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Abstract

In this paper we investigate the stability in distribution for a class of stochastic
functional differential equations (SFDEs), which include stochastic differential delay
equations (SDDEs). Although stability in distribution has been studied by several
authors recently, there is so far no stability-in-distribution criterion on SFDEs where
the terms involved the delay components are highly nonlinear (not bounded by linear
functions). In this paper we will establish the sufficient criteria on the stability in
distribution for a class of highly nonlinear SFDEs. Two examples will be given to
illustrate our new results. We also explain the reason why the existing stability-in-
distribution criteria are not applicable by these two examples.
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1 Introduction

In the past few decades, theory of stochastic functional differential equations (SFDEs) has
attracted a great deal of attention, see, for example, [1, 2]. In particular, many papers have
been devoted to the study of stability of SFDEs since it has wide applications in automatic
control, mechanical system, and so on, see, for example, [3–5]. However, most of these papers
are concerned with the stability of the trivial solution in the senses of trajectories or the pth
moment. Such stabilities are sometimes too strong in the stochastic environment. It is often
enough to know whether the probability distribution of the solution will converge to some
distribution (but not necessarily to the Dirac delta function). Such stability is known as the
stability in distribution and the limit distribution is known as a stationary distribution.

Basak and Bhattacharya [6] studied the stability in distribution for a class of stochastic
differential equations (SDEs) with singular diffusions, and then Basak et al. [7] also exam-
ined the stationary stability for semi-linear stochastic differential equations. In [8], Basak
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and this coauthors not only extended their method in [7] to investigate the stationary distri-
bution for nonlinear SDEs with Markovian switching but also derived the functional central
limit theorem and the law of iterated logarithm. Later, Yuan et al. [9] and Dang [12] also
investigated the stationary distribution for nonlinear SDEs with Markovian switching un-
der weaker conditions. Along this line, considering the continuous function space, Yuan et
al. [10] and Du et al. [11] discussed stability in distribution for SDEs with constant time
lag by different methods, while Hu et al. [13] discussed the stability of neutral SFDEs by
using the Lyapunov function method. By choosing special Lyapunov function, Bao and his
coauthors established existence and uniqueness of the invariant measure for several classes
of SFDEs under the dissipative condition in [14, 15] and without dissipativity in [16]. For
non-degenerate SFDEs, by an asymptotic coupling method, Hairer et al. [17] showed a class
of SFDEs has at most one invariant measure under certain assumptions that do not ensure
the existence of an invariant measure. Butkovsky [18] and Butkovsky and Scheutzow [19]
developed Hairer’s approach, and gave the sufficient conditions for existence and uniqueness
of an invariant measure for SFDEs. However, to our best knowledge, there is so far no
stability-in-distribution criterion on SFDEs when the coefficients involving the delay compo-
nents are highly nonlinear (not bounded by linear functions). For example, for the following
special SFDE (the stochastic integro-differential equation)

dx(t) =

(
a− bx(t)− cx3(t) +

∫ 0

−τ
x2(t+ θ)µ(dθ)

)
dt+ d

∫ 0

−τ
|x(t+ θ)|

3
2µ(dθ)dB(t), (1.1)

where a, b, c, d are constant, the existing results cannot cover the existence and uniqueness of
stationary distribution since the drift and diffusion coefficients involve the highly nonlinear
delay terms. This paper aims to establish the stationary distribution criterion for this class
of SFDEs.

Let us consider an SFDEs of the form

dx(t) = f(xt)dt+ g(xt)dB(t) (1.2)

on t ≥ 0 with the initial data x0 = ξ ∈ C([−τ, 0];Rn), where xt = xt(θ) , {x(t + θ),−τ ≤
θ ≤ 0}, f : C([−τ, 0];Rn) → Rn and g : C([−τ, 0];Rn) → Rn×m are continuous maps, B(t)
is an m-dimensional Brownian motion. The main aim of this paper is to consider stability
in distribution under the highly nonlinear conditions.

The existing criteria often require the function (namely W2 in Assumption (H3) below,
which is used to restrict the Lyapunov function with respect to the difference between two
solutions starting from different initial data) depends on only the difference φ − ϕ, where
φ, ϕ ∈ C([−τ, 0];Rn). However, in many real applications, such function often rely on φ and
ϕ themselves. Motivated by these observations, we hope to obtain the more general criteria
for stability in distribution such that they can cover more nonlinear SFDEs (including (1.1))
and improve the existing results.

The rest of this paper is organized as follows. Section 2 gives the necessary notations and
definitions. In Section 3, we present five key lemmas which lay good foundation for our main
result in the following, and then we give the proof of stability in distribution. In Section 4,
two examples will be given to illustrate our new results. We also explain reason why the
existing stability-in-distribution criteria are not applicable by these two examples.
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2 Preliminaries

Throughout this paper, unless otherwise specified, we use the following notations. Let
(Ω,F ,P) be a complete probability space with a filtration {Ft}t≥0 satisfying the usual con-
dition, that is, it is right continuous and increasing while F0 contains all P-null sets. Let
B(t) be an m-dimensional Brownian motion defined on this probability space. For τ > 0, let
C , C([−τ, 0];Rn) denote the space of continuous functions from [−τ, 0] to Rn endowed with
the uniform norm ‖ξ‖ , sup−τ≤θ≤0 |ξ(θ)|. If x(t) is an Rn-value stochastic process, define

xt = xt(θ) , {x(t + θ) : −τ ≤ θ ≤ 0} for t ≥ 0. Denote by Rn the n-dimensional Euclidean
space and | · | the Euclidean norm. If a and b are vectors, their inner product is denoted by
a · b. If A is a vector or a matrix, its transpose is denoted by AT . For a matrix A, denote
its trace norm by |A| =

√
trace(ATA). For a set A, Ac represents its complementary set.

Let 1G denote the indicator function of the set G. Let [b] denote the integer part of a real
b. If a, b ∈ R, a ∧ b denotes the minimum of a and b and a ∨ b represents their maximum.
We denote by M the family of all probability measures on [−τ, 0]. Let R+ = [0,∞). Let
C2(Rn;R+) denote the family of nonnegative functions V on Rn which are continuously twice
differentiable, and define an operator LV : C → R by

LV (ϕ) = Vx (ϕ(0)) · f(ϕ) +
1

2
trace(gT (ϕ)Vxx(ϕ(0))g(ϕ)),

where

Vx(x) =

(
∂V (x)

∂x1

, · · · , ∂V (x)

∂xn

)
, Vxx(x) =

(
∂2V (x)

∂xi∂xj

)
n×n

.

Denote by x(t; ξ) the solution of (1.2) with the initial data x0 = ξ ∈ C and by xt(ξ)
the solution mapping (or the segment process). Under appropriate conditions, we can prove
that the solution mapping xt(ξ) of (1.2) is a time homogeneous Markov process, see [21].
Let p(t, ξ, ·) denote the transition probability function of process xt(ξ). Now, we introduce
the concept of stability in distribution for convenience.

Definition 2.1. The solution mapping process xt is said to be stable in distribution if there
exists a probability measure π(·) on C such that the transition probability function p(t, ξ, ·) of
xt(ξ) converges weakly to π(·) as t→∞ for any ξ ∈ C.

Since the natural projection function is continuous, by the Mapping Theorem (see [22]), if
the solution mapping process xt of (1.2) is stable in distribution, the solution process x(t, ξ)
is also stable in distribution. It is also clear that the stability in distribution of xt implies
the existence of a unique invariant probability measure for xt.

3 Stability in distribution

In this section, we present the sufficient conditions for the existence and uniqueness of
the global solution of (1.2), and then give several key lemmas and prove the stability in
distribution of (1.2). To examine the existence and uniqueness of the solution, we need the
following assumptions.
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(H1) For any k > 0, there exists a constant bk > 0 such that for those φ, ϕ ∈ C with
‖φ‖ ∨ ‖ϕ‖ ≤ k

2〈f(φ)− f(ϕ), φ(0)− ϕ(0)〉+ |g(φ)− g(ϕ)|2 ≤ bk‖φ− ϕ‖2,

where 〈·, ·〉 denotes the standard inner product on Rn.

(H2) There are nonnegative numbers λ1, λ2 with λ1 > λ2, L1, L2, a probability measure
µ1 ∈M and functions V ∈ C2(Rn, R+), W1 ∈ C(Rn, R+) such that

lim
|x|→∞

V (x) =∞, V (x) ≤ L1(1 +W1(x))

for any x ∈ Rn, and

LV (φ) 6 L2 − λ1W1 (φ (0)) + λ2

∫ 0

−τ
W1 (φ (θ))µ1 (dθ) (3.1)

for all φ ∈ C.

(H3) Let f and g be bounded on bounded subsets of C.

Remark 1. Note that (H2) is actually a Lyapunov-type condition. When we choose
W1(x) = V (x), condition (3.1) is the classical Lyapunov-type condition (see [24] Theorem
A.1)

Lemma 3.1. Let Assumptions (H1) and (H2) hold. Then, for any initial data ξ ∈ C, there
exists a unique global solution x(t, ξ) to (1.2). Moreover, for any compact set K ⊆ C, T ≥ 0,
ε > 0, there exists a positive constant H = H(K,T, ε) such that for any t ≥ 0

P{‖xs(ξ)‖ ≤ H,∀ s ∈ [t, t+ T ]} ≥ 1− ε, ∀ ξ ∈ K. (3.2)

Proof. We will divide the proof into two steps.
Step 1: Existence and uniqueness of the global solution. It follows from Theorem 2.2

in [23] that under assumption (H1) (1.2) has a unique maximal local strong solution. To
show this solution is global, we only need to prove that ρe =∞ a.s., where ρe is the explosion
time. Define a stopping time ρk = inf{t ∈ [0, ρe) : |x(t, ξ)| > k} with the traditional setting
inf ∅ = ∞, where ∅ denotes the empty set. Clearly, ρk is increasing as k → ∞ and
ρk → ρ∞ ≤ ρe a.s.. If we can show ρ∞ = ∞ a.s., then ρe = ∞ a.s., which implies that
x(t, ξ) is actually global. This is equivalent to proving that for any t > 0, P{ρk ≤ t} → 0
as k →∞. Let λ be a positive number to be determined later. Applying the Itô formula to
eλtV (x) yields

Eeλ(t∧ρk)V (x(t ∧ ρk, ξ)) = V (ξ(0)) + E
∫ t∧ρk

0

eλs(λV (x(s, ξ)) + LV (xs(ξ)))ds.
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By (H2), we obtain

Eeλ(t∧ρk)V (x(t ∧ ρk, ξ)) ≤V (ξ(0)) + (λL1 + L2)E
∫ t∧ρk

0

eλsds

+ (λL1 − λ1)E
∫ t∧ρk

0

eλsW1(x(s, ξ))ds

+ λ2E
∫ t∧ρk

0

∫ 0

−τ
eλsW1(x(s+ θ, ξ))µ1(dθ)ds. (3.3)

Note that W1 is nonnegative. Applying the Tonelli theorem and a substitution technique
gives∫ t∧ρk

0

∫ 0

−τ
eλsW1(x(s+ θ, ξ))µ1(dθ)ds

=

∫ 0

−τ

∫ t∧ρk

0

eλsW1(x(s+ θ, ξ))dsµ1(dθ)

=

∫ 0

−τ

∫ t∧ρk+θ

θ

eλ(s−θ)W1(x(s, ξ))dsµ1(dθ)

≤
∫ 0

−τ

∫ t∧ρk

−τ
eλ(s−θ)W1(x(s, ξ))dsµ1(dθ)

≤
∫ 0

−τ

∫ 0

−τ
eλ(s−θ)W1(x(s, ξ))dsµ1(dθ) +

∫ 0

−τ

∫ t∧ρk

0

eλ(s−θ)W1(x(s, ξ))dsµ1(dθ)

≤
∫ 0

−τ
e−λθµ1(dθ)

∫ 0

−τ
eλsW1(x(s, ξ))ds+

∫ 0

−τ
e−λθµ1(dθ)

∫ t∧ρk

0

eλsW1(x(s, ξ))

≤ eλτ
∫ 0

−τ
W1(ξ(s))ds+ eλτ

∫ t∧ρk

0

eλsW1(x(s, ξ))ds. (3.4)

Substituting (3.4) into (3.3) yields

Eeλ(t∧ρk)V (x(t ∧ ρk, ξ)) ≤V (ξ(0)) +
λL1 + L2

λ
eλt + λ2e

λτ

∫ 0

−τ
W1(ξ(s))ds

− (λ1 − λL1 − λ2e
λτ )E

∫ t∧ρk

0

eλsW1(x(s, ξ))ds. (3.5)

Let us define h(λ) = λ1 − λL1 − λ2e
λτ , which is continuous on λ with h(0) = λ1 − λ2 > 0

since λ1 > λ2. We therefore can find some λ∗ > 0 such that λ1 − λ∗L1 − λ2e
λ∗τ > 0, which

implies that

Eeλ∗(t∧ρk)V (x(t ∧ ρk, ξ)) ≤ V (ξ(0)) +
λ∗L1 + L2

λ
eλ

∗t + λ2e
λ∗τ

∫ 0

−τ
W1(ξ(s))ds.
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Define hk = inf {V (x) : |x| ≥ k}. Clearly, hk is increasing as k →∞ and hk →∞.

hkP{ρk ≤ t} ≤ EV (x(ρk, ξ))1{ρk≤t}

≤ Eeλ∗(t∧ρk)V (x(t ∧ ρk, ξ))1{ρk≤t}
≤ Eeλ∗(t∧ρk)V (x(t ∧ ρk, ξ))

≤ V (ξ(0)) +
λ∗L1 + L2

λ∗
eλ

∗t + λ2e
λ∗τ

∫ 0

−τ
W1(ξ(s))ds,

which implies P{ρk ≤ t} → 0 as k → ∞. Hence, the existence and uniqueness of a global
solution is proved.

Step 2: Proof of (3.2). Letting k →∞, we obtain from (3.5) that

Eeλ∗tV (x(t, ξ)) ≤V (ξ(0)) +
λ∗L1 + L2

λ∗
eλ

∗t + λ2e
λ∗τ

∫ 0

−τ
W1(ξ(s))ds

− (λ1 − λ∗L1 − λ2e
λ∗τ )E

∫ t

0

eλ
∗sW1(x(s, ξ))ds. (3.6)

Since λ1 − λ∗L1 − λ2e
λ∗τ > 0, we have

EV (x(t, ξ)) ≤ λ∗L1 + L2

λ∗
+ e−λ

∗t

(
V (ξ(0)) + λ2e

λ∗τ

∫ 0

−τ
W1(ξ(s))ds

)
,

and

E
∫ t

0

eλ
∗sW1(x(s, ξ))ds ≤ C

(
V (ξ(0)) +

λ∗L1 + L2

λ∗
eλ

∗t + λ2e
λ∗τ

∫ 0

−τ
W1(ξ(s))ds

)
.

where C = 1/(λ1 − λ∗L1 − λ2e
λ∗τ ). Moreover, putting

M = sup
ξ∈K

{
λ∗L1 + L2

λ∗
+ e−λ

∗t(V (ξ(0)) + λ2e
λ∗τ

∫ 0

−τ
W1(ξ(s))ds)

}
,

we have
sup
ξ∈K

EV (x(t, ξ)) ≤M (3.7)

and

sup
ξ∈K

E
∫ t

0

eλ
∗sW1(x(s, ξ))ds ≤ Ceλ

∗tM, (3.8)

For any ξ ∈ K, t ≥ 0 and k > 0, define a stopping time

σtk = inf{s ≥ t : |x(s, ξ)| > k}.
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Similar to (3.5), recalling that λ1 − λ∗L1 − λ2e
λ∗τ > 0, we have

Eeλ∗((t+T )∧σtk)V (x((t+ T ) ∧ σtk, ξ))

≤Eeλ∗tV (x(t, ξ)) +
λ∗L1 + L2

λ∗
eλ

∗(t+T ) +

∫ (t+T )∧σtk

t

(λ∗L1 − λ1)eλ
∗sW1(x(s, ξ))ds

+ λ2E
∫ (t+T )∧σtk

t

∫ 0

−τ
eλ

∗sW1(x(s+ θ, ξ))µ1(dθ)ds

≤Eeλ∗tV (x(t, ξ)) +
λ∗L1 + L2

λ∗
eλ

∗(t+T ) + eλ
∗τ

∫ 0

−τ
W1(x(s, ξ))ds

+ eλ
∗τ

∫ t

0

eλ
∗sW1(x(s, ξ))ds− (λ1 − λ∗L1 − λ2e

λ∗τ )

∫ (t+T )∧σtk

t

eλ
∗sW1(x(s, ξ))ds

≤Eeλ∗tV (x(t, ξ)) +
λ∗L1 + L2

λ∗
eλ

∗(t+T ) + λ2e
λ∗τ

∫ 0

−τ
W1(ξ(s))ds

+ λ2e
λ∗τE

∫ t

0

eλ
∗sW1(x(s, ξ))ds.

It follows from (3.7) and (3.8) that

Eeλ∗((t+T )∧σtk−t)V (x((t+ T ) ∧ σtk, ξ))

≤EV (x(t, ξ)) +
λ∗L1 + L2

λ∗
eλ

∗T + λ2e
λ∗(τ−t)

∫ 0

−τ
W1(ξ(s))ds

+ λ2e
λ∗(τ−t)E

∫ t

0

eλ
∗sW1(x(s, ξ))ds

≤(1 + Cλ2e
λ∗τ )M +

λ∗L1 + L2

λ∗
eλ

∗T + λ2e
λ∗τ

∫ 0

−τ
W1(ξ(s))ds. (3.9)

Recall that lim
|x|→∞

V (x) =∞. We can therefore define Ĥ = Ĥ(K,T, ε) such that

inf
|y|≥Ĥ

V (y) >
1

ε

(
(1 + Cλ2e

λ∗τ )M +
λ∗L1 + L2

λ∗
eλ

∗T + λ2e
λ∗τ

∫ 0

−τ
W1(ξ(s))ds

)
. (3.10)

Employing (3.9) and (3.10) yields(
inf
|y|≥Ĥ

V (y)

)
P{σt

Ĥ
< t+ T} ≤ EV (x(σt

Ĥ
, ξ))1{σt

Ĥ
<t+T}

≤ Eeλ
∗((t+T )∧σt

Ĥ
−t)V (x((t+ T ) ∧ σt

Ĥ
, ξ))1{σt

Ĥ
<t+T}

≤ (1 + Cλ2e
λ∗τ )M +

λ∗L1 + L2

λ∗
eλ

∗T + λ2e
λ∗τ

∫ 0

−τ
W1(ξ(s))ds.

This implies that P{σt
Ĥ
< t+ T} < ε, which shows

P{|x(s, ξ)| ≤ Ĥ, ∀ s ∈ [t, t+ T ]} ≥ 1− ε,
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for any t ≥ 0. By the Arzelá-Ascoli theorem, there exists a constant H̃ > 0 such that
‖ξ‖ ≤ H̃ for all ξ ∈ K. Letting H = Ĥ ∨ H̃, we have

P{|x(s, ξ)| ≤ H,∀ s ∈ [t, t+ T ]} ≥ 1− ε, (3.11)

for any t ≥ −τ . Recalling the definition of ‖ · ‖, for any t ≥ 0 we have

P{‖xs(ξ)‖ ≤ H,∀ s ∈ [t, t+ T ]} = P{ sup
−τ≤θ≤0

|x(s+ θ, ξ)| ≤ H,∀ s ∈ [t, t+ t]}

= P{|x(s, ξ)| ≤ H,∀ s ∈ [t− τ, t+ T ]},

which implies (3.2) combining with (3.11). This proof is completed.

Remark 2. This theorem shows that for any ξ ∈ C, T ≥ 0, ε > 0, there is a constant
H = H(ξ, T, ε) such that for any t ≥ 0

P{‖xs(ξ)‖ ≤ H, ∀ s ∈ [t, t+ T ]} ≥ 1− ε.

Remark 3. In [10], the linear growth condition is needed, but it can be removed in this
paper.

Remark 4. In [11], to prove Lemma 3.1 for the case of Markovian switching SDEs with
constant time lag, the following assumption is imposed:

c1W1(x) ≤ V (x) ≤ W1(x)

for all x ∈ Rn and some c1 > 0. This condition is replaced by V (x) ≤ L1(1 +W1(x)) for all
x ∈ Rn and some L1 > 0 in this paper, which does not only weakens the condition for W1

but also makes (3.1) to be satisfied more easily.

Lemma 3.2. Let Assumptions (H1), (H2) and (H3) hold. Then for any ξ ∈ C, the family
{p(t, ξ, ·) : t ≥ 0} is tight, where p(t, ξ, ·) is the transition probability of xt(ξ).

Proof. Fix ξ ∈ C arbitrarily. We firstly show that for any ε1, ε2 > 0, there exists δ0 =
δ0(ε1, ε2) such that

P{ sup
t2−t1≤δ0,t−τ≤t1≤t2≤t

|x(t2, ξ)− x(t1, ξ)| ≥ ε1} ≤ ε2, (3.12)

for any t ≥ 0. It follows from Lemma 3.1 that there exists H1 = H1(ξ, τ, ε2) such that for
any t ≥ 0

P{ sup
t≤s≤t+τ

‖xs(ξ)‖ ≤ H1} ≥ 1− ε2

2
. (3.13)

For each s ≥ 0, define a stopping time τs = inf{u ≥ s : ‖xu(ξ)‖ > H1}. Let 0 < δ ≤ τ . By
(H3), for any k > 0 there exists a constant ck > 0 such that

|f(φ)| ∨ |g(φ)| ≤ ck
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for all φ ∈ C with ‖φ‖ ≤ k. Making using of this property, by the Burkholder-Davis-Gundy
inequality and the basic inequality (|x|+ |y|)4 ≤ 8(|x|4 + |y|4), we derive that for any t1 ≥ 0

E( sup
t2∈[t1,t1+δ]

|x(t2 ∧ τt1 , ξ)− x(t1, ξ)|4)

≤ 8E sup
t2∈[t1,t1+δ]

|
∫ t2∧τt1

t1

f(xs(ξ))ds|4 + 8E sup
t2∈[t1,t1+δ]

|
∫ t2∧τt1

t1

g(xs(ξ))dw(s)|4

≤ 8E
(∫ t1+δ

t1

1{τt1≥s}|f(xs(ξ))|ds
)4

+ 8BPE
(∫ t1+δ

t1

1{τt1≥s}|g(xs(ξ))|2ds
)2

≤ 8c4
kδ

4 + 8Bpc
2
kδ

2

≤ (8c4
kτ

2 + 8Bpc
2
k)δ

2

= ĆH1δ
2, (3.14)

where ĆH1 = 8c4
kτ

2 +8Bpc
2
k and Bp is the coefficient of the Burkholder-Davis-Gundy inequal-

ity. We can further derive that for any t ≥ 0,

P

{
τt ≥ t+ τ, sup

t2∈[t1,(t1+δ)∧(t+τ)],t≤t1≤t+τ
|x(t2, ξ)− x(t1, ξ)| ≥ ε1

}

≤ P

{
τt ≥ t+ τ, 3 max

0≤k≤[ τ
δ

]
sup

s∈[t+kδ,(t+(k+1)δ)∧(t+τ)]

|x(s, ξ)− x(t+ kδ, ξ)| ≥ ε1

}

= P

{
τt ≥ t+ τ, max

0≤k≤[ τ
δ

]
sup

s∈[t+kδ,(t+(k+1)δ)∧(t+τ)]

|x(s, ξ)− x(t+ kδ, ξ)| ≥ ε1

3

}

≤
[ τ
δ

]∑
k=0

P

{
τt ≥ t+ τ, sup

s∈[t+kδ,(t+(k+1)δ)∧(t+τ)]

|x(s, ξ)− x(t+ kδ, ξ)| ≥ ε1

3

}

≤
[ τ
δ

]∑
k=0

P

{
τt+kδ ≥ t+ τ, sup

s∈[t+kδ,(t+(k+1)δ)∧(t+τ)]

|x(s, ξ)− x(t+ kδ, ξ)| ≥ ε1

3

}

≤
([τ
δ

]
+ 1
)81ĆH1

ε4
1

δ2, (3.15)

where in the last inequality we use the Chebyshev inequality and (3.14).
Letting δ = [ε4

1ε2/(162ĆH1(τ + 1))]∧ 1∧ τ , it follows from (3.15) and the definition of the
stopping time τt that for any t ≥ 0,

P

{
sup

t2∈[t1,(t1+δ)∧(t+τ)],t≤t1≤t+τ
|x(t2, ξ)− x(t1, ξ)| ≥ ε1

}

≤ P{τt < t+ τ}+ P

{
τt ≥ t+ τ, sup

t2∈[t1,(t1+δ)∧(t+τ)],t≤t1≤t+τ
|x(t2, ξ)− x(t1, ξ)| ≥ ε1

}
≤ ε2

2
+
ε2

2
≤ ε2. (3.16)
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Since ξ ∈ C, there exists a constant δ̃ > 0 such that

sup
t2−t1≤δ̃,−τ≤t1≤t2≤0

|x(t2, ξ)− x(t1, ξ)| = sup
t2−t1≤δ̃,−τ≤t1≤t2≤0

|ξ(t2)− ξ(t1)| < ε1. (3.17)

Letting δ0 = δ ∧ δ̃, (3.12) follows from (3.16) and (3.17).
Moreover, it follows from Lemma 3.1 that for any positive ε > 0, there exists H0 > 0 such

that
P {|x(t, ξ)| ≥ H0} ≤ ε, ∀ t ≥ 0. (3.18)

By (3.12) and (3.18), it follows from the Theorem 7.3 in [22] that the family {p(t, ξ, ·), t ≥ 0}
is tight. The proof is completed.

In what follows we need to consider the difference between two solutions of (1.2) starting
from different initial data, namely

x(t, ξ)− x(t, η) = ξ(0)− η(0) +

∫ t

0

f(xs(ξ))− f(xs(η))ds+

∫ t

0

g(xs(ξ))− g(xs(η))dB(s).

For a given function U ∈ C2(Rn,R+), we define an operator

LU(φ, ψ) = Ux(φ(0)−ψ(0))·[f(φ)−f(ψ)]+
1

2
trace

{
[g(φ)− g(ψ)]TUxx(φ(0)− ψ(0))[g(φ)− g(ψ)]

}
.

For the future use, we shall impose another hypothesis:

(H4) There exists a nonnegative constant λ4, a probability measure µ2 ∈M and functions
U ∈ C2(Rn,R+), W2, λ3 ∈ C(Rn × Rn,R+) such that U(·) vanishes only at 0, W2(x, y)
vanishes only when x = y (x, y ∈ Rn), λ3(x, y) > λ4 provided x 6= y and

LU(φ, ψ) 6 −λ3(φ(0), ψ(0))W2 (φ(0), ψ(0)) + λ4

∫ 0

−τ
W2 (φ(θ), ψ(θ))µ2(dθ) (3.19)

for any φ, ψ ∈ C.

Lemma 3.3. Let Assumptions (H1), (H2),(H3) and (H4) hold. Then for any ε > 0 and
compact set K ⊆ C, there exists T = T (K, ε) such that for all t > T ,

P {‖xt(ξ)− xt(η)‖ < ε} ≥ 1− ε, ∀ ξ, η ∈ K.

Proof. We divide the proof into two steps.
Step 1. We will firstly show that for any h > σ/2 > 0,

lim
t→+∞

P{Aσ,ht } = 0 uniformly in ξ, η ∈ K,

where Aσ,ht = {ω : ‖xt(ξ)‖ ∨ ‖xt(η)‖ ≤ h, |x(t, ξ)− x(t, η)| ≥ σ} . To simplify the notation,
denote

Cσ,h = min {W2(x, y) : |x| ∨ |y| ≤ h, |x− y| ≥ σ, x, y ∈ Rn}
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and
λσ,h3 = min{λ3(x, y) : |x| ∨ |y| ≤ h, |x− y| ≥ σ, x, y ∈ Rn}.

Since W2(x, y) > 0 and λ3(x, y) > λ4 for any x 6= y, Cσ,h > 0 and λσ,h3 > λ4. Then we have
the estimate

EU(x(t, ξ)− x(t, η))

=U(ξ(0)− η(0)) + E
∫ t

0

LU(xs(ξ), xs(η))ds

≤U(ξ(0)− η(0))− E
∫ t

0

λ3(x(s, ξ), x(s, η))W2(x(s, ξ), x(s, η))ds

+ λ4E
∫ t

0

∫ 0

−τ
W2(x(s+ θ, ξ), x(s+ θ, η))µ2(dθ)ds

≤U(ξ(0)− η(0)) + λ4

∫ 0

−τ
W2(ξ(s), η(s))ds

− E
∫ t

0

(λ3(x(s, ξ), x(s, η))− λ4)W2(x(s, ξ), x(s, η))ds

=U(ξ(0)− η(0)) + λ4

∫ 0

−τ
W2(ξ(s), η(s))ds

− E
∫ t

0

1{x(s,ξ) 6=x(s,η)}(λ3(x(s, ξ), x(s, η))− λ4)W2(x(s, ξ), x(s, η))ds

≤U(ξ(0)− η(0)) + λ4

∫ 0

−τ
W2(ξ(s), η(s))ds

− (λσ,h3 − λ4)E
∫ t

0

1{Aσ,hs }W2(x(s, ξ), x(s, η))ds, (3.20)

where in the last equality we use the fact thatW2(x, x) = 0, ∀ x ∈ Rn. Noting that λσ,h3 > λ4,
letting t→ +∞, we obtain∫ +∞

0

E1{Aσ,hs }W2(x(s, ξ), x(s, η))ds ≤ 1

λσ,h3 − λ4

(
U(ξ(0)− η(0)) + λ4

∫ 0

−τ
W2(ξ(s), η(s))ds

)
< +∞.

Consequently we can derive that for any h > σ/2 > 0∫ +∞

0

P{Aσ,hs }ds =

∫ +∞

0

E1{Aσ,hs }ds

≤ 1

Cσ,h

∫ +∞

0

E1{Aσ,hs }W2(x(s, ξ), x(s, η))ds

< +∞. (3.21)

We claim that limt→+∞ P{Aσ,ht } = 0 for any h > σ/2 > 0. If not, there exist some h0 >
σ0/2 > 0 such that lim supt→+∞ P{Aσ0,h0t } > 0. Thus there exist a constant l > 0 and an

11



increasing sequence tn(n = 1, 2, · · · ), tn ↑ ∞ such that

P{Aσ0,h0tn } = P {‖xtn(ξ)‖ ∨ ‖xtn(η)‖ ≤ h0, |x(tn, ξ)− x(tn, η)| ≥ σ0} ≥ l, ∀ n ∈ N. (3.22)

Applying (3.12) for ε1 = σ0/3, ε2 = l/8, there is small enough δ0 > 0 such that for ζ =
ξ, η ∈ C

P
{

sup
tn≤s≤tn+δ0

|x(s, ζ)− x(tn, ζ)| ≥ σ0

3

}
≤ l

8
, ∀ n ∈ N. (3.23)

It follows from (3.22) and (3.23) that for tn ≤ s ≤ tn + δ0

P
{
|x(s, ξ)− x(s, η)| ≥ σ0

3

}
≥P {|x(tn, ξ)− x(tn, η)| ≥ σ0} − P

{
sup

tn≤s≤tn+δ0

|x(s, ξ)− x(tn, ξ)| ≥
σ0

3

}
− P

{
sup

tn≤s≤tn+δ0

|x(s, η)− x(tn, η)| ≥ σ0

3

}
≥l − l

8
− l

8
=

3

4
l.

In view of Lemma 3.1, we can find H2 = H2(K, l) ≥ h0 satisfying

P {‖xt(ξ)‖ ≤ H2} ≥ 1− l

4
, ∀ ξ ∈ K, t ≥ 0.

We deduce that for tn ≤ s ≤ tn + δ0,

P
{
‖xs(ξ)‖ ∨ ‖xs(η)‖ ≤ H2 : |x(s, ξ)− x(s, η)| ≥ σ0

3

}
≥ P

{
|x(s, ξ)− x(s, η)| ≥ σ0

3

}
− P {‖xs(ξ)‖ ∨ ‖xs(η)‖ ≤ H2}c

≥ 3

4
l − 2

l

4
=
l

4
.

It means that
∫ tn+δ0
tn

P{A
σ0
3
,H2

s }ds ≥ lδ0/4,∀ n ∈ N. Consequently,∫ +∞

0

P{A
σ0
3
,H2

s }ds = +∞,

which contradicts (3.21) since the inequality (3.21) also holds for H2, σ0/3. We therefore
conclude that

lim
t→+∞

P{Aσ,ht } = 0. (3.24)

Next, we will prove the uniformity of the limit above for ξ, η ∈ K, that is , for any ε > 0, h >
σ/2 > 0, there exists T σ,hε = T σ,hε (K) > 0 such that for all t > T σ,hε we have

P {‖xt(ξ)‖ ∨ ‖xt(η)‖ ≤ h, |x(t, ξ)− x(t, η)| ≥ σ} < ε, ∀ ξ, η ∈ K.

In view of Lemma 3.1, we can find a constant H3 = H3(K, ε) ≥ h such that

P {‖xt(ξ)‖ > H3} <
ε

6
, ∀ ξ ∈ K, t > 0.
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Put mσ,H3 = min {U(x− y) : |x| ∨ |y| ≤ H3, |x− y| ≥ σ}. Noting that U(0) = 0,W2(x, y) =
0 at x = y ∈ Rn and U , W2 are continuous, for any ε > 0 we therefore can choose δ1 > 0
such that for any ξ, η ∈ K

U(ξ(0)− η(0)) + λ4

∫ 0

−τ
W2(ξ(s), η(s))ds <

ε

6
mσ,H3 (3.25)

provided that ‖ξ − η‖ ≤ δ1. In fact, if ξ, η ∈ K, there exists a constant r > 0 such that
ξ(s) ∈ Bn

0 (r) and (ξ(s), η(s)) ∈ B2n
0 (
√

2r) for any s ∈ [−τ, 0], where Bn
0 (r) stands for an

n-dimensional ball with radius r centered at the origin in Rn. Additionally, note that for
any s ∈ [−τ, 0], |ξ(0)− η(0)| ≤ ‖ξ − η‖ and |(ξ(s), η(s))− (ξ(s), ξ(s))| ≤ ‖ξ(s)− η(s)‖ and
U(0) = 0, W2(ξ(s), ξ(s)) = 0. Hence, for any ε > 0, we can find a sufficiently small δ1 > 0
such that (3.25) holds provided ‖ξ − η‖ ≤ δ1 with ξ, η ∈ K. If ‖ξ − η‖ ≤ δ1 with ξ, η ∈ K,
it follows from (3.20) and (3.25) that for any t ≥ 0,

P {‖xt(ξ)‖ ∨ ‖xt(η)‖ ≤ H3, |x(t, ξ)− x(t, η)| ≥ σ}
≤ P {|x(t, ξ)| ∨ |x(t, η)| ≤ H3, |x(t, ξ)− x(t, η)| ≥ σ}

≤ 1

mσ,H3
EU(x(t, ξ)− x(t, η)) ≤ ε

6
.

By the compactness of K, there exist ξ1, ξ2, · · · , ξn ∈ K such that for any ξ ∈ K, we can
find ξk, k = {1, 2, · · · , n} such that ‖ξ − ξk‖ ≤ δ1. By (3.24), there exists T σ,H3

ε > 0 such
that for all 1 ≤ u, v ≤ n,

P
{
‖xt(ξu)‖ ∨ ‖xt(ξv)‖ ≤ H3, |x(t, ξu)− x(t, ξv)| ≥

σ

3

}
≤ ε

6
, ∀ t ≥ T σ,H3

ε .

For any ξ, η ∈ K, we can find ξu, ξv such that ‖ξ − ξu‖ ≤ δ1, ‖η − ξv‖ ≤ δ1, as a result, for
all t ≥ T σ,H3

ε ,

P {‖xt(ξ)‖ ∨ ‖xt(η)‖ ≤ h, |x(t, ξ)− x(t, η)| ≥ σ}
≤P {‖xt(ξ)‖ ∨ ‖xt(η)‖ ≤ H3, |x(t, ξ)− x(t, η)| ≥ σ}

≤P
{
‖xt(ξ)‖ ∨ ‖xt(ξu)‖ ≤ H3, |x(t, ξ)− x(t, ξu)| ≥

σ

3

}
+ P

{
‖xt(ξu)‖ ∨ ‖xt(ξv)‖ ≤ H3, |x(t, ξu)− x(t, ξv)| ≥

σ

3

}
+ P

{
‖xt(ξv)‖ ∨ ‖xt(η)‖ ≤ H3, |x(t, ξv)− x(t, η)| ≥ σ

3

}
+ P {‖xt(ξu)‖ > H3}+ P {‖xt(ξv)‖ > H3} < ε

as desired.
Step 2. Letting ε > 0 arbitrarily, by virtue of Lemma 3.1, there exists H4 = H4(K, τ, ε)

such that
P {‖xs(ξ)‖ ≤ H4, s ∈ [t, t+ τ ]} ≥ 1− ε

16
, ∀ ξ ∈ K, t ≥ 0. (3.26)

Defining a stopping time τt = inf {s ≥ t : ‖xs(ξ)‖ ∨ ‖xs(η)‖ > H4}, it follows from (3.26)
that

P {τt ≥ t+ τ} = P {‖xs(ξ)‖ ∨ ‖xs(η)‖ ≤ H4, s ∈ [t, t+ τ ]} ≥ 1− ε

8
.
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Using the similar argument as (3.14) and the Chebyshev inequality, for any 0 < δ < τ and
t ≤ s1 ≤ t+ τ , we have

P

{
τt ≥ t+ τ, sup

s2∈[s1,(s1+δ)∧(t+τ)]

|x(s2, ξ)− x(s1, ξ)| ≥
ε

3

}

≤ P

{
τs1 ≥ t+ τ, sup

s2∈[s1,(s1+δ)∧(t+τ)]

|x(s2 ∧ τs1 , ξ)− x(s1, ξ)| ≥
ε

3

}
≤ 81

ε4
E sup
s2∈[s1,(s1+δ)∧(t+τ)]

|x(s2 ∧ τs1 , ξ)− x(s1, ξ)|4

≤ 81Ć

ε4
δ2, (3.27)

where Ć is a constant depending on K,H4, ε.
Let m ∈ N such that 81Ćδ/ε4 ≤ ε/8τ, δ = τ/m. In view of (3.27), for k = 0, 1, · · · ,m−1,

we have

P

{
{τt ≥ t+ τ}

⋂{
sup

s∈[t+kδ,t+(k+1)δ]

|x(s, ξ)− x(t+ kδ, ξ)| ≥ ε

3

}}
≤ ε

8τ
δ.

As a result,

P
{
{τt ≥ t+ τ}

⋂
Cξ
t

}
≤ ε

8τ
δm =

ε

8
,

where

Cξ
t =

{
∃ k ∈ {0, 1, 2, · · · ,m− 1} : sup

s∈[t+kδ,t+(k+1)δ]

|x(s, ξ)− x(t+ kδ, ξ)| ≥ ε

3

}
.

Hence
P
{
{τt ≥ t+ τ}\Cξ

t

}
≥ 1− ε

8
− ε

8
= 1− ε

4
. (3.28)

Similarly, we have

P {{τt ≥ t+ τ}\Cη
t } ≥ 1− ε

4
. (3.29)

Owing to the uniform convergence shown in step 1, we can find T1 = T1(K, ε) such that for
any ξ, η ∈ K, t > T1,

m−1∑
k=0

P
{
‖xt+kδ(ξ)‖ ∨ ‖xt+kδ(η)‖ ≤ H4 : |x(t+ kδ, ξ)− x(t+ kδ, η)| ≥ ε

3

}
≤ ε

4
,

which implies that P{Dt} ≤ ε/4, where

Dt =
{
∃ k ∈ {0, 1, · · · ,m− 1} : ‖xt+kδ(ξ)‖ ∨ ‖xt+kδ(η)‖ ≤ H4, |x(t+ kδ, ξ)− x(t+ kδ, η)| ≥ ε

3

}
.

Thus, for t > T1,

P {{τt ≥ t+ τ}\Dt} ≥ 1− ε

8
− ε

4
= 1− 3

8
ε. (3.30)
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Note that if the three events {τt ≥ t + τ}\Dt, {τt ≥ t + τ}\Cξ
t , {τt ≥ t + τ}\Cη

t occur
simultaneously, the event {τt ≥ t + τ, supt≤s≤t+τ |x(s, ξ) − x(s, η)| < ε} will occur. This
statement, combining with (3.28)-(3.30) implies that for any ξ, η ∈ K and t > T1,

P{τt ≥ t+ τ, sup
t≤s≤t+τ

|x(s, ξ)− x(s, η)| < ε} ≥ 1− 7ε

8
. (3.31)

According to the definition of the norm ‖ · ‖, we have

P {‖xt+τ (ξ)− xt+τ (η)‖ < ε}

= P
{

sup
−τ<θ≤0

|x(t+ τ + θ, ξ)− x(t+ τ + θ, η)| < ε

}
≥ P

{
τt ≥ t+ τ, sup

t≤s≤t+τ
|x(s, ξ)− x(s, η)| < ε

}
. (3.32)

Therefore, it follows from (3.31) and (3.32) that for all t > T1

P {‖xt+τ (ξ)− xt+τ (η)‖ < ε} ≥ 1− ε, ∀ ξ, η ∈ K.

The proof is completed.

Remark 5. Similarly, we can prove that for any ξ, η ∈ C, ε > 0, there exists T = T (ξ, η, ε)
such that for all t > T ,

P {‖xt(ξ)− xt(η)‖ < ε} ≥ 1− ε.

Remark 6. In [11], to establish Lemma 3.3 for Markovian switching SDEs with the constant
time lag, the following assumption is imposed: there exists a nonnegative number λ4 and
functions U ∈ C2(Rn × S;R+), W2 ∈ C(Rn,R+), λ3 ∈ C(R4n,R+) such that U(·, i), W2

vanish only at 0 for all i ∈ S, λ3(x, y, z1, z2) > λ4 provided x 6= y and

LU(x, y, z1, z2, i) ≤ −λ3(x, y, z1, z2)W2(x− y) + λ4W2(z1 − z2),

where S is a finite state space of a Markov chain. We replace the previous assumption by
(H4) in this paper. The two terms on the right hand side of (H4) depend not only on
φ − ψ but also on φ, ψ themselves, where φ, ψ ∈ C. And clearly (H4) is weaker than the
assumption above.

Let P(C) denote the family of all probability measures on C. For P1, P2 ∈ P(C), define
the metric dL by

dL(P1, P2) = sup
f∈L

∣∣∣∣∫
C
f(ξ)P1(dξ)−

∫
C
f(ξ)P2(dξ)

∣∣∣∣ ,
where

L = {f : C → R : |f(ξ)− f(η)| ≤ ‖ξ − η‖ and |f(·)| ≤ 1 for any ξ, η ∈ C}.
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Lemma 3.4. Let Assumptions (H1), (H2), (H3) and (H4) hold. Then for any ξ, η ∈ C

lim
t→∞

dL(p(t, ξ, ·), p(t, η, ·)) = 0. (3.33)

Proof. Fix any ξ, η ∈ C, ε > 0. For any f ∈ L, compute

|Ef(xt(ξ))− Ef(xt(η))|
≤ E|f(xt(ξ))− f(xt(η))|
≤ E(2 ∧ ‖xt(ξ)− xt(η)‖)

≤ 2P
{
‖xt(ξ)− xt(η)‖ ≥ ε

3

}
+
ε

3
P
{
‖xt(ξ)− xt(η)‖ < ε

3

}
. (3.34)

In view of Remark 5, there exists T = T (ξ, η, ε) such that for all t > T

P
{
‖xt(ξ)− xt(η)‖ ≥ ε

3

}
≤ ε

3
. (3.35)

Substituting (3.35) into (3.34), we obtain

|Ef(xt(ξ))− Ef(xt(η))| ≤ ε, ∀ t > T.

Since f is arbitrary, we must have that

sup
f∈L
|Ef(xt(ξ))− Ef(xt(η))| ≤ ε, ∀ t > T,

namely,
dL(p(t, ξ, ·), p(t, η, ·)) ≤ ε, ∀ t > T.

This proof is completed.

Lemma 3.5. Let Assumptions (H1), (H2),(H3) and (H4) hold. Then for any ξ ∈ C, the
family {p(t, ξ, ·) : t ≥ 0} is Cauchy in the space P(C) with metric dL.

Proof. Fix ξ ∈ C arbitrarily. We need to show that for any ε > 0, there is T > 0 such that

dL(p(t+ s, ξ, ·), p(t, ξ, ·)) ≤ ε, ∀ t > T, s > 0.

This is equivalent to

sup
f∈L
|Ef(xt+s(ξ))− Ef(xt(ξ))| ≤ ε, ∀ t > T, s > 0.

For any f ∈ L and s, t > 0, using the Markov property, we compute

|Ef(xt+s(ξ))− Ef(xt(ξ))|
= |E[E(f(xt+s(ξ))|Fs)]− Ef(xt(ξ))|

=

∣∣∣∣∫
C
Ef(xt(η))p(s, ξ, dη)− Ef(xt(ξ))

∣∣∣∣
≤
∫
C
E|f(xt(η))− f(xt(ξ))|p(s, ξ, dη). (3.36)

16



By Lemma 3.2, there exists a compact subset K̄ ⊆ C such that

p(s, ξ, K̄) > 1− ε

5
. (3.37)

By (3.36) and (3.37), compute

|Ef(xt+s(ξ))− Ef(xt(ξ))|

≤
∫
K̄

E|f(xt(η))− f(xt(ξ))|p(s, ξ, dη) +
2

5
ε

≤
∫
K̄∪{ξ}

E(2 ∧ ‖xt(η)− xt(ξ)‖)p(s, ξ, dη) +
2

5
ε. (3.38)

By Lemma 3.3, for any ξ, η ∈ K̂ = K ∪ {ξ}, there exists T = T (K̂, ε) such that

P
{
‖xt(η)− xt(ξ)‖ ≥

ε

5

}
≤ ε

5
, ∀ t > T. (3.39)

By virtue of (3.38)and (3.39), we have

|Ef(xt+s(ξ))− Ef(xt(ξ))| ≤ ε, ∀ t > T, s > 0.

Since f is arbitrary, the desired assertion follows and the proof is completed.

After the preparation of the lemmas above, we can now state our main result.

Theorem 3.6. Let Assumptions (H1), (H2), (H3) and (H4) hold. Then the solution
mapping process xt of (1.2) is stable in distribution.

Proof. Fix ξ ∈ C arbitrarily. By Lemma 3.5, {p(t, ξ, ·) : t ≥ 0} is Cauchy in the space P(C)
with metric dL. So there is a unique probability π(·) ∈ P(C) such that

lim
t→∞

dL(p(t, ξ, ·), π(·)) = 0.

Now, for any η ∈ C, Lemma 3.4 shows that lim
t→∞

dL(p(t, η, ·), p(t, ξ, ·)) = 0. Therefore

lim
t→∞

dL(p(t, η, ·), π(·))

≤ lim
t→∞

dL(p(t, η, ·), p(t, ξ, ·)) + lim
t→∞

dL(p(t, ξ, ·), π(·))

= 0

This completes the proof.

Remark 7. When the diffusion is non-degenerate, [18, Theorem 3.3] and [19, Throrem 2.1]
showed that the stochastic differential equation has a unique invariant measure. In Theorem
3.3 of [18], the diffusion coefficient is Lipschitz continuous and the drift coefficient needs to
be decomposed into two terms f(φ) = f1(φ) + f2(φ(0)), φ ∈ C, where the functional f1 is
bounded. In Theorem 2.1 of [19], the diffusion g is Lipschitz continuous and the drift f is
sublinear, that is, there exist constants β ∈ [0, 1), C > 0 such that

|f(φ)| ≤ C(1 + ‖φ‖β), φ ∈ C.

This paper doesn’t need these conditions and can involve more stochastic delay and functional
models.

17



4 Examples

In order to illustrate the results established in the previous section, we present two examples
in this section.

Example 4.1. Let us recall the scalar Equation (1.1). For the sake of convenience, write
Equation (1.1) again here: For example, consider the scalar SFDEs

dx(t) =

(
a− bx(t)− cx3(t) +

∫ 0

−τ
x2(t+ θ)µ(dθ)

)
dt+ d

∫ 0

−τ
|x(t+ θ)|

3
2µ(dθ)dB(t),

where a is a constant, 2b − 1 ≥ 2c > 3d2 + 2, and µ is a probability measure on [−τ, 0]. on
t ≥ 0, where a is a constant, 2b− 1 ≥ 2c > 3d2 + 2, µ ∈M.

It is obvious that the drift and diffusion of equation (1.1) satisfy assumption (H1) and
(H3). Let us check (H2) and (H4). Putting V (x) = x2, for all φ ∈ C we have

LV (φ) =2φ(0)

(
a− bφ(0)− cφ3(0) +

∫ 0

−τ
φ2(θ)µ(dθ)

)
+ d2

(∫ 0

−τ
|φ(θ)|

3
2µ(dθ)

)2

≤2aφ(0)− (2b− 1)φ2(0)− 2cφ4(0) +

∫ 0

−τ

(
d2|φ(θ)|2 + (d2 + 1)|φ(θ)|4

)
µ(dθ)

≤− εφ2(0) + 2aφ(0)− 2c

(
2b− 1− ε

2c
φ2(0) + φ4(0)

)
+ (d2 + 1)

∫ 0

−τ

( d2

d2 + 1
φ2(θ) + φ4(θ)

)
µ(dθ)

≤L2 − 2c

(
2b− 1− ε

2c
φ2(0) + φ4(0)

)
+ (d2 + 1)

∫ 0

−τ

( d2

d2 + 1
φ2(θ) + φ4(θ)

)
µ(dθ),

where ε is a positive constant satisfying (2b−1−ε)(d2+1) ≥ 2cd2, L2 = supx∈R {−εx2 + 2ax} <
∞. If the probability measure µ is Dirac measure at −τ , then (1.1) reduces to the SDE
with constant time lag which has been discussed in [11]. It is easy to see from inequality
above that there is no function W1 which makes Assumption 1.1 hold in [11]. Therefore
we can not apply the theorem in [11]. However, our Assumption (H2) holds by choosing
W1(x) = (2b − 1 − ε)x2/2c + x4, λ1 = 2c, λ2 = d2 + 1. Next, applying U(x) = x2, for φ,
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ϕ ∈ C, we have

LU(φ, ϕ) =− 2b[φ(0)− ϕ(0)]2 − 2c[φ(0)− ϕ(0)]2[φ2(0) + φ(0)ϕ(0) + ϕ2(0)]

+ d2

(∫ 0

−τ
(|φ(θ)|

1
2 − |ϕ(θ)|

1
2 )(|φ(θ)|+ |φ(θ)ϕ(θ)|

1
2 + |ϕ(θ)|)µ(dθ)

)2

+ 2

∫ 0

−τ
[φ(0)− ϕ(0)][φ2(θ)− ϕ2(θ)]µ(dθ)

≤− [φ(0)− ϕ(0)]2[2b− 1 + 2c(φ2(0) + φ(0)ϕ(0) + ϕ2(0))]

+ d2

∫ 0

−τ
(|φ(θ)| − |ϕ(θ)|)2(|φ(θ)|+ |φ(θ)ϕ(θ)|

1
2 + |ϕ(θ)|)µ(dθ)

+

∫ 0

−τ
[φ(θ)− ϕ(θ)]2[φ(θ) + ϕ(θ)]2µ(dθ)

≤− c[φ(0)− ϕ(0)]2
[
φ2(0) + ϕ2(0) +

2b− 1

c

]
+
(3

2
d2 + 1

)∫ 0

−τ
[φ(θ)− ϕ(θ)]2[φ2(θ) + ϕ2(θ) + 2]µ(dθ).

Similarly, it is easy to see from inequality above that there is also no W2 which makes
Assumption 1.2 hold in [11]. However, our Assumption (H4) holds with W2(x, y) = (x −
y)2(x2 + y2 + (2b− 1)/c), λ3 = c, λ4 = 3d2/2 + 1. Therefore, (1.1) is stable in distribution.

Example 4.2. Consider the following two-dimensional SFDE

d

(
x1(t)
x2(t)

)
=

(
a1 − x1(t)− b1x

3
1(t)

a2 − b2x
3
2(t)

)
dt+

(
c1

∫ 0

−τ x
2
2(t+ θ)µ(dθ)

c2

∫ 0

−τ x
2
1(t+ θ)µ(dθ)

)
dB(t) (4.1)

with the initial data x0 = ξ ∈ C, where a1, a2, b1, b2, c1, c2 are constants, µ ∈ M, B(t) is
a scalar Brownian motion. We will show that if b1 > c2

2, b2c
2
2 > b1c

2
1 or b2 > c2

1, b1c
2
1 > b2c

2
2,

(4.1) is stable in distribution. An analysis similar to Example 4.1 indicates that the theorem
in [11] is not applicable even if the diffusion coefficient is replaced by (c1x

2
2(t−τ), c2x

2
1(t−τ))T

(namely, (4.1) reduces to the SDE in [11]). It is easy to verify that the drift f is continuous
and bounded on bounded subsets of C and the diffusion g is local Lipschitz continuous. We
therefore only need to check that the coefficients of (4.1) satisfy (H2) and (H4).

Let us verify that f and g satisfy (H2) and (H4) when b1 > c2
2, b2c

2
2 > b1c

2
1. Letting
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V (x) = x2
1 + x2

2, we have

LV (φ) = 2a1φ1(0)− 2φ2
1(0)− 2b1φ

4
1(0) + 2a2φ2(0)− 2b2φ

4
2(0) + c2

1

(∫ 0

−τ
φ2

2(θ)µ(dθ)

)2

+ c2
2

(∫ 0

−τ
φ2

1(θ)µ(dθ)

)2

≤[2a1φ1(0)− 2φ2
1(0)] + [2a2φ2(0)− εφ4

2(0)]− 2b1φ
4
1(0)− (2b2 − ε)φ4

2(0)

+ c2
2

∫ 0

−τ
φ4

1(θ)µ(dθ) + c2
1

∫ 0

−τ
φ4

2(θ)µ(dθ)

≤L2 − 2b1

[
φ4

1(0) +
2b2 − ε

2b1

φ4
2(0)

]
+ c2

2

∫ 0

−τ
φ4

1(θ) +
(c1

c2

)2

φ4
2(θ)µ(dθ),

where ε is a positive constant satisfying (2b2 − ε)c2
2 > 2b1c

2
1, L2 = supx∈R2{2a1x1 − 2x2

1 +
2a2x2 − εx4

2} < +∞. The above ε actually exists, since b2c
2
2 > b1c

2
1. Hence, the assumption

(H2) holds with λ1 = 2b1, λ2 = c2
2,W1(x) = x4

1 + 2b2−ε
2b1

x4
2. Now we check the assumption

(H4). Applying U(x) = x2
1 + x2

2, we obtain

LU(φ, ϕ) =− 2b1[φ1(0)− ϕ1(0)][φ3
1(0)− ϕ3

1(0)]− 2b2[φ2(0)− ϕ2(0)][φ3
2(0)− ϕ3

2(0)]

− 2[φ1(0)− ϕ1(0)]2 + c2
1

(∫ 0

−τ
[φ2

2(θ)− ϕ2
2(θ)]µ(dθ)

)2

+ c2
2

(∫ 0

−τ
[φ2

1(θ)− ϕ2
1(θ)]µ(dθ)

)2

≤− 2
2∑
i=1

{
bi[φi(0)− ϕi(0)]2[φ2

i (0) + φi(0)ϕi(0) + ϕ2
i (0)]

}
+

2∑
i=1

{
c2
i

∫ 0

−τ
[φi(θ)− ϕi(θ)]2[φi(θ) + ϕi(θ)]

2µ(dθ)

}

≤− b1

2∑
i=1

{ bi
b1

[φi(0)− ϕi(0)]2[(φi(0) + ϕi(0))2 + φ2
i (0) + ϕ2

i (0)]}

+ c2
2

2∑
i=1

{
(
ci
c2

)2

∫ 0

−τ
[φi(0)− ϕi(0)]2[(φi(0) + ϕi(0))2 + φ2

i (0) + ϕ2
i (0)]

}
,

which implies the assumption (H4) holds with λ3 = b1, λ4 = c2
2 and

W2(x, y) =
2∑
i=1

{ bi
b1

(xi − yi)2((xi + yi)
2 + x2

i + y2
i )}.

Hence, (4.1) is stable in distribution.
Similarly, we can also show that (4.1) is stable in distribution when b2 > c2

1, b1c
2
1 > b2c

2
2.
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