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Universidade Federal de Roraima

Av. Capitão Ene Garcez, 2413

Aeroporto 69310-000

Boa Vista - RR, Brasil.

September 11, 2018

Abstract

In this paper we study affine and bilinear systems on Lie groups. We show that there is an intrinsic

connection between the solutions of both systems. Such relation allows us to obtain some preliminary con-

trollability results of affine systems on compact and solvable Lie groups. We also show that the controllability

property of bilinear systems is very restricted and may only be achieved if the state space G is an Euclidean

space.

Keywords: Affine systems, bilinear systems, controllability

1 Introduction

An affine system on a connected Lie group G is a family

ẋ(t) = F 0(x(t)) +

m
∑

j=1

ωj(t)F
j(x(t)),

of ordinary differential equations, where ω := (ω1, . . . , ωm) ∈ U is a piecewise constant function and
F 0, F 1, . . . , Fm are affine vector fields.

The class of affine systems are in fact quite large since it contains the classical linear and bilinear systems on
the Euclidean space R

d and more generally the invariant, linear and bilinear systems on G (see [2], [6], [13]
and [18]). Therefore, the dynamic involved here is really much more complicated than those of the mentioned
systems.

In the present paper we exploit the intrinsic connection between affine and bilinear systems in order to obtain
controllability results for affine systems. One example where one can see how strong is such connection is given
for G = R

n by Jurdevic and Sallet in [11]. There the authors showed that an affine system is controllable as
soon as it has no singularities and its associated bilinear system is controllable in R

n \ {0}. However, any other
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class of Lie groups contains nontrivial proper subsets that are naturally invariant by automorphisms implying
that controllability of any bilinear system on G \ {e} can only be expected when G is isomorphic to R

n (see
Theorem 3.4 ahead). Therefore, generalizations of the result of Jurdevic and Sallet for more general Lie groups
are not possible.

The above forces us to look at affine systems in a more geometric way by using the above invariant subsets as
done in [1] and [5] for linear systems. In order to do that we first prove that there is an intrinsic connection
between the solutions of any affine system and its associated bilinear system. More accurate, the solutions of
an affine system are given by left translation of the solutions of their associated bilinear system. Using such
formula we are able to generalize some results from [5] allowing us to prove controllability results for affine
systems on compact and solvable Lie groups under the assumption of local controllability around the identity.

This paper is structured as follows. In Section 2 we introduce the basic concepts about control systems and
affine vector fields. In Section 3 we analyze bilinear systems on Lie groups. We give an explicity formula for
the solutions of such systems and show that the controllability of bilinear systems in only to be expected in
Euclidean spaces. Section 4 is devoted to the understanding of affine systems. We show that the solution of
an affine system is given by left translation of the solution of its associated bilinear system. Such expression
allow us to prove prove some results concerning the controllability of affine systems on compact and solvable
Lie groups.

2 Preliminaries

In this section, we introduce basic concepts that will be needed through the paper.

2.1 Notations

By a smooth manifold we undertand a finite-dimensional, connected, second-countable, Hausdorff manifold
endowed with a C∞-differentiable structure. If f : M → N is a differentiable map between smooth manifolds,
we write (df)x : TxM → Tf(x)N for its derivative at x ∈ M , where TxM is the tangent space at x ∈ M and
Tf(x)N the tangent space at f(x) ∈ N . When we do not need to specify the point x ∈ M we say only that f∗
is the derivative of f .

A Lie group G will be a group endowed with the structure of a smooth manifold. If G is a Lie group, we write
Aut(G) for the groups of automorphisms of G and X(G) for the set of C∞ vector fields on G. By e we denote
the identity element of G and by i the inversion of G, that maps g ∈ G into its inverse g−1 ∈ G. For any given
g ∈ G we denote by Lg, Rg and Cg the left translation, right translation and the conjugation by g, respectively.
The image of the exponential map exp : g → G is denoted by exp(X) or by eX . The Lie algebra g of G will
always be identified with the set of right invariant vector fields on G.

2.2 Control systems

A control system on a smooth manifold M is given by the family

ẋ(t) = f0(x(t)) +

m
∑

j=1

ωj(t)f
j(x(t)), ω = (ω1, . . . , ωm) ∈ U , (Σ)

of ordinary differential equations. Here f0, f1, . . . , fm are smooth vector fields on M . f0 is called the drift

vector field and f1, . . . , fm the control vector fields. The set of admissible control functions U is given by the
set of piecewise constant functions ω : R → R

m.

For each ω ∈ U , the corresponding differential equation Σ has a unique solution ϕ(t, x, u) with initial value
x = ϕ(0, x, u). The systems considered in this paper all have globally defined solutions, which give rise to a
map

ϕ : R×M × U →M, (t, x, ω) 7→ ϕ(t, x, ω),
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called the transition map of the system. We also use the notation ϕt,ω for the map ϕt,ω : M → M given by
x 7→ ϕt,ω(x) := ϕ(t, x, ω). Since f0, f1, . . . , fm are smooth, the map ϕt,ω is also smooth. The transition map ϕ
is a cocycle over the shift flow

θ : R× U → U , (t, ω) 7→ θω = ω(·+ t),

i.e., it satisfies ϕ(t + s, x, ω) = ϕ(s, ϕ(t, x, ω), θtω) for all t, s ∈ R, x ∈ M and ω ∈ U . Moreover, it holds that
ϕ−1
t,ω = ϕ−t,θtω and, for all t1, t2 > 0 and ω1, ω2 ∈ U

ϕ(t1, ϕ(t2, x, ω2), ω1) = ϕ(t+ s, x, ω), where ω(τ) =

{

ω1(τ) for τ ∈ [0, s]
ω2(τ − s) for τ ∈ [s, t+ s]

For x ∈M and τ > 0 we write

R≤τ (x) := {ϕ(t, x, ω); t ∈ [0, τ ] and ω ∈ U} and R(x) :=
⋃

τ>0

R≤τ (x).

for the set of points reachable from x ∈M up to time τ and the reachable set from x, respectively. Analogously,
we define the set of points controllable to x within time τ and the controllable set of x respectively by

R∗
≤τ (x) := {y ∈M ; ∃t ∈ [0, τ ], ω ∈ U with ϕ(t, y, ω) = x} and R∗(x) :=

⋃

τ>0

R∗
≤τ (x).

The system Σ is said to be locally controllable at x if x ∈ intR(x). In the analytic case, it follows from Theorem
3.1 of [14] that Σ is locally controllable at x if x ∈ intR(x) ∩ intR∗(x). In particular, that is the case for the
systems on Lie groups under consideration in this paper. The system Σ is said to be controllable in X ⊂ M if
for all x, y ∈ X there exists τ > 0 and ω ∈ U such that y = ϕ(τ, x, ω). Equivalently, the system is controllable
in X ⊂M if X ⊂ R(x) ∩R∗(x) for some (and hence for all) x ∈ X .

2.1 Remark: It is worth to mention that the problem or characterizing local controllability was studied by
many authors (see for instance Hermes [7], [8] Sussmann [15], [16], [17] Bianchini and Stefani [3]). Necessary
and sufficient conditions for local controllability are expressible in terms of X ∈ L, where L = L(f0, f1, . . . , fm)
denote the smallest Lie algebra of vector fields on M containing f0, f1, . . . , fm. Indeed all the papers above
given sufficient conditions for local reachability.

2.2 Remark: The choice of the set of admissible control functions being piecewise constant is not restrictive.
In fact, most of the usual choices of admissible functions are such that the solutions of Σ can be approximated
by using piecewise constant ones.

2.3 Affine and linear vector fields

In this section we define affine and linear vector fields and state their main properties. For the proof of the
assertions in this section the reader can consult [2], [9] and [10].

Let G be a connected Lie group with Lie algebra g. Following [2], the normalizer of g is the set

η := {F ∈ X(G); for all Y ∈ g, [F, Y ] ∈ g}.

A vector field F on G is said to be affine if it belongs to η. If F ∈ η and F (e) = 0 the vector field F is said
to be linear. Any affine vector field F is uniquely decomposed as F = X + Y where X is linear and Y is right
invariant. Moreover, any F ∈ η is complete, any linear vector field X is an infinitesimal automorphism, that is,
its flow in 1-parameter subgroup of Aut(G), and if {αt}t∈R and {ψt}t∈R stand, respectively, for the flow of F
and X , where F = X + Y , we have that

αt(g) = Lαt(e)(ψt(g)), for all g ∈ G. (1)

The next technical lemma shows that expression (1) can be generalized for finite composition of flows of affine
vector fields. Such result will be needed ahead.
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2.3 Lemma: Let {Fi}i∈N be a family of affine vector fields with decomposition Fi = Xi+Yi. Where Xi is linear
and Yi is right-invariant, for any i ∈ N. Denote by {αit}t∈R and {ψit}t∈R the flows of Fi and Xi respectively. For
any i1, . . . , in ∈ N and any real numbers τ1, · · · , τn, it holds that

αinτn ◦ · · · ◦ αi1τ1 = L
α

in
τn(···(α

i1
τ1

(e))··· ) ◦ ψ
in
τn

◦ · · · ◦ ψi1τ1 . (2)

Proof: Our proof is by induction. For n = 1 such equation coincides with (1) and the result holds. Let us
consider i1, . . . , in+1 ∈ N, τ1, · · · , τn+1 and by the hypothesis of induction assume that

αinτn ◦ · · · ◦ αi1τ1 = L
α

in
τn(···(α

i1
τ1

(e))··· ) ◦ ψ
in
τn

◦ · · · ◦ ψi1τ1

holds. Hence,
αin+1

τn+1
◦ αinτn ◦ · · · ◦ αi1τ1 = αin+1

τn+1
◦ L

α
in
τn(···(α

i1
τ1

(e))··· ) ◦ ψ
in
τn

◦ · · · ◦ ψi1τ1

= L
α

τn+1

in+1
(e)

◦ ψin+1

τn+1
◦ L

α
in
τn(···(α

i1
τ1

(e))··· ) ◦ ψ
in
τn

◦ · · · ◦ ψi1τ1 .

However, for any f ∈ Aut(G) and g ∈ G it follows that f ◦ Lg = Lf(g) ◦ f . So, we get

L
α

τn+1

in+1
(e)

◦ ψin+1

τn+1
◦ L

α
in
τn(···(α

i1
τ1

(e))··· ) = L
α

τn+1

in+1
(e)

◦ L
ψ

in+1
τn+1(α

in
τn(···(α

i1
τ1

(e))··· ))
◦ ψin+1

τn+1

= L
α

τn+1

in+1
(e)·ψ

in+1
τn+1(α

in
τn(···(α

i1
τ1

(e))··· ))
◦ ψin+1

τn+1
= L

α
τn+1

in+1
(αin

τn(···(α
i1
τ1

(e))··· )) ◦ ψ
in+1

τn+1

which implies that

αin+1

τn+1
◦ αinτn ◦ · · · ◦ αi1τ1 = L

α
τn+1

in+1
(αin

τn(···(α
i1
τ1

(e))··· )) ◦ ψ
in+1

τn+1
◦ ψinτn ◦ · · · ◦ ψi1τ1

ending the proof. �

We finish this section by commenting on the special connection between g-derivation and linear vector fields.
Let X be a linear vector field on G. Associate to X there is a g-derivation D : g → g given by

DY = −[X , Y ], for all Y ∈ g.

The flow of X is related to D by

(dψt)e = etD and consequently ψt(expY ) = exp(etDY ), for any t ∈ R, Y ∈ g. (3)

A special case is when the derivation D is inner, that is, there is X ∈ g such that D = ad(X). Following [10],
when this happens the linear vector field decomposes as X = Y + i∗Y and its flow satisfies ϕt = CetX . In
particular, when G is a semisimple Lie group any linear vector field is of this form since any g-derivation is
inner.

For compact Lie groups, Theorem 4.29 of [12] implies that G = GssZ(G)0 where Z(G)0 is the connected
component of the center of G and Gss is a semisimple connected subgroup of G with Lie algebra [g, g]. Since
these subgroups are invariant by automorphisms, we have that the flow {ϕt}t∈R of any linear vector field X
restricts to automorphisms of both, Gss and Z(G)0. Moreover, since Z(G)0 is a torus we have that Aut(Z(G)0)
is discrete which by continuity implies that ψt|Z(G)0 = idZ(G)0 . On the other hand, since Gss is semisimple, we
have that ψt|Gss

= etX for some X ∈ [g, g]. Therefore, if d is a bi-invariant metric d on G we have that ψt is an
isometry of G, for any t ∈ R.

We will finish this section with some examples of affine and linear vector fields.

2.4 Example: Let G to be the connected component of the identity of Gl(n,R), the group of the invertible
n× n-matrices.Its Lie algebra g is given by gl(n,R), the set of all n× n-matrices.

For any A ∈ g, the vector field XA(g) := Ag − gA, g ∈ G is linear vector. Its associated flow is given by
ϕt(g) = CetA(g) showing that the associated derivation is inner and given by D = − ad(A). If B is another
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element in g and we consider the left invariant vector field B(g) = gB, we have that F = XA + B is an affine
vector field. Moreover, it holds that

F (g) = XA(g) +B(g) = Ag − gA+ gB = Ag − gC, where C = A−B.

Reciprocally, any affine vector field F whose associated linear vector field has inner derivation is of the form
F (g) = Ag − gB for matrices A,B ∈ g.

Following Theorem 2.2 of [2], for simple connected Lie groups any linear vector field is determined by its
derivation. Therefore, one cannot expect that all the affine vector fields of the previous example to be of the
form F (g) = Ag − gB. The next example gives an example of a linear vector field whose associated derivation
is not inner.

2.5 Example: Let

G =











1 a b

0 1 c

0 0 1



 , (a, b, c) ∈ R
3







be the Heisenberg group. Its Lie algebra g is generated by

X =





0 1 0
0 0 0
0 0 0



 , Y =





0 0 0
0 0 1
0 0 0



 and Z =





0 0 1
0 0 0
0 0 0



 ,

where [X,Y ] = Z and [X,Z] = [Y, Z] = 0. By denoting the elements of G and g only by its coordinates on the
basis {X,Y, Z} we have that the vector field X (a, b, c) = (a, b, 2c) is linear. In fact, a simple calculation shows
that its flow is given by ϕt(a, b, c) = (aet, bet, ce2t) and also that

ϕt((a1, b1, c1)(a2, b2, c2)) = ϕt(a1 + a2, b1 + b2, c1 + c2 + a1b2)

= ((a1 + a2)e
t, (b1 + b2)e

t, (c1 + c2 + a1b2)e
2t) = (a1e

t, b1e
t, c1e

2t)(a2e
t, b2e

t, c2e
2t) =

= ϕt(a1, b1, c1)ϕt(a2, b2, c2)

showing that {ϕt}t∈R is a one-parameter group of automorphisms and hence that X is linear.

The derivation associated with X on the above basis is given by D(a, b, c) = (a, b, 2c) and is therefore not inner,
since ad(W )Z = 0 for any W ∈ g while DZ = D(0, 0, 1) = (0, 0, 2).

3 Bilinear systems on Lie groups

Bilinear systems on Euclidean spaces are well studied in the literature (see for instance [4] and [6]). In this
section we extend the definition of such systems to connected Lie groups and establish their main properties.
In particular we show that controllability of bilinear system on Lie groups are a quite rare condition and can
only be expected in Euclidean spaces.

A bilinear system on a Lie group G is given by

ġ(t) = X 0(g(t)) +

m
∑

j=1

ωj(t)X
j(g(t)), (ΣB)

where X 0,X 1, . . . ,Xm are linear vector fields on G. The transition map of ΣB will be denoted by ϕB and
the diffeomorphism g ∈ G 7→ ϕB(t, g, ω) by ϕBt,ω , where t ∈ R and ω ∈ U . Moreover, we denote by Dj the

g-derivation associated with the linear vector field X j , for j = 0, . . . ,m.

Our intention in what follows is to obtain an expression for the solutions of ΣB . In order to do that we consider,
for any u = (u1, . . . , um) ∈ R

m, the linear vector field

Xu = X 0 +

m
∑

j=1

ujX
j with associated flow {ψut }t∈R ⊂ Aut(G).
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It is straightforward to see that the associated derivation Du is given by Du = D0 +
∑m
j=1 ujD

j .

The next result gives an expression for the solutions of ΣB in terms of concatenation of linear flows.

3.1 Theorem: Let ΣB be a bilinear control system on G and consider ω ∈ U . For a given T > 0 write

ω(t) = ωi for and t ∈





i−1
∑

j=0

tj ,

i
∑

j=0

tj



 ,

where t1, . . . , tn > t0 = 0, T =
∑n
i=1 ti and ω1, . . . , ωm ∈ R

m. Then,

ϕB(t, g, ω) = ψωi

t −
∑i−1

j=1
tj
(ψ

ωi −1

ti−1
(· · · (ψω1

t1
(g)) · · · )), t ∈





i−1
∑

j=0

tj ,

i
∑

j=0

tj



 . (4)

Moreover, the solutions of ΣB are complete and ϕBt,ω ∈ Aut(G) for any t ∈ R and ω ∈ U .

Proof: Let us consider α(t) as the curve define by the right hand side of equation (4), that is,

α(t) := ψωi

t −
∑i−1

j=1
tj
(ψ

ωi−1

ti−1
(· · · (ψω1

t1
(g)) · · · )), t ∈





i−1
∑

j=0

tj ,

i
∑

j=0

tj



 .

We know that α(0) = x and α is continuous since it is given by the concatenations of linear flows. By the very
definition of flow

d

ds
ψωi
s (h) = Xωi

(ψωi
s (h)), for any h ∈ G, s ∈ R.

By considering
h = ψωi

−
∑i−1

j−1
tj
(ψ

ωi−1

ti−1
(· · · (ψω1

t1
(g)) · · · ))

we get

α′(t) =
d

dt
ψωi

t (h) = Xωi
(ψωi

t (h)) = Xω(t) (α(t)) , t ∈





i−1
∑

j=0

tj,

i
∑

j=0

tj





which shows that α(t) is in fact the solution of ΣB associated with the control ω and starting at g ∈ G . From
the uniqueness of the solution we get α(t) = ϕB(t, g, ω) proving the equality in equation (4).

The assertion about the completeness of the ΣB-solutions follows directly from the relation ϕB−t,ω =
(

ϕBt,θ−tω

)−1

.

Finally, ϕBt,ω ∈ Aut(G), for any t ∈ R and ω ∈ U since it is the concatenation of G-automorphisms. �

3.2 Remark: It is not hard to show that a similar expression is also possible for the negative time solutions.

Using the relation between the linear flow and it associated derivation we are able to give an expression for the
differential of the solutions of ΣB in terms of exponential of matrices, as follows:

3.3 Corollary: In the conditions of Theorem 3.1, for any X ∈ g and t ∈
(

∑i−1
j=0 tj ,

∑i
j=0 tj

]

it holds that

ϕBt,ω(exp(X)) = exp
(

e(t−
∑i

j=1
tj)Dωi eti−1Dωi−1 · · · et1Dω1X

)

,

where Dωi
is the g-derivation induced by the linear vector field Xωi

, for i = 1, . . . , n. Moreover,

(dϕBt,ω)eX = e(t−
∑i

j=1
tj)Dωi eti−1Dωi−1 · · · et1Dω1X.

6



Proof: The first equation follows directly from equation (4) in Theorem 3.1 and by the commutative relation
given in (3) applied to ψωi

s and Dωi
.

Therefore, for t ∈
(

∑i−1
j=0 tj ,

∑i
j=0 tj

]

, we obtain

(dϕBt,ω)eX =
d

ds

∣

∣

∣

s=0
exp

(

e(t−
∑i

j=1
tj)Dωi eti−1Dωi−1 · · · et1Dω1 sX

)

=
d

ds

∣

∣

∣

s=0
exp s

(

e(t−
∑i

j=1
tj)Dωi eti−1Dωi−1 · · · et1Dω1X

)

= e(t−
∑i

j=1
tj)Dωi eti−1Dωi−1 · · · et1Dω1X

proving the second equation and concluding the proof. �

Before stating and proving the main result of this section let us consider the special case of bilinear systems
whose associated derivations are inner. Let ΣB be a bilinear system onG and assume that, for any j = 0, 1, ...,m,
there is Y j ∈ g such that the g-derivation Dj associated with X j is given by Dj = ad(Y j). As discussed at the
end of Section 2, when this is the case we get that X j = Y j + i∗Y

j and consequently the bilinear system ΣB
can be decomposed as

Xω(t)(g(t)) = Yω(t)(g(t)) + i∗
(

Yω(t)(g(t))
)

.

where Yω(t)(g(t)) is the right-invariant control system on G defined by

ġ(t) = Yω(t)(g(t)) = Y 0(g(t)) +
m
∑

j=1

ωi(t)Y
j(g(t)), (ΣI) .

Since for any u = (u1, . . . , um) the flow {ψut }t∈R
of Xu is given by ψut (g) = CetYu (g), for Yu = Y 0 +

∑m
j=1 ujY

j ,
we get that

ϕBt,ω = CϕI
t,ω(e) for any t ∈ R, ω ∈ U

where ϕIt,ω(e) = ϕI(t, e, ω) is the solution of ΣI starting at e ∈ G.

Now we are able to enunciate and prove the main result concerning the controllability of bilinear systems.

3.4 Theorem: Let ΣB a bilinear system on G. If G is not a simply connected Abelian Lie group, then ΣB
cannot be controllable on G \ {e}.

Proof: Let us divide the proof in cases:

1. G is an Abelian compact Lie group: As commented in the end of Section 2, the flow of any linear vector
field is trivial. Since the solutions of ΣB is given by concatenations of flows of linear vector fields we must
have that ϕBt,ω = idG for any t ∈ R and ω ∈ U . Therefore ΣB cannot be controllable in G \ {e}.

2. G is a solvable Lie group: For this case, the derivative subgroup G′ ⊂ G is a nontrivial proper subgroup
of G. Since G′ is invariant by automorphisms and ϕBt,ω ∈ Aut(G) for any t ∈ R and ω ∈ U we must have

that ϕBt,ω(G
′) = G′ and therefore ΣB cannot be controllable in G \ {e}.

3. G is a semisimple Lie group: Since derivations of semisimple Lie algebras are always inner, we have by
the previous discussion that

ϕBt,ω = CϕI
t,ω(e), for all t ∈ R, ω ∈ U .

Therefore, if we prove that the conjugation does not acts transitively on G \ {e} the bilinear system ΣB
cannot be controllable in G \ {e}. We have then two possibilities:

3.1 G is a compact semisimple Lie group: In this case, G admits a bi-invariant metric. In particular,
any sphere centered at e ∈ G is invariant by conjugation, showing that the conjugation cannot be transitive.

3.2. G is a noncompact semisimple Lie group: In this situation, there exist g, h ∈ G such that Ad(g)
is orthogonal and Ad(h) is symmetric for some inner product in g (see Chapter VI of [12]). Therefore,
Ad(x) and Ad(y) cannot be conjugated, which implies that the conjugation cannot be transitive on G.

7



4. G is an arbitrary Lie group: If the solvable radical R of G is nontrivial, the system cannot be controllable
in G \ {e} since R is invariant by automorphisms. If R = {e} the group is semisimple and such case was
considered above.

�

The previous theorem shows that controllability of bilinear systems on connected Lie groups can only be expected
for the classical bilinear systems on R

n. Actually, since in this particular case the group and the algebra can be
identified, and the normalizer coincides with the product between R

n and the Lie algebra gl(n,R), any linear
vector field X = XD on R

n can be directly associated with its linear map D. Thus, we obtain the classical
bilinear system

ẋ(t) = D0(x(t)) +

m
∑

j=1

ωi(t)D
j(x(t)), ω ∈ U .

On the other hand, the class of bilinear systems plays a relevant role in the controllability property of affine
systems as we will see in the forthcoming section.

4 Affine systems on Lie groups

The present section is devoted to analyze the general class of affine systems on Lie groups. As a matter of
fact, we show that there exists an intrinsic relation between the solutions of an affine system and its associated
bilinear system. This relationship allows us to obtain some preliminary controllability properties for the class
of affine systems.

An affine system on a Lie group G is determined by the family of ordinary differential equations

ġ(t) = F 0(g(t)) +
m
∑

j=1

ωj(t)F
j(g(t)), (ΣA) .

Here, F 0, F 1, . . . , Fm ∈ η are affine vector fields on G. We denote the transition map of ΣA by ϕA and, for any
ω ∈ U and t ∈ R, we denote by ϕAt,ω the diffeomorphism g ∈ G 7→ ϕA(t, g, ω) ∈ G.

Associate with any affine system ΣA there is a bilinear system defined as: For any j = 0, 1, . . . ,m let us consider
the decomposition F j = X j + Y j with X j linear and Y j right-invariant. We say that the bilinear system ΣB
defined by the linear vector fields X 0,X 1, . . . ,Xm is the bilinear system induce by ΣA.

The next result gives us an expression for the solutions of an affine system ΣA on G and show that they are
intrinsically connected with the solutions of the bilinear system ΣB associated to ΣA.

4.1 Theorem: Let ω ∈ U be a piecewise constant control function and consider t1, . . . , tn > t0 = 0 and

ω1, . . . , ωn ∈ R
m such that ω(t) = ωi for

(

∑i−1
j=0 tj ,

∑i
j=0 tj

]

. If {αωt }t∈R stands for the flow of the affine vector

field Fω := F0 +
∑m

j=1 Fj then

ϕA(t, x, ω) = αωi

t −
∑i−1

j=1
tj
(α
ωi−1

ti−1
(· · · (αω1

t1
(x)) · · · )), t ∈





i−1
∑

j=0

tj ,

i
∑

j=0

tj



 . (5)

Moreover, the solutions of ΣA are complete and it holds that

ϕAt,ω = LϕA
t,ω(e) ◦ ϕ

B
t,ω. (6)

Proof: The proof of the formula 5 and the assertion on the completeness of the solution of ΣA are similar to
those in the proof of Theorem 3.1. Then, we will omit it. Let us prove equation (6).
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From (5), for any t ∈
(

∑i−1
j=0 tj ,

∑i
j=0 tj

]

we obtain

ϕAt,ω = αωi

t −
∑i−1

j=1
tj
◦ α

ωi−1

ti−1
◦ · · · ◦ αω1

t1
.

However, Lemma 2.3 implies that
αωi

t −
∑i−1

j=1
tj
◦ α

ωi−1

ti−1
◦ · · · ◦ αω1

t1
=

L
α

ωi

t −

∑i−1
j=1

tj

(α
ωi−1

ti−1
(···(α

ω1
t1

(e))··· )) ◦ ψ
ωi

t −
∑i−1

j=1
tj
◦ ψ

ωi−1

ti−1
◦ · · · ◦ ψω1

t1
.

On the other hand, by Theorem 4 we get

ϕBt,ω = ψωi

t −
∑i−1

j=1
tj
◦ ψ

ωi−1

ti−1
◦ · · · ◦ ψω1

t1
.

Therefore,
ϕAt,ω = αωi

t −
∑i−1

j=1
tj
◦ α

ωi−1

ti−1
◦ · · · ◦ αω1

t1
=

L
α

ωi

t −

∑i−1
j=1

tj

(α
ωi−1

ti−1
(···(α

ω1
t1

(e))··· )) ◦ ψ
ωi

t −
∑i−1

j=1
tj
◦ ψ

ωi−1

ti−1
◦ · · · ◦ ψω1

t1
.

Finally,
ϕAt,ω = LϕA

t,ω(e) ◦ ϕ
B
t,ω

as we wanted to prove. �

Controllability of affine systems

Here we show that affine systems that are locally controllable at the identity are controllable if G is a compact
Lie group or solvable Lie group and the derivations associated with the induced bilinear system are inner and
nilpotent.

For a given affine system ΣA on a Lie group G let us denote by R and R∗ its reachable set from the identity
and its controllable set of the identity, respectively. Consider the bilinear system ΣB associate to ΣA. We will
say that a subset W ⊂ G is ϕB-invariant if ϕBt,ω(W ) =W for any t ∈ R and ω ∈ U , where ϕB is the transition
map of ΣB.

Controllability of affine systems compact Lie groups

For compact Lie groups, the next result shows that affine systems are controllable as soon as they are locally
controllable at the identity.

4.2 Theorem: An affine system ΣA on a compact Lie group G is controllable if and only if it is locally

controllable at the identity.

Proof: Let us fix a bi-invariant metric d on G. By assuming that the system is locally controllable at the
identity, there exists ε > 0 such that W := B(e, ε) ⊂ intR ∩ intR∗. Moreover, for any t ∈ R and ω ∈ U ,
the maps ϕBt,ω are isometries, it holds that W is a ϕB-invariant subset. Let us denote by SW the semigroup
generated by W .

Claim: It holds that SW ⊂ intR∩ intR∗.

Since any element in SW is a finite product of elements in W , it is enough to show that Wn ⊂ intR∩ intR∗ for
any n ∈ N which we will do by induction. Since the case n = 1 holds true, let us assume thatWn ⊂ intR∩intR∗.
For any g ∈ Wn there exists τ1, τ2 ≥ 0 and ω1, ω2 ∈ U such that g = ϕAτ1,ω1

(e) = ϕA−τ2,ω2
(e) and therefore

gW = ϕAτ1,ω1
(e)W = ϕAτ1,ω1

(e)ϕBτ1,ω1
(W ) = ϕAτ1,ω1

(W ) ⊂ ϕAτ1,ω1
(intR) ⊂ intR

9



and
gW = ϕA−τ2,ω2

(e)W = ϕA−τ2,ω2
(e)ϕB−τ2,ω2

(W ) = ϕA−τ2,ω2
(W ) ⊂ ϕA−τ2,ω2

(intR) ⊂ R∗

Since g ∈ Wn was arbitrary we have that Wn+1 ⊂ intR ∩ intR∗ and consequently SW ⊂ intR ∩ intR∗ as
stated.

Since G is compact and intSW 6= ∅ we must have that SW = G and therefore G = R∩R∗ showing that ΣA is
controllable. �

4.3 Remark: Using the same idea of the above proof, one can actually show that controllability on compact
Lie group holds on the slightly weaker assumption that intR admits a compact ϕB-invariant subset.

Controllability of affine systems on solvable Lie groups

In this section, we analyze the controllability of affine systems on solvable Lie groups. In order to do that we
generalize some of the results from [5] (see also [1]).

4.4 Lemma: Let g ∈ R and assume that ϕBt,ω(g) ∈ R for all t ∈ R and ω ∈ U . Then

R · g ⊂ R.

Proof: Let h = ϕAτ,ω(e) ∈ R. By hypothesis we have that ϕB−τ,θτω(g) ∈ R. Hence, by Theorem 4.1 we get

hg = LϕA
τ,ω(e) · g =

(

LϕA
τ,ω(e) ◦ ϕ

B
τ,ω

)

(ϕB−τ,Θτω
(g)) = ϕAτ,ω

(

ϕB−τ,Θτω
(g)

)

∈ ϕAτ,ω(R) ⊂ R

as stated. �

The next result assures that a ϕB-invariant subgroup is contained in R if the the exponential of elements of its
Lie algebra is in R.

4.5 Proposition: Let H be a connected ϕB-invariant Lie subgroup with Lie algebra h. It holds that

exp(X) ∈ R for any X ∈ h =⇒ H ⊂ R.

Proof: From Corollary 3.3, for any X ∈ h and ω ∈ U we know that

ϕBt,ω(exp(X)) = exp
(

e(t −
∑i

j=1
tj)Dωi eti−1Dωi−1 · · · et1Dω1X

)

, for every t ∈ R.

However, since H is ΣB-invariant we have that

ϕBt,ω(exp(X)) ∈ H, for every t ∈ R

and therefore,

e(t −
∑i

j=1
tj)Dωi eti−1Dωi−1 · · · et1Dω1X ∈ h.

By the assumption we obtain

ϕBt,ω(exp(X)) = exp
(

e(t−
∑i

j=1
tj)Dωi eti−1Dωi−1 · · · et1Dω1X

)

∈ R for any t ∈ R, ω ∈ U and X ∈ h.

Moreover, the connectedness of H implies that any x ∈ H can be written as

x = exp(X1) · · · exp(Xn), for X1, . . . , Xn ∈ h

which by Lemma 4.4 implies that

x ∈ R · exp(X1) · exp(X2) · · · exp(Xn) ⊂ · · · ⊂ R · exp(Xn) ⊂ R

concluding the proof. �
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4.6 Proposition: Let N ⊂ H ⊂ G two connected Lie subgroups with Lie subalgebras n ⊂ h ⊂ g, respectively.

Assume that n is an ideal of h and that Dj(h) ⊂ n, for any j = 0, 1, . . . ,m. If the systems is locally controllable

at the identity, then

N ⊂ R =⇒ H ⊂ R.

Proof: For any X ∈ h, t ∈ R and u = (u1, . . . , um) ∈ R
m it holds that

etDuX = X +
∑

n∈N

tn

n!
Dn
u(X), where Du = D0 +

m
∑

j=1

ujD
j .

By the hypothesis on every Dj , j = 0, 1, . . . ,m we get that

∑

n∈N

tn

n!
Dn
u(X) ∈ n =⇒ etDuX ∈ X + n for any t ∈ R, u ∈ R

m.

Inductively, for any τ1, . . . , τn ∈ R, u1, . . . , un ∈ R
m and X ∈ h we obtain

eτnDun eτn−1Dun−1 · · · eτ1Du1X ∈ X + n.

which by Corollary 3.3 implies that

ϕBt,ω(expX) ∈ exp(X + n), for any X ∈ h, for any t ∈ R, ω ∈ U .

However, since N is a normal subgroup of H we have by Lemma 3.1 of [19] that exp(X + n) ⊂ exp(X)N for
any X ∈ h implying that

ϕBt,ω(expX) ∈ exp(X)N, for any X ∈ h, t ∈ R and ω ∈ U . (7)

Let W = exp(U) be a connected neighborhood of e ∈ H. By hypothesis, R is an open neighborhood of the
identity, so W can be chosen such that W ⊂ R ∩H . Since H is a connected subgroup, to finish the proof it is
enough to show that Wn ⊂ R for any n ∈ N. We prove it by induction. For n = 1 the neighborhood W is a
subset of R by construction. Let then g = exp(X) ∈ W and h ∈ Wn−1. By the induction hypothesis we have
that h = ϕAτ,ω(e) for some τ > 0 and ω ∈ U . Moreover, from equation (7) ϕBτ,ω(g) = gl with l ∈ N . Therefore,

hg = LϕA
τ,ω(e)

(

ϕBτ,ω(g)
)

l−1 = ϕAτ,ω(g) l
−1.

Since by construction g = ϕAτ ′,ω′(e) for some τ ′ > 0 and ω′ ∈ U we get that ϕAτ,ω(g) = ϕAτ+τ ′,ω′′(e), where ω′′ ∈ U

is the concatenation of the control ω and ω′. By the ϕB-invariance of N and the fact that N ⊂ R we obtain

ϕB−τ−τ ′,Θτ+τ′ω′′(l−1) ∈ R

which gives us

h · g = LϕA
τ+τ′,ω′′

(e)(l
−1) = LϕA

τ+τ′,ω′′
(e) ◦ ϕ

B
τ+τ ′,ω′′

(

ϕB−τ−τ ′,Θτ+τ′ω′′(l−1)
)

= ϕAτ+τ ′,ω′′

(

ϕB−τ−τ ′,Θτ+τ′ω′′(l−1)
)

∈ ϕAτ+τ ′,ω′′(R) ⊂ R

completing the proof. �

The above result applies directly to solvable Lie groups as follows:

4.7 Corollary: Let G be a solvable Lie group and assume the system is locally controllable at the identity. If

N ⊂ G is the nilradical of G then N ⊂ R implies G = R.

Proof: In fact, if g is a solvable Lie algebra and n its nilradical then D(g) ⊂ n for any derivation D of g. The
result follows from Proposition 4.6 above. �

Now we are able to prove our main result concerning the controllability of affine systems on solvable Lie groups.
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4.8 Theorem: Let ΣA be an affine system on a solvable Lie group G. For j = 0, 1, . . . ,m let us assume that the

g-derivations Dj induced by the associated bilinear system ΣB are inner and nilpotent. Then ΣA is controllable

if and only if it is locally controllable at the identity.

Proof: By the above corollary, it is enough for us to show that N ⊂ R, where N is the nilradical of G. Let

n = n1 ⊃ n2 ⊃ . . . ⊃ nk ⊃ nk+1 = {0},

be the lower central series of n, where for i = 2, . . . , k, we have that ni = [n, ni−1] are ideals of n. Since Dj is
inner and nilpotent we have that Dj = ad(Xj) for Xj ∈ n, j = 0, 1, . . . ,m implying that Dj(ni) ⊂ ni+1 for
i = 1, . . . , n. Therefore, if Ni is the connected Lie group with Lie algebra ni, i = 1, . . . , k, it turns out

N = N1 ⊃ N2 ⊃ . . . ⊃ Nk ⊃ Nk+1 = {e}

is the lower central series on the group level. But, Nk+1 = {e} ⊂ R which by Proposition 4.6 we get Gk ⊂ R.
Again we can apply Proposition 4.6 to get that Gk−1 ⊂ R. By repeating the same k-times, we get that
G = G1 ⊂ R. Since ΣA is analytic we have also that e ∈ intR∗ and we can analogously show that G = R∗

implying that ΣA is controllable. �

In particular, for nilpotent Lie groups we have the following:

4.9 Corollary: Let ΣA be an affine system on a nilpotent Lie group G. For j = 0, 1, . . . ,m let us assume that

the g-derivations Dj induced by the associated bilinear system ΣB are inner. Then ΣA is controllable if and

only if it is locally controllable at the identity.
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[19] M. Wüstner, On the surjectivity of the exponential function on solvable Lie groups, Math. Nachr. 192
(1998), 255-266.

13


	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Control systems
	2.3 Affine and linear vector fields

	3 Bilinear systems on Lie groups
	4 Affine systems on Lie groups
	5 Acknowledgements

