
ar
X

iv
:1

60
9.

03
78

4v
4

 [
cs

.D
C

]
 2

6
M

ar
 2

01
7

A Fast Proximal Gradient Algorithm for Decentralized Composite

Optimization over Directed Networks ✩

Jinshan Zeng1 , Tao He1 , Mingwen Wang1

1. College of Computer Information Engineering, Jiangxi Normal University, Nanchang, 330022, P R China.

Abstract

This paper proposes a fast decentralized algorithm for solving a consensus optimization problem

defined in a directed networked multi-agent system, where the local objective functions have the

smooth+nonsmooth composite form, and are possibly nonconvex. Examples of such problems

include decentralized compressed sensing and constrained quadratic programming problems,

as well as many decentralized regularization problems. We extend the existing algorithms PG-

EXTRA and ExtraPush to a new algorithm PG-ExtraPush for composite consensus optimization

over a directed network. This algorithm takes advantage of the proximity operator like in PG-

EXTRA to deal with the nonsmooth term, and employs the push-sum protocol like in ExtraPush

to tackle the bias introduced by the directed network. With a proper step size, we show that PG-

ExtraPush converges to an optimal solution at a linear rate 1 under some regular assumptions.

We conduct a series of numerical experiments to show the effectiveness of the proposed algorithm.

Specifically, with a proper step size, PG-ExtraPush performs linear rates in most of cases, even

in some nonconvex cases, and is significantly faster than Subgradient-Push, even if the latter

uses a hand-optimized step size. The established theoretical results are also verified by the

numerical results.

Keywords: Decentralized optimization; directed network; composite objective; nonconvex;

consensus.

✩The work of J. Zeng is supported in part by the National Natural Science Foundation of China (Grants No.
61603162, 11401462).

1In this paper, we use the notion of R-linear rate, i.e., a sequence {xt} converging to x∗ at an R-linear rate
means that ‖xt − x∗‖ ≤ Cρt for some constants C > 0 and ρ ∈ (0, 1).

Preprint submitted to Elsevier March 28, 2017

http://arxiv.org/abs/1609.03784v4

1. Introduction

We consider the following consensus optimization problem defined on a directed, strongly

connected network of n agents:

minimize
x∈Rp

f(x) ,

n∑

i=1

fi(x),

where fi(x) = si(x) + ri(x), (1.1)

and for every agent i, fi is a proper, coercive and possibly nonconvex function only known to

the agent, si is a smooth function, ri is generally nonsmooth and possibly nonconvex. We say

that the objective has the smooth+nonsmooth composite structure.

The smooth+nonsmooth structure of the local objective arises in a large number of signal

processing, statistical inference, and machine learning problems. Specific examples include: (i)

the geometric median problem in which si vanishes and ri is the ℓ2-norm [5]; (ii) the compressed

sensing problem, where si is the data-fidelity term, which is often differentiable, and ri is a

sparsity-promoting regularizer such as the ℓq (quasi)-norm with 0 ≤ q ≤ 1 [6], [8]; (iii) optimiza-

tion problems with per-agent constraints, where si is a differentiable objective function of agent

i and ri is the indicator function of the constraint set of agent i, that is, ri(x) = 0 if x satisfies

the constraint and ∞ otherwise [3], [7].

For a stationary network with bi-directional communication, the existing algorithms include

the primal-dual domain methods such as the decentralized alternating direction method of multi-

pliers (DADMM) [13, 14], and the primal domain methods including the distributed subgradient

method (DSM) [9]. Both algorithms do not take advantage of the smooth+nonsmooth struc-

ture. While the algorithms that consider smooth+nonsmooth objectives in the form of (1.1)

include the following primal-domain methods: the (fast) distributed proximal gradient method

(DPGM) [2], the proximal decentralized gradient descent method (Prox-DGD) [23], the dis-

tributed iterative soft thresholding algorithm (DISTA) [12], proximal gradient exact first-order

algorithm (PG-EXTRA) [16]. All these primal-domain methods consist of a gradient step for

the smooth part and a proximal step for the nonsmooth part. Different from DPGM, Prox-

DGD and DISTA, PG-EXTRA as an extension of EXTRA [15] has two interlaced sequences

of iterates, whereas the proximal-gradient method just inherits the sequence of iterates in the

gradient method.

This paper focuses on a directed network with directional communication, which is pio-

neered by the works [17, 18, 19]. When communication is bi-directional, algorithms can use a

2

symmetric and doubly-stochastic mixing matrix to obtain a consensual solution; however, once

the communication is directional, the mixing matrix becomes generally asymmetric and only

column-stochastic. In the column-stochastic setting, the push-sum protocol [4] can be used to

obtain a stationary distribution for the mixing matrix. Some recent decentralized algorithms

over a directed network include Subgradient-Push [10], ExtraPush [22] (also called DEXTRA

in [20]) and Push-DIGing [11]. The best rate of Subgradient-Push in the general convex case

is O(ln t/
√
t), where t is the iteration number, and both ExtraPush and Push-DIGing perform

linearly convergent in the strongly convex case. However, all of these algorithms do not consider

the smooth+nonsmooth structure as well as the nonconvex case as defined in problem (1.1).

In this paper, we extend the algorithms PG-EXTRA and ExtraPush to the composite consen-

sus optimization problem with the smooth+nonsmooth structure, and establish the convergence

and linear convergence rate of the proposed PG-ExtraPush algorithm. At each iteration, each

agent locally computes a gradient of the smooth part of its objective and a proximal map of the

nonsmooth part, and exchanges information with its neighbors, then uses the push-sum protocol

[4] to achieve the consensus. When the network is undirected, the proposed PG-ExtraPush re-

duces to PG-EXTRA, and when ri ≡ 0, PG-ExtraPush reduces to ExtraPush [22]. If the smooth

part of objective is Lipschitz differentiable and quasi-strongly convex and the nonsmooth part

is convex with bounded subgradient (see Assumption 3), we prove that with a proper step size,

the proposed algorithm converges to an optimal solution at a linear rate. We provide a series

of numerical experiments including three convex cases and one nonconvex case, to show the

effectiveness of the proposed algorithm. Specifically, when applied to the convex cases, PG-

ExtraPush performs the linear rates, and is significantly faster than Subgradient-Push, even if

the latter uses a hand-optimized step size. While when applied to the nonconvex decentralized

ℓq regularized least squares regression problems with 0 ≤ q < 1, it can be observed that the pro-

posed algorithm performs an eventual linear convergence rate, that is, PG-ExtraPush performs

a linear decay starting from a few iterations but not the initial iteration. This means that if

we can fortunately get a good initial guess, the proposed algorithm PG-ExtraPush might decay

linearly even in these nonconvex cases.

It should be pointed out that the extension from ExtraPush [22] to PG-ExtraPush is non-

trivial. The main differences between the proposed algorithm PG-ExtraPush and ExtraPush

[22] can be summarized as follows:

1. On algorithm development. Clearly, PG-ExtraPush extends ExtraPush to handle

3

nonsmooth objective terms. This extension is not the same as the extension from the

gradient method to the proximal-gradient method, as well as the extension from EXTRA

[15] to PG-EXTRA [16]. As the reader will see, PG-ExtraPush will have three interlaced

sequences of iterates, whereas the proximal-gradient method just inherits of the sequence of

iterates in the gradient method; and PG-ExtraPush uses the proximal maps of a sequence

of transformed functions of ri associated with a positive weight sequence {wt} essentially
introduced by the directed graph, while PG-EXTRA utilizes the proximity operator of ri.

2. On convergence analysis. Although the convergence analysis of this paper is motivated

by the existing analysis in [22], there are several new proof techniques. The convergence of

many existing algorithms like ExtraPush [22] is established based on a similar inequality

of (4.9) as presented in Theorem 3. However, we can not directly prove that such an

inequality holds for all iterations of PG-ExtraPush. Instead, we can only establish the

inequality (4.9) for a fixed iteration of PG-ExtraPush under the boundedness assumption

of the previous two iterates. In order to establish the key inequality for all iterations, an

induction technique is used as shown in the proof of Theorem 3. Moreover, the linear

convergence rate of the proposed algorithm is established from the key inequality (4.9) via

a recursive way. All of these are different from the convergence analysis in [22].

The rest of paper is organized as follows. Section 2 introduces the problem setup. Section

3 develops the proposed algorithm. Section 4 establishes its convergence and convergence rate.

Section 5 presents our numerical results. We conclude this paper in Section 6.

Notation: Let In denote an identity matrix with the size n × n. We use 1n ∈ R
n as a

vector of all 1’s. For any vector x, we let xi denote its ith component and diag(x) denote the

diagonal matrix generated by x. For any matrix X, XT denotes its transpose, Xij denotes its

(i, j)th component, and ‖X‖ ,
√

〈X,X〉 =
√
∑

i,j X
2
ij denotes its Frobenius norm. The largest

and smallest eigenvalues of matrix X are denoted as λmax(X) and λmin(X), respectively. For

any matrix B ∈ R
m×n, null(B) , {x ∈ R

n|Bx = 0} is the null space of B. Given a matrix

B ∈ R
m×n, by Z ∈ null(B), we mean that each column of Z lies in null(B). The smallest

nonzero eigenvalue of a symmetric positive semidefinite matrix X 6= 0 is denoted as λ̃min(X),

which is strictly positive. For any positive semidefinite matrix G ∈ R
n×n (not necessarily

symmetric in this paper), we use the notion ‖X‖2G , 〈X,GX〉 for a matrix X ∈ R
n×p.

4

A =
















1
4

1
4 0 1

2 0

1
4

1
4 0 0 1

3

1
4 0 1

2 0 1
3

0 1
4 0 1

2 0

1
4

1
4

1
2 0 1

3
















Figure 1: A directed graph G (left) and its mixing matrix A (right) [22].

2. Problem reformulation

2.1. Network

Consider a directed network G = {V,E}, where V is the vertex set and E is the edge set.

Any edge (i, j) ∈ E represents a directed arc from node i to node j. The sets of in-neighbors

and out-neighbors of node i are

N in
i , {j : (j, i) ∈ E} ∪ {i}, N out

i , {j : (i, j) ∈ E} ∪ {i},

respectively. Let di , |N out
i | be the out-degree of node i. In G, each node i can only send

information to its out-neighbors, not vice versa.

To illustrate a mixing matrix for a directed network, consider A ∈ R
n×n where







Aij > 0, if j ∈ N in
i

Aij = 0, otherwise.
(2.1)

The entries Aij satisfy that, for each node j,
∑

i∈V Aij = 1. An example is the following mixing

matrix

Aij =







1/dj , if j ∈ N in
i

0, otherwise
, (2.2)

i, j = 1, . . . , n, which is used in the Subgradient-Push method [10]. See Fig. 1 for a directed

graph G and an example of its mixing matrix A. The matrix A is column stochastic and

asymmetric in general.

Assumption 1. The graph G is strongly connected.

Property 1. Under Assumption 1, the following hold (parts (i) and (iv) are results in [10,
Corollary 2], while parts (ii) and (iii) are results in [22, Property 1])

5

(i) Let At =

t
︷ ︸︸ ︷

A×A · · ·A for any t ∈ N. Then

At → φ1Tn geometrically fast as t→∞, (2.3)

for some stationary distribution vector φ, i.e., φi ≥ 0 and
∑n

i φi = 1. More specifically,
for all i ∈ {1, . . . , n}, the entries (At)ij and φi, there holds

|(At)ij − φi| < Cγt, ∀j ∈ {1, . . . , n},

where C = 4 and γ = 1− 1
nn .

(ii) null(In − φ1Tn) = null(In −A).

(iii) Aφ = φ.

(iv) The quantity ξ , inftmin1≤i≤n(A
t1n)i ≥ 1

nn > 0.

Letting,

D∞ , ndiag(φ), Dt , diag(At1n), (2.4)

and

d+ , max
t
{‖Dt‖}, d− , max

t
{‖(Dt)−1‖}, d+∞ , ‖D∞‖, d−∞ , ‖D−1

∞ ‖. (2.5)

Thus, by Property 1, there hold

‖Dt −D∞‖ ≤ nCγt, (2.6)

‖(Dt)−1 − (D∞)−1‖ = ‖(Dt)−1(D∞ −Dt)(D∞)−1‖ ≤ d−d−∞nCγt, (2.7)

for any t ∈ N.

2.2. Problem with matrix notation

Let x(i) ∈ R
p denote the local copy of x at node i, and xt(i) denote its value at the t-th

iteration. Throughout the note, we use the following equivalent form of the problem (1.1) using

local copies of the variable x:

minimizex 1Tn f(x) ,

n∑

i=1

fi(x(i)),

subject to x(i) = x(j), ∀(i, j) ∈ E, (2.8)

6

where 1n ∈ R
n denotes the vector with all its entries equal to 1, x ∈ R

n×p, f(x) ∈ R
n, s(x) ∈ R

n

and r(x) ∈ R
n with

x ,











— xT(1) —

— xT(2) —
...

— xT(n) —











, f(x) ,











f1(x(1))

f2(x(2))
...

fn(x(n))











, s(x) ,











s1(x(1))

s2(x(2))
...

sn(x(n))











, r(x) ,











r1(x(1))

r2(x(2))
...

rn(x(n))











.

In addition, the gradient of s(x) is

∇s(x) ,











— ∇s1(x(1))T —

— ∇s2(x(2))T —
...

— ∇sn(x(n))T —











∈ R
n×p,

and a subgradient of r(x) is

∇̃r(x) ,











— ∇̃r1(x(1))T —

— ∇̃r2(x(2))T —
...

— ∇̃rn(x(n))T —











∈ R
n×p.

The ith rows of the above matrices x, ∇s(x) and ∇̃r(x), and vector s(x), correspond to agent

i. For simplicity, one can treat p = 1 throughout this paper. To deal with the nonsmooth part,

given a parameter α > 0, we introduce the proximity operator proxαri associated with ri as

follows

proxαri(z) = argmin
u∈Rp

{

ri(u) +
‖u− z‖22

2α

}

. (2.9)

For any z ∈ R
n×p, define

Proxαr(z) =











proxαr1(z(1))

proxαr2(z(2))
...

proxαrn(z(n))











.

3. Development of Algorithm

3.1. Proposed Algorithm: PG-ExtraPush

The proposed algorithm PG-ExtraPush extends PG-EXTRA and ExtraPush to compos-

ite (smooth+nonsmooth) consensus optimization problem. Given a sequence of n-dimensional

7

positive vectors {wt}t∈N, we define a sequence of functions

rt(x) , diag(wt)r(diag(wt)−1x), ∀ x ∈ R
n×p, t ∈ N.

Let Ā , A+In

2 . Specifically, the proposed algorithm can be described as follows: for all

agents i = 1, . . . , n, set arbitrary z0(i) ∈ R
p, w0

i = 1, x0(i) = z0(i); z
1/2
(i) =

∑n
j=1Aijz

0
(j)−α∇si(z0(i)),

w1
i =

∑n
j=1Aijw

0
j , z

1
(i) = proxαr1i (z

1/2
(i)), x

1
(i) =

z1
(i)

w1
i

. For t = 1, 2 . . . , perform







z
t+1/2
(i) =

∑n
j=1Aijz

t
(j) + z

t−1/2
(i) −∑n

j=1 Āijz
t−1
(j) − α(∇si(xt(i))−∇si(xt−1

(i))),

wt+1
i =

∑n
j=1Aijw

t
j,

zt+1
(i) = proxαrt+1

i
(z

t+1/2
(i)),

xt+1
(i) =

zt+1
(i)

wt+1
i

.

(3.1)

The matrix form of the algorithm can be described as follows: set arbitrary z0 ∈ R
n×p,

w0 = 1n, x
0 = z0; z1/2 = Az0 − α∇s(z0), w1 = Aw0, z1 = Proxαr1(z

1/2), x1 = diag(w1)
−1

z1.

For t = 1, 2, . . . , perform







zt+1/2 = Azt + zt−1/2 − Āzt−1 − α(∇s(xt)−∇s(xt−1)),

wt+1 = Awt,

zt+1 = Proxαrt+1(zt+1/2),

xt+1 = diag(wt+1)
−1

zt+1.

(3.2)

By the definition of the proximal operator and the definition of function rt, the PG-ExtraPush

iteration (3.2) implies

zt+1 = Āzt + Ā(zt − zt−1)− α(∇s(xt)−∇s(xt−1))− α(∇̃r(xt+1)− ∇̃r(xt)), (3.3)

for t = 1, 2,

3.2. Special Cases: PG-EXTRA, ExtraPush and P-ExtraPush

When the network is undirected, then the weight sequence wt ≡ 1n, thus, the function

rt ≡ r and the sequence xt = zt. Therefore, PG-ExtraPush reduces to PG-EXTRA [16], a

recent algorithm for composite consensus optimization over undirected networks.

When the possibly-nondifferentiable term r ≡ 0, we have z1 = z1/2, and thus, z1 = Az0 −
α∇s(z0). In the third update of (3.2), zt+1 = zt+1/2, and thus

zt+1 = Azt + zt − Āzt−1 − α(∇s(xt)−∇s(xt−1)). (3.4)

8

With these, in this case, PG-ExtraPush reduces to ExtraPush [22], a recent algorithm for

decentralized differentiable optimization over directed networks.

When the differentiable term s ≡ 0, PG-ExtraPush reduces to P-ExtraPush by removing all

gradient computation, which is given as follows: set arbitrary z0 ∈ R
n×p, w0 = 1n, x

0 = z0;

z1/2 = Az0, w1 = Aw0, z1 = Proxαr1(z
1/2), x1 = diag(w1)

−1
z1. For t = 1, 2, . . . , perform







zt+1/2 = Azt + zt−1/2 − Āzt−1,

wt+1 = Awt,

zt+1 = Proxαrt+1(zt+1/2),

xt+1 = diag(wt+1)
−1

zt+1.

(3.5)

4. Convergence Analysis

In this section, we analyze the convergence of the proposed algorithm.

4.1. Assumptions

In this subsection, we presents the main assumptions. Besides the strongly connected as-

sumption on the directed graph, we still need the following assumptions.

Assumption 2. (existence of solution) Let X ∗ be the optimal solution set of problem (1.1),
and assume that X ∗ is nonempty.

Assumption 3. For each agent i, its objective functions si and ri satisfy the following:

(i) (Lipschitz differentiability) si is differentiable, and its gradient ∇si is Li-Lipschitz
continuous, i.e., ‖∇si(x)−∇si(y)‖ ≤ Li‖x− y‖,∀x, y ∈ R

p;

(ii) (quasi-strong convexity) si is quasi-strongly convex, and there exists a positive constant
µi such that µi‖x∗ − y‖2 ≤ 〈∇si(x∗) − ∇si(y), x∗ − y〉 for any y ∈ R

p and some optimal
value x∗ ∈ X ∗.

(iii) (bounded subgradient) ri is convex and ∇̃ri(x) is uniformly bounded by some constant
Bri , i.e., ‖∇̃ri(x)‖ ≤ Bri for any x ∈ R

p.

Following Assumption 3, there hold for any x,y ∈ R
n×p and some x∗ ≡ 1n(x

∗)T

‖∇s(x)−∇s(y)‖ ≤ Ls‖x− y‖, (4.1)

µs‖x∗ − y‖2 ≤ 〈∇s(x∗)−∇s(y),x∗ − y〉, (4.2)

‖∇̃r(x)‖ ≤ Br, (4.3)

where the constants Ls , maxi Li, µs , mini µi, and Br ,
∑n

i=1 Bri . The Lipschitz differen-

tiable and strongly convex assumptions (Assumption 3(i), (ii)) are generally necessary to derive

9

the linear convergence of decentralized algorithms such as in [15, 22]. While the bounded sub-

gradient assumption (Assumption 3(iii)) is a regular assumption in the convergence analysis of

decentralized algorithms like in [2, 9]. There are many functions satisfy Assumption 3(iii) such

as the ℓ1 norm and Huber function, which are widely used in machine learning and compressed

sensing. Actually, according to the latter proof of Theorem 3, the requirement of the uniformly

bounded subgradient of ri can be relaxed to the boundedness of {∇̃ri(xt
i)}t∈N.

Assumption 4. (positive definiteness) D−1
∞ Ā+ ĀTD−1

∞ ≻ 0.

By noticing D−1
∞ Ā+ĀTD−1

∞ = D
−1/2
∞ (D

−1/2
∞ ĀD

1/2
∞ +D

1/2
∞ ĀTD

−1/2
∞)D

−1/2
∞ , we can guarantee

the positive definiteness of D−1
∞ Ā+ĀTD−1

∞ by ensuring the matrix Ā+ĀT to be positive definite.

Note that Āii >
∑

j 6=i Āij for each i, which means that Ā is strictly column-diagonal dominant.

To ensure the positive definiteness of Ā+ ĀT , each node j can be “selfish” and take a sufficiently

large Ajj.

4.2. Main Results

In this subsection, we first develop the first-order optimality conditions for the problem (2.8)

and then establish the convergence and convergence rate of PG-ExtraPush under the above

assumptions.

Theorem 1 (first-order optimality conditions). Let Assumption 1 hold. Then x∗ is con-
sensual and x∗(1) ≡ x∗(2) ≡ · · · ≡ x∗(n) is an optimal solution of (1.1) if and only if, for some

α > 0, there exist z∗ ∈ null(In −A) and y∗ ∈ null(1Tn) such that the following conditions hold

{
y∗ + α(∇s(x∗) + ∇̃r(x∗)) = 0,
x∗ = D−1

∞ z∗.
(4.4)

(We let L∗ denote the set of triples (z∗,y∗,x∗) satisfying the above conditions.)

Theorem 1 gives some equivalent conditions to characterize the optimal solution of the orig-

inal optimization problem (1.1). Based on Theorem 1, we give the following subsequence con-

vergence of PG-ExtraPush under the boundedness assumption of sequence {zt}.

Theorem 2 (subsequence convergence under boundedness assumption). Let Assump-
tion 1, Assumption 2, and Assumption 3(i), (iii) hold. Let {(zt,xt,wt)} be any sequence gener-
ated by PG-ExtraPush (3.2). Define yt ,

∑t
k=0(Ā−A)zk. Suppose that {zt} is bounded. Then,

there exists a convergent subsequence of {(zt,yt,xt)}, and any limit point of {(zt,yt,xt)}, de-
noted by (z∗,y∗,x∗), satisfies the optimality conditions (4.4).

10

From Theorem 2, if {zt} is bounded, then both {xt} and {yt} are also bounded, and thus,

there exists a convergent subsequence, and any limit point is an optimal solution of the original

consensus optimization problem. However, it is generally difficult to verify the boundedness of

{zt}. To guarantee this, we may need more assumptions on the objective functions such as the

strong convexity of the smooth term. In the following, we present the convergence and linear

convergence rate of PG-ExtraPush under these additional assumptions. Before presenting the

main result, we introduce the following notations. For each t, introducing ut =
∑t

k=0 z
k, then

similar to (4.12), the PG-ExtraPush iteration (3.2) reduces to







Āzt+1 = Āzt − α∇̃r(xt+1)− α∇f(xt)− (Ā−A)ut+1

ut+1 = ut + zt+1

xt+1 = (Dt+1)−1zt+1.

(4.5)

Let (z∗,y∗,x∗) ∈ L∗, where x∗ has been specified in (4.2). Let u∗ be any matrix that satisfies

(Ā−A)u∗ = y∗. For simplicity, we introduce

vt =




zt

ut



 , v∗ =




z∗

u∗



 , G =




NT 0

0 M



 , S =




0 M

−MT 0



 , (4.6)

where N = D−1
∞ Ā, M = D−1

∞ (Ā − A). Let et ,




D−1

∞ (∇̃r(xt+1) +∇f(xt))

0



 . By (4.5) and

(4.6), the PG-ExtraPush iteration (3.2) implies

GT (vt+1 − vt) = −Svt+1 − αet. (4.7)

According to [22], bothM+MT and G+GT are positive semidefinite, and the following property

holds

‖x‖2G =
1

2
‖x‖2G+GT ≥ 0, ∀x ∈ R

2n.

Let c1 = λmax(MMT)

λ̃min(MTM)
, c2 =

λmax(
M+MT

2
)

λ̃min(MTM)
, and c3 = λmax(NNT) + 3c1λmax(N

TN). Let L̄ =

d−∞d−Ls. Let ∆1 = (µ̄ − η̄
2)

2 − 6c1L̄
2, and ∆2 = L̄4

4η̄2
− 3c1L̄

2σ(c3σ − λmin(N
T + N)) for some

appropriate tunable parameters η̄ and σ. Then we describe our main result as follows.

Theorem 3 (linear convergence rate). Let Assumptions 1-4 hold. If the step size parameter
α satisfies

µ̄− η̄
2 −
√
∆1

3c1L̄2σ
< α < min

{

µ̄− η̄
2 +
√
∆1

3c1L̄2σ
,
− L̄2

2η̄ +
√
∆2

3c1L̄2σ

}

(4.8)

11

for some appropriate η̄ and σ as specified in (4.37) and (4.38), respectively, then the sequence
{vt} defined in (4.6) satisfies

‖vt − v∗‖2G ≥ (1 + δ)‖vt+1 − v∗‖2G − Γ0γ
t, (4.9)

for δ > 0 obeying

0 < δ ≤ min

{− 1
σ + (µ̄− η̄

2)α− 3
2c1L̄

2σα2

λmax(
N+NT

2) + 3c2α2L̄2
,
λmin(

NT+N
2)− c3σ

2 − L̄2α
2η̄ − 3

2c1L̄
2σα2

3c2(λmax(NTN) + α2L̄2)

}

, (4.10)

and a constant Γ0 as specified in (4.40). Furthermore, (4.9) implies that the sequence {xt}
converges to an optimal solution x∗ at a linear rate, i.e.,

‖xt − x∗‖ ≤ Γ(
√
ρ)t, (4.11)

for some max{ 1
1+δ , γ} < ρ < 1, where Γ is specified in (4.53).

From this theorem, the sequence {xt} converges to x∗ at a linear rate. By the definition of

v∗ in (4.6), v∗ is indeed defined by some optimal value (z∗,y∗,x∗). Roughly speaking, bigger

δ means faster convergence rate. As specified in Theorem 3, δ is affected by many factors.

Generally, δ decreases with respect to both λmax(
N+NT

2) and λmax(N
TN), which potentially

implies that if all nodes are more “selfish”, that is, they hold more information for themselves

than sending to their out-neighbors. Consequently, the information mixing speed of the network

will get smaller, and thus the convergence of PG-ExtraPush becomes slower. Therefore, we

suggest a more democratic rule (such as the matrix A specified in (2.2)) for faster convergence

in practice. To ensure δ > 0, it requires that the step size α lie in an appropriate interval.

It should be pointed out that the condition (4.8) on α is sufficiently, not necessary, for the

linear convergence of PG-ExtraPush. In fact, in the next section, it can be observed that PG-

ExtraPush algorithm converges under small values of α. In general, a smaller α implies a slower

rate of convergence. According to the definition of ∆2 and the condition (4.38) on σ, the upper

bound of step size α in (4.8) implies that

α <
− L̄2

2η̄ +
√
∆2

3c1L̄2σ
≤
√

3c1σ(λmin(NT +N)− c3σ)L̄

3c1σL̄2
=

√

λmin(NT +N)− c3σ

3c1σ
× 1

L̄
.

It can be observed from the above relation that the upper bound of step size is inversely pro-

portional to the Lipschitz constant of ∇s, which is a regular condition for the convergence of a

proximal-type algorithm.

4.3. Proofs

In this subsection, we provide the proofs of Theorems 1, 2 and 3.

12

4.3.1. Proof of Theorem 1

Proof. Assume that x∗ is consensual and x∗(1) ≡ x∗(2) ≡ · · · ≡ x∗(n) is optimal. Let z∗ =

ndiag(φ)x∗ = n(φx∗T(1)). Then φ1Tnz
∗ = φ1Tnnφx

∗T
(1) = nφx∗T(1) = z∗. It implies that z∗ ∈ null(I −

φ1Tn). By Property 1(ii), it follows that z∗ ∈ null(In−A). Moreover, letting y∗ = −α(∇s(x∗)+

∇̃r(x∗)), it holds that 1Tny
∗ = −α1Tn (∇s(x∗) + ∇̃r(x∗)) = 0, that is, y∗ ∈ null(1Tn).

On the other hand, assume (4.4) holds. By Property 1(ii), it follows that z∗ = φ1Tnz
∗.

Plugging x∗ = D−1
∞ z∗ gives x∗ = 1

n1n1
T
nz

∗, which implies that x∗ is consensual. Moreover, by

y∗+α(∇s(x∗)+ ∇̃r(x∗)) = 0 and y∗ ∈ null(1Tn), it holds 1
T
n (∇s(x∗)+ ∇̃r(x∗)) = − 1

α1
T
ny

∗ = 0,

which implies that x∗ is optimal. �

4.3.2. Proof of Theorem 2

Proof. We first establish the following recursion (4.12) of PG-ExtraPush, i.e.,






Āzt+1 = Āzt − α∇̃r(xt+1)− α∇s(xt)− yt+1,

yt+1 = yt + (Ā−A)zt+1,

wt+1 = Awt,

xt+1 = diag(wt+1)−1zt+1,

(4.12)

and then prove this theorem via exploiting (4.12).

1) establishing (4.12): By the definitions of rt+1 and Proxαrt+1 and the x-update in (3.2),

it follows

zt+1/2 = zt+1 + α∇̃r(xt+1),∀t ∈ N. (4.13)

Then the first update of (3.2) implies

zt+1 = Āzt + Ā(zt − zt−1)− α(∇s(xt)−∇s(xt−1))− α(∇̃r(xt+1)− ∇̃r(xt)), (4.14)

for t = 1, 2, Moreover, observe that

z1 = Az0 − α∇s(x0)− α∇̃r(x1).

Summing these subgradient recursions over times 1 through t+ 1, we get

zt+1 = Āzt +

t∑

k=0

(A− Ā)zk − α∇s(xt)− α∇̃r(xt+1).

Furthermore, adding (A− Ā)zt+1 into both sides of the above equation and noting A+ In = 2Ā,

we get

Āzt+1 = Āzt − α∇̃r(xt+1)− α∇s(xt)− yt+1. (4.15)

13

Thus, based on (3.2) and (4.15), we have (4.12).

2) proving subsequence convergence: By Property 1, {wt} is bounded. By the last

update of (4.12) and the boundedness of both {zt} and {wt}, {xt} is bounded. By the first

update of (4.12) and the boundedness of {zt}, {xt} and {∇̃r(xt)}, {yt} is bounded. Hence,

there exists a convergent subsequence {(z,y,w,x)tj }∞j=1. Let (z∗,y∗,w∗,x∗) be its limit. By

(2.3), we know that w∗ = nφ and thus that x∗ = D−1
∞ z∗. Letting t→∞ in the second equation

of (4.12) gives z∗ = Az∗, or equivalently z∗ ∈ null(In − A). Similarly, letting t → ∞ in the

first equation of (4.12) yields y∗ + α(∇s(x∗) + ∇̃r(x∗)) = 0. Moreover, from the definition

of yt and the facts that both A and Ā are column stochastic, it follows that 1Tny
∗ = 0 and

1Tn (∇s(x∗) + ∇̃r(x∗)) = 0. Therefore, (z∗,y∗,x∗) satisfies the optimality conditions (4.4). �

4.3.3. Proof of Theorem 3

The sketch of the proof is as follows: we first establish the inequality (4.9) holds for some

fixed iteration t under the bounded assumption of vt, and then prove that the inequality (4.9)

and the boundedness of vt hold for any t ∈ N via an inductive way, and latter give the linear

convergence rate based on (4.9) via a recursive way.

To prove Theorem 3, we need the following lemmas.

Lemma 1. For any (z∗,y∗,x∗) ∈ L∗, let u∗ satisfy (Ā−A)u∗ = y∗. Then there hold

Mz∗ = 0, , (4.16)

MT z∗ = 0, , (4.17)

Sv∗ + αe∗ = 0, (4.18)

where e∗ ,

(
D−1

∞ (∇̃r(x∗) +∇f(x∗))
0

)

.

The proof of this lemma is similar to that of [22, Lemma 1]. Thus, we omit it here.

Lemma 2. For any t ∈ N, it holds

N(zt+1 − zt) = −M(ut+1 − u∗)− αD−1
∞ (∇̃r(xt+1) +∇s(xt)− ∇̃r(x∗)−∇s(x∗)). (4.19)

This lemma follows from (4.5) and the fact Mu∗ +αD−1
∞ (∇̃r(x∗)+∇s(x∗)) = 0 in Theorem

1. In the following lemma, we will claim that zt+1 is bounded if zt−1 and zt are bounded.

Lemma 3. Let Assumption 1 and Assumption 3(i) and (iii) hold. If ‖zt−1‖ ≤ B and ‖zt‖ ≤ B
for some constant Br ≤ B < ∞, and some t ∈ N+(, N \ {0}), then ‖zt+1‖ ≤ C1B, where
C1 , 3 + 2α(d−Ls + 1), and Br is specified in (4.3).

14

Proof. According to (3.3) and by Property 1, it follows

‖zt+1‖ ≤ 2‖zt‖+ ‖zt−1‖+ αLs‖xt − xt−1‖+ 2αBr ≤ (3 + 2αd−Ls + 2α)B.

�

The following lemma presents some basic relations that will be frequently used in the latter

analysis.

Lemma 4. Let Assumptions 1 and 2 hold. If ‖zt‖ ≤ B for some constant Br ≤ B < ∞ and
some t ∈ N, then

(i) ‖xt+1 − xt‖ ≤ d−‖zt+1 − zt‖+ (d−)2nCB(1 + γ)γt;

(ii) ‖xt+1 − x∗‖ ≤ d−‖zt+1 − z∗‖+ d−nC‖x∗‖γt+1;

(iii) ‖zt+1 − z∗‖ ≤ d+‖xt+1 − x∗‖+ nCγ‖x∗‖γt;

Proof. (i) Note that

‖xt+1 − xt‖ = ‖(Dt+1)−1(Dt+1)(xt+1 − xt)‖

≤ ‖(Dt+1)−1‖ · ‖zt+1 − zt + (Dt −Dt+1)(Dt)−1Dtxt‖

≤ d−‖zt+1 − zt‖+ (d−)2(‖Dt −D∞‖+ ‖D∞ −Dt+1‖)‖zt‖

≤ d−‖zt+1 − zt‖+ (d−)
2
nCB(1 + γ)γt, (4.20)

where the last inequality holds for (2.6). Similar to the proof of (i), we can easily prove (ii).

Next, we prove (iii). Notice that

‖zt+1 − z∗‖ = ‖zt+1 −Dt+1x∗ +Dt+1x∗ − z∗‖

≤ d+‖xt+1 − x∗‖+ ‖Dt+1 −D∞‖‖x∗‖

≤ d+‖xt+1 − x∗‖+ nCγ‖x∗‖γt. (4.21)

Thus, we end the proof. �

As shown in Lemma 3, it requires that ‖zt−1‖ and ‖zt‖ are bounded by the same constant B.

The following lemma gives a specific representation of B under the boundedness of ‖vt − v∗‖2G.
Lemma 5. Let Assumptions 1, 2 and 4 hold. If ‖vt − v∗‖2G is bounded by some constant B for
some t, i.e., ‖vt − v∗‖2G ≤ B, then ‖zt‖ is bounded by some constant B specified as follows

‖zt‖ ≤ B , max

{√

B
λmin(

N+NT

2)
+ ‖z∗‖, Br

}

. (4.22)

Proof. By the definitions of matrix G and sequence {vt}, it is obvious that

‖zt − z∗‖2
N+NT

2

≤ ‖vt − v∗‖2G ≤ B,

15

which implies

‖zt − z∗‖ ≤
√

B
λmin(

N+NT

2)
.

Thus, we can easily claim (4.22). �

To establish the key inequality (4.9), we need to develop an important inequality under the

boundedness of ‖vt − v∗‖ as shown in the following lemma.

Lemma 6. Let Assumptions 1-4 hold. Let {vt} be a sequence generated by the iteration (4.7)
and v∗ be defined in (4.6). If ‖vt−1 − v∗‖ ≤ B and ‖vt − v∗‖ ≤ B for some constant B, and
some t ∈ N+, then the following holds

‖vt+1 − v∗‖2G − ‖vt − v∗‖2G ≤ −‖vt+1 − vt‖2G + ‖zt+1 − z∗‖2P + ‖zt+1 − zt‖2Q
+ ‖ut+1 − u∗‖2R + αC2γ

2t + αC3γ
t. (4.23)

where P ,
[
1
σ + α

(
ηd−∞d−Ls

2 − µs

2(d+)2

)]

In, Q , σ
2NNT + αd−∞d−Ls

2η In, R , σ
2MMT , C2 ,

µs

(
nCγ‖x∗‖

d+

)2
, C3 , d−∞d−nCB [d−Ls(1 + γ)(C1B + ‖z∗‖) + 2C1Bγ], B is specified in (4.22),

σ > 0 and η > 0 are two tunable parameters.

Proof. Note that

‖vt+1 − v∗‖2G − ‖vt − v∗‖2G = −‖vt+1 − vt‖2G + 〈v∗ − vt+1, G(vt − vt+1)〉

+ 〈v∗ − vt+1, GT (vt − vt+1)〉. (4.24)

In the following, we analyze the two inner-product terms:

〈v∗ − vt+1, G(vt − vt+1)〉 = 〈z∗ − zt+1, NT (zt − zt+1)〉+ 〈MT (u∗ − ut+1),ut − ut+1〉

(∵ (4.16),Mz∗ = 0) = 〈z∗ − zt+1, NT (zt − zt+1)〉+ 〈MT (u∗ − ut+1), z∗ − zt+1〉

≤ σ

2
‖zt − zt+1‖2NNT +

1

σ
‖z∗ − zt+1‖2 + σ

2
‖u∗ − ut+1‖2MMT , (4.25)

where σ > 0 is a tunable parameter, and

〈v∗ − vt+1, GT (vt − vt+1)〉 = 〈v∗ − vt+1, Svt+1 + αet〉 (∵ (4.6))

= 〈v∗ − vt+1, S(vt+1 − v∗) + α(et − e∗)〉 (∵ (4.18))

(∵ S = −ST) = α〈v∗ − vt+1, et − e∗〉

= α〈z∗ − zt+1,D−1
∞ (∇̃r(xt+1)− ∇̃r(x∗) +∇s(xt)−∇s(x∗))〉

= α〈D−1
∞ (z∗ − zt+1), ∇̃r(xt+1)− ∇̃r(x∗)〉

+ α〈D−1
∞ (z∗ − zt+1),∇s(xt)−∇s(x∗)〉 (, α(T1 + T2)). (4.26)

16

Next, we give upper bounds of T1 and T2, respectively.

T1 = 〈x∗ − xt+1, ∇̃r(xt+1)− ∇̃r(x∗)〉+ 〈((Dt+1)−1 −D−1
∞)zt+1, ∇̃r(xt+1)− ∇̃r(x∗)〉

≤ 〈((Dt+1)−1 −D−1
∞)zt+1, ∇̃r(xt+1)− ∇̃r(x∗)〉 (∵ r is convex)

≤ 2d−d−∞nCC1B
2γt+1 (∵ (2.7),Assumption 3(iii),Lemma 3), (4.27)

and

T2 = 〈D−1
∞ (z∗ − zt+1),∇s(xt+1)−∇s(x∗)〉+ 〈D−1

∞ (z∗ − zt+1),∇s(xt)−∇s(xt+1)〉

≤ −µs‖xt+1 − x∗‖2 + d−∞‖zt+1 − z∗‖ · Ls‖xt − xt+1‖ (∵ (4.2), (2.5), (4.1)). (4.28)

By Lemma 4(iii), it follows

‖zt+1 − z∗‖2 ≤ 2(d+)2‖xt+1 − x∗‖2 + 2(nCγ‖x∗‖)2γ2t,

which implies

‖xt+1 − x∗‖2 ≥ 1

2(d+)2
‖zt+1 − z∗‖2 −

(
nCγ‖x∗‖

d+

)2

γ2t. (4.29)

By Lemma 4(i), it shows

‖zt+1 − z∗‖‖xt − xt+1‖

≤ d−‖zt+1 − z∗‖‖zt+1 − zt‖+ (d−)2nCB(1 + γ)γt‖zt+1 − z∗‖

≤ d−

2
(η‖zt+1 − z∗‖2 + η−1‖zt+1 − zt‖2) + (d−)2nCB(1 + γ)(C1B + ‖z∗‖)γt, (4.30)

where η > 0 is a tunable parameter. Substituting (4.29) and (4.30) into (4.28), then we have

T2 ≤
(
ηd−∞d−Ls

2
− µs

2(d+)2

)

‖zt+1 − z∗‖2 + d−∞d−Ls

2η
‖zt+1 − zt‖2

+ µs

(
nCγ‖x∗‖

d+

)2

γ2t + d−∞(d−)2LsnCB(1 + γ)(C1B + ‖z∗‖)γt. (4.31)

Plugging (4.27) and (4.31) into (4.26), it becomes

〈v∗ − vt+1, GT (vt − vt+1)〉

≤ α

(
ηd−∞d−Ls

2
− µs

2(d+)2

)

‖zt+1 − z∗‖2 + α
d−∞d−Ls

2η
‖zt+1 − zt‖2

+ αµs

(
nCγ‖x∗‖

d+

)2

γ2t + αd−∞d−nCB
[
d−Ls(1 + γ)(C1B + ‖z∗‖) + 2C1Bγ

]
γt. (4.32)

Substituting (4.25) and (4.32) into (4.24), we can conclude (4.23). �

Based on Lemma 6, we can establish (4.9) for some δ > 0 and some t ∈ N under some

assumptions as shown in the following lemma.

17

Lemma 7. Under conditions of Theorem 1, if ‖vt−1 − v∗‖ ≤ B and ‖vt − v∗‖ ≤ B for some
constant B and some t ∈ N+, then the inequality (4.9) holds for some constants δ and Γ0.

Proof. In order to establish (4.9) for some δ > 0 and Γ0, in light of Lemma 6, it is sufficient

to show that the right-hand side of (4.23) is no more than −δ‖vt+1−v∗‖2G+Γ0γ
t, which implies

‖zt+1 − z∗‖2P1
+ ‖zt+1 − zt‖2Q1

≥ ‖ut+1 − u∗‖2R1
, (4.33)

αC2γ
2t + αC3γ

t ≤ Γ0γ
t, (4.34)

where P1 = (αµ̄ − αη̄
2 − 1

σ)In − δN+NT

2 , Q1 = NT+N
2 − σ

2NNT − αL̄2

2η In and R1 = σ
2MMT +

δ(M+MT

2), µ̄ = µs

(2d+)2 , η̄ = d−∞d−Lsη and L̄ = d−∞d−Ls.

Let c4 , (µ̄− η̄
2)+
√
∆1, c5 ,

L̄2

η̄ , c6 ,
2c4c5+12c1L̄2

c24
, c7 ,

λ2
min(N

T+N)
4c3

, c8 , a(c7+2)−(2−c7)

for some positive constant a ∈ (0, 1), ∆3 , λ2
min(N

T + N) − 4c3c6. According to the similar

proof of [22, Theorem 4], we can claim that if the following conditions hold

2− c7
2 + c7

< a < 1, (4.35)

µ̄ >
(
√

6c1
1− a2

+
1

c8

√

1− a2

6c1

)
L̄, (4.36)

µ̄



1−
√

1− 4L̄2

c8µ̄2



 < η̄ < min






µ̄
(
1 +

√

1− 4L̄2

c8µ̄2

)
, 2(µ̄ −

√

6c1
1− a2

L̄)






, (4.37)

λmin(N
T +N)−√∆3

2c3
< σ <

λmin(N
T +N) +

√
∆3

2c3
, (4.38)

µ̄− η̄
2 −
√
∆1

3c1L̄2σ
< α < min

{ µ̄− η̄
2 +
√
∆1

3c1L̄2σ
,
− L̄2

2η̄ +
√
∆2

3c1L̄2σ

}
, (4.39)

then (4.33) holds for some positive constant δ as specified in (4.10).

Taking

Γ0 = α(C2 + C3), (4.40)

where C2 and C3 are specified in Lemma 6, we can easily establish the inequality (4.34). Thus,

the proof of this lemma is completed. �

According to Lemma 7, the key inequality (4.9) holds for some fixed iteration t if vt is

bounded. In the following lemma, we will show that when t is sufficiently large, vt+1 is also

bounded if vt is bounded and the relation (4.9) holds at the t-th iteration.

18

Lemma 8. Let Assumptions 1-4 hold. If at the t-th iteration, ‖vt−v∗‖ ≤ B for some constant
B, and the relation ‖vt−v∗‖2G ≥ (1+ δ)‖vt+1−v∗‖2G−Γ0γ

t holds for some constants δ,Γ0 > 0,
then it holds

‖vt+1 − v∗‖2G ≤ B (4.41)

for all t ≥ T ∗ with

T ∗ =

⌈

logγ
δB
Γ0

⌉

+ 1, (4.42)

where ⌈b⌉ denotes the integer no less than b for any b ∈ R.

Proof. By the definition of (4.42), it implies

Γ0γ
t ≤ δB (4.43)

for any t ≥ T ∗. This together with the relation

‖vt+1 − v∗‖2G ≤
‖vt − v∗‖2G

1 + δ
+

δB
1 + δ

yield ‖vt+1 − v∗‖2G ≤ B. �
With these lemmas, we can prove our main theorem.

(Proof for Theorem 3): Let B , max0≤t≤T ∗ ‖vt − v∗‖2G, where T ∗ is specified in (4.42).

By Lemma 7, the inequality (4.9) holds for some fixed t under the boundedness of ‖vt − v∗‖
and other conditions. In the following, we show that the inequality (4.9) and the boundedness

of ‖vt − v∗‖ hold for any t.

We first prove these for the first T ∗ iterates. By the definition of B, it is obvious that

‖vt − v∗‖2G ≤ B when t ∈ {0, . . . , T ∗}. Moreover, by Lemma 7, the relation (4.9) also holds for

any t ∈ {0, . . . , T ∗}.
Next, we prove the inequality (4.9) and the boundedness of ‖vt − v∗‖ hold for any t ≥ T ∗

via an inductive way.

(a) Base step: when t = T ∗, we have the following relations:

‖vT ∗−1 − v∗‖2G ≤ B, (4.44)

‖vT ∗ − v∗‖2G ≤ B, (4.45)

‖vT ∗ − v∗‖2G ≥ (1 + δ)‖vT ∗+1 − v∗‖2G − Γ0γ
T ∗

. (4.46)

19

(b) Hypothesis step: We assume that the induction hypothesis is true at the t-th iteration

for some t ≥ T ∗, i.e.,

‖vt−1 − v∗‖2G ≤ B, (4.47)

‖vt − v∗‖2G ≤ B, (4.48)

‖vt − v∗‖2G ≥ (1 + δ)‖vt+1 − v∗‖2G − Γ0γ
t. (4.49)

(c) Inductive step: We then show that the above relations hold for the (t+ 1)-th iteration.

By (4.48) and Lemma 8, it holds ‖vt+1 − v∗‖2G ≤ B. Based on the boundedness of

‖vt+1−v∗‖2G and ‖vt−v∗‖2G, and by Lemma 7, the inequality (4.9) holds for the (t+1)-th

iteration, i.e.,

‖vt+1 − v∗‖2G ≥ (1 + δ)‖vt+2 − v∗‖2G − Γ0γ
t.

By induction, we conclude that these relations hold for all t.

In the following, we establish the linear rate of the sequence {xt} based on (4.9). Let

τ , max{ 1
1+δ , γ}. From (4.9), for any t, there holds

‖vt − v∗‖2G ≤
1

1 + δ
‖vt−1 − v∗‖2G + Γ0

γt−1

1 + δ

≤ τ‖vt−1 − v∗‖2G + Γ0τ
t

≤ τ t‖v0 − v∗‖2G + tΓ0τ
t.

Taking a ρ ∈ (τ, 1). Let ξ , 2
ρ

τ
ln(ρ

τ
)
. Then for any t ∈ N, it holds

(ρ

τ

)t
>

t

ξ
.

As a consequence, we have

‖vt − v∗‖2G ≤ ρt‖v0 − v∗‖2G + (Γ0ξ)
t

ξ

(
τ

ρ

)t

ρt

≤ (‖v0 − v∗‖2G + Γ0ξ)ρ
t. (4.50)

By the definitions of G and sequence {vt} (see, (4.6)), (4.50) implies

‖zt − z∗‖2
N+NT

2

≤ ‖vt − v∗‖2G ≤ (‖v0 − v∗‖2G + Γ0ξ)ρ
t. (4.51)

By Assumption 4, the matrix N +NT is positive definite. Thus, (4.51) implies

‖zt − z∗‖ ≤
√

‖v0 − v∗‖2G + Γ0ξ

λmin(
N+NT

2)
(
√
ρ)t. (4.52)

20

Furthermore, by Lemma 4(ii), (4.52) implies

‖xt − x∗‖ ≤ d−

(√

‖v0 − v∗‖2G + Γ0ξ

λmin(
N+NT

2)
(
√
ρ)t + nC‖x∗‖γt

)

≤ d−

(√

‖v0 − v∗‖2G + Γ0ξ

λmin(
N+NT

2)
+ nC‖x∗‖

)

(
√
ρ)t,

where the second inequality holds for γ ≤ τ < ρ <
√
ρ < 1. Let

Γ , d−

(√

‖v0 − v∗‖2G + Γ0ξ

λmin(
N+NT

2)
+ nC‖x∗‖

)

, (4.53)

then we get (4.11). Thus, we end the proof. �

5. Numerical Experiments

In this section, we provide a series of numerical experiments to show the effectiveness of the

proposed algorithms via comparing to Subgradient-Push algorithm. In these experiments, the

connected network and its corresponding mixing matrix A are generated randomly.

5.1. Decentralized Geometric Median

Consider a decentralized geometric median problem. Each agent i ∈ {1, · · · , n} holds a

vector b(i) ∈ R
p, and all the agents collaboratively calculate the geometric median x ∈ R

p of all

b(i). This task can be formulated as solving the following minimization problem:

x∗ ← argmin
x∈Rp

f(x) =

n∑

i=1

‖x− b(i)‖2. (5.1)

The geometric median problem is solved by P-ExtraPush over directed networks. The prox-

imity operator proxαri has an explicit solution, for any u ∈ R
p,

proxαri(u) = b(i) −
b(i) − u

‖b(i) − u‖2
max{‖b(i) − u‖2 − α, 0}.

We set n = 10 and p = 256, that is, each point b(i) ∈ R
p. Data b(i) are generated following

the i.i.d. Gaussian distribution. The algorithm starts from z0(i) = b(i),∀i. We use three different

step sizes α to show the effect of the step size. The numerical results are reported in Fig.

2. From Fig. 2, P-ExtraPush can adopt a large range of step size. More specifically, with a

proper step size (say, α = 10), P-ExtraPush converges linearly and is significantly faster than

Subgradient-Push algorithm even with the hand-optimized step size.

21

0 50 100 150 200 250
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Iteration t

||x
t −

x* || F

P−ExtraPush(α=1000)

P−ExtraPush(α=10)

P−ExtraPush(α=0.1)
Subgradient−Push(hand−optimized)

Figure 2: Experiment results for decentralized geometric median. Trends of ‖xt−x∗‖F , where
x∗ is the limitation of xt, which is taken as the iterate at t = 1000, i.e., x1000.

0 1000 2000 3000 4000 5000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Iteration t

||x
t −

x* || F

PG−ExtraPush(α=0.039)

PG−ExtraPush(α=0.038)

PG−ExtraPush(α=0.001)
Subgradient−Push(hand−optimized)

Figure 3: Experiment results for decentralized ℓ1 regularized least squares regression. Trends

of ‖xt − x∗‖F , where x∗ is the limitation of xt, which is taken as the iterate at t = 10000.

5.2. Decentralized ℓ1 Regularized Least Squares Regression

We consider the following decentralized ℓ1 regularized least squares regression problem, i.e.,

x∗ ← argmin
x∈Rp

f(x) =
n∑

i=1

fi(x), (5.2)

where fi(x) = 1
2‖B(i)x − b(i)‖22 + λi‖x‖1, B(i) ∈ R

mi×p, b(i) ∈ R
mi for i = 1, . . . , n, ‖x‖1 =

∑p
i=1 |xi|. In this experiment, we take n = 10, p = 256, and mi = 150 for i = 1, . . . , n. In this

case, the proximity operator of ℓ1-norm is the soft shrinkage function. The experiment result

is illustrated in Fig. 3. From Fig. 3, α = 0.038 is a critical value of step size in the sense

that the algorithm will diverge once α is bigger than this value, and with this proper step size,

PG-ExtraPush converges linearly and is faster than Subgradient-Push. Moreover, a smaller step

size generally implies a slower convergence rate.

22

5.3. Decentralized Quadratic Programming

We use decentralized quadratic programming as an example to show that how PG-ExtraPush

solves a constrained optimization problem. Each agent i ∈ {1, · · · , n} has a local quadratic

objective 1
2x

TQix + hTi x and a local linear constraint aTi x ≤ bi, where the symmetric positive

semidefinite matrix Qi ∈ R
p×p, the vectors hi ∈ R

p and ai ∈ R
p, and the scalar bi ∈ R are stored

at agent i. The agents collaboratively minimize the average of the local objectives subject to all

local constraints. The quadratic program is:

minx

n∑

i=1

(1

2
xTQix+ hTi x

)
, s.t. aTi x ≤ bi, i = 1, . . . , n.

We recast it as

minx

n∑

i=1

(1

2
xTQix+ hTi x+ I(aTi x− bi)

)
, (5.3)

where

I(c) =







0, if c ≤ 0,

+∞, otherwise,

is an indicator function. Setting si(x) =
1
2x

TQix+hTi x and ri(x) = I(aTi x− bi), it has the form

of (1.1) and can be solved by PG-ExtraPush. The proximity operator proxαri has an explicit

solution

proxαri(u) =







u, if aTi u ≤ bi ≤ 0,

u+
(bi−aTi u)ai

‖ai‖22
, otherwise.

Consider n = 10 and p = 256. For any agent i, Qi is a positive semidefinite symmetric

matrix, hi, ai and bi are generated from i.i.d. Gaussian distribution. Four different step sizes

are used to show the effect of the step size. The experiment result is presented in Fig. 4. Since

Subgradient-Push is not appropriately used to solve this problem, so we show the performance

of PG-ExtraPush only without any comparison in this case. As show in Fig. 4, PG-ExtraPush

can also adopt a large range of the step size parameter and α = 5.5 is a critical value in this

case in the sense that PG-ExtraPush may diverge if a larger step size is adopted. With a proper

step size (say, α = 4), PG-ExtraPush performs the similar linear convergence rate when all Qi

are positive semidefinite.

23

0 500 1000 1500 2000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Iteration t

||x
t −

x* || F

PG−ExtraPush(α=5.6)

PG−ExtraPush(α=5.5)

PG−ExtraPush(α=4)

PG−ExtraPush(α=0.05)

Figure 4: Experiment results for decentralized quadratic programming with symmetric positive

semidefinite Q′
is. Trends of ‖xt − x∗‖F , where x∗ is the limitation of xt, which is taken as the

iterate at t = 10000.

5.4. Nonconvex Decentralized ℓq(0 ≤ q < 1) Regularization

We apply the proposed algorithm to solve the following nonconvex decentralized ℓq (0 ≤ q <

1) regularized least squares regression problem, i.e.,

x∗ ← argmin
x∈Rp

f(x) =
n∑

i=1

fi(x), (5.4)

where fi(x) = 1
2‖B(i)x − b(i)‖22 + λi‖x‖qq, B(i) ∈ R

mi×p, b(i) ∈ R
mi for i = 1, . . . , n, ‖x‖qq =

∑p
i=1 |xi|q for 0 < q < 1, and when q = 0, ‖x‖qq denotes the number of nonzero components of

x. Similar to Subsection 4.2, we take n = 10, p = 256, and mi = 150 for i = 1, . . . , n. We take

different q = 0, 1/2, 2/3 since their proximity operators have explicit forms and can be easily

computed. In all cases, λi = 0.5 for each agent i and four different step sizes are used. The

experiment results are illustrated in Fig. 5.

By Fig. 5, the optimal step sizes for q = 0, 1/2 and 2/3 are 0.035, 0.012 and 0.04, respectively.

With these proper step sizes, when q = 0, PG-ExtraPush performs linearly convergent, while

for both q = 1/2 and 2/3, PG-ExtraPush decays sublinearly at the first several iterations, and

then performs linearly. For these nonconvex cases, smaller step sizes generally imply the slower

convergence.

6. Conclusion

In this paper, we propose a decentralized algorithm called PG-ExtraPush, for solving de-

centralized composite consensus optimization problems over directed networks. The algorithm

uses a fixed step size and the proximal map of the nonsmooth part. We show that with an

24

0 1000 2000 3000 4000 5000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Iteration t

||x
t −

x* || F

PG−ExtraPush(α=0.036)

PG−ExtraPush(α=0.035)

PG−ExtraPush(α=0.01)

(a) ℓ0

0 1000 2000 3000 4000 5000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Iteration t

||x
t −

x* || F

PG−ExtraPush(α=0.013)

PG−ExtraPush(α=0.012)

PG−ExtraPush(α=0.005)

(b) ℓ1/2

0 1000 2000 3000 4000 5000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Iteration t

||x
t −

x* || F

PG−ExtraPush(α=0.05)
PG−ExtraPush(α=0.04)
PG−ExtraPush(α=0.008)

(c) ℓ2/3

Figure 5: Experiment results for the decentralized ℓq(0 ≤ q < 1) regularized least squares

regression. Trends of ‖xt − x∗‖F , where x∗ is the limitation of xt, which is taken as the iterate

at t = 10000.

appropriate step size, PG-ExtraPush converges to an optimal solution at a linear rate under

some regular assumptions. The effectiveness of PG-ExtraPush is also demonstrated by a series

of numerical experiments. Specifically, PG-ExtraPush converges linearly and is significantly

faster than Subgradient-Push, even the latter uses a hand-optimized step size. Moreover, we

can observe from the numerical results that P-ExtraPush can generally accept a larger range

of step size than PG-ExtraPush. Similar phenomenon between P-EXTRA and PG-EXTRA is

also observed and verified in [16]. Moreover, we show the potential of PG-ExtraPush for solv-

ing the decentralized nonconvex regularized optimization problems. In such nonconvex cases,

PG-ExtraPush performs an eventual linear rate, i.e., the algorithm decays linearly starting from

several iterations but not the initial iteration. However, its convergence as well as the rate of

convergence in the general convex and nonconvex cases have not been studied in this paper, and

we will investigate them in the future.

References

[1] F. Benezit, V. Blondel, P. Thiran, J. Tsitsiklis and M. Vetterli, Weighted Gossip: dis-

tributed averaging using non-doubly stochastic matrices, in Proc. IEEE Conf. Decision

Control, pp: 1753-1757, 2010.

[2] I. Chen, Fast Distributed First-Order Methods, Masters thesis, Department of Electrical

Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge,

MA, 2012.

25

[3] T. Chang, M. Hong and X. Wang, Multi-agent distributed optimization via inexact con-

sensus ADMM, IEEE Trans. Signal Process., 63(2): 482-497, 2015.

[4] D. Kempe, A. Dobra and J. Gehrke, Gossip-based computation of aggregate information,

in 44th Annual IEEE Symposium on Foundations of Computer Science, pp: 482-491, 2003.

[5] H. Lopuhaa and P. Rousseeuw, Breakdown points of affine equivariant estimators of mul-

tivariate location and covariance matrices, Ann. Statist., 19(1): 229-248, 1991.

[6] Q. Ling and Z. Tian, Decentralized sparse signal recovery for compressive sleeping wireless

sensor networks, IEEE Trans. Signal Process., 58(7): 3816-3827, 2010.

[7] S. Lee and A. Nedic, Distributed random projection algorithm for convex optimization,

IEEE J. Sel. Topics Signal Process., 7(2): 221-229, 2013.

[8] G. Mateos, J. Bazerque and G. Giannakis, Distributed sparse linear regression, IEEE Trans.

Signal Process., 58(10): 5262-5276, 2010.

[9] A. Nedic and A. Ozdaglar, Distributed subgradient methods for multi-agent optimization,

IEEE Trans. Automatic Control, 54: 48-61, 2009.

[10] A. Nedic and A. Olshevsky, Distributed optimization over time-varying directed graphs,

IEEE Trans. Automatic Control, 60(3): 601-615, 2015.

[11] A. Nedic, A. Olshevsky and W. Shi, Achieving geometric convergence for distributed opti-

mization over time-varying graphs, arXiv:1607.03218, 2016.

[12] C. Ravazzi, S. Fosson and E. Magli, Distributed iterative thresholding for ℓ0/ℓ1-regularized

linear inverse problems, IEEE Trans. Inf. Theory, 61(4): 2081-2100, 2015.

[13] I. Schizas, A. Ribeiro and G. Giannakis, Consensus in ad hoc WSNs with noisy links-

part I: Distributed estimation of deterministic signals, IEEE Trans. Signal Process., 56(1):

350-364, 2008.

[14] W. Shi, Q. Ling, K. Yuan, G. Wu and W. Yin, On the linear convergence of the ADMM

in decentralized consensus optimization, IEEE Trans. Signal Process., 62(7): 1750-1761,

2014.

26

[15] W. Shi, Q. Ling, G. Wu and W. Yin, EXTRA: an exact first-order algorithm for decentral-

ized consensus optimization, SIAM J. Optimization, 25(2): 944-966, 2015.

[16] W. Shi, Q. Ling, G. Wu and W. Yin, A Proximal Gradient Algorithm for Decentral-

ized Composite Optimization, IEEE Transactions on Signal Processing, 63(22): 6013-6023,

2015.

[17] K. Tsianos, S. Lawlor and M. Rabbat, Consensus-based distributed optimization: Prac-

tical issues and applications in large-scale machine learning, in Proc. 50th Allerton Conf.

Commun., Control, Comp., pp: 1543-1550, 2012.

[18] K. Tsianos, S. Lawlor and M. Rabbat, Push-sum distributed dual averaging for convex

optimization, in Proc. IEEE Conf. Decision Control, pp: 5453-5458, 2012.

[19] K. Tsianos, The role of the Network in Distributed Optimization Algorithms: Conver-

gence Rates, Scalability, Communication/Computation Tradeoffs and Communication De-

lays, PhD thesis, Dept. Elect. Comp. Eng., McGill Univ., Montreal, QC, Canada, 2013.

[20] C. Xi, and U. Khan, On the linear convergence of distributed optimization over directed

graphs, preprint, arXiv:1510.02149, 2015.

[21] K. Yuan, Q. Ling and W. Yin, On the Convergence of Decentralized Gradient Descent,

SIAM Journal Optimization, 26(3):1835-1854, 2016.

[22] J. Zeng and W. Yin, ExtraPush for convex smooth decentralized optimization over directed

networks, arXiv:1511.02942, Journal of Computational Mathematics (To appear).

[23] J. Zeng and W. Yin, On nonconvex decentralized gradient descent, arXiv:1608.05766, 2016.

27

	1 Introduction
	2 Problem reformulation
	2.1 Network
	2.2 Problem with matrix notation

	3 Development of Algorithm
	3.1 Proposed Algorithm: PG-ExtraPush
	3.2 Special Cases: PG-EXTRA, ExtraPush and P-ExtraPush

	4 Convergence Analysis
	4.1 Assumptions
	4.2 Main Results
	4.3 Proofs
	4.3.1 Proof of Theorem ??
	4.3.2 Proof of Theorem ??
	4.3.3 Proof of Theorem ??

	5 Numerical Experiments
	5.1 Decentralized Geometric Median
	5.2 Decentralized 1 Regularized Least Squares Regression
	5.3 Decentralized Quadratic Programming
	5.4 Nonconvex Decentralized q (0q<1) Regularization

	6 Conclusion

