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Abstract

In contrast to the conventional model predictive control (MPC) approach to con-
trol of a given system where a positive–definite objective function is employed,
economic MPC employs a generic cost which is related to the ‘economics’ of the
process as the objective function in the regulation layer. Often, stability proofs
of the closed-loop system are based on strict-dissipativity of the system with
respect to this objective function. In this paper, we focus on linear systems
with indefinite quadratic costs. We show that while strict–dissipativity guaran-
tees stability of the closed–loop system, it is not required. Hence we formulate
a necessary and sufficient condition that guarantees asymptotic stability of the
closed loop system. This condition comes down to the existence of two distinct
storage functions for which the system is dissipative.

Keywords: Economic Model Predictive Control, Dissipativity,
Strict–dissipativity, Stability

1. Introduction

In conventional model predictive control (MPC) and linear quadratic regula-
tor (LQR) approaches to the control of a given system, the optimal steady-state
of the system with respect to the ‘economic’ cost is first computed then devia-
tions from this optimal steady-state are minimized using a dynamic regulation
layer. This dynamic regulation layer is usually referred to as the advanced pro-
cess control layer (which uses MPC or LQR) . The cost function employed in the
MPC plays a very important role for the stability of the closed-loop system. It
has been established in both the MPC and LQR literature that under nominal
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operation, stability of the closed loop system (using MPC or LQR) can be guar-
anteed provided the system is stabilizable, the cost function is positive-definite
and a suitable terminal cost is used [1–3].

Economic MPC (e–MPC) employs a different approach to predictive con-
trol. The ‘economic’ cost is used directly in the dynamic regulation layer. Since
this cost is generic and not guaranteed to be positive-definite as in conventional
MPC, proof of stability can not be based on this property of the cost function.
Strict-dissipativity, a property of the system with respect to the cost function,
has often been used to overcome this limitation. This strict-dissipativity con-
dition plays a central role in the analysis of economic MPC. The sufficiency
of strict-dissipativity condition for optimality of steady-state operation was es-
tablished in [4–6] while [4, 7] further showed that this same strict-dissipativity
condition guarantees stability of the closed-loop system obtained using the eco-
nomic cost in the dynamic regulation layer. Thus, optimality of steady-state
operation and stability of the dynamic regulation to this steady-state are both
guaranteed by the same strict-dissipativity condition. It has also been proven
that a less strict condition, dissipativity, also guarantees optimality of steady-
state operation and is close to being necessary for steady state operation to be
optimal (under some additional controllability assumption)[5, 6]. Simulations
however show that in some cases, dissipativity (and not strict-dissipativity) ap-
pears to be sufficient for stability in the dynamic regulation layer. It is therefore
of interest to characterize the cases when dissipativity is sufficient for the sta-
bility of the closed loop system.

This work focuses on linear system with purely quadratic costs, without def-
initeness restrictions. Such purely quadratic costs arise, for instance, in ocean
wave energy conversion where the objective is to maximize the absorbed power.
The power extracted can be modelled as a product of the damping coefficient
(constant factor), velocity of the buoy (state, x(k)) and the active forcing ele-
ment (u(k)) [8–10]. This leads to an indefinite quadratic formulation of the eco-
nomic objective function. Such indefinite quadratic costs are also encountered
in process control where the economic objective of an isothermal continuous
stirred-tank reactor is to maximize the production rate (of one of the outputs),
modelled as a product of the concentration of the output (state) and the flow
rate through the reactor (input) [6, 11, 12]. Another scenario is when there are
conflicting objectives, for instance, minimizing the control effort (energy input)
of steering an aircraft while trying to maximize the cruise speed (kinetic energy)
of the aircraft [13, 14]. This can be achieved by minimizing a quadratic cost
using a negative weighting (Q < 0) on the states and positive weighting (R > 0)
on the inputs, which once again leads to an indefinite cost formulation.

Hence, we seek to establish conditions under which the optimal economic
controller in such cases as these is also an asymptotically stabilizing controller
for the system. By creating a link between dissipativity, existence of a control
Lyapunov function for the closed–loop system and the optimal cost function,
we establish a necessary and sufficient condition for stability of the closed–loop
system based on dissipativity of the system with respect to the stage cost.

This paper is organized as follows: Section 2 investigates the link between
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dissipativity and the existence of a stabilizing optimal controller; Section 3
presents a discussion on the sufficiency of strict-dissipativity for closed–loop
asymptotic stability and possibility of dissipativity to guarantee stability; Sec-
tion 4 characterizes the necessary and sufficient condition under which dissipa-
tivity guarantees asymptotic stability; Section 5 presents some numerical exam-
ples and Section 6 concludes the paper.

Nomenclature. The symbols R and I0:N−1 denote the sets of real numbers and
{0, 1, ....N − 1} respectively. We denote ρ(C) as the spectral radius of C, C† as
the Moore–Penrose generalized inverse of C and Ker(C) as the Kernel of C.

2. On Dissipativity and Existence of Stabilizing Optimal Controller

In this section, the necessity and sufficiency of dissipativity (of a system
with respect to the given objective function) for the optimal controller to be
stabilizing is investigated. To ease checking of the dissipativity condition, we
focus on linear systems with quadratic cost functions without any restriction on
the definiteness of the cost.

Given the linear discrete time system

xk+1 = Axk +Buk (1)

and the stage cost

l(xk, uk) = xTkQxk + uTkRuk + 2xTk Suk, (2)

we consider the following finite-horizon optimization problem

min
u
JN (x,u) , xTNPNxN +

N−1∑
k=0

l(xk, uk)

subject to


xk+1 = Axk +Buk, k ∈ I0:N−1
xk ∈ X, uk ∈ U , k ∈ I0:N−1
x0 = x(i), xN ∈ XF

(3)

where X ⊆ Rn, U ⊂ Rm and XF ⊆ X is a compact terminal region chosen to
ensure recursive feasibility. x(i) is the measured state at time i and xk the
predicted value of state x at time step i + k given measurement x(i). With-
out loss of generality, the optimal steady–state, defined as the solution to the
optimization problem

l(xs, us) = min
x,u

l(xk, uk) s.t.{xk = Axk +Buk, xk ∈ X, uk ∈ U} (4)

is assumed to be the origin, unique and lies in the interior of the constraint sets.

Moreover, there is no restriction on the definiteness of the matrix
[
Q S

ST R

]
and

the terminal cost, PN .

3



The optimization problem (3) is repeatedly minimized over the horizon N
in a moving horizon manner. At each iteration i, (3) yields the optimal input
sequence u∗ = {u∗0, u∗1, ..., u∗N−1}. The first element of the sequence is applied to
the plant yielding the control law u(i) = u∗0. We refer to this generated implicit
control law as u∗0 = −KN (x(i)) and the closed loop system is

x(i+ 1) = Ax(i)−BKN (x(i)). (5)

If x0 is in the set of states that can be admissibly steered to the origin in N
steps (or less) and PN is chosen such that it solves the Discrete Algebraic Riccati
Equation (DARE)

ATPNA− PN +Q− (S +ATPNB)KN = 0 (6)

where KN = (R + BTPNB)†(ST + BTPNA) and a solution to (6) is assumed to
exist, then the terminal cost is the same as the optimal linear quadratic cost,
and hence the cost in (3) is equivalent to an infinite-horizon cost [15–17]. Thus
the control law beyond the horizon becomes the linear law u∗0 = −KNx(i)and
stability depends on the stabilising properties of this feedback control law. The
closed loop system (4) is thus asymptotically stable if ρ(A − BKN ) < 1 and
marginally stable if ρ(A − BKN ) ≤ 1where the eigenvalues with unit modulus
have equal algebraic and geometric multiplicity. PN is said to be the stabilizing
solution for (DARE) (6) if PN satisfies (6) and ρ(A−BKN ) < 1. Except where
otherwise stated, it is assumed that (6) holds with the terminal cost PN used
in (3).

Assumption 2.1.

• (A,B) is stabilizable.

• x0 ∈ X0 where X0 is the set of states that can be admissibly steered to XF
in N steps (or less).

Definition 1. System (1) is said to be dissipative [4, 18, 19] with respect to the
stage cost (2) if there exists a quadratic storage function xTk Pdxk such that for
all k ≥ 0,

xTk+1Pdxk+1 − xTk Pdxk ≤ l(xk, uk) (7)

Equation (7) is equivalent to the existence of a Pd = PTd such that the dissipa-
tivity Linear Matrix Inequality (d–LMI)[

ATPdA− Pd −Q ATPdB − S
BTPdA− ST BTPdB −R

]
≤ 0 (8)

is feasible. If (7) and (8) hold with strict inequality, the system is said to be
strictly-dissipative.

We note that while the original definition of dissipativity [20, 21] required
Pd to be non-negative, recent definitions and usage in economic MPC (e–MPC)
have removed this restriction [4, 7, 22, 23].
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Consider the DARE (6). Taking the Schur complement of (6) yields the LMI[
ATPA− P +Q ATPB + S
BTPA+ ST BTPB +R

]
≥ 0 (9)

with PN being the maximum P for which (9) holds. This equivalence was
established in [24] where it was shown that

• The set of strongly rank minimizing solutions of the discrete LMI coincide
with the set of real symmetric solutions of the DARE associated with the
LMI.

• Stabilising and semi-stabilziing rank minimizing solutions of the discrete
LMI are also strongly rank minimizing.

• The semi-stabilizing rank minimizing solution of the LMI, if it exists, is
the largest solution of the LMI.

We also note that the existence of P that ensures feasibility of (9) is a necessary
condition for the existence of PN that solves (6) [17, 24]. Moreover, if (9)
is feasible, then Ker(R + BTPNB) ⊆ Ker(ATPNB + S) which guarantees
uniqueness of the generalized inverse in (6).

To begin our investigations, we establish links between dissipativity, exis-
tence of solution to the DARE (6) and stabilizing properties of the resulting
controller.

Lemma 2.1. Pd satisfies (8) if and only if P = −Pd satisfies (9).

Proof. The proof is obtained by substituting Pd = −P into (8).

Corollary 2.1.1. Existence of Pd for which the dissipativity LMI (8) holds is
a necessary condition for the closed loop system xk+1 = (A − BKN )xk to be
stable.

Proof. This follows from combining Lemma 2.1 with the fact that the existence
of a P for which LMI (9) is feasible is a necessary condition for PN to be the
stabilizing solution to the DARE (6).

Lemma 2.2. Consider system (1) with two different cost functions (2), l1
and l2, defined by the quadruples {Q1, S1, R1, PN1} and l2 = {Q2, S2, R2, PN2}.
Then optimization problem (3) with stage cost l1 yields the same controller with
stage cost l2 if l2 is chosen such that Q2 = Q1+Pd−ATPdA, S2 = S1−ATPdB,
R2 = R1 − BTPdB and PN2

= PN1
+ Pd where Pd is such that the d–LMI (8)

is feasible for the cost {Q1, S1, R1}.

Proof. With the terminal cost in (3) chosen such that PN1
= P1, PN2

= P2 where
P1 and P2 are the solutions to the corresponding DARE, the resulting controllers
are equivalent to the corresponding infinite horizon controllers. Hence we can
study the behaviours of the controllers by analysing the corresponding DAREs:

ATPN1A− PN1 − (S1 +ATPN1B)KN1 +Q1 = 0 (10)
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ATPN2A− PN2 − (S2 +ATPN2B)KN2 +Q2 = 0 (11)

whereKN1 = (R1+BTPN1B)†(ST1 +BTPN1A) andKN2 = (R2+BTPN2B)†(ST2 +
BTPN2A). Substituting for {Q2, S2, R2, PN2} in (11),

ATPN1A+ATPdA− P1 − Pd +Q1 + Pd −ATPdA

− (S1 −ATPdB +ATPN1B +ATPdB)× (R1 −BTPdB +BTPN1B+

BTPdB)†(ST1 −BTPdA+BTPN1A+BTPdA) = 0 (12)

Simplifying (12) yields (10) with KN1 = KN2.

Remark 1. As will be used later, Lemma 2.2 is often used to prove stability
of the closed loop system in economic MPC setups: if the system is strictly-
dissipative with respect to the stage cost, the cost can be rotated using Pd to get
a positive-definite stage cost that yields the same controller as the original cost.

Lemma 2.3. If there exists Pd for which the dissipativity LMI (8) is feasible,
then for any compatible sized KN ,

ATPdA− Pd −Q− (ATPdB − S)KN

−KT
N (BTPdA− ST ) +KT

N (BTPdB −R)KN ≤ 0. (13)

Proof.[
ATPdA− Pd −Q ATPdB − S
BTPdA− ST BTPdB −R

]
≤ 0

⇓[
Inx 0

0 −KT
N

] [ATPdA− Pd −Q ATPdB − S
BTPdA− ST BTPdB −R

] [
Inx 0
0 −KN

]
=

[
ATPdA− Pd −Q −(ATPdB − S)KN

−KT
N (BTPdA− ST ) KT

N (BTPdB −R)KN

]
≤ 0

⇓

[ I I ]

[
ATPdA− Pd −Q −(ATPdB − S)KN

−KT
N (BTPdA− ST ) KT

N (BTPdB −R)KN

]
[ II ]

= ATPdA− Pd −Q− (ATPdB − S)KN

−KT
N (BTPdA− ST ) +KT

N (BTPdB −R)KN ≤ 0. (14)

Lemma 2.4. Let there exist a Pd for which the dissipativity LMI (8) is feasible.
If PN solves the DARE (6) and KN is chosen such that

KN = (R+BTPNB)†(ST +BTPNA), (15)

then
(A−BKN )T (Pd + PN )(A−BKN )− (Pd + PN ) ≤ 0. (16)
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Proof. If PN solves the DARE (6), then (6) can be re-written as

(A−BKN )TPN (A−BKN )− PN +Q

+KT
NRKN − SKN −KT

NS
T = 0 (17)

From Lemma 2.3, we have that the existence of a Pd that guarantees feasibility
of LMI (8) implies that

ATPdA− Pd −Q− (ATPdB − S)KN

−KT
N (BTPdA− ST ) +KT

N (BTPdB −R)KN ≤ 0 (18)

which can also be re-written as:

(A−BKN )TPd(A−BKN )− Pd −Q
−KT

NRKN + SKN +KT
NS

T ≤ 0. (19)

Adding (17) and (19) together gives:

(A−BKN )T (Pd + PN )(A−BKN )− (Pd + PN ) ≤ 0

which is what was required.

Lemmata 2.3 and 2.4 attempt to link dissipativity of the system (with respect
to the given stage-cost) to the stability of the closed-loop system (5). Inequality
(16) mimics a Lyapunov inequality for the closed–loop system. Let P = Pd+PN .
If (Pd + PN ) is guaranteed to be positive definite, then (16) is a Lyapunov
inequality for marginal stability of the closed-loop system. However, there is
no guarantee yet that (Pd + PN ) will be positive-definite. Hence it is necessary
to characterize conditions under which (Pd + PN ) is guaranteed to be positive-
definite.

Remark 2. We note that in the discussions and proofs so far, no restriction
has been placed on the definiteness of Pd and PN . If P = (Pd + PN ) is such
that P > 0, we see that dissipativity (hence a storage function xTk Pdxk) gives
the link between the optimal cost, xTk PNxk, and any Lyapunov function, xTk Pxk
that proves stability of the closed–loop system. Moreover, it is now clear why
there is no need to place a restriction on the definiteness of Pd.

3. Sufficiency of Strict–dissipativity

Before characterizing conditions that guarantee positive-definitess of (Pd +
PN ), we consider the question: is strict-dissipativity really necessary or just suf-
ficient for the closed loop system (5) to be asymptotically stable? This question
is motivated by the fact that in e–MPC literature, proof of asymptotic stability
of the closed loop system is often based on an assumption that the system is
strictly-dissipative with respect to the stage-cost [4, 7, 22, 23]. Furthermore in a
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recent paper [25], the authors stated, using the principles of dynamic program-
ming, that dissipativity is not enough to guarantee asymptotic stability of the
closed loop system in the case of a general nonlinear system.

Let us consider system (1) where A =

[
0 1
−2 −5

]
and B =

[
0
1

]
with two

stage costs described by :

• l1: Q = 0, R = 0, S =

[
1
1

]

• l2: Q = 0, R = 0, S =

[
1
2

]
The system is only dissipative with respect to the cost described by l1 while it is
strictly-dissipative with respect to the cost described by l2. Rotating the stage
costs with the respective Pds and solving the respective DAREs, the infinite
horizon optimal feedback gains are calculated to be KN1 =

[
−1.8246 −3.8246

]
and KN2 =

[
−1.944 −4.4171

]
with ρ(A − BKN1) = 1 and ρ(A − BKN2) =

0.4617. From Definition 1, let the dissipation residual, Dk, be defined as

Dk , xTk+1Pdxk+1 − xTk Pdxk − l(xk, uk) ≤ 0 (20)

Substituting the infinite horizon optimal controller as uk in (20), we plot the
dissipation residuals from an initial condition x0 =

[
2, 1

]
using the respective

Pds (with which the stage cost was rotated) in (20) as shown in Figure 1.We
note that although both dissipation residuals are non–positive for the respective
optimal inputs, the optimal inputs yield different closed–loop behaviours as
implied by the spectral properties of the respective closed–loop systems. This
confirms that dissipativity alone is not enough to guarantee asymptotic stability
(though it may guarantee marginal stability). But then, is strict-dissipativity
needed?

0 5 10 15 20

−40

−30

−20

−10

0

D
k

k

(a)

0 5 10 15 20

−70

−60

−50

−40

−30

−20

−10

0

D
k

k

(b)

Figure 1: The dissipation trajectory for the system with l1 (1(a)) and l2 (1(b))

In the discussion that follows, we consider the cases when the system is
strictly-dissipative and only dissipative with respect to the stage-cost and try
to link these properties to the asymptotic stability of the closed–loop system.
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Let us assume thatKN has been chosen as in (15) where PN solves the DARE
(6). Let us also assume that (Pd + PN ) = P in Lemma 2.4 is positive-definite
and that the closed loop system is at least marginally stable i.e

(A−BKN )TP (A−BKN )− P ≤ 0. (21)

Combining (17) with (21) and rearranging yields

ATPdA− Pd −Q− (ATPdB − S)KN

−KT
N (BTPdA− ST ) +KT

N (BTPdB −R)KN ≤ 0. (22)

Hence marginal stability of the closed loop system is equivalent to (22). If (21)
(hence (22)) holds with strict inequality, the closed-loop system is asymptoti-
cally stable.

3.1. Case 1: System strictly–dissipative with respect to the stage-cost

For a system that is strictly–dissipative with respect to the stage-cost, we
have from Definition 1 that there exists Pd such that the LMI[

ATPdA− Pd −Q ATPdB − S
BTPdA− ST BTPdB −R

]
< 0. (23)

Given KN and applying Lemma 2.3, we know that (23) implies that

[
I −KT

N

]︸ ︷︷ ︸
XT

[
ATPdA− Pd −Q ATPdB − S
BTPdA− ST BTPdB −R

]
︸ ︷︷ ︸

Y

[
I
−KN

]
︸ ︷︷ ︸

X

≤ 0

⇓
ATPdA− Pd −Q− (ATPdB − S)KN

−KT
N (BTPdA− ST ) +KT

N (BTPdB −R)KN ≤ 0. (24)

Since Y < 0 by strict–dissipativity, the rank of (24) is equal to the rank of X,
which by construction has full column rank. Thus, (24) holds with strict in-
equality. From (22), asymptotic stability of the closed–loop system is equivalent
to (24) holding. This implies that by strict-dissipativity, the closed loop system
is guaranteed to be asymptotically stable.

However, strict–dissipativity implies that for all xk, uk (including the opti-
mal pair), (7) holds with strict inequality. Invoking Lemma 2.1 and substituting
into (23) implies that[

ATPA− P +Q ATPB + S
BTPA+ ST BTPB +R

]
> 0 (25)

PN (which corresponds to the maximum P ) is usually such that (25) is positive
semi–definite. Hence we see that requiring LMI (25) to hold with strict in-
equality is quite a strong condition to be placed on the system and is not really
necessary (since (25) does not hold with PN ) but it is sufficient to guarantee
asymptotic stability of the closed–loop system.

9



3.2. Case 2: System dissipative with respect to the stage-cost
In the case of a system that is only dissipative with respect to the stage–

cost, (23) holds with non–strict inequality. Given KN and applying Lemma 2.3
implies that[

I −KT
N

]︸ ︷︷ ︸
XT

1

[
ATPdA− Pd −Q ATPdB − S
BTPdA− ST BTPdB −R

]
︸ ︷︷ ︸

Y1

[
I
−KN

]
︸ ︷︷ ︸

X1

≤ 0

with (24) holding as before. Hence, dissipativity guarantees marginal stability of
the closed–loop system (provided (Pd+PN ) > 0). Marginal stability is however
not usually enough. Is there any possibility of asymptotic stability i.e (24) being
negative–definite when Y1 is not full rank? We know from Linear Algebra that

this is possible. For example, given an arbitrary KN =

[
1 2
3 4

]
and arbitrary

Y1 =

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 0

, XT
1 Y1X1 < 0 although Y1 ≤ 0. This shows that

dissipativity can guarantee asymptotic stability.

4. On the Sufficiency of Dissipativity

From Section 3, we know that asymptotic stability of the closed loop system
when the system is only dissipative with respect to the stage–cost is possible. In
this section, we derive conditions that guarantee the stability of the closed–loop
system (5) when the optimal feedback gain KN is used. The main assumption
here is that the system is dissipative with respect to the stage–cost.

Definition 2. Given {Q,S,R}, Pd is defined as the set of all Pds for which (8)
holds i.e

Pd , {Pd |
[
ATPdA− Pd −Q ATPdB − S
BTPdA− ST BTPdB −R

]
≤ 0} (26)

Definition 3. Pod is defined as the set of all Pd ∈ Pd for which there exists at

least two distinct Pds, P id and P jd , such that P id − P
j
d is of full rank i.e

Pod , {Pd ∈ Pd | ∃ P id and P jd such that P id − P jd is full rank} (27)

Lemma 4.1. If Pod is not empty, then KN is an asymptotically stabilizing
feedback gain i.e ρ(A−BKN ) < 1 .

Proof. Consider the dissipativity LMI (8). Provided there exists a Pd such that

(8) is feasible (irrespective of the definiteness of
[
Q S

ST R

]
), the ‘rotated’ stage

cost
[
Q̂ Ŝ

ŜT R̂

]
is positive semi–definite where

Q̂ = Q+ Pd −ATPdA
Ŝ = S −ATPdB
R̂ = R−BTPdB

(28)
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Lemma (2.2) shows that the original cost and rotated cost (28) yield the same
controller hence we can study the properties of the controller obtained using the
rotated cost instead of the original cost. Consider the DARE:

AT P̂A − P̂ − (Ŝ + AT P̂B)(R̂ + BT P̂B)†(ŜT + BT P̂A) + Q̂ = 0 (29)

By positive semi–definiteness of the rotated cost, we are guaranteed that P̂ ≥ 0
solves (29). Now consider dissipativity of the system with respect to the rotated
stage cost (28) expressed as[

ATPδA− Pδ − Q̂ ATPδB − Ŝ
BTPδA− ŜT BTPδB − R̂

]
≤ 0 (30)

Since the rotated cost is positive semi–definite, we are assured of at least one
Pδ for which (30) is feasible, namely Pδ = 0.

If the closed loop system (5) is asymptotically stable with KN = (R̂ +
BT P̂B)†(ŜT +BT P̂A), we are able to find a P > 0 such that

(A−BKN )TP (A−BKN )− P < 0. (31)

Now let P = Pδ + P̂ as in Lemma 2.4. If we can find Pδ > 0 that ensures
feasibility of (30), then we are guaranteed that P > 0 (since P̂ ≥ 0). While it
suffices that Pδ > 0, we note that it is not a necessary condition as long as Pδ
is of full rank and ensures feasibility of (30). This is because if KN is such that
the closed–loop system is asymptotically stable, the fact that P > 0 exists that
satisfies (31) does not imply that P − P̂ is always positive–definite. Moreover,
we can apply Lemma 2.1 to show that Pδ + P̂ is always non–negative. Hence
a sufficient condition to guarantee the stability of the closed loop system is the
existence of a full rank Pδ for which the dissipativity LMI (30) holds.

Substituting (28) into (30), the dissipativity condition (30) can be expressed
in terms of the original stage cost as[

ATPδA− Pδ −Q− Pd +ATPdA ATPδB − S +ATPdB
BTPδA− ST +BTPdA BTPδB −R+BTPdB

]
≤ 0 (32)

Let Pθ = Pδ + Pd, (32) then becomes[
ATPθA− Pθ −Q ATPθB − S
BTPθA− ST BTPθB −R

]
≤ 0 (33)

Equation (33) is a dissipativity condition on the system with respect to the
original stage cost. Hence, existence of Pθ and Pd, both elements of Pd such
that Pθ − Pd is of full rank guarantees the asymptotic stability of the closed
loop system (5).

From (22) in section 3, asymptotic stability of the closed–loop system is
equivalent to the existence of Pd such that

ATPdA− Pd −Q− (ATPdB − S)KN

−KT
N (BTPdA− ST ) +KT

N (BTPdB −R)KN < 0 (34)
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Equation (34) is actually the strict-dissipativity inequality from Definition 1
however with uk = −KNxk. So given a system that is only dissipative with re-
spect to the given cost, if the infinite horizon optimal input will be such that the
closed–loop system is asymptotically stable, then the system must be strictly-
dissipative (with respect to the cost) when the optimal control law is chosen
as uk = −KNxk. So we see that though strict-dissipativity is required, it is
only needed in a ‘local’ and not a global sense as in Definition 1. It is needed
only with the optimal control law. And what Lemma 4.1 has done is to give
the condition that guarantees this ‘local’ strict-dissipativity condition will hold.
A system that is strictly-dissipative with respect to the stage cost automati-
cally fulfils this condition since strict-dissipativity holds for all uk, including the
optimal control law.

Remark 3. The result shown here is for a quadratic cost (2) with no definiteness
restriction. In the case of a positive semi–definite cost (2), it suffices to find
only Pθ of full rank. This is because Pd = 0 is feasible if the cost function is
positive semi–definite. Hence, if Pθ is full rank, then there exist a Pδ that is of
full rank.

We are now ready to state the main result of this paper.

Theorem 4.2. Consider optimization problem (3) and the resulting closed loop
system (5). Let Assumption 2.1 hold and the terminal cost PN in (3) be chosen
such that PN solves (6). Then the closed loop system (5) is asymptotically stable
if and only if the set Pod is not empty, with the region of attraction X0.

Proof.
If x0 ∈ X0, then there exists k ≤ N such that xk ∈ X∞ where X∞ is the
maximal admissible set for the closed-loop system (A − BKN )x. With this
choice of x0, the solutions to the constrained optimization problem (3) and the
unconstrained infinite horizon regulator problem coincide [15] and stability of
the closed-loop system can be analysed based on the stabilizing properties of
the terminal controller u = −KNxk where KN = (R̂+BT P̂B)†(ŜT +BT P̂A).
Hence we consider stabilizing properties of this controller.
Sufficiency. Lemma 4.1 shows the sufficiency of Pod not being an empty set
for the optimal feedback gain KN to be locally asymptotically stabilizing.
Necessity. Lemma 2.1 shows the necessity of dissipativity and sufficiency of
dissipativity for the existence of PN that solves (6). From Lemma 2.4, for the
system to be stable, there must exist a Pd such that

Pd > −PN . (35)

Applying Lemma 2.1, Pd = −P =⇒ −PN = min (Pd). Hence, (35) cannot hold
if the set Pod is empty.

Corollary 4.2.1. Let K be a stabilizing feedback gain for a system such that
ρ(A − BK) < 1. Then there is at least one {Q,S,R, Pd} quadruple for which
the system is strictly–dissipative i.e (34) holds with KN = K. Furthermore, if
no such quadruple exists, then K is not a stabilizing feedback gain.
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Remark 4. The minimum cardinality of Pod is 2. A necessary condition for
the existence of Pod is that Pd is not a singleton. Hence, in situations where
there exists only one Pd for which (8) holds, the resulting controller will not be
asymptotically stabilizing. An example of this is in systems where the ‘available’
and ‘required’ storage functions [21] are equal. Since all storage functions for
the system in this context are upper bounded by the required storage and lower
bounded by the available storage, equivalence of these two functions implies there
is only one storage function for which the system is dissipative with respect to
the given cost, hence only one Pd that satisfies the dissipativity LMI (8).

Remark 5. For a system with Pod being an empty set, only the infinite horizon
(and its finite-horizon equivalent when the terminal cost is chosen to be the
solution to the DARE) has been shown not to be stabilizing. The system can
still be stabilized by using a stabilizing terminal cost.

Algorithm for finding the Stabilizing Controller

Given optimization problem (3) where PN has been chosen such that it solves
(6), we describe an algorithm for checking if Pod is not empty and finding the
stabilizing feedback gain, KN (if it exists).

The set of all storage functions for which system (1) is dissipative with
respect to the stage cost (2) is known to be convex [21, 26]. Moreover, P ld ≤
Pd ≤ Pud where P ld is the minimum Pd for which LMI (8) is feasible and Pud the
maximum Pd for which (8) is feasible. It follows that Pd is partially ordered.
Thus, existence of (Pθ −Pd) = Pδ of full rank is equivalent to Pud −P ld being of
full rank.

Algorithm 4.3.
Given {A,B,Q,R, S}
1. Set up a semi-definite programming (SDP) problem to find the minimum
Pd for which LMI (8) is feasible. This is P ld.

2. Set up another SDP problem to find the maximum Pd for which LMI (8)
is feasible. This is Pud .

3. If Pud − P ld has full rank, then Pδ of full rank exists, Pod is not empty and
KN is asymptotically stabilizing. Else, KN is not asymptotically stabiliz-
ing.

To compute the asymptotically stabilizing feedback gain,

4. Using any Pd for which LMI (8) is feasible, rotate the original cost such
that Q̂ = Q+ Pd −ATPdA, Ŝ = S −ATPdB, R̂ = R−BTPdB.

5. Set up another SDP problem to find the maximum P (by maximizing the
determinant of P or any other method) such that LMI (8) is feasible.[

ATPA− P + Q̂ ATPB + Ŝ

BTPA+ ŜT BTPB + R̂

]
≥ 0. (36)

6. Obtain the solution to DARE (6) as PN = P−Pd. Then the asymptotically
stabilizing feedback gain is KN = (BTPNB +R)†(BTPNA+ ST ).

13



5. Numerical Examples

This section contains examples to show the results of Theorem 4.2 using
Algorithm 4.3. In all examples shown, the system considered is only dissipative
with respect to the cost function given.

5.1. Example 1

We consider system (1) and stage cost (2) where

A =

[
1.15 0
0.1 1.1

]
, B =

[
1 −1
0 0

]
, Q = R = 0 , S =

[
−1 1
1 −1

]
.

Running Algorithm 4.3, we find Pd =

[
−1.3415 0.6931
0.6931 −4.6804

]
with Pδ =

[
1.3232 1.7753
1.7753 11.2689

]
of full rank which implies Pod is not empty. The infinite horizon optimal feedback

gain, KN =

[
0.3569 0.5536
−0.3569 −0.5536

]
and ρ(A−BKN ) = 0.7685.

5.2. Example 2

Given

A =

[
1 2
−1 2

]
, B =

[
1 0 −1 0
0 −1 0 1

]
, Q = 0 , R = 0 ,

S =

[
−0.58 −0.66 0.58 0.66
−0.39 0.56 0.39 −0.56

]
.

The system is only dissipative with respect to the stage cost. From Algo-

rithm 4.3, Pd =

[
−1.5113 0.3684
0.3684 −1.3537

]
for which LMI (8) is feasible and Pδ =[

−0.9158 −0.1274
−0.1274 −2.8596

]
has full rank. The infinite horizon optimal feedback gain

is computed as KN =

 0.3823 0.9
0.4197 −0.9136
−0.3823 −0.9
−0.4197 0.9136

 with ρ(A−BKN ) = 0.2698.

5.3. Example 3

In this example, we revisit the system from section 3 where

A =

[
0 1
−2 −5

]
, B =

[
0
1

]
, Q = 0, R = 0, S =

[
1
1

]
.

As shown earlier in section 3, the closed–loop system is only marginally stable
when the infinite horizon optimal control input is applied. Running Algorithm

4.3, though Pd =

[
−0.9916 −2.9916
−2.9916 −2.9916

]
exists for which the system is dissipative

with respect to the stage cost, we cannot find Pδ of full rank. This explains why
the closed–loop system is not asymptotically stable.

14



However, as stated in Remark 5 when the rank condition on Pδ is not satis-
fied, only the infinite horizon (and the finite horizon equivalent when the solution
to the DARE (6) is chosen as the terminal cost) optimization problem has been
shown not to result in an asymptotically stable closed–loop system. We can
regain asymptotic stability by choosing a stabilizing terminal cost.

Using a terminal cost PN =

[
1 0
0 1

]
in optimization problem (3) with an

initial condition x0 =
[
2, 1

]
, the resulting closed–loop system is asymptotically

stable as shown in Figure 2. The horizon length used was N = 20.
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Figure 2: Closed–loop trajectories of the system with a stabilizing terminal cost

6. Conclusion

Strict-dissipativity of a system with respect to the objective function has
been known to guarantee closed-loop stability when an optimal control in the
economic MPC context is used. In this paper we showed that while strict-
dissipativity guarantees stability of the closed-loop system, it is not really needed
when dealing with linear systems with purely quadratic stage costs. We then es-
tablished a necessary and sufficient condition that guarantees asymptotic stabil-
ity of the closed-loop system based on dissipativity of the linear system with the
quadratic stage cost. This condition is equivalent to the system being strictly-
dissipative with respect to the objective function when the input is chosen to be
the optimal controller. The result comes down to the existence of two distinct
storage functions for which the system is dissipative with respect to the cost
function. In this paper we restricted ourselves to linear systems with purely
quadratic costs; this allows dissipativity to be tested for using the LMI frame-
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work. Extension to costs including linear terms and more general settings will
be the focus of future research.
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