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Abstract

We consider a classical problem of control of an inverted pendulum by means of a horizontal motion of its pivot point. We
suppose that the control law can be non-autonomous and non-periodic w.r.t. the position of the pendulum. It is shown
that global stabilization of the vertical upward position of the pendulum cannot be obtained for any Lipschitz control
law, provided some natural assumptions. Moreover, we show that there always exists a solution separated from the
vertical position and along which the pendulum never becomes horizontal. Hence, we also prove that global stabilization
cannot be obtained in the system where the pendulum can impact the horizontal plane (for any mechanical model of
impact). Similar results are presented for several analogous systems: a pendulum on a cart, a spherical pendulum, and
a pendulum with an additional torque control.

Keywords: stabilization of an inverted pendulum, pendulum on a cart, periodic solution, topological obstructions to
stabilization, partial stability

1. Introduction

One and the same property of a system, considered in
different contexts, can both be useful, and appear as an
undesirable limitation: possible stability of an inverted
pendulum to arbitrary horizontal movements of its pivot
point [1, 2] turns out to be related to the impossibility of
global stabilization of a given position or motion of the
pendulum.

The problem of stabilization of the vertical upward posi-
tion of an inverted pendulum (or of an inverted pendulum
on a cart) by means of a horizontal motion on its pivot
point (or by a horizontal force, correspondingly) is a well-
known problem and has been considered by many authors
(see, e.g., [3–16]). This is, among other things, due to the
possible applications in real-life systems [17–21].

It was proved [22] that if the configuration space of
a control system has non-trivial topology, then the sys-
tem cannot have a globally asymptotically stable equilib-
rium. To be more precise, if the configuration space is
closed (compact without boundary), then global stabiliza-
tion cannot be obtained. One can compare this result with
the situation when relatively complex topology of the con-
figuration space leads to non-integrability of a Hamiltonian
system [23]. For instance, since the configuration space of
the spherical pendulum is S2, the problem of global stabi-
lization of the controlled spherical pendulum can be solved
only by means of a non-continuous control [7].

For the system ‘pendulum on a cart’ (its phase space is
S×R3), it is also impossible to find such a continuous con-
trol that the system would have a globally asymptotically
stable equilibrium position [8, 24, 22]. Even the problem

of stabilization of the vertical position of a one-degree-
of-freedom simple inverted pendulum does not allow con-
tinuous autonomous control which would asymptotically
lead the pendulum to the vertical from any initial posi-
tion. This follows from the fact that a continuous function
on a circle, which takes values of opposite sign, has at least
two zeros, i.e., the system has at least two equilibria (see
system (1) below).

The following questions naturally arise. First, do the
above statements remain true if we consider the pendu-
lum only in the positions where its mass point is above
the pivot point (often there exists a physical constraint in
the system which does not allow the rod to be below the
plane of support and it is meaningless to consider the pen-
dulum in such positions). Second, is it true that global
stabilization cannot be obtained when the control law is
a time-dependent function and it is also a non-periodic
function of the position of the pendulum? For a relatively
broad class of problems, which may appear in practice, we
show that for the both questions the answers are positive.

The main results of the paper can be described in the
following way. For all systems considered in the paper it
was shown [22] that they do not possess a globally asymp-
totically stable equilibrium and this result follows from the
fact that a closed manifold cannot be contractible. At the
same time, if we restrict our consideration to a contractible
subset of the configuration space of the system, then there
exists a vector field with a unique asymptotically stable
equilibrium. However, due to limitations caused by the
realization of the control mechanism, in real systems we
cannot arbitrarily choose the right-hand side of the con-
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trol system. In particular, we show that for the inverted
pendulum there exists a contractible subset of the configu-
ration space such that the vertical upward position belongs
to this set, yet this equilibrium is never a global attractor.
The existence of such a set is a consequence of our method
of control — we try to stabilize the rod by means of a
horizontal motion of the pivot point.

To be more precise, we prove that there exists a solution
that does not tend to the equilibrium and the rod never
becomes horizontal along it. Note that this is a solution
of the system without any additional constraints. Such
systems have been considered previously by many authors
(see, for instance, [3, 6, 9–11]). Let us now suppose that
the pivot point of our pendulum is moving on a horizon-
tal plane of support, i.e., the rod is constrained not to be
below the horizon. The above mentioned solution still re-
mains in the constrained system, regardless of the model
of the rod-plane impact interaction. Therefore, we can
claim that global stabilization cannot be obtained for the
constrained system, possibly non-continuous.

The proofs are illustrative and based on the Ważewski
method [25, 26] and similar to the ones in [1, 2, 27], where
the following system has been studied. Let us consider an
inverted pendulum in a gravitational field with its pivot
point moving along a horizontal line according to a given
law of motion. It was proved that, for an arbitrary smooth
function, which describes the motion of the pivot point,
there always exists a solution such that the pendulum
never becomes horizontal along it (never falls). If the law
of motion of the pivot point is periodic, then there exists a
periodic solution without falling. We add that similar re-
sults can be obtained by means of the variational approach
[28].

The paper contains two main sections. In one section we
consider in detail the case of control of a simple inverted
pendulum (system with one degree of freedom), in another
section we consider the controlled spherical pendulum and
the pendulum on a cart and also present results on the
impossibility of global stabilization.

2. Simple inverted pendulum

Consider the following control system

q̇ = p,

ṗ = u(q, p, t) · sin q − cos q.
(1)

Here and below by u ∈ Lip(R3,R) we denote the feedback
control law for the system, defined by some function from
R3 to R which is continuous and locally Lipschitz (i.e.,
Lipschitz for any compact K ⊂ R3) in all variables except
t. System (1) describes the motion of a pendulum when
the acceleration of its pivot point is given by the function
u. The coordinate is chosen so that q = 0 and q = π
correspond to the horizontal positions of the rod, q = π/2
corresponds to its vertical upward position. Without loss
of generality, we assume that the mass of the pendulum,

its length and the gravity acceleration equal 1. Note that
we do not assume that u is periodic in q.

Suppose that we are looking for a control that would
stabilize system (1) in a vicinity of a certain equilibrium
position in the following sense. Let M be a subset of the
phase space of the system such that the points of M cor-
respond to the positions of the pendulum in which its rod
is above the horizontal line (in our case, M = {0 < q < π})
and µ ∈ M is the equilibrium for a given control u. We
assume that the control function u is chosen in such a way
that there exists a closed subset U ⊂ M, µ ∈ U \ ∂U and a
C1-function V : U → R) with the following properties

L1. V(µ) = 0 and V > 0 in U \ µ.

L2. Derivative V̇ with respect to system (1) is negative in
U \ µ for all t.

Since the function V can be considered as a Lyapunov
function for our system, the equilibrium µ is stable. If the
following (stronger) condition holds

L3. V̇(x, t) 6 −W(x) < 0 in U \ µ for all t and V(0, t) =
W(0) = 0, where W ∈ C(U,R),

then µ is asymptotically stable. For instance, such a func-
tion exists in the following case. Suppose that for a given
u, system (1) can be written as follows in a vicinity of µ

ẋ = Ax + f (x, t),

where x = (q, p), A is a constant matrix and its eigenvalues
have negative real parts, f is a continuous function and
f (t, x) = o(‖x‖) uniformly in t. Then there exists [29] a
function V satisfying properties L1, L3.

We now show that in this case the control cannot be
global. To be more precise, the following proposition holds

Theorem 2.1. Let u(q, p, t) ∈ Lip(R3,R) be a given con-
trol function, µ ∈ M be an equilibrium for system (1)
and t0 ∈ R. Suppose there exists a Lyapunov function
V satisfying L1 and L2, then there exists an initial condi-
tion (q0, p0) for t = t0 and an open neighborhood B ⊂ M
of µ such that, on the interval of existence, the solution
(q(t, q0, p0), p(t, q0, p0)) remains in M \ B.

Proof. For any C1 function f from Rn to R such that f > 0
everywhere except one point (where f = 0), any level set
f = ε, for small ε > 0, is a homotopy sphere [30], and hence
a sphere Sn−1.

In our case, for small ε > 0, the set V = ε is a circle
(topologically) in the phase space. We shall denote it by
S and the corresponding ball by B.

Let us consider a curve γ1 in the phase space which
connects S with the set {q = 0, p < 0}. Similarly, let γ2
be a curve connecting S with the set {q = π, p > 0} and
γ1 ∩ γ2 = ∅ (Fig. 1). Any solution starting in M \ B at
moment t0 can leave the set (M \ B)×R+ only through one
of the following sets of the extended phase space: S × R+,
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p> 0, q= π

p6 0, q= 0

p

q

t

V= ε

S

γ2

γ1

Figure 1: Exit sets for (M \ B)×R+. Solutions are externally tangent
to M × R+ at the points where p = 0.

{q = 0, p 6 0} × R+ or {q = π, p > 0} × R+. Here by R+ we
denote the set {t > t0} ⊂ R.

Suppose that all solutions starting in (S ∪ γ1 ∪ γ2) ×
{t0} leave (M \ B) × R+. If it is true, then for every point
(q, p, t0) ∈ (S ∪γ1∪γ2)×{t0} there is the point of first exit of
the corresponding solution from (M \ B) × R+. This point
belongs to one of the above three sets (Fig. 1). Therefore,
we have a map σ from the set (S ∪ γ1 ∪ γ2) × {t0} to the
exit set of (M \ B) × R+. Note that σ = id on S × {t0} ∪
(γ1 ∩ {q = 0, p < 0}) × {t0} ∪ (γ2 ∩ {q = π, p > 0}) × {t0}, i.e.
for any point (q0, p0, t0) that belongs to this set, we have
σ(q0, p0, t0) = (q0, p0, t0). When (q0, p0, t0) ∈ S , it follows
from the definition of S . For the sets where q = 0, p < 0
and q = π, p > 0 it immediately follows from the first
equation of system (1).

Now we prove that σ : (S ∪γ1∪γ2)×{t0} → (S ∪{q = 0, p 6
0} ∪ {q = π, p > 0}) × R+ is a continuous map. First, since
the right-hand side of system (1) is Lipschitzian, then the
theorem on continuous dependence of solutions on initial
data holds. Let us now prove that for any (q0, p0, t0) ∈
(S∪{q = 0, p < 0}∪{q = π, p > 0})×R+ there exists δ > 0 such
that (q(t0 + t, q0, p0), p(t0 + t, q0, p0), t0 + t) < (M \B)×R+. As
above, it follows from the definition of S and from equation
q̇ = p of the system. Finally, let us show that a solution
starting at γ1 or γ2 cannot leave (M \ B) ×R+ through the
points where p = 0. Consider the point (q0 = 0, p0 = 0, t0).
For the solution starting at this point, we have q(t0) = 0,
q̇(t0) = 0 and q̈(t0) = −1 and the corresponding solution
is externally tangent to (M \ B) × R+. Therefore, if our
solution passes through the point where q = 0 and p = 0,
then its trajectory is already outside (M \ B) × R+. The
case of the point (q0 = 0, p0 = π, t0) can be considered
similarly. Therefore, it can be seen that if some solution
leave (M\B)×R+, then all solutions close to the considered
one also leave this set. Moreover, all these solutions leave
(M \ B) × R+ in close points (Fig. 1).

Finally, if our assumption that all solutions starting in
(S ∪γ1∪γ2)× {t0} leave (M \B)×R+ is true, then we obtain
a continuous map between the connected set S ∪ γ1 ∪ γ2
and a disconnected set (S , γ1∩∂M и γ2∩∂M). In order to
construct such a function, we can consider compositions of

σ with the following maps: the continuous constant maps
π1 : {q = 0, p 6 0} × R+ → {γ1 ∩ ∂M} × {t0}, π2 : {q = π, p >
0} × R+ → {γ2 ∩ ∂M} × {t0} and the canonical projection
π3 : S ×R+ → S . The contradiction proves the proposition.

From the proof it can be seen that we obtain not a single
solution that does not leave the set M \ B, but a one-
parameter family of such solutions. This family can be
constructed by varying the paths γ1 and γ2 considered in
the proof (Fig. 2).

γ2

γ1

S

p

q0 π

Figure 2: One-parameter family of initial conditions S ∪ γ1 ∪ γ2 can
be obtained by varying γ1 and γ2.

We would like to note that Theorem 2.1 is proved for the
system where q ∈ R, i.e., we do not impose any constraints
on the position of the rod. What we obtain is that there
exists a solution that is separated from the equilibrium
µ and along this solution the pendulum never becomes
horizontal. In particular, suppose now that our system is
a control system with impacts, i.e., we allow the pendulum
to fall on the horizontal plane. Since the constraint do not
affect the non-stabilized solution, we can conclude that,
for any mechanical model of the impact, it is impossible
to globally stabilize the rod in a given position.

We add that the solutions can be continued for all t if we
assume that u(q, p, t) 6 a(t)|q| + b(t)|p| + c(t), for some con-
tinuous functions a, b and c. For instance, if u is bounded
(this assumption is natural, since we always have some
power limitations), then the solutions exist for all t.

Theorem 2.1 still holds if we consider a more general
system

q̇ = p,

ṗ = u(q, p, t) · sin q − cos q + w(q, p, t),
(2)

where w ∈ Lip(R3,R) and w(0, 0, t) < 1, w(π, 0, t) > −1.
Therefore, the system cannot be globally stabilized in the
above sense even when there is the control torque w applied
at the pivot point. It follows from the fact that, when
q = 0 and p = 0, we have q̈ < 0 and the trajectories of
solutions are externally tangent to the set 0 6 q 6 π in
the considered points. Similarly, q̈ > 0 for all t when q = π
and p = 0.

Some qualitative properties of system (1) can be proved
without the assumption on the existence of the function V
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satisfying L1 and L2. The following result can be proved
in essentially the same way as Theorem 2.1.

Theorem 2.2. For any u(q, p, t) ∈ Lip(R3,R), there exists an
initial condition (q0, p0) for t = t0 such that on the interval
of existence the solution (q(t, q0, p0), p(t, q0, p0)) remains in
{0 < q < π}.

In other words, for any control function, there always
exists a solution along which the pendulum never falls.

Moreover, if we assume that u is a bounded T -periodic
function of t and there is a viscous friction in the system,
i.e. the dynamics is described by the following equations

q̇ = p,

ṗ = u(q, p, t) · sin q − cos q − νp,
(3)

then a result, similar to that for an inverted pendulum
without control [1, 2], holds.

We will say that W ⊂ R3 is a T -periodic segment for (3)
if W = W0 × [0,T ], where W0 ⊂ R2 is a compact set. The
point (t0, q0, p0) ∈ W is in the exit set W− if there exists
δ > 0 such that (q(t0 + t, q0, p0), p(t0 + t, q0, p0), t0 + t) < W
for all t ∈ (0, δ). If W− = W−0 × [0,T ] ∪ (W ∩ {t = T }), where
W−0 ⊂ R2, then W is a simple T -periodic segment and by
W−− = W−0 × [0,T ] we will denote the essential exit set for
W. In our case, the result of R. Srzednicki [31, 32] can be
formulated in a simplified form as follows:

Lemma 2.3. If there exists a simple T -periodic segment
W for (3), W−− is compact and χ(W) − χ(W−−) , 0, then
there exists a T -periodic solution (q(t, q0, p0), p(t, q0, p0))
such that (q(t, q0, p0), p(t, q0, p0)) ∈ W0 \ ∂W0 for all t.

Here, as usual, by χ(W) and χ(W−−) we denote the
Euler-Poincaré characteristics. Applying this lemma to
the above system, we obtain

Theorem 2.4. For any bounded and T -periodic in t func-
tion u(q, p, t) ∈ Lip(R3,R) and any ν > 0, there exists an
initial condition (q0, p0) for t = 0 such that the solution
(q(t, q0, p0), p(t, q0, p0)) of system (3) is T -periodic and re-
mains in {0 < q < π} for all t.

Proof. Let us show that for the simple T -periodic segment

W = {q, p, t : q ∈ [0, π], p ∈ [−ρ, ρ], t ∈ [0,T ]},

where ρ > 0 is large, its essential exit set is of the following
form (Fig. 3)

W−− ={q, p, t : q = 0, p ∈ [−p, 0], t ∈ [0,T ]}∪
{q, p, t : q = π, p ∈ [0, p], t ∈ [0,T ]}.

Indeed, if ρ > 0 is large, then ṗ < 0 for all points where
p = ρ. Therefore, solutions cannot leave W through the
top face of W. Similarly, we have ṗ > 0 for all points
where p = −ρ. Finally, we see that W−− have the above
form and compact. Since χ(W) − χ(W−−) , −1, then from
Lemma 2.3 we obtain the existence of a periodic solution.

p
q

t

W

Figure 3: Sets W and W−− (highlighted).

From Theorems 2.2 and 2.4, we can also conclude that
the problem of global stabilization of the pendulum in a
position ‘below the horizon’ cannot be solved by means of
a Lipschitz control function u.

3. Systems with two degrees of freedom

The arguments of the previous section can be carried
over to various similar systems. For instance, let us con-
sider the following equations of motion of a controlled in-
verted spherical pendulum.

ϕ̈ + u sinϕ cos θ + v sinϕ sin θ + θ̇2 cosϕ sinϕ = − cosϕ,

θ̈ cos2 ϕ − θ̇ϕ̇ sinϕ cosϕ + u sin θ cosϕ − v cosϕ cos θ = 0.
(4)

Here ϕ ∈ (−π/2, π/2) is the inclination angle of the
rod, θ is the azimuth angle. Functions u, v ∈ Lip(R5,R),
u = u(ϕ, ϕ̇, θ, θ̇, t), v = v(ϕ, ϕ̇, θ, θ̇, t) are the control acceler-
ations of the pivot point (projections of the acceleration
on fixed axes in the horizontal plane). We use the same
assumptions concerning the mass and the length of the
pendulum and the gravity acceleration as in the previous
section.

The configuration space of the system is a two-
dimensional sphere. Let M be a subset of the phase space
such that the points of M correspond to the positions of the
pendulum in which its rod is above the horizontal plane
(ϕ = 0). Let us suppose that the control functions u, v
are chosen in such a way that µ ∈ M is an equilibrium of
system (4) and, in a vicinity of µ, there exists a Lyapunov
function satisfying L1 and L2. Then global stabilization
cannot be achieved for the system. To be more precise,
the following holds.

Theorem 3.1. Let u, v ∈ Lip(R5,R) be given control func-
tions, µ ∈ M be an equilibrium for system (4) and t0 ∈
R. Suppose there exists a Lyapunov function V satis-
fying L1 and L2, then there exists an initial condition
(ϕ0, ϕ̇0, θ0, θ̇0) for t = t0 and an open neighborhood B ⊂ M
of µ such that on the interval of existence the solution
(q(t, q0, p0), p(t, q0, p0)) remains in M \ B.

Proof. The main idea of the proof is similar to the one in
Theorem 2.1. The only difference is that it is sufficient to
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connect the sphere S (level set V = ε for small ε > 0) by
one curve γ with the set {ϕ = 0, ϕ̇ 6 0}.

Now, if we assume that all solutions starting in γ × {t0}
leave M \ B, then we obtain a continuous map between
a connected set and its two-point boundary (γ ∩ S and
γ ∩ {ϕ = 0, ϕ̇ 6 0}).

The continuity of the corresponding map follows, as in
Theorem 2.1, from the fact that if we put the rod in the
horizontal position and ϕ̇ = 0, then for any control func-
tions, the pendulum will move to the region where ϕ < 0.
In other words, if some solution leaves M \B, then all close
solution also leave this set.

From the proof it can also be seen that we obtain not
a single solution, that does not leave the set M \ B, but
a three-parameter family of such solutions: two points
in a four-dimensional space can be connected by a three-
dimensional family of paths.

The most important generalization of the system con-
sidered in the previous section is the controlled system
of a pendulum on a cart, which is more correct from the
physical point of view than its limiting case, the simple
controlled inverted pendulum.

The equations of motion of a pendulum on a cart have
the following form

q̇ = p,

ṗ =
u(q, p, x, y, t) sin q + p2 sin q cos q − (1 + m) cos q

m + cos2 q
,

ẋ = y,

ẏ = (m + cos2 q)−1
(
u(q, p, x, y, t) + p2 cos q − sin q cos q

)
.

(5)
Here m > 0 is the mass of the cart, x is the coordinate

of the pivot point on the horizontal line, u ∈ Lip(R5,R)
is the horizontal force applied to the cart. We assume
that the mass of the pendulum, its length and the gravity
acceleration equal 1.

Note that if the control u does not depend on the posi-
tion and velocity of the pivot point (x and y, correspond-
ingly), then the first two equations can be considered sep-
arately. Nonetheless, we will consider the general case,
when the control function u is non-autonomous and may
depend on the total angular distance covered by the rod q
(again, we do not assume that u is periodic in q), on the
angular velocity of the rod p and on the variables x and y,
defined above.

Theorem 3.2. Let u ∈ Lip(R5,R) be a given control func-
tion, M = {0 < q < π}, µ ∈ M be an equilibrium for system
(5) and t0 ∈ R. Suppose there exists a Lyapunov function
V satisfying L1 and L2, then there exists an initial con-
dition (q0, p0, x0, y0) for t = t0 and an open neighborhood
B ⊂ M of µ such that the solution starting at (q0, p0, x0, y0)
remains in M \ B on the interval of existence.

Proof. From the existence of function V satisfying L1 and
L2, we obtain that there exists a ball B such that µ ∈ B and

S = ∂B is a topological sphere S3. Moreover, any solution
starting at S at moment t0 locally leaves (M \ B) × R+.

Similarly to Theorem 2.1, we can connect S with the
three-dimensional subsets of the phase space {q = 0, p < 0}
and {q = π, p > 0} by non-intersecting curves γ1 and γ2.
Now suppose that all the solutions starting at (S ∪ γ1 ∪

γ2) × {t0} leave (M \ B) × R+.
In order to apply the Ważewski method and show that

it is not the case, we have to prove that the corresponding
map σ, that maps (S ∪ γ1 ∪ γ2) × {t0} to the boundary of
(M \ B) × R+, is continuous. The key observation is that,
like in the case of simple inverted pendulum, q̈ > 0 for all
points where q = π, p = 0 and q̈ < 0 for q = 0, p = 0.
Therefore, σ is continuous and can be used to construct a
continuous map between a connected and a disconnected
set. This contradiction completes the proof.

4. Conclusion and discussion

In this section we would like to discuss briefly the most
restrictive part of the presented results, the question of ex-
istence of the Lyapunov function. As it can be easily seen,
everywhere above we have never fully used the fact that V
is a Lyapunov function satisfying L1 and L2 (even though,
in real-life applications, it is quite natural to assume the
existence of such a function). Indeed, what we use is that
there exists a ‘capturing neighborhood’ of some point.

If we omit the requirement concerning the existence of
a Lyapunov function and do not require the stability in all
variables, then, similarly to the theorems above, we can
prove the results which state the impossibility of global
stabilization in a part of variables. For example, if for the
system (5) there exists a closed cylinder Z = B × R2 ⊂ M
such that ∂B is a Jordan curve in the plane (q, p) and any
solution of system (5) starting in ∂Z at t > t0 locally be-
longs to Z \∂Z. Then there exists a solution which remains
in M \Z on the interval of existence. In other words, we do
not require the stability in the variables x and y. We only
assume that any solution starting in Z, will stay in this
cylinder (w.r.t. to the variables q and p). In particular,
we do not assume that there exists a stable equilibrium in
the system.

For the sake of simplicity of the exposition, in conditions
L1 and L2, we consider a Lyapunov function that does not
depend on time. However, taking into account the results
on the existence of a Lyapunov function in a vicinity of
an asymptotically stable equilibrium, it may be useful to
consider more complex Lyapunov functions . In particular,
let us consider system (5) and suppose that its right-hand
side is T -periodic in t. Let µ be an asymptotically stable
equilibrium. Then there exists a smooth T -periodic Lya-
punov function V(q, p, x, y, t) satisfying the conditions of
the Lyapunov theorem on asymptotic stability [33] and we
can prove that global stabilization of the asymptotically
stable equilibrium cannot be obtained. The proof is based
on the consideration of the T -periodic level set V = ε of
the Lyapunov function, for small ε > 0. The function V is
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defined in a vicinity of the point µ. Any solution starting
in the set V = ε belongs to the set V < ε for all subsequent
t. The proof can be obtained by using similar arguments as
in Theorem 2.1. Therefore, we have that for systems (1),
(4) and (5), if they are periodic in t, global stabilization
cannot be obtained.

In conclusion, note that the results presented in the pa-
per can be generalized and developed in various ways. For
instance, it is possible to apply the same ideas to systems
with more than two degrees of freedom. Similar results
can be proved for the case when we try to stabilize the
system in a vicinity of a given trajectory, which may not
be an equilibrium. Also, we can consider systems with dry
or viscous friction and systems different from the inverted
pendulum, e.g., the control system of a point moving on a
surface which intersects the horizontal plane orthogonally.
In all these, and many other cases, if the solutions depend
continuously on initial data, the same topological obstruc-
tions to global stabilization appear and the above methods
can be applied. However, these generalizations are out of
the scope of this paper and will be developed elsewhere.
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