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Abstract

Simultaneously long short (SLS) feedback trading strategies are known to yield

positive expected gain by zero initial investment for price processes governed

by, e.g., geometric Brownian motion or Merton’s jump diffusion model. In this

paper, we generalize these results to positive prices with stochastically inde-

pendent multiplicative growth and constant trend in discrete and continuous

time as well as for sampled-data systems and show that in all cases the SLS

strategies’ expected gain does not depend on the price model but only on the

trend.

Keywords: Feedback-based Stock Trading, Technical Trading Rules,

Simultaneously Long Short Strategy, Sampled-data Systems, Lévy Processes

1. Introduction

In this paper we extend recent results on control theory based strategies

for stock trading. In general, traders who buy and sell stocks in order to make

profit may use trading rules which tell them whether to invest or to disinvest in a

specific stock. Such rules can be based, inter alia, on information on the underly-

ing firm or solely on the stock’s chart. For the latter type of strategies—usually

called chartist strategies—control theoretic ideas have been systematically used

in the last decade in order to derive so called feedback trading rules, see, e.g.,

[1, 2, 3, 4, 5]. The basic idea of these rules is rather simple: given trading times
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t0 < t1 < . . . < tN , instead of using the price path pt > 0 for calculating the

investment I`tn of trader ` at time tn (N0 3 n ≤ N), feedback rules use the

traders’ own gain

g`tn :=

n∑
i=1

I`ti−1
·
pti − pti−1

pti−1

(1)

based on the past investments I0, . . . , In−1 and implement a feedback loop I`tn :=

f(g`tn) between investment and gain. Proceeding this way, the price process can

be treated like a disturbance variable. Note that the investment can be positive

(usually called long) as well as negative (short); likewise, the gain can be positive5

or negative. Investing short leads to a positive gain if prices fall.

The big question is: how to chose the function f? One possibility is to

choose f as an affine linear function

ILt = I∗0 +KgLt (2)

where I∗0 > 0 is the initial investment and K > 0 is the feedback parameter.

Since this is a long investing rule, that means it makes money if the prices

rise, in a continuous time setting we call this rule linear long feedback trading

strategy. Another choice is the analogous short rule

ISt = −I∗0 −KgSt

where gSt is the short rule’s gain which is positive if prices are falling.1 But since

it is unrealistic that a trader knows whether prices are rising or falling it might

be reasonable to choose the following simultaneously long short (SLS) strategy:

ISLSt = ILt + ISt

For the reason of readability we write It and gt instead of ISLSt and gSLSt ,

resp. Note—and this is very important—that gLt and gSt and ILt and ISt are still

1We note that the names “long” and “short” here are true only for the continuous time

version of these strategies. Indeed, in a discrete time setting it might happen that the long

trader becomes a short trader and vice versa.
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evaluated separately in order to determine the feedback strategy and that the

initial investment of the SLS strategy is always zero (I0 = IL0 +IS0 = I∗0−I∗0 = 0).10

The SLS trading strategy is in the focus of our research since there are

some interesting results in the literature: in [1] it is shown that the gain of the

SLS rule is positive for continuously differentiable prices which means the SLS

strategy offers an arbitrage opportunity. In [2] and [3] it is shown that the SLS

rule’s expected gain is positive for prices following a geometric Brownian motion

which has the property:

E
[
dp(t)

p(t)

]
= µ (3)

with µ > −1 being the trend. In particular it is shown that

E[gt] =
I∗0
K

(
eKµt + e−Kµt − 2

)
(4)

which is positive for all t > 0 and µ 6= 0. In [4] this is generalized to prices that

follow Merton’s jump diffusion model, i.e., if the model parameters fulfill (3)

the expected gain fulfills (4). In [5], this property is shown for a whole set of

price models, called essentially linearly representable prices. These include the

geometric Brownian motion and Merton’s jump diffusion model. That means,15

for many price models it could be shown that the expected gain is positive while

the initial investment is zero.

In the work at hand, we further generalize these results by showing that

this property—positive expected gain with zero initial investment—holds for all

discrete and continuous price processes with independent multiplicative growth20

and constant trend. For example, a exponentiated Lévy process fulfills this

properties. Furthermore, we show our results in the practically more realistic

discrete time setting and give a closed formula for the expected gain of the SLS

strategy. In this context, we clarify the relation between the discrete time or

sampled-data setting considered in this paper and the continuous time setting25

used in most of the literature on feedback trading. In particular, and in contrast

to sampled-data implementations of other controllers known in the literature

[6, 7, 8], we show that when the sampled controller is applied to a continuous

time process then there is no qualitative change in the performance of the closed

3
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loop properties, i.e., the property of positive expected gain is maintained for30

arbitrary sampling times h > 0, only the amount of the expected gain changes

with the sampling time.

The paper is organized as follows: After an introduction to trading, SLS

trading, and related work, the price processes of interest are defined and market

requirements are presumed. In Section 3 a formula for the expected gain of the35

SLS trading strategy in discrete time is derived. In Section 4 the application of

this trading strategy to a continuous time process as a sampled-data controller

is analyzed and in Section 5 the limit for vanishing sampling times is computed

and found to be consistent with the existing continuous time results in the

literature. At the end, the paper is concluded and references are given.40

2. Price processes and Market Requirements

Before analyzing the SLS strategy, we have to specify the price processes of

interest and the time grid on which we define the price processes.

• Discrete Time Trading: at every point of time t ∈ T = {0, h, 2h, . . . , T}

with T = Nh and h > 0, the trader has all information available up to t45

and adjusts his/her investment It.

Definition 1. Given h > 0 and T from above, the price processes of interest

have the following properties:

• Stochastic Prices: the price process (pt)t∈T is a stochastic process

• Positive Prices: the price pt is positive for all t ∈ T50

• Fixed Start Price: The start price p0 ∈ R+ is deterministic

• Independent Multiplicative Growth: for all k ∈ N and all t0 < t1 < . . . <

tk ∈ T it holds:

pt0 ,
pt1
pt0

,
pt2
pt1

, . . . ,
ptk
ptk−1

are stochastically independent (5)
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• Constant Trend: the expected relative return is constant, i.e., there is

µh > −1 such that for all t ∈ T \ {0} it holds:

E
[

1

pt−h
· pt − pt−h

h

]
= µh. (6)

Note that this assumption is inspired by (3) and that it is equivalent to:

E
[
pt
pt−h

]
= µhh+ 1 (7)

Additionally, we need some basic market requirements which are similar to

those in [2] and [4].

Definition 2. The following market requirements are presumed:

• Costless Trading: there are no additional costs associated with buying or55

selling an asset.

• Adequate Resources: the trader has enough financial resources so that all

desired transactions can be executed.

• Trader as Price-Taker: the trader is not able to influence the asset’s price,

neither directly nor through buying or selling decisions. Note that in case60

h > 0 is not fixed but considered a parameter of the trader (determined by

the trading frequency), this appears to be a contradiction to the definition

of µh since the relative return in (6) may then depend on the trading

frequency. We will see in Section 4, below, why this is not a contradiction.

• Perfect Liquidity: there is neither a gap between bid and ask price nor any65

waiting time for transaction execution.

Before analyzing the trading performance, we will have a closer look on

the prices fulling above defined assumptions. At first, we will prove a lemma

concerning the expected stock price. Note that the idea of the proof will be very

helpful when analyzing the trading strategy, too.70
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Lemma 1. For t = nh, a price process fulfilling Definition 1 has the expected

value:

E[pt] = p0 · z
(
µh,

1
h

)t
with z(x,m) : R× R+ → R given by z(x,m) 7→

(
1 +

x

m

)m
.

Proof. This can be proven by calculation using Definition 1:

E[pt] = E
[
p0 ·

ph
p0
· p2h
ph
· · · pt

p(n−1)h

]
= p0 ·

n∏
i=1

E
[

pih
p(i−1)h

]
= p0 · (µhh+ 1)

n
= p0 ·

(
(µhh+ 1)

1
h

)t
Now the definition of the function z proves the lemma.

When defining (Ft)t∈T as the family of σ algebras containing the informa-

tion, with a very similar proof one can show that it holds:75

E [pt2 |Ft1 ] = pt1 ·
(

(µhh+ 1)
1
h

)t2−t1
= pt1 · z

(
µh,

1
h

)t2−t1
(8)

The next question that may arise is which processes fulfill Definition 1.

Lemma 2 gives us one possiblity to construct such processes.

Lemma 2. Let (Xt)t∈T ⊂ R be a Lévy process, i.e., a stochastic process with

the following properties:

• Independent Growth: for all k ∈ N and all t0 < t1 < . . . < tk ∈ T it holds:

Xt1 −Xt0 , Xt2 −Xt1 , . . . , Xtk −Xtk−1
are stochastically independent

• Identically Distributed Growth: for all t1, t2, t3, t4 ∈ T with t2−t1 = t4−t3
it holds:

Xt2 −Xt1 ∼ Xt4 −Xt3 (9)

• Start at zero: X0 = 0.80

6
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Then for every p0 ∈ R+ it holds that

pt := p0 · eXt ∀t ∈ T

fulfills Definition 1.

Proof. Obviously, pt is a stochastic process which is positive and has a fixed

start price. The independent multiplicative growth of pt follows from the inde-

pendent growth of Xt and of X0 = 0. It remains to prove the constant trend:

From (9) it follows Xt1 − Xt1−h ∼ Xt2 − Xt2−h and thus e
Xt1

e
Xt1−h

∼ e
Xt2

e
Xt2−h

.85

Particularly, E
[

e
Xt1

e
Xt1−h

]
= E

[
e
Xt2

e
Xt2−h

]
holds for all t1, t2 ∈ T . This shows that

µh :=
(
E
[

e
Xt1

e
Xt1−h

]
− 1
)
h−1 is well-defined.

3. Performance Properties

Now, after having understood the price dynamics we will analyze the SLS

trading strategy’s performance. At first, we have a look at the so-called linear

long trader:

ILt = I∗0 +KgLt

and recall that

gLt =
∑

τ∈{h,2h,...,nh}

ILτ−h ·
pτ − pτ−h
pτ−h

.

So it holds:

ILt − ILt−h = K · (gLt − gLt−h) = K · ILt−h ·
pt − pt−h
pt−h

,

ILt − ILt−h
h · ILt−h

= K · pt − pt−h
h · pt−h

,

and

It
It−h

= K ·
(

pt
pt−h

− 1

)
+ 1 (10)

This, directly leads to90
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E

[
ILt − ILt−h
h · ILt−h

]
= Kµh

and with an analogous proof to that one of Lemma 1 to Lemma 3.

Lemma 3. For the investment of a linear long trader it holds:

E
[
ILt
]

= I∗0 · z
(
Kµh,

1
h

)t

From the closed form formula for the expected investment of the linear long

trader we derive a similar formula for the expected gain of the linear long trader95

when using equation (2):

E
[
gLt
]

=
I∗0
K
·
(
z
(
Kµh,

1
h

)t − 1
)

By substituting I∗0 7→ −I∗0 and K 7→ −K we get for the short side’s invest-

ment and gain:

E
[
ISt
]

= −I∗0 · z
(
−Kµh, 1h

)t
and

E
[
gSt
]

=
I∗0
K
·
(
z
(
−Kµh, 1h

)t − 1
)

Recalling gt = gLt + gSt , we obtain Theorem 1.

Theorem 1. The expected gain of the SLS feedback trading strategy is:

E[gt] =
I∗0
K
·
(
z
(
Kµh,

1
h

)t
+ z

(
−Kµh, 1h

)t − 2
)
.

100

Next, we show that the expected gain is positive for all T 3 t > h.

Theorem 2. The expected gain of the SLS feedback trading strategy is non-

negative and is zero if and only if t = 0 or t = h.

8
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Proof. We calculate:

E[g0] = 0

and

E[gh] =
I∗0
K
· ((1 +Kµhh) + (1−Kµhh)− 2) = 0

For t = nh with n ≥ 2 the proof becomes a little more involved:105

E[gt] =
I∗0
K

((1 +Kµhh)
n

+ (1−Kµhh)
n − 2)

=
I∗0
K

((
n∑
i=0

(
n

i

)
· (Kµhh)i

)
+

(
n∑
i=0

(
n

i

)
· (−Kµhh)i

)
− 2

)

=
2I∗0
K

bn
2 c∑
i=1

(
n

2i

)
·
(
(Kµhh)i

)2
> 0

which shows the claim.

4. Discrete time trading of continuous time price processes

In practice, the price of a stock will not only be defined at the discrete

trading times t ∈ T which are chosen by the trader. Ideally, one would model

p(t) as a continuous time price process2 which is defined for all t ∈ R+
0 . In a110

control theoretic notion, the discrete time controller derived in the last section

is implemented as a sampled-data controller with sampling time h > 0. Hence,

the sampling time h > 0 becomes a parameter of the trader and there appears to

be a conflict between the fact that the return µh in (6) depends on the trading

frequency via h while on the other hand Definition 2 demands the price taker115

property, i.e., that the trader is not able to influence the price.

In the following analysis we will show that this contradiction can be resolved

by assuming the price taker property for the continuous time returns rather than

2In order to distinguish the continuous time from the discrete time case, we write the time

argument in brackets for continuous time processes, i.e., p(t) instead of pt.

9
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for the discrete time returns. To this end, we will show that Definition 1 can

be met if we consider a constant trend µ for the continuous price model which

is not influenced by the trader and a trader who trades on a discrete time grid

with parameter h > 0, where h and µ are independent. For all t2 > t1 ≥ 0 we

assume:

E [p(t2)|Ft1 ] = p(t1) · eµ(t2−t1). (11)

This property is true, e.g., for the geometric Brownian motion and for Merton’s

jump diffusion model. It implies:

E [p(t)] = p0 · eµt

and

E
[

p(t)

p(t− h)

∣∣∣∣Ft−h] = eµh ∀h > 0, t ≥ h

Since eµh is deterministic and thus independent of the realization of p(t−h)

it follows:

E
[

p(t)

p(t− h)

]
= eµh ∀h > 0, t ≥ h

and thus

E
[
p(t)− p(t− h)

h · p(t− h)

]
=
eµh − 1

h
=: µh.

Hence, (6) holds for all h > 0 for appropriately chosen µh. We note that with

L’Hôspital’s rule it is easily verified that µh → µ for h → 0. Moreover, we can

see that 0 < h and µ > −1 implies µh > −1.

From Theorem 2 it thus follows that for a continuous time process satisfying120

the first four properties of Definition 1 and (11) with µ > −1, the discrete time

SLS trading strategy with 0 < h yields positive expected gain E[gt] > 0 whenever

t ≥ 2h. We emphasize that this means that the decisive qualitative property,

i.e., positive expected gain with zero initial investment, holds independent of

the length h > 0 of the sampling interval. This is in contrast to, e.g., stabilizing125

controllers, for which it is known that asymptotic stability of the closed loop

may be lost if the sampling time is chosen too large [6, 7, 8].

10
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5. Continuous time limit

We end this paper by analyzing what happens if the trading frequency tends

to infinity, i.e., if the time h > 0 between two trading times tends to 0. Clearly,130

this question only makes sense if p(t) is a continuous time process, as in the

previous section. Moreover, in order to obtain a meaningful limit we have to

make sure that the stochastic Itô-integral with respect to dp(t) exists. To this

end, it is sufficient to assume that p(t) is a semi-martingal, see [9, Chapter II

and V]. Note that the geometric Brownian Motion and Merton’s jump diffusion135

model are super-, sub-, or martingals and in all cases these are semi-martingals.

As in the previous section we assume

E [p(t2)|Ft1 ] = p0 · eµ(t2−t1).

It directly follows:

E [p(t)] = p0 · eµt

Now, Theorem 2 can be applied.

All results and definitions obtained so far can be transformed into similar

results for continuous time trading when using

lim
m→∞

z(x,m) = ex.

Considering (1) with ti = ih, n = t/h and letting h→ 0 we obtain:

g`(t) =

∫ t

0

I`(τ)

p(τ)
dp(τ)

E
[
IL(t)

]
= I∗0 · eKµt,

E
[
IS(t)

]
= −I∗0 · e−Kµt,

E
[
gL(t)

]
=
I∗0
K

(
eKµt − 1

)
,

E
[
gS(t)

]
=
I∗0
K

(
e−Kµt − 1

)
,

and last but not least

E [g(t)] =
I∗0
K

(
eKµt + e−Kµt − 2

)
> 0 (12)

11
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which is the desired formula for the expected gain E[g(t)].

When using the common and purly formal notation of stochastic differential

equations, it holds

E
[
dp(t)

p(t)

]
= µ,

dIL(t)

IL(t)
= K · dp(t)

p(t)
,

E
[
dIL(t)

IL(t)

]
= Kµ,

and

E
[
dIS(t)

IS(t)

]
= −Kµ.

These are exactely the conditions used in the continuous time setting in [2],

[3], [4], and [5] for geometric Brownian motions, Merton’s jump diffusion model140

and all essentially linearly representable prices, which ensure that (12) holds.

Hence, in the limit for h→ 0 we recover the known results from the continuous

time literature, but for a much more general class of price processes.

6. Conclusion

We have discussed a discrete time version of the SLS trading strategy, a145

superposition of two particular, opposing linear feedback trading strategies. We

showed that the property of positive expected gain while zero initial investment

does not depend on the chosen market model but only on its trend—both for

discrete time and for continuous time price processes. Moreover, in the con-

tinuous time limit the continuous time results known in the literature can be150

reproduced for a much more general class of price processes.
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