.3 extends the interpolation for linear
systems with D , Dr [24, Thm. 3] to bilinear systems.

5



Remark 3.5. In Theorem 3.3, it is assumed that the matrices
U and S do not have any common eigenvalue in order to have
simultaneous solutions of the set of equations (26a)–(26d) for
the matrices LA, LN , LB and LC . If the matrices U and S have
common eigenvalues, then this leads to numerical issues which
we discuss in the next section.

Theorem 3.3 shows how to choose the projection matrices
and to obtain a reduced-order system with the required mod-
ifications which not only interpolates the underlying Volterra
series but also retains the polynomial part of each subsystem.
Meanwhile, we also like to highlight an important aspect that
the reduced-order system matrices obtained from Theorem 3.3
are not obtained via projection of the original system matri-
ces (15). They are rather obtained via projection of another
bilinear system (intermediate bilinear system) of order n whose
kth order multivariate transfer function is given by

H̃(s1, s2, . . . , sk) = C̃(skẼ − Ã)−1Ñ · · · (s2Ẽ − Ã)−1

× Ñ(s1Ẽ − Ã)−1B̃ + Dk,
(33)

where

Ẽ = E, Ã = A + LA, Ñ = N + LN ,

B̃ = B + LB, C̃ = C + LC .
(34)

Interestingly, we project the intermediate bilinear system us-
ing the projection matrices V and W, depending on the original
bilinear system matrices, as opposed to the intermediate bilin-
ear system matrices. So next, to resolve this discrepancy, we
show the formulation of the reduced-order system, obtained in
Theorem 3.3, in a standard projection framework using the in-
termediate bilinear system. We reveal that the projection matri-
ces obtained using the original and intermediate bilinear system
matrices are exactly the same.

Proposition 3.6. For some r < n, we consider two sets of inter-
polation points σ j ∈ C and µ j ∈ C, j = 1, . . . , r, and matrices
U, S ∈ Cr×r such that Λ(U) ∩ Λ(S ) = ∅. Let the matrices V
and W be the solutions of (24) and (25), respectively, and let
the projection matrices Ṽ and W̃ be the solutions to

ẼṼΩ − ÃṼ − ÑṼUT = B̃eT (35)

and
ẼT W̃Ω − ÃW̃ − ÑT W̃S T = C̃T eT , (36)

respectively. Then, Ṽ = V and W̃ = W also solve (35) and (36),
respectively.

Proof. We begin with proving that the matrix V also satis-
fies (35). Consider

ẼVΩ − ÃV − ÑVUT

= EVΩ − AV − LAV − NVUT − LNVUT

(substituting for Ã and Ñ from (34))

= (EVΩ − AV − NVUT ) − (LAV + LNVUT )

From (24), EVΩ − AV − NVUT = BeT and using the relation
between LA, LN and LB from (26a), we get

ẼVΩ − ÃV − ÑVUT = BeT + LBeT = B̃eT .

An analogous argument can be given for (36) as well. This
proves the assertion.

Based on this investigation, we propose the following corol-
lary.

Corollary 3.7. The reduced-order system, determined in Theo-
rem 3.3, coincides with the reduced system obtained from the in-
termediate bilinear system, whose kth order multivariate trans-
fer function is given in (33), via the projection subspaces Ṽ and
W̃ in a standard projection framework.

4. H2-Model Order Reduction for Bilinear Descriptor Sys-
tems

So far, we have shown how to determine a reduced-order sys-
tem with the appropriate modifications such that the multipoint
interpolation of the underlying Volterra series can be achieved
together with retaining the polynomial part of each subsystem.
In this section, we discuss the first-order necessary conditions
for H2 optimality of the special structured bilinear descriptor
systems. The first-oder necessary conditions, in terms of the
pole-residues of the multivariate transfer functions, for bilinear
ODEs were derived in [19] by minimizing the error in the H2-
norm of the error system. In this paper, we consider the analo-
gous first-order necessary conditions for optimality for bilinear
descriptor systems which are as follows:

∞∑
k=1

r∑
l1=1

· · ·

r∑
lk−1=1

φ̂l1,l2,...,lk−1, jHk(−λ̂l1 , . . . ,−λ̂lk )

=

∞∑
k=1

r∑
l1=1

· · ·

r∑
lk−1=1

φ̂l1,l2,...,lk−1, jĤk(−λ̂l1 , . . . ,−λ̂lk )

(37)

and

∞∑
k=1

r∑
l1=1

· · ·

r∑
lk=1

φ̂l1,...,lk

 k∑
j=1

∂

∂s j
Hk(−λ̂l1 , . . . ,−λ̂lk )


=

∞∑
k=1

r∑
l1=1

· · ·

r∑
lk=1

φ̂l1,...,lk

 k∑
j=1

∂

∂s j
Ĥk(−λ̂l1 , . . . ,−λ̂lk )

 ,
(38)

where φ̂l1,...,lk and λ̂li are the residues and poles, respectively,
of the transfer functions Ĥk(s1, s2, . . . , sk). In this regard, we
first establish the connection between the multipoint interpola-
tion of the Volterra series interpolation conditions and the pole-
residues of the kth order multivariate transfer function of the
reduced-order system.

Lemma 4.1. Let Hk(s1, s2, . . . , sk) and Ĥk(s1, s2, . . . , sk) be
the kth order multivariate transfer functions of the original
and reduced-order systems as shown in (16) and in (18), re-
spectively. Decompose YÂZ = Ω = diag(λ̂1, λ̂2, . . . , λ̂r) and
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YÊZ = Î, where {λ̂1, λ̂2, . . . , λ̂r} are the eigenvalues matrix
pencil λÊ − Â and the columns of Z = [z1, z2, . . . , zr] and
Y = [y1, y2, . . . , yr] are the right and left eigenvectors, respec-
tively.

Moreover, define B = YB̂, N = YN̂Z and C = ĈZ, and let
φ̂l1,l2,...,lk be the residues corresponding to the kth order multi-
variate transfer function Ĥk(s1, . . . , sk). Assume that the pro-
jection matrices V and W solve

EV(−Ω) − AV − NVNT = BBT , (39)

ET W(−Ω) − AT W − NT WN = CTC, (40)

respectively. Then,

C (CV)T =

∞∑
k=1

r∑
l1=1

· · ·

r∑
lk=1

φ̂l1,l2,...,lk Hk(−λ̂l1 , . . . ,−λ̂lk ).

Proof. We begin by comparing (39) and (24) which readily
shows that these two equations are equivalent after setting

U = N , e = B and σ j = −λ̂ j, j = 1, . . . , r.

By applying Lemma 3.2, we can write the jth column of V , v j,
as

v j =

∞∑
k=2

r∑
l1=1

· · ·

r∑
lk−1=1

ηl1,...,lk−1, jBl1 (λ̂ jE − A)−1N · · ·

× (λ̂l2 E − A)−1N(λ̂l1 E − A)−1B + B j(λ̂ jE − A)−1B,

(41)

where ηl1,...,lk−1, j = N( j, lk−1)N(lk−1, lk−2) · · · N(l2, l1) for k ≥ 2
by the definition of ηl1,...,lk−1 in (6), and Bi is the ith element of
B. Multiplying (41) by C yields

Cv j =

∞∑
k=2

r∑
l1=1

· · ·

r∑
lk−1=1

ηl1,...,lk−1, jBl1 Hk(−λ̂l1 , . . . ,−λ̂ j)

+ B jH1(−λ̂ j).

(42)

Hence,

(CV)T =



∞∑
k=2

r∑
l1=1
· · ·

r∑
lk−1=1

ηl1 ,...,lk−1 ,1Bl1 Hk(−λ̂l1 , . . . ,−λ̂1) + B1H1(−λ1)
∞∑

k=2

r∑
l1=1
· · ·

r∑
lk−1=1

ηl1 ,...,lk−1 ,2Bl1 Hk(−λ̂l1 , . . . ,−λ̂2) + B2H1(−λ2)

...
∞∑

k=2

r∑
l1=1
· · ·

r∑
lk−1=1

ηl1 ,...,lk−1 ,rBl1 Hk(−λ̂l1 , . . . ,−λ̂r) + BrH1(−λr)


.

Next, we premultiply the above equation by C =

[C1,C2, . . . ,Cr], where Ci is the ith element of C. This yields

C(CV)T =

∞∑
k=2

r∑
l1=1

· · ·

r∑
lk=1

ηl1,...,lk−1,lkClkBl1 Hk(−λ̂l1 , . . . ,−λ̂lk )

+

r∑
lk=1

ClkBlk H1(−λlk ). (43)

Now, we recall the expression for the residues φ̂l1,...,lk of the kth
order multivariate transfer function of the reduced-order system
which are given as:

φ̂lk = ClkBlk ,

φ̂l1,...,lk = Clkηl1,...,lk−1,lkBl1 , for k ≥ 2.

Lastly, we substitute the above relation in (43), leading to the
desired result.

Our next task is to obtain a reduced-order system that satis-
fies the necessary conditions for optimality (37) and (38). The
following theorem reveals the choice of a reduced-order system
ensuring the first-order necessary conditions forH2 optimality.

Theorem 4.2. Let Hk(s1, s2, . . . , sk) and Ĥk(s1, s2, . . . , sk) be
the kth order multivariate transfer functions of the original and
reduced-order bilinear systems, respectively, and assume the
projection matrices V and W are given by (39) and (40), respec-
tively. Also, assume that LA, LN , LB and LC satisfy the following
set of equations:

LAV + LNVNT + LBB
T = 0, (44a)

LT
AW + LT

NWN + LT
c C = 0, (44b)

WT LB + [α1, α2, . . . , αr]T = 0, (44c)
LCV + [β1, β2, . . . , βr] = 0, (44d)

where

α j =

∞∑
k=1

r∑
l1=1

· · ·

r∑
lk−1=1

ϑl1,l2,...,lk−1, jCl1 Dk (45)

and

β j =

∞∑
k=1

r∑
l1=1

· · ·

r∑
lk−1=1

ηl1,l2,...,lk−1, jBl1 Dk (46)

with

ηl1,...,lk−1, j = N( j, lk−1)N(lk−1, lk−2) · · · N(l2, l1) for k ≥ 2,
ϑl1,...,lk−1, j = N(lk−1, j)N(lk−2, lk−1) · · · N(l1, l2) for k ≥ 2.

If the reduced-order system matrices are computed as shown
in (27), then the first-order necessary conditions for H2 opti-
mality (37) and (38) are satisfied along with retaining the poly-
nomial part of each subsystem.

Proof. We begin by recalling Lemma 3.2 that provides us
the formulation of the jth column of the identity matrix, ψ j,
see (29),

ψ j =

∞∑
k=1

r∑
l1=1

· · ·

r∑
lk−1=1

ηl1,l2,...,lk−1, jBl1 (σ jÊ − Â)−1N̂ · · · (σl2 Ê − Â)−1

× N̂(σl1 Ê − Â)−1B̂.

Now, we multiply the above equation by Ĉ to get

ĈΨ = (C + LC)V = CV + LCV. (47)

Transposing (47) and premultiplying by C leads to

C(ĈΨ)T = C(CV)T + C(LCV)T .
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Next, we substitute LCV given in (44d) and employ (46) which
on simplification yields

C(CV)T = C



∞∑
k=1

r∑
l1=1
· · ·

r∑
lk−1=1

ηl1,l2,...,lk−1, jBl1 Ĥk(−λ̂l1 , . . . ,−λ̂1))
∞∑

k=1

r∑
l1=1
· · ·

r∑
lk−1=1

ηl1,l2,...,lk−1, jBl1 Ĥk(−λ̂l1 , . . . ,−λ̂2))

...
∞∑

k=1

r∑
l1=1
· · ·

r∑
lk−1=1

ηl1,l2,...,lk−1, jBl1 Ĥk(−λ̂l1 , . . . ,−λ̂r))


.

Using Lemma 4.1 and simple algebra gives us

∞∑
k=1

r∑
l1=1

· · ·

r∑
lk−1=1

φ̂l1,l2,...,lk−1, jHk(−λ̂l1 , . . . ,−λ̂lk )

=

∞∑
k=1

r∑
l1=1

· · ·

r∑
lk−1=1

φ̂l1,l2,...,lk−1, jĤk(−λ̂l1 , . . . ,−λ̂lk ).

The second necessary condition (38) can be easily obtained in a
similar fashion as shown in [19, Thm. 4.2] by tracing the terms
corresponding to W(:, j)T V(:, j), for j = 1, 2, . . . , r.

Clearly, still the computation of the reduced-order system re-
alization involves the matrices LA, LN , LB and Lc which are not
readily available. In what follows we show how to compute the
reduced-order system without explicitly computing these ma-
trices and their related computational issues.

Computational issues
Now, we discuss the computational issues regarding deter-

mining the realization of the reduced-order system. It is in-
teresting to note that we do not need the matrices LA, LN , LB

and LC explicitly, but we rather require expressions for
WT LAV,WT LNV,WT LB and LCV to determine the reduced-
order system. The expressions for WT LB and LCV are given
in (44c) and (44d), respectively, which are

WT LB = −[CT D1 +NTCT D2 + (NT )2CT D3 + · · · ],

LCV = −[D1B
T + D2B

TNT + D3B
T (NT )2 + · · · ].

In order to determine the expressions for WT LAV and WT LNV ,
we premultiply (44a) and (44b) by WT and VT , respectively,
and obtain

WT LAV + WT LNVNT + WT LBB
T = 0, (48)

VT LT
AW + VT LT

NWN + VT LT
CC = 0. (49)

Now, we subtract (48) from the transpose of (49), leading to the
following Sylvester equation in WT LNV:

NT (WT LNV) − (WT LNV)NT + CT LCV −WT LBB
T = 0. (50)

In order to have a unique solution of the above Sylvester equa-
tion, the matrix X := Î ⊗NT −N ⊗ Î should be invertible. But,
it is easy to see that the matrix contains zero eigenvalues. It im-
plies that if vec(F ) ∈ range(X), where F := CT LCV−WT LBB

T

and vec(·) denotes the vectorization of a matrix by stacking the

columns of the matrix on top of each other, then (50) has in-
finitely many solutions, otherwise it has no solution. Practi-
cally, it is difficult to ensure in each iteration of B-IRKA for all
possible bilinear systems that vec(F ) ∈ range(X).

However, if one assumes Dk = 0 for k ≥ 3, then the equa-
tion (50) boils down to

NT (WT LNV + CT D2B
T ) − (WT LNV + CT D2B

T )NT = 0.

This implies WT LNV has infinite solutions which are as fol-
lows:

WT LNV = −CT D2B
T +Y,

where vec(Y) ∈ null(X). For simplicity, we take Y = 0 to
avoid some additional computations at each iteration of B-IRKA
which could make each iteration expensive. Moreover, if we
compute WT LNV , having Y , 0, then we seldom observe the
convergence of B-IRKA. This probably happens due to the fact
that the computation of Y does not take into account the real-
ization of the reduced-order system anymore. It rather depends
only on the null space of the matrix X, which might be creating
some numerical instability in the iteration process of B-IRKA.
Therefore, we take Y = 0 in the rest of the paper, then WT LNV
can be computed easily. The expression for WT LAV can be
simply computed by inserting the expressions for WT LB and
WT LNV in (48).

Remark 4.3. As we have noted above, the Sylvester equa-
tion (50) either does not have a unique solution or even has
no solution. However, it is possible to determine the solution if
Dk = 0 ∀ k ≥ 3.

In case of Dk , 0 for some k ≥ 3, the equation (50), in gen-
eral, does not have any solution. This implies that it is not pos-
sible to obtain a reduced-order system, satisfying the necessary
conditions for optimality. Nevertheless, here we set WT LNV
equal to −CT D2B

T which often may be a good choice as Dk

generally decreases fast.

Now, we sketch the iterative scheme in Algorithm 1 based on
our theoretical discussions for the considered class of bilinear
descriptor systems.

Remark 4.4. Algorithm 1 extends the algorithm proposed
in [11] for bilinear descriptor system for which the polynomial
part of each subsystem was assumed to be zero.

Remark 4.5. It is shown in [22] that if the bilinear term has
the following structure:

N =

[
N11 N12
0 0

]
,

then the higher order systems with k ≥ 2, all have zero polyno-
mial parts, i.e., Dk = 0 ∀ k ≥ 2.

Remark 4.6. The expressions for RB and RC require the sum-
mation of the infinite series. However, Di generally decreases
fast, therefore one can consider only the leading terms which
may approximate the infinite summation very well. In case Dk

does not decay, we can always choose a factor 0 < γ < 1 that
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Algorithm 1 B-IRKA for bilinear descriptor systems, having an
index-1 matrix pencil.

1: Input: E, A,N, B,C.
2: Make an initial guess of Ω,B,N and C.
3: while no convergence do
4: Solve for V and W

EV(−Ω) + AV + NVNT + BBT = 0,
ET W(−Ω) + AT W + NT WN + CTC = 0.

5: Compute the expressions for

WT LB = −
∞∑

k=1
(NT )k−1CT Dk =: RB ,

LCV = −
∞∑

k=1
DkB

T (NT )k−1 =: RC .

6: Compute the expression for WT LNV =: RN ,
RN = −CT D2B

T .
7: Determine the expression for WT LAV =: RA,

RA = −RNN
T − RBB

T .
8: Compute the reduced-order system matrices:

Ê = WT EV , Â = WT AV + RA, N̂ = WT NV + RN ,
B̂ = WT B + RB, Ĉ = CV + RC .

9: Determine Y and Z such that YÂZ = Ω, YÊZ = Î.
10: Compute N = YN̂Z, B = YB̂ and C = ĈZ.
11: end while
12: Output: Ê, Â, N̂, B̂, Ĉ.

scales N and B when multiplying the input with ( 1
γ
). The dy-

namics of the system does not change by doing so. This way,
one can ensure the decay of the Dk’s. However, in all applica-
tions we consider in the next section, Dk = 0 ∀ k ≥ 3.

Remark 4.7. For simplicity of notation, we have shown B-
IRKA (Algorithm 1) for SISO bilinear descriptor systems. Nev-
ertheless, it can be applied to MIMO bilinear systems (1) as
well. In the MIMO case, the polynomial part of the kth sub-
system, Dk is a matrix of size Dk ∈ Rp×mk

, where p and m are
the numbers of outputs and inputs, respectively. Let us con-
sider Dk consisting of mk−1 column blocks of size p × m, and
we denote the

(
p1 +

∑k−1
i=2 mi−1(pi − 1)

)
th column block of Dk as

Dp1,...,pk−1
k ∈ Rp×m, pi ∈ {1, . . . ,m}, which can be written as

Dp1,...,pk−1
k = C(MNpk−1 ) · · · (MNp1 )MB.

Then, the expressions for RB,RC ,RN i and RA in Algorithm 1
can be determined as follows:

RB = −

∞∑
k=1

m∑
p1=1

. . .

m∑
pk−1=1

(Npk−1 · · · Np1 )TCT Dp1,...,pk−1
k ,

RC = −

∞∑
k=1

m∑
p1=1

. . .

m∑
pk−1=1

Dp1,...,pk−1
k BT (Npk−1 · · · Np1 )T ,

RN i = −CT Di
2B

T ,

RA = −

m∑
i=1

RN iNT
i − RBB

T .

Furthermore, to solve for the projection matrices V and W
in the case of MIMO, we need to replace the NVNT and

NT WN terms at step 4 in Algorithm 1 by
∑m

i=1 NiVNT
i and∑m

i=1 NT
i WNi, respectively.

Remark 4.8. Theoretically, the application of Algorithm 1 is
not only restricted to bilinear descriptor systems with index-1
matrix pencil as shown in (17), but also can be applied to all bi-
linear descriptor systems, whose subsystems all have constant
polynomial parts. For instance, all subsystems of the bilinear
descriptor system with the following structure of matrices:

E =

[
E11 0
0 0

]
, A =

[
A11 A12
A21 0

]
,

N =

[
N11 N12
N21 0

]
, B =

[
B1
0

]
and C =

[
C1 C2

]
,

have constant polynomial parts. Here, the matrix pencil λE−A
has a nilpotency index-2. Theoretically, Algorithm 1 can be em-
ployed to determine an H2 optimal reduced-order system. But
numerically, we have experienced that as the nilpotency index
of the matrix pencil λE − A becomes larger than 1, Algorithm 1
hardly converges.

Thus far, we have presented how to obtain the realization of
the reduced-order system that satisfies the first-order necessary
conditions for H2 optimality together with retaining the poly-
nomial part of each subsystem, by assuming the structure of
the kth order multivariate transfer function of the reduced-order
system as in (18). However, the corresponding time-domain
bilinear system can be given by

Ê ˆ̇x(t) = Âx̂(t) + N̂ x̂(t)u(t) + B̂u(t),

ŷ(t) = Ĉ x̂(t) +
∑∞

k=1
Dkuk(t).

For a detailed proof, we refer to [22]. Also, therein the com-

putational issue of
∞∑

k=1
Dkuk(t) is also discussed and it is shown

how to deal with this summation cheaply.

5. Numerical Results

In this section, we illustrate the performance of the proposed
B-IRKA for bilinear descriptor systems using various numer-
ical examples. We also compare it with the reduced bilin-
ear systems, obtained by using POD-based approximation, the
Loewner method for bilinear systems [25, 26], and by applying
IRKA to the corresponding linear part [21, Algo. 5.2] and then
project bilinear terms. The stopping criterion for Algorithm 1
is chosen based on the relative change of the norm of the poles
of the reduced-order system. If the relative change becomes
smaller than tol, then we stop the iteration, where tol is cho-
sen as the square-root of the machine precision. Moreover, the
initialization of the algorithm is done by choosing arbitrary in-
terpolation points and tangential directions. We also consider a
scaling factor for smooth convergence of B-IRKA as discussed
in [18, 23]. In order to employ the Loewner method for bi-
linear systems, we take the samples of the transfer functions

9
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Figure 1: Nonlinear transmission line circuit.

Hk(s1, . . . , sk) of the bilinear systems at l chosen logarithmi-
cally spaced frequencies ωi ∈ [ωa, ωb]:

[ ωl, . . . , ωl], [( ω1, ω1), . . . , ( ωl, ωl)],

where  =
√
−1. We obtain a set of left nodes [µi, (µi, µi)] and

right nodes [λi, (λi, λi)] by using an alternative partition for ωi.
This leads to Loewner and shifted Loewner matrices of dimen-
sion 2l. See [25, 26] for more detailed insights in the Loewner
method for bilinear systems. All the simulations are carried
out in MATLAB® version 7.11.0.584(R2010b)64-bit(glnza64)
on an Intel(R) Core(TM)2 Quad CPU Q9550 @2.83GHz, 6MB
cache, 4GB RAM, openSUSE 12.1 (x86-64).

5.1. Nonlinear RC Circuit
As a first example, we study the nonlinear transmission line

circuit whose circuit diagram is shown in Figure 1. The nonlin-
earity in the system appears due to the diode I-V characteristic
g(vD) = e40vD + vD −1, where vD is the voltage across the diode.
As discussed in [22], the system can be modelled as a quadratic-
bilinear descriptor system (QBDAE) of dimension (2n1 + n2),
where n1 and n2 are the numbers of capacitors (C) and linear
resistors (R), respectively. The output of the system is the av-
erage voltage over all nodes. We set n1 = 10 and n2 = 20,
and all electrical component equal to 1, leading to a QBDAE
of order ñ = 40 with the structure of the matrices E and A as
shown in (17). However, Carleman bilinearization for descrip-
tor systems [11] is employed on the QBDAE which gives us
a bilinearized system of order 840. The polynomial part of the
first subsystem of the bilinearized system is D1 = 0.0333, while
the higher order subsystems all have zero polynomial parts.

We determine the reduced-order systems by employing Al-
gorithm 1 and linear IRKA by choosing the scaling factor
γ = 0.5. We take l = 50 samples logarithmically between
frequencies [1, 2000] (rad/sec) in order to determine Loewner
and shifted Loewner matrices. Furthermore, for POD-based ap-
proximation, we determine 1000 snapshots of the original so-
lution for the input excitation u(t) = cos(2πt). All the reduced-
order systems are of the order r = 5. To illustrate the accuracy
of the reduced-order systems, we determine the time-domain
response for the input u(t) = cos(2πt)e−t + 1, and show the rel-
ative errors in Figure 2.

Evidently, the reduced-order system obtained by using B-
IRKA replicates the input-output behaviour of the original sys-
tem better as compared to the reduced-order system obtained
by using IRKA, Loewner for bilinear systems. Since the projec-
tion subspace of POD corresponds to the training input u(t) =

0 1 2 3 4 5
10−5

10−3

10−1

Time [s]

R
el
a
ti
ve

er
ro
r

B-IRKA
IRKA
Loewner
POD

Figure 2: Comparison of relative errors between the original
and reduced-order systems obtained by using various methods.

cos(2πt), the POD-based approximation does not approximate
the transient response very well even for the sightly different
input u(t) = cos(2πt)e−t + 1.

5.2. Parametric RLC Circuit
Next, we consider an RLC circuit as shown in Figure 3 whose

first node has three branches, connected to the voltage source
V via a constant resistance Rc, to a variable resistance, and
to ground via a capacitor. The last, nth, node of the circuit
is grounded via a capacitor. All other nodes also have three
branches; the first one is grounded via a capacitor; the second
one is connected to an inductor and the third one is connected
to a variable resistor as shown in Figure 3.

V

Rc

C1

v1

R1 L1

C2

v2 • • •

• • •

vg−1

Cg−1

Rg−1 Lg−1

Cg

vg

Figure 3: An RLC circuit diagram.

Using Kirchhoff’s voltage law at each node, we obtain the
following system of equations:

C j
v j(t)
dt

= i j(t) − i j+1(t), j = 1, 2, . . . , g − 1,

L j
i j+1(t)

dt
= −R ji j+1(t) + v j+1(t) − v j(t), j = 1, 2, . . . , g − 1,

Cg
vg(t)

dt = ig(t),
0 = v1(t) + i1(t)Rc −V(t).

Here, we set all the capacitors C, inductors L, and the resistance
RC equal to 1. We also assume that the variable resistances vary
linearly with the parameter p as follows:

R j = R j(1 + p).

Also, we consider R j = 1 . Combining all these equations and
utilizing the parametric relation of the variable resistance, we

10



−0.2 −0.1 0 0.1 0.2
10−4

10−3

10−2

10−1

100

101

Parameter [p]

‖H
−
Ĥ
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obtain the following parametric linear system:

Eẋ(t) = Ax(t) + pA1x(t) + Bu(t),
y(t) = Cx(t),

(51)

where x(t) is the state vector containing the voltage at each node
and current through resistances. The input u(t) is the voltage
source, and the quantity of interest y(t) is the current through
the voltage source. We set g = 250, leading to a linear paramet-
ric descriptor system of order n = 500 which has the structure
of matrices E and A as mentioned in (17). It has been shown
in [10] that a special class of linear parametric systems can be
treated as bilinear systems, by rewriting parameters p as inputs
to the system. Therefore, we can write the system (51) as a
bilinear system with two inputs ũ(t) = [u(t), p]T as follows:

Eẋ(t) = Ax(t) +
∑2

i=1
Nix(t)ũ(t) + B̃ũ(t),

y(t) = Cx(t),

where N1 = 0,N2 = A1, and B̃ = [B, 0]. We determine re-
duced bilinear systems by using B-IRKA and IRKA. We choose
the scaling factor γ = 0.1 for smooth convergence of B-IRKA.
We take l = 200 samples logarithmically between frequencies
[10−6, 104] (rad/sec) to compute Loewner and shifted Loewner
matrices. Furthermore, for POD-based approximation, we de-
termine 1000 snapshots of the actual solution for the input ex-
citation as used in the first example. We set the order of all
reduced bilinear systems to r = 15.

Next, these computed reduced bilinear systems can be again
rewritten as reduced parametric linear systems. To determine
the accuracy of the reduced-order systems, we compare the
H∞-norm of transfer functions of the original and reduced-
order systems by varying the parameter p which is shown in
Figure 4.

Figure 4 clearly shows that the reduced-order system ob-
tained by using B-IRKA outperforms the ones obtained by us-
ing IRKA for a wide range of the parameter. On the other hand,
reduced-order systems obtained by using the Loewner method
and POD fail to capture the dynamics. This may cause by not
treating the polynomial part of the system properly. We also
like to mention that the projection matrices computed by using
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Figure 5: Comparison of relative errors for an input u(t) =

e0.1t/10.

IRKA capture the dynamics of the original system very well in
the vicinity of the parameter p = 0. This is why one can see a
drop in the relative error in Figure 4 around the parameter p = 0
for the reduced-order system obtained by IRKA.

5.3. An Artificial Example

Lastly, we consider a simple artificial example of order n = 6,
having matrices E, A, B,C as follows:

E = diag ([1, 1, 1, 1, 0, 0]) , A = diag ([−1,−2,−3,−4, 1, 1]) ,

C = BT = [1, . . . , 1]

and a bilinear N such that its (i+1, i) entries are 1, i = {1, . . . , 5}
and all other entries are zeros. The polynomial parts of the first
two subsystems are D1 = −2,D2 = 1 and all other subsystems
have zero polynomial parts, unlike the previous two examples
where D2 is zero as well. This still fulfills the requirement to
obtain the reduced-order system, satisfyingH2-optimality con-
ditions as stated in Remark 4.3. Next, we determine reduced-
order systems via B-IRKA and IRKA. Here, we chose the scaling
factor to be γ = 0.1. We take the same frequency samples as
taken in the first example to compute the reduced-order system
via the Loewner method. Also, for POD-based approximation,
1000 samples of the true solutions are taken for the actuation in-
put u(t) = cos(2πt). We set the order of reduced-order systems
to r = 2. In order to observe the accuracy of the reduced-order
systems, we do time-domain simulations for a new control input
u(t) = 0.1e0.1t and plot the relative errors between the original
and reduced-order systems in Figure 5.

Figure 5 indicates that the polynomial part of system plays
a significant role in the dynamics of the system which is pre-
served by B-IRKA along with interpolation, unlike for the other
methods. We also observe that as the input is changed to a
different input than the training one, POD-based approxima-
tion fails to replicate the dynamics of the system. The figure
indicates that the reduced-order system obtained via the pro-
posed B-IRKA performs much better when compared to the
other methods.
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6. Conclusions

In this paper, we have extended the multipoint Volterra se-
ries interpolation to a family of bilinear descriptor systems with
the polynomial part of its kth order multivariate transfer func-
tion being constant. We have presented the modified interpola-
tion conditions which not only achieve multipoint interpolation
of the underlying Volterra series, but also retain the polyno-
mial part of each subsystem. Based on the first-order neces-
sary conditions for H2 optimality, we have proposed an itera-
tive rational Krylov algorithm, the so-called B-IRKA for bilin-
ear descriptor systems, which converges to a locallyH2 optimal
reduced-order system, if it converges. Using various numerical
examples, we have demonstrated the efficiency of the proposed
methodology and compared it with reduced-order systems ob-
tained by using IRKA, the Loewner method for bilinear systems
and POD-based approximation.
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