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Abstract

In this paper, a stochastic approximation (SA) based distributed algorithm is proposed to solve the resource allocation (RA) with
uncertainties. In this problem, a group of agents cooperatively optimize a separable optimization problem with a linear network
resource constraint and allocation feasibility constraints, where the global objective function is the sum of agents’ local objective
functions. Each agent can only get noisy observations of its local function’s gradient and its local resource, which cannot be
shared by other agents or transmitted to a center. Moreover, there are communication uncertainties such as time-varying topologies
(described by random graphs) and additive channel noises. To solve the RA, we propose an SA-based distributed algorithm, and
prove that agents can collaboratively achieve the optimal allocation with probability one by virtue of ordinary differential equation
(ODE) method for SA. Finally, simulations related to the demand response management in power systems verify the effectiveness
of the proposed algorithm.
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1. Introduction

Resource allocation (RA) problem is to allocate the network
resource among a group of agents while optimizing certain per-
formance index. It has drawn much research attention in many
areas, such as the media access control in communication net-
works [1]], signal processing in [2], and load demand manage-
ment in [3]. Hence, various RA models and RA algorithms
have been proposed (see [1]-[6] and the references therein).
However, most of existing algorithms need a center to collect
the data over networks or to coordinate computation processes
among all agents.

In fact, the center-free distributed optimization algorithms
have attracted more and more research attention in recent years
[7]-[13]). In various network optimization problems, the optimal
decisions are made based on the whole network data, which,
however, are collected and stored by each individual agent of
the network. The distributed optimization algorithm keeps the
data distributed through the network when seeking the optimal
decision, and hence eliminates the “one-to-all” communication
burden and protects agents’ privacy. Distributed optimization
also endows each individual agent with autonomy and reactiv-
ity by allowing it to formulate its local objective function and
constraints with its local data. From the network viewpoint,
the robustness to single point failure and the network scala-
bility can be enhanced with distributed design. Following the
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seminal work [S]] of RA in large-scale networks along with the
distributed optimization work in [[7]-[13]], various center-free
distributed algorithms for RA have been proposed recently in
[14]-[171].

Stochastic approximation (SA) has been adopted in dis-
tributed optimization algorithms to address various kinds of un-
certainties or to improve the computation efficiency. In [8]], an
SA-based distributed algorithm was proposed when each agent
can only get the noisy observations of its local gradient, which
extended the traditional SA optimization methods (see [18]) to
distributed settings. In [19]], an SA algorithm was given for dis-
tributed root seeking problem under noisy observations, which
was also a generalization of distributed optimization problems.
In practice, noisy gradient observations also exist in the zero-
order distributed optimization algorithm as in [20]], and ran-
domized data sample was considered to reduce the computa-
tional complexity in optimization with “big data”, resorting to
SA for theoretical analysis (see [21]]). Besides, SA algorithms
were also adopted for distributed optimization to handle uncer-
tainties in communication systems in [9}[10], and [22].

Nevertheless, the existing distributed works of RA in [14]-
[1’7] have not considered various stochastic uncertainties related
to information sharing or data observations. Since the problem
data is distributed throughout the network, each agent needs to
share its local information with other agents through a commu-
nication network, which may involve various of uncertainties.
Firstly, the communication network may switch due to packet
loss, media access control, or energy constraint. To describe
uncertainties of communication topologies, different from the
deterministic switching graphs in [7, [12]] and [13], we adopt
random graph models like [9} [10, 23| and [24] here. Secondly,
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the information shared through the network may not be accu-
rate or may be corrupted by random noises due to quantization
errors or channel fading ( referring to [13[], [22]] and [24]]). On
the other hand, noises can also be actively added to the shared
information for privacy protection as discussed in [25]. More-
over, agents may not get the exact local gradient or resource
information due to measurement or observation noises.

Main contributions of the paper are summarized as follows.
(i) A novel center-free distributed algorithm is proposed to han-
dle the RA problem, where each agent only utilizes noisy ob-
servations of its local gradient and resource information, and
noisy neighboring information shared through the randomly
switching networks. (ii) The estimates are shown to converge to
the optimal allocation with probability one based on the ODE
method for SA algorithm. (iii) The proposed model and algo-
rithm are applied to distributed multi-periods demand response
management in power systems, along with simulations to show
the effectiveness.

The remainder of the paper is organized as follows. The RA
problem is formulated and an SA-based distributed algorithm is
proposed in Section 2. Then the convergence result for the dis-
tributed algorithm is established in Section 3, while simulation
studies are shown in Section 4. Finally, the concluding remarks
are given in Section 5.

2. Problem Formulation and Proposed Algorithm

Firstly, we show related notations and preliminaries about
convex analysis. Denote 1,, = (1,..,1)" € R" and 0,, =
0,..,0" € R™. col{xy, -+ ,x,} = (xI,--,xI)T stacks the
vectors xp,- -, x,. I, denotes the identity matrix in R™". For
a matrix A = [a;;], a;; or A;; stands for the matrix entry in the
ith row and jth column of A. ® denotes the Kronecker product.
Denote ker{A} and range{A} as the null space and range space
of matrix A, respectively.

For a nonempty closed convex set 2 ¢ R™ and a point x €
R™, denote Pg(x) as the point in Q that is closest to x, and call
it the projection of x on Q. Pq(x) contains only one element for
any x € R™, and satisfies

IPa(x) = PoWIl < llx =yl ¥x,y € R™. ey

For a convex set Q2 ¢ R™ and a point x € Q, define the normal
coneto Qat xas No(x) £ (ve R : (v,y—x) <0 Vye Q}.

In the following two subsections, we formulate the dis-
tributed RA problem with the data observation and communi-
cation network models, and propose an SA-based distributed
algorithm.

2.1. Problem Formulation
Consider a group of agents N = {1, - - - , n} that cooperatively
decide the optimal network resource allocation (RA), formu-
lated as follows:
omin ;{fi(xi),

sub ject to Zx,- = Zdi, xi€QieN
ieN ieN

@

The local allocation variable x; € R™ is decided by agent i,
which is also associated with a local objective function f;(x;).
d; is the local resource data, and can only be observed by agent
i. The resource of the whole network is the sum of all lo-
cal resources, i.e., X cn di- Q; is the local allocation fea-
sibility constraint of agent i, and cannot be known by other
agents. Furthermore, €); is determined by p; inequality con-
straints: Q; = {x € R" : g;;(x) < 0, Vj = 1,---,pi},
where ¢;;(-), j =1,---, p; are continuously differentiable con-
vex functions on R” . Therefore, RA problem (2) is to find an
allocation that minimizes the sum of local objective functions
while satisfying the network resource constraint and the alloca-
tion feasibility constraints. The following assumptions can also
be found in [1]-[6].

Assumption 1. Problem @) has a finite optimal solution. For
any i € N, fi(x;) is differentiable strictly convex function,
and moreover, its gradient is globally Lipschitz continuous, i.e.,
there exists a constant . > 0 such that ||Vfi(x) — VL) <
Lllx = yll, Vx, y € R™.

The following constraint qualification assumption can be
found in [27]).

Assumption 2. For any i € N, the set Q; is closed convex set
and has nonempty interior points, and {Vq;j(x), j € I;(x)} is
linearly independent, where 1;(x) = {j : g;;(x) = 0}.

The data observation model for agent i at time k is given as
follows: agent i can get the noisy observation of its gradient
Vfi(x;) at given testing point x;(k) corrupted with noise v;(k)
(that is, Vfi(x;(k)) + v;(k)) and the noisy local resource informa-
tion corrupted with noise 6;(k) (that is, d;+0;(k)). The stochastic
gradient model should be taken into consideration in the follow-
ing three cases:

(i) Stochastic optimization: Agent i’s local objective func-
tion takes the expectation form as fi(x;) = Ey[g(xi,¢)] =
j(‘Di g(x;, ¢:)dP(¢;), where ¢; is a random vector supported on set
®; € RY with probability distribution P, and g; : R x ®; — R.
It is more practical to utilize noisy gradient Vg;(x;, ¢;) given
sampling ¢; rather than exact gradient by performing multi-
value integral at each iteration. In fact, the SA algorithm in
[[18]] and DSA algorithm in [8]] considered this kind of gradient
noise.

(ii) Zero-order optimization: When agent i can only get the
value of f;(x;) given the testing point x;(k), the gradient estima-
tion methods, such as the Kiefer-Wolfowitz method in [26] and
the randomized coordinate estimation in [20], can lead to noisy
gradient observations.

(iii)) Randomized data sample: If the local objective func-
tions are constructed with “big data”, a noisy gradient based on
randomly sampled data is an alternative to the exact gradient,
which may reduce the overall iteration computational complex-
ity (see [21]).

Given the local data observations, it is important and practi-
cal to solve () in a distributed way, where the agents need to
share the local information with neighbors through switching
networks and noisy channels.



As we know, switching communication networks can be
modeled by random graphs, e.g., [9]], [10]. Denote a realiza-
tion of the random graph at time k as G(k) = (N, E(k)), where
&E(k) ¢ N x N is the edge set at time k. If agent i can get in-
formation from agent j at time k, then (j,7) € &(k) and agent
J belongs to agent i’s neighbor set N;(k) = {jI(j,i) € E(k)} at
time k. Define adjacency matrix A(k) = [a;;(k)] of G(k) with
a;j(k) = 1if j € Nj(k), and ag;;(k) = 0 otherwise. Denote by
Deg(k) = diag{Z’}:] aij(k), ..., Z;?:I anj(k)} the degree matrix,
and by L(k) = Deg(k) — A(k) the Laplacian matrix of G(k).

The following assumption is given for the random graphs
{G(k)}r>1 (referring to [9]]).

Assumption 3. {L(k)} is an i.i.d. sequence with mean denoted
by L = E[L(k)]. Besides, L is symmetric with sy(L) > 0, where
s2(L) denotes the secondly smallest eigenvalue of L.

Remark 2.1. Note that Assumption[3|does not require the com-
munication graph to be connected or undirected at any time in-
stance. Only the mean graph is required to be undirected and
connected, which ensures that the local information can reach
any other agents in the average sense. The gossip model in
[23|] and the broadcast model in [10] are also consistent with
Assumption[3}

2.2. SA-based Distributed Algorithm

It is time to propose an SA-based distributed algorithm,
based on assumptions on data observations and communication
noises.

Denote x;(k) as agent i’s estimate for its local optimal alloca-
tion at time k, and denote A;(k), z;(k) as the auxiliary variables
of agent i. The agents share their auxiliary variables through the
communication network at each iteration. If (j,7) € &(k), then
agent i can get the noisy information of {4;(k), z;(k)}, corrupted
with noise £;;(k) and €;(k), from agent j. Namely, 4;(k) + ;(k)
and z;(k) + €;(k) are the values received by agent i from agent
J at time k, which are not separable. Moreover, agent i also
has the local noisy gradient observation V f;(x) +v;(k) and noisy
resource observation d; + 6;(k).

The SA-based distributed recursive algorithm for agent i is
given as follows:

SA - based Distributed Resource Allocation Algorithm
xi(k + 1) = Po,(xi(k) + ax( = (Vfi(xi(k) + vi(k)) + 4,(k))),
Atk + 1) = A;(k) + ap((d; + 6;(k)) — x;(k)

= > ()it = (A8 + &)
j=1

=) aij( (k) = (z;(k) + €;(k)))),

J=1

n

2k + 1) = 2i(K) + @ Y ay(R)(Ailk) = (A8 + £ij))),

J=1

3

where the step-size {ay} satisfies

(o) (o)
>0, Y =00, > af<co. @
k=1 k=1

Obviously, the algorithm (@) is a fully distributed one since
each agent only uses its local noisy observations and the noisy
information received from its neighbors, and only performs lo-
cal projection with its local set €.

Since the local objective functions f;(x;) is convex and con-
tinuously differentiable, the KKT condition of 18

0, € Vfi(x]) = A" + No,(x}),i = 1,--- ,n
2ien X; = Diendi - x; €4,

Algorithm (3)) is developed by combining the ODE methods
for KKT condition (3) and the ODE methods for stochastic ap-
proximation. In some sense, 4; in (@) is the local “copy” of
Lagrangian multiplier for 2* in (3), and z; in (@) is given for the
consensus of A; to reach the same A*.

The communication noises €;;(k), £;;j(k) can be used to model
information sharing uncertainties due to quantization errors
(see [[13]) or communication channel fading (see [22] and [24]).
Additionally, noises can be actively added to achieve differen-
tial privacy protection as done in [25].

Define the o-algebra at time £ as:

&)

Fr = ole;@), §ij(0), 6:(0), vi(t), L(1), 0 < t <k,

. (6)
i,j=1,---,N, X(0),A0),Z(0)}.

Define ¥, = o{F, L(k + 1)}. The following assumptions im-
posed on €;;(k), £;;j(k), 6;(k), vi(k) were also adopted in the exist-
ing SA and distributed optimization works (see [8[][O[10]][24]]).

Assumption 4. Foranyie N, {0;(k)} is ani.i.d. sequence with
zero mean and bounded second moments 0'3 s=EF [116: (©II*1.

Assumption 5. (i) The communication noises have conditional
zero mean, i.e., E[{;;(k)|F,_,]1 =0 and El€;(k)|F,_,]1 = 0.

(ii) There is a uniform bound on conditional variances of the
communication noise , i.e., there exists a constant u > 0 such
that for any i, j € N and any k > 0, E[||§ij(k)||2|9f,g_l] < u? and
Ellle;(OIPIF_, 1 < 2.

(iii)There exists a positive constant ¢ such that for any i € N
and any k > 0,

E[vi()|Fr-11 =0, E[Vi(OIPFr-11 < (1 + [lx:(k)I[*).

(iv) For all i € N, the sequences {L(k)} and {0;(k)} are mutu-
ally independent. The sequences {L(k)} and {0;(k)}icpy are inde-
pendent of Fi_;.

3. Convergence Analysis

In this section, we employ the ODE method for SA algorithm
to give the convergence analysis for algorithm (3). It is shown
with the following outline. Theorem 3.1|shows that the equilib-
rium point of the underlying ODE contains the optimal solution
to problem (2), while Lemma shows the convergence of the
underlying ODE. Then Lemma investigates properties of
the extended noise sequences, and Lemma shows that the
iteration sequence generated by (3) are bounded. Finally, The-
orem [3.5]shows that the estimates generated by (3) converge to
the optimal resource allocation with probability one.



Set gl(k) = ’;=1 aij(k)g-j(k) and Gl‘(k) = ?:1 aij(k)eij(k), and

X(k) = col{x(k), -, x,(K)},
Z(k) = colizi(k), - - - , za(k)},
v(k) = colivi(k),--- ,v,(k)}, D =colld,,--- ,d,},
{(k) = colldi(k), - -+, LK)}, €(k) = collei(k), - - -

V(X (k) = colfV fi(x1(k)), - -+, V fu(xa (k))}.

A(k) = col{d,(k), - - -, u(K)},
6(k) = col{é,(k), - - -, 6,(k)},

, €(K)},

Then the recursive algorithm (3) can be rewritten in the compact
form as follows:

X(k+1) = Po(X(k) + ai( = Vf(X(k)) + A(k) — v(k))),
Ak + 1) = Alk) + ax( = (LK) ® Ln)(Ak) + Z(k))

+D — X(k) + 6(k) + L(k) + e(k)),
Z(k + 1) = Z(k) + ax((L(k) ® L) Ak) = {(K)),

(N

where Q =[]/, Q; denotes the Cartesian product of Q;.

Denote by e;(k) = (L — L(k)) ® L,))(Ax + Z), ex(k) = (k) +
(k) + €(k), and by e3(k) = (L(k) — L) ® I,,) A(k) — {(k). We then
have

X(k + 1) = Po(X(k) + ax(=V f(X(K)) + A(k) = v(k))),
Alk+1) = Alk) + ax( = (L ® L)(A(k) + Z(k))

+D — X(k) + e1 (k) + ea(k)),
Zk + 1) = Z(k) + a (L ® L)A(k) + e3(k)).

®

By setting S (k) = col{X(k), A(k),Z(k)}, we can regard the
algorithm (/) as an SA algorithm with the following form:

S(k+1) = Po(S (k) + ax (J(S (k) + £(K))), 9
where
-VfX)+ A
J(S) = [ —(LeL)A+Z)+D-X|,
(I:® IL,)A
(10)
—v(k)
&(k) = { ei(k) +exk)], ®=QxR™xR™,
e3(k)

The convergence proof of (3) relies on the ODE method
for SA (referring to [27] and [28]). Define the following
continuous-time projected dynamics as the underlying ODE of

(&)

S = J(S) + 2,8 (0) = col{ X(0), A0), Z(0)}, an

with z € —Ng(S) being the minimum force to keep the solution
of (TI) in @, and J(S) is defined by (I0).

Theorem 3.1. Under Assumptions [[|2] and [3] (I1) has at
least one equilibrium point.  Furthermore, suppose S* =
col{X*, N*, Z*} is an equilibrium point of (I1)), then S* has X*
as the optimal solution to problem (Z2).

Proof: Because problem (2)) is assumed to be solvable, there
exist optimal solution X* and 2* € R™ such that (3) can be
satisfied. Then take A = 1, ® 4*, L ® I,A* = 0. By
(1] ® 1,)X* = (1] ® L,)D (that is Tyen X! = Diep dy), we
have D — X € ker{1! ® I,}. Notice that ker{l] ® I,} and
range{l, ® I,,} form an orthogonal decomposition of R"™ by

the fundamental theorem of linear algebra. Combined with
ker(L ® I,,)) = range{l, ® I,,} due to Assumption [3| we have
D - X € ker(L ® I,,)*. Therefore, D — X € range(L ® I,)), that
is there exists Z* such that -L ® I,,Z* + D — X* = 0. Hence,
combined with (E]), S* = collX*, A\*,Z"} is an equilibrium point
of (TI).

On the other hand, when S* = col{X*, A*,Z*} is an equilib-
rium point of @]) it satisfies:

=Vfi(x) + 47 € No,(x), x; € Q;
LOL)A +Z)—(D-X)=0
LeL)A =0

12)

Since L is the weighted Laplacian of an undirected connected
graph by Assumption [3} it follows from (L ® I,,)A* = 0,,,, that
A" =1,®4" for some 1" € R". Asaresult, 0,, € Vfi(x)) - A"+
Nq,(x}). Furthermore, (LRLI)AN +(LR1,)Z —(D—X*) = 0,
implies that (L ® I,,)Z* = D — X*. Then by noticing 17L = 07
we derive Yendi = Yien X;. Moreover, x7 € €; due to the
viability of ODE (TT).

Thus, any equilibrium point S * of (1)) satisfies the KKT con-
dition (5), and hence, X* is the optimal solution to problem (2).
|

Lemma[3.2]shows that (TT]) converges to its equilibrium point
S

Lemma 3.2. Under Assumptions[I} [2|and[3] the trajectories of
(TT1) are bounded and converge to its equilibrium point for any
finite initial points.

Proof: Take a Lyapunov function V(S) = %IIS — S¥||, where
S* is an equilibrium point of (TT)). Take no(X*) € No(X*) such
that V f(X*) — A* + ng(X*) = 0, then

=S =89"US) +2)

<X =XH(=VFX) + A+ VX = A+ no(XY))

+(A =AY (L LA +2Z)+(D-X)

AL LA +Z) = (D= X))+ (Z-Z)L®L,(A—A")

< (X = X (VFX) = VX)) + (X — X) na(X*)

~(A=-AYLA-A")<0

(13)

Hence, any equilibrium point of (TI) is Lyapunov stable,
and given finite initial point S(0), the trajectories of (II)) are
bounded and belong to the compact forward invariant set I, =
{SIV(S) < V(O)}

Denote E as the set within I, such that V = 0. Then we
can show that the maximal invariance set in E can only be
{S]S = 0}. With the strict convexity of f;,, X = X* must hold
within set E. Furthermore, A — A* € ker{L ® I,} by (13) and
Assumption Therefore, Z = 0, and Z = Z* within set E.
Moreover, A = —L®I,Z* + D — X*, and A must be 0; otherwise
A will go to infinity, which contradicts the boundedness of the
trajectories. Hence, A* = 1, ® A*. Therefore, all the trajec-
tories of converge to the points in the maximal invariance
set {S|S = 0}. Recalling the Lyapunov stability of S* and the
LaSalle invariance principle, the dynamics (TI)) converges to its
equilibrium point S*, which leads to the conclusion. |



3.1. Extended noise property

By definition of F given in (@), S (k) is adapted to F_; ac-
cording to (3). The extended noise sequence {£(k)} is state-
dependent, and its properties are shown in Lemma[3.3]

Lemma 3.3. Suppose Assumptions 3| and b hold. Then
E[£(k)|Fie1] = 0, E[ERP1Fi-r] < cillS I + ¢z as. (14)
for some finite constants c, c;.
Proof: By Assumption 3 (iii),

E[v(k)|Fi-1]
E[IV(R)IP1Fr-1]

0’
Ly Elvi(olP1Fe-1] (15)
ne + X (k)|

IA I

Since a;;(k) is adapted to 7—',;_] , by Assumption (i) we obtain
E[&i(BIF, ]

"o Elaij(k) g (0lF ]
a0 Xy FLEARIT ] =0,

and hence E[{(K)|F,_,;] = 0. By noting that #; C F, we derive

E[{(0)|Fk-1] = E[EI{(R)IF;_,1|Fi-1] = O.

Similarly, it follows that E[e(k)|F,_,] = 0 and E[e(k)|F-1] = 0.

Since L(k) is independent of §;(k) and F;_; by Assump-
tion [5| (iv), we obtain E[6;(k)|F,_|]1 = E[6;(k)|F-1,L(k)] =
E[6;(k)|Fk-1]- Then by Assumptions E] and 4 (iv), we have that,
forany i € N E[6;(K)|F/_,]1 = E[6;(0)|Fr-1] = E[6:(k)] = 0.
Thus,

Elex(0)IF_11 = EIRIF_ 1+ E[6(OIF,_ 1+ E[e()IF;_,]1 = 0,

(16)

which implies that E[e(k)|Fx-1] = E[E[ez(k)lﬂ’_l]iﬁ_l] =0.

Note that A(k) and Z(k) are adapted to F;—;, while L(k) is
independent of #;_;. Then, by Assumption

Elei()|Fk-1] E[((L = L(k)) & In)(A(k) + Z(K))|Fi-1]
E[((L = L(k) ® In)|Fi-1J(AK) + Z(k))
E[((L = L(k) ® In)J(A(K) + Z(k)) = 0,
E[((L = L(K)) ® L)) A(K)|F k1]

EI(L - L) ® L )IAK) = 0.

Ele3 ()| Fr-1]

(17)
Consequently, we conclude that E[£(k)|F -] = 0.

Since e (k) is adapted to F,_, and F; C ¥, , it follows from

(T6) that
Elei(k)" ex(k)|Fi-1] = E[Ele1 (k)" ex(k)|F{_,1|Fi-1]

r , (18)
= E[e1 (k)" Ele2(WIF;_,1|Fi-1] = O.

Since A(k) and L(k) are adapted to ¥,_,, by E[{(K)|[F,_1=0
and ¥ C ¥/, we get
E[(L(k) = L) ® L))A(K))" £()|F-1]
= E[E[(Lt - D) @ L)A®) (OIF|F]  (19)
= E[((Lt) - D) ® L)A®K) E[LRIF,_)|Fir| = 0.

By the conditional Holder inequality
ENXTYI|F] < ENXIPIFD ENYIPIFD:,  (20)
from Assumption 5] (ii) we see that

ELG;(0)T Gp(O|F ] < E[||§ij(k>T§ip<k)|||ﬁ,1]
< (ENG;0IPF_ D ENGRIP|FL D2 < w1

Then, since A(k) is adapted to F,_,, we have

ENG®IRFL ] = EIS0, aia,0d® 7 G017, ]
3y ai(Raip(OELL K pRIF, ]

g 1= 1

IA I

Similarly, E[I|e,-(k)||2|7-'k’_l] < n’u* Vi e N. From Assumption
(iv), it is clear that ;(k) is independent of #,_,, and hence, by
AssumptionE[Ilé(k)llzlﬂ’_]] = E[lls(oII*] = 2L, ENS: (I,
In summary,

E(ERIPIF ] < e, Ellle®IPIF,_ 1 < nu?,
EN6RIPIF,_\] = By 0is = 0.

Then

Elllex(0)IPIF,_,]
< 3(Elle(®IPIF,_,1 + ENCRIPIF, 1+ ENSRIPIF,_,1)

<32 +02) £ G,

2y

and hence, by F; C 7:](’ , we get
Elllex(®)IPIFe-1] = E[Elllex®IP1F,_ 1| Fie] < C1. (22

Because A(k) and Z(k) are adapted to F—;, and L(k) is inde-
pendent of F;_; by Assumption 4 (iv), we have

= E[I((L = L(k) ® L)(AK) + Z(K)IPF-1]
< GolIAK) + Z(R)IP,

Elller(0)IP|Fk-1]

where C, = E[||L(k) — L|*] is finite. It, along with (T8) 22),
yields

Elller(k) + e2(0)IPIFi-11 = Elller (OIP1F%-1]
+E[llea(IPIFi-1] + 2E[e1 (k)" ea(k)|Fr-1] (23)
< GolIAK) + Z(R)IP + C.

By (I9) 1) and 7 c 7, we derive

ETI((L(k) = L) ®)AK) = LK) 1Fi1]
ENILE) = L) ® L) AG|P1Fr-1]
—2E[((L(k) = L) ® L,)AK) £ F-1]
+EEBIPIFi-1] < CUADRIP + nu?.
(24)

Ellles(W)IPIFi1] =

In summary, from (13), (23)), and (24)), we obtain

E[NIEK)PFrr ] E[IVE)IPFr-11 + ElllesOIP[Fe1]
+E[lley (k) + e2(IP|Fr-1]
< ne+cdXBIP + CUAKIP + n?u?
+ClIAK) + Z(R)I? + C
< allS®IP + e

for some positive constants cy, ¢;. [ |



3.2. Stability

The following result is about the boundedness of the itera-
tions before showing its convergence.

Lemma 3.4. Under Assumptions 1-4, {S(k)} generated by the
distributed algorithm (@) is bounded with probability one given
any finite initial value S (0).

Proof: Denote by S* as an equilibrium point of (TI), i.e.,
J(S§*) € No(S™). Then, by Assumption E] and the KKT condi-
tion (B), S* is a finite value. Take v(S) = |IS — S*|[> as a Lya-
punov function. Then from () and the non-expansive property
of the projection operator (I)) we derive

vSk+1) =|Sk+1)-S*?
< IS (k) = ™ + ar(J(S (k) + ER)IP
< IS (k) = S + 2a(S (k) = S )T (J(S (k) + (k)
+a (I (S DI + 2£(k)T I (S (k) + IIERI).-

Since S (k) is adapted to F;_1, by recalling E[£(k)|Fr-1] = O
from Lemma [3.3] we obtain

EWS (k+ DIFict] < (S K) + 2ai(S (k) = SIS (%))
+ (S EDIP + ENERIPIFr-11)-

Similar to the proof of Lemma (3:2), (S (k) — S*)TJ(S (k)) < 0.
Then by Lemma[3.3] we get

E[v(S (k+ 1)IFi-1] < (S (k) + ;S (NI +c1lIS R)IF + €2).
(25)
From Assumption E] and taking no(X*) € Nq(X™) such that
VF(X") — A" + no(X*) =0, we have
IS ENIP =1l = VAXE) + AK) + VXT) = A + na(XH)|?
+HI(L ® L)((Z(k) = Z7) + (A(k) = A7)
+X(k) = X*|1? + [I(L ® Ln)(AK) — AP
< 3(IVA(X(k)) = VX + IAGk) = A*|?

3.3. Convergence

The following result gives the main convergence result for
the SA-based distributed algorithm ().

Theorem 3.5. Suppose Assumptions (I)-@) hold. Let se-
quences {x;(k)}, {1;(k)}, {zi(k)} be produced by (@) given any
finite initial values x;(0), 2;(0), z;(0). Then

lim x;(k) = x] a.s.,
k—o0

where X* = col{x],- -
to problem (2).

, Xy} is the optimal resource allocation

Proof: Note that 6, ¥, g(6) and @ for (30) correspond to
Or = S(k), Yi = J(S (k) + £(k), g(6) = J(S) and ® = Q X R™ x
R™" for @). Then we can apply Theorem [5.1] in Appendix to
prove the conclusion, and it suffices to check conditions C1-C4
given in Appendix.

Since S (k) is adapted to F_1, by (23) we drive

ENYilP1Fi1] < IS EDIP + cilIS R + ¢z a.s.

Then by Lemma[3.4] (26) and Assumption [I] we conclude that
C1 hold. From (I0) and Lemma (3.3) it is easily seen that C2
holds. By definition of J(S) given by (I0) and Assumption[I]we
know that C3 holds. Since {S(k)} is bounded with probability
one from Lemma |3.4] we then have C4.

As a result, C1-C4 hold. Since ® = Q x R™ x R™ with
Assumption [ it is easily seen that @ satisfies the similar con-
ditions as Q;. Then, by Theorem[5.1} S (k) converge with prob-
ability one to the invariant set of (IT). Thus, by Lemma [3.2]
X(k) converges with probability one to the optimal solution X*.
|

4. Demand Response Management and Simulations

In this section, we apply the RA optimization model (2)) and
algorithm (3)) to distributed multi-period demand response man-

Hing(XHIP + L & L)AK) — AP + 1X(K) — X*|P agement in power systems (see [3]] and [30]).

HIL @ L)(Z(k) = Z)IP) + (L ® L)(AK) — AP
< L + 3IX(k) = X + 3eallZ(k) - Z° |
+(3 + 4c)lI(AK) = AP + ¢,

< (B +3L +4cy)lIS (k) = S*|* + ¢, = csw(S (k) + cps

(26)
where ¢4 = ||L|| and ¢, = ||[Vf(X*) — A*|]>. Note that

IS (OIF < 23S (k) = S*IF + IS *I1*) = 2((S (R)I* + IS *I17).
Incorporated with 23) and (26), it yields
E[v(S (k + D) Fr-1] < v(S (k)

+ai(C5V(S (k) + ¢y + 2c1v(S (k) + 2c1|1S*|1> + ¢32)
£ (1 + ce@)v(S (k) + cra?,

27)

where cg = 2¢1 + ¢s,¢7 = 2¢1|IS*IP + ¢2 + ¢y

Since {ay} satisfies (@), with probability one ]}im v(S (k)) ex-
ists and is finite by Lemma [5.2]in Appendix. Therefore, {S (k)}
is bounded with probability one. |

Suppose that a group of load aggregators (with index N =
{1,--- ,n}) need to decide the load demand in the following T
periods Pld € R7, in order to meet the generation scheduling
P? € R” and minimize the disutilities. P is usually decided by
other decision processes based on the generator unit commit-
ment or real-time generation prediction of renewables, which is
fixed and assumed to be only informed or observable to agent
i. Aggregator i formulates its local objective function ﬁ(P:.’ ) to
consider the costs or disutilities due to demand response Pld .
Moreover, Pf € Q; specifies the local response constraints,
which considers the lower and upper bounds in each period, the
total demand in the following T periods, ramping constraints,
and other local specifications. Hence, the multi-period demand
response management problem is formulated as:

ZieN ﬁ(Pii)
ZiENP;J = ZfeNPf, Pfl €,

mlnP}i €RT ieN

subject to (28)

In many practical cases, P‘lg can only be observed indirectly
through local measurements of wind speed, or solar radiation,
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Figure 1: The averaging trajectories of some agents’ allocation variables

or local frequency deviation, and hence, suffers from various
observation noises. In addition, fi(Pl?" ) should take full con-
sideration of user’s demand requirements, (dis)utility, satisfac-
tory levels, and payoffs, and hence, is influenced by various
external factors, such as temperature, electricity price, and re-
newable generations. Therefore, the gradient observation of
f,~(P§’ ) may also be noisy. The aggregators may share informa-
tion through wireless communication networks with switching
topologies and noisy channels. As a result, algorithm (3 can be
applied to handle the above challenges for problem (28). Com-
pared with previous works [3]] and [30]], the proposed model
here considers the demand response in multi-periods and lo-
cal load response feasibility constraints, and the algorithm can
handle various observations and communication uncertainties,
which may be more practical in many cases.

In what follows, we give a numerical experiment to illustrate
the algorithm performance.

Example 4.1. Consider the following three-period demand re-
sponse management problem:

Minpregs e Sien B [PL (Qi + WP+ (c; + 6)T PY]
S.L. ZieNP,d = DlieN P?
RiP,d <I,R; e R12X3, l; € R12X1,i eN,
(29)

where R,-Pf’ < i is the compact form of the following local
load response feasibility constraints: [l;];; < lTPf < L)1,
ils1 < [PP1i1 = [P9Tar < [Lilan, [ilst < [P91or = [Pil31 < [Lien,
Uil < [P < [Bse, [ilor < (P91 < (Lo and L], <
(P31 < [i]12.1-

The basic simulation experiment settings are given as fol-
lows. The number of agents is set to be 10. Q; and c; are
randomly generated symmetric positive definite matrices and
random vectors, respectively. Each Pf and l; are also randomly
generated vector that can ensure Assumptions|[I|and[2}

Consider a graph set G containing 30 graphs, each of which
is generated according to the random graph model G(10, P),
where P is the probability of occurrence for any possible
edge. The probability P is randomly and uniformly drawn from
[0.05,0.1] for each graph in G,. Select a graph set G with its
union graph being connected. At time k, a graph is randomly
drawn from the graph set G, according to the uniform distribu-
tion.
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Figure 2: The averaging trajectories of some performance indexes.
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Figure 3: The histograph of some performance indexes at iteration time k =
8000.

Fori € N, [Yilij, 16;]; are i.i.d. random variables satis-
fying the Gaussian distribution N(0,0.5) with zero mean and
variance 0.5. Let both the generation observation noise 6; and
communication noise {j;, €; be i.i.d. random vectors satisfying
the Gaussian distribution N(0, I3) with zero mean vector and
covariance matrix I3. Hence, Assumptions ] and 3] are satis-

fied. The stepsize ay in () is set as ay = Yt

Experiment 1: Given a randomly generated graph set G
and a randomly generated setting for problem 29), we apply al-
gorithm () to generate 200 independent sample paths with iter-
ation length of 8000. Figure[I|shows the averaging trajectories
of some agents’ allocation variables, and illustrates how the
agents find the optimal allocation. Moreover, Figure [2] shows
the averaging trajectories of some algorithm performance in-
dexes, including the distance to optimal solution ||P% — Pd*||,
function value f(P%), |ILAl|, and || ¥ien(PF = PH).

Experiment 2: Let us randomly generate a graph set Gy
and a setting for problem [29) at each round of this simulation,
and employ algorithm () to generate one sample path of this
setting with iteration length of 8000. We repeat the procedure
for 100 rounds, and use Figure[3|to show the histograph of some
performance indexes at iteration time 8000. It illustrates that
algorithm (@) can almost surely find the optimal allocation for
different problem settings with only one sample path.



5. Conclusions

In this paper, an SA-based distributed algorithm was pro-
posed to solve a class of RA optimization problems under vari-
ous uncertainties. The gradient and resource observation noises
were taken into consideration, and the communication network
was assumed with randomly switching topologies and noisy
communication channels. The algorithm was proved to con-
verge to the optimal solution with probability one by resorting
to the ODE method for SA algorithm, which may demonstrate
great potentials of SA algorithm and ODE methods for dis-
tributed decision problems over network systems under noisy
data observations.

Appendix

Here is the convergence result for the constrained stochastic
approximation. Consider

Orr1 = PolO + i Yi), (30)

where ® € R™ is a convex constraint set. Next follows the
conditions for its convergence analysis.

C1: sup; E[|IYi|P] < oo.

C2: There is a measurable function g(-) such that

Ei[Yi] = E[Yilbo, Yi, i < k] = g(6)).

C3: g(+) is continuous.
C4: 6, is bounded with probability one.

Theorem 5.1. /27, Theorem 5.2.1 and Theorem 5.2.3] Let C1-
C4, and @) hold for algorithm (B0). If © satisfies the same
condition as that imposed on Q; in Assumption [2| then with
probability one 6 converges to the invariant set of the following
projected ODE in ©:

0=2g®+z,

where z € —Ng(0) is the minimum force to keep the trajectories
of the projected ODE in ®.

The following lemma shows convergence properties for non-
negative super-martingales.

Lemma 5.2 (Robbins-Siegmund). (/29]) Let (Q,F,P) be a
probability space and ¥y C F; C be a sequence of
o—algebra of ¥. Let {dy} and {wy} be nonnegative F-
measurable random variables such that

Eldin|Fi] < (1 + ap)di + wy,

where ay > 0 are deterministic scalars with Y, ax < oo. If

Yire1 Wi < o0, then {dy} converges with probability one to some
finite random variable.
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