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A filtering problem with uncertainty in observation

Shaolin Ji∗ Chuiliu Kong† Chuanfeng Sun‡

Abstract. This paper is concerned with a generalized Kalman-Bucy filtering model and corresponding

robust problem under model uncertainty. We find that this robust problem is equivalent to considering an

estimate problem under some sublinear operator. Therefore, we turn to obtaining the minimum mean square

estimator under a sublinear operator. By Girsanov theorem and minimax theorem, we obtain the optimal

estimator x̂t of the signal process xt for given time t ∈ [0, T ].

Key words. sublinear operator, minimum mean square estimator, Kalman-Bucy filtering, uncertainty.

1 Introduction

Let (Ω,F , {Ft}0≤t≤T ,P) be a complete filtered probability space equipped with a natural filtration Ft =

σ{w(s), v(s); 0 ≤ s ≤ t}, F = FT , where (w(·), v(·)) is 2-dimensional standard Brownian motion defined on

the space, T > 0 is a fixed real number. Suppose that the signal process (xt) and the observation process

(mt) under probability measure P satisfy respectively




dxt = (Ftxt + ft)dt+ dwt,

x(0) = x0,

dmt = (Gtxt + gt)dt+ dvt,

m(0) = 0

(1.1)

where the coefficients Ft, ft, Gt, gt are bounded, continuous functions in t and x0 is a given constant. The

classical Kalman-Bucy filtering problem is to find the optimal estimator x̄t such that

min
ζ

EP ‖xt − ζ‖2 = EP ‖xt − x̄t‖
2. (1.2)

In 1961, Kalman and Bucy [13] gave the fundamental results of the filtering problem which are the

foundation of modern filtering theory (see Bensoussan [2], Liptser and Shiryaev [16] et al). Based on the
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filtering technique, stochastic optimal control problems with partial information (or observation) have been

studied extensively. In the field of finance and insurance, for example, Bensoussan and Keppo [3] and Lakner

[15] considered the optimal consumption and portfolio investment problems of an investor who is interested

in maximizing his utilities from consumption and terminal wealth under partial information; Xiong and

Zhou [24] considered the mean-variance portfolio selection problems under partial information. In the field

of stochastic control, Duncan and Pasik-Dunan [5] and [6] considered respectively the optimal control for a

partially observed linear stochastic system with an exponential quadratic cost and with fractional brownian

motions; Tang [21] gave the maximum principle for partially observed optimal control problems of stochastic

differential equations; Wang and Wu [23] studied the Kalman-Bucy filtering equation of a certain forward-

backward stochastic differential equation system and solved a partially observed linear quadratic optimal

control problem, and so on. Some fundamental researches based on forward-backward stochastic differential

equations are surveyed by Ma and Yong [17] and Zhang [26].

In 2002, Chen and Epstein [4] proposed a kind of model uncertainty for continuous-time models which is

the so called drift ambiguity. Drift ambiguity models an agent’s uncertainty about the drift of the underlying

Brownian motion. Moreover, in 2013, Epstein and Ji proposed more general uncertainty models (see [7] and

[8] for details). In this paper, we introduce the following drift ambiguity in [4] into model (1.1) and focus

on a corresponding robust problem. Consider the generalized Kalman-Bucy filtering model under some

probability measure P θ ∈ P : 



dxt = (Ftxt + ft)dt+ dwt,

x(0) = x0,

dmt = (Gtxt + gt + θt)dt+ dvθt ,

m(0) = 0

(1.3)

where (wt) and (vθt ) are Brownian motions under P θ and the probability measure P θ is regarded as an

observer’s evaluation criterion for the signal process. Here the probability measure set P denotes all the

evaluation criterions by observers and θ ∈ Θ is called ambiguity parameter. Note that Ji, Li and Miao [12]

adopt a similar formulation in order to solve a dynamic contract problem. Then, we naturally consider the

following worst-case minimum mean square estimate of the signal process (xt):

min
ζ

sup
P θ∈P

EP θ‖xt − ζ‖2 (1.4)

which is to minimize the maximum expected loss over a range of possible models, an idea that goes back at

least as far as Wald [22] in 1945. Allan and Cohen [1] studied this type of estimate problem under nonlinear

expectations by a control approach. Recently, Ji, Kong and Sun [11] considered a different generalized

Kalman-Bucy filtering model where the ambiguity parameters affect the evolution of signal process.

In fact, sup
P θ∈P

EP θ [·] can be regarded as a sublinear operator E(·) and the problem (1.4) can be reformulated

as a estimate problem under sublinear operator:

min
ζ

E(‖xt − ζ‖2).
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The related literatures about the estimate problem under sublinear operators include Sun and Ji [20],

Ji, Kong and Sun [10]. Sun and Ji [20] introduced a new conditional nonlinear expectation for bounded

random variables which is based on the minimum mean square estimator for sublinear operators. However,

the boundedness assumption for random variables has great limitations. Therefore, Ji, Kong and Sun [10]

deleted the boundedness assumption and generalized the corresponding results to the case in which the

random variables fall in the space L2+ǫ
F (Ω, P ) where ǫ is a constant such that ǫ ∈ (0, 1).

Under some mild conditions, we prove that the optimal estimator x̂ and the optimal probability measure

P θ∗

exist. It results that we only need to consider the classical Kalman-Bucy filtering problem under the

probability measure P θ∗

. Moreover, in some special cases, the optimal estimator x̂ can be decomposed to

two parts. One part is the optimal estimator of the signal process under the probability measure P and the

other part contains the parameter θ∗ (see Corollary 3.5 for details).

The remainder of the paper proceeds as follows. In section 2, after a brief recall of the Kalman-Bucy

filter and the drift ambiguity, a generalized robust Kalman-Bucy filtering problem is introduced. In section

3, the main general results are given and we consider a special case to further explain our results.

2 Problem formulation

Let w(·) and v(·) be n-dimensional and m-dimensional independent Brownian motions defined on a complete

filtered probability space (Ω,F , {Ft}0≤t≤T ,P) where Ft = σ{w(s), v(s); 0 ≤ s ≤ t}, F = FT and T > 0 be

a fixed terminal time. The means of w(·) and v(·) are zero and the covariance matrices are Q(·) and R(·)

respectively. The matrix R(·) is uniformly positive definite. Denote by Rn the n-dimensional real Euclidean

space and Rn×k the set of n× k real matrices. Let 〈·, ·〉 (resp. ‖ · ‖) denote the usual scalar product (resp.

usual norm) of Rn and Rn×k. The scalar product (resp. norm) of M = (mij), N = (nij) ∈ Rn×k is denoted

by 〈M,N〉 = tr{MN⊺} (resp. ‖M‖ =
√
〈M,M〉), where the superscript ⊺ denotes the transpose of vectors

or matrices. For a Rn-valued vector x = (x1, · · ·, xn)
⊺, |x| := (|x1|, · · ·, |xn|)

⊺; for two Rn-valued vectors x

and y, x ≤ y means that xi ≤ yi for i = 1, · · ·, n.

Through out this paper, 0 denotes the matrix/vector with appropriate dimension whose all entries are

zero and ǫ is a constant such that 0 < ǫ < 1.

Suppose that the signal process (xt) ∈ Rn and the observation process (mt) ∈ Rm under probability

measure P satisfy model (1.1) where Ft ∈ Rn×n, Gt ∈ Rm×n, ft ∈ Rn, gt ∈ Rm are bounded, continuous

functions in t, x0 ∈ Rn is a given constant vector. Let the filtration Zt = σ{m(s); 0 ≤ s ≤ t} be the set of

observable events up to time t. By the Kalman-Bucy filtering theory (see Bensoussan [2], Kalman and Bucy

[13] and Liptser and Shiryaev [16] et al), the optimal solution x̄t = EP (xt|Zt) of problem (1.2) is governed

by 



dx̄t = (Ftx̄t + ft)dt+ PtG
⊺

tR
−1
t dIt,

x̄(0) = x0,

(2.1)
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and the variance of estimate error Pt = EP [(xt − x̄t)(xt − x̄t)
⊺] is governed by





dPt

dt
= FtPt + PtF

⊺

t − PtG
⊺

tR
−1
t GtPt +Qt,

P (0) = 0

(2.2)

where It = mt−
∫ t

0 (Gsx̄s+gs)ds is called innovation process under probability measure P which is a Wiener

process adapted to {Zt}. Furthermore, the filtration It = σ{I(s); 0 ≤ s ≤ t} equals to Zt for any time

t ∈ [0, T ].

Now we are ready to give the drift ambiguity model. For a fixed Rm-valued nonnegative constant vector

µ, denote by Θ the set of all the Rm-valued progressively measurable processes (θt) with |θt| ≤ µ. Define

P = {P θ
∣∣dP

θ

dP
= fP θ

T with θ ∈ Θ} (2.3)

where

fP θ

T =
dP θ

dP
= exp(

∫ T

0

θ
⊺

t dvt −
1

2

∫ T

0

‖θt‖
2dt).

Due to the boundness of θ, the Novikov’s condition holds (see Karatzas and Shreve [14]). Therefore, P θ

defined by (2.3) is a probability measure which is equivalent to the probability measure P and the processes

(wt) and (vθt ) where v
θ
t = vt −

∫ t

0
θsds are Brownian motions under this probability measure P θ by Girsanov

theorem. Then, with this generalized model (1.3) under probability measure P θ, we consider naturally the

following robust problem:

inf
ζ∈L

2+ǫ

Zt
(Ω,P,Rn)

sup
P θ∈P

EP θ‖xt − ζ‖2, (2.4)

where L2+ǫ
Zt

(Ω, P,Rn) is the set of all the Rn-valued (2 + ǫ) integrable Zt-measurable random variables.

However, if we denote E(·) = sup
P θ∈P

EP θ [·] which can be regarded as a sublinear operator, then the above

robust problem can be considered as an estimate problem of the signal process under this sublinear operator

E(·). In more details, given the observation information {Zt}, we intend to find the optimal estimator x̂t of

the signal process (xt) at time t ∈ [0, T ] such that

E‖xt − x̂t‖
2 = inf

ζ∈Kt

E‖xt − ζ‖2, (2.5)

where

Kt = {ζ : Ω → Rn; ζ ∈ L2+ǫ
Zt

(Ω, P,Rn)}.

Remark 2.1. The optimal solution x̂t of problem (2.5) is called minimum mean square estimator. It is also

regarded as a minimax estimator in statistical decision theory. If the sublinear operator E(·) degenerates to

linear expectation operator, then Pθ contains only one probability measure P . In this case, it is well known

that the minimum mean square estimator x̂t is just the conditional expectation EP (xt|Zt).

3 Main results

In this section, we study the minimum mean square estimator x̂t of problem (2.5) for some time t ∈ [0, T ].

Without loss of generality, we only prove one dimensional case and the multidimensional case can be proved

similarly.
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Lemma 3.1 The set { dP θ

dP
: P θ ∈ P} ⊂ L1+ 2

ǫ (Ω,F , P ) is σ(L1+ 2
ǫ (Ω,F , P ), L1+ ǫ

2 (Ω,F , P ))-compact and

the set P is convex.

Proof . By Lemma 1 in Girsanov [9] and the boundness of θ, the set { dP θ

dP
: P θ ∈ P} ⊂ L1+ 2

ǫ (Ω,F , P )

space. According to Simons [19], Chapter 1, Theorem 4.1, the set { dP θ

dP
: P θ ∈ P} is σ(L1+ 2

ǫ (Ω,F , P ), L1+ ǫ
2

(Ω,F , P ))-compact.

The set P is convex which can be referred to Chen and Epstein [4]. Let θ1 and θ2 belong to the set Θ.

fP θi
, i = 1, 2 denote the exponential martingales respectively with

fP θi

t = exp(

∫ t

0

θi,sdvs −
1

2

∫ t

0

θ2i,sds)

and

dfP θi

t = fP θi

t θi,tdvt.

Let 0 ≤ λi ≤ 1, i = 1, 2 be constants with λ1 + λ2 = 1 and

θλt =
λ1θ1,tf

Pθ1

t +λ2θ2,tf
Pθ2

t

λ1f
Pθ1
t +λ2f

Pθ2
t

.

Since fP θi
> 0, i = 1, 2, the process (θλt ) belongs to the set Θ, which implies that the set Θ is stochastically

convex. Moreover, it is also easy to calculate that

d(λ1f
P θ1

t + λ2f
P θ2

t ) = (λ1f
P θ1

t + λ2f
P θ2

t )θλt dvt.

Therefore, the set P is convex.

�

Remark 3.1. By Lemma 3.1, Lemma 1 in [9] and Theorem 6.3 in Chapter 1 of [25], the signal process (xt)

is (4 +2ǫ) integrable, the set { dP θ

dP
: P θ ∈ P} is uniformly normed bounded in L1+ 2

ǫ (Ω,F , P ) space and also

σ(L1+ 2
ǫ (Ω,F , P ), L1+ ǫ

2 (Ω,F , P ))-compact. Therefore, we can apply the results in Ji, Kong and Sun [10] to

guarantee that the optimal solution of problem (2.5) exists.

By Lemma 3.1, we can apply the minimax theorem (see Theorem B.1.2 in Pham [18]) to problem (2.4)

which leads to the following theorem.

Theorem 3.2 For a given t ∈ [0, T ], there exists a θ∗ ∈ Θ such that

inf
ζ∈Kt

E‖xt − ζ‖2 = inf
ζ∈Kt

sup
P θ∈P

EP θ‖xt − ζ‖2 = inf
ζ∈Kt

EP θ∗ ‖xt − ζ‖2.

Proof. Denote fn = dP θn

dP
and choose a sequence {fn}n≥1 such that

lim
n→∞

inf
ζ∈Kt

EP [fn(xt − ζ)2] = lim
n→∞

inf
ζ∈Kt

EP θn [(xt − ζ)2] = sup
P θ∈P

inf
ζ∈Kt

EP θ [(xt − ζ)2].

By Komlós theorem in Pham [18], we know that there exist a subsequence {fnk
}k≥1 ⊂ {fn}n≥1 and f∗ ∈

L1(Ω,F , P ) space such that

lim
m→∞

1

m

m∑

k=1

fnk
= f∗, P − a.s..
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Let gm =
1

m

∑m

k=1 fnk
. We have gm

P−a.s.
−−−−→ f∗ and

supP θ∈P infζ∈Kt
EP θ [(xt − ζ)2] = limn→∞ infζ∈Kt

EP θn [(xt − ζ)2] = limk→∞ infζ∈Kt
E

P
θnk

[(xt − ζ)2]

= limm→∞
1
m

∑m

k=1 infζ∈Kt
E

P
θnk

[(xt − ζ)2] ≤ limm→∞ infζ∈Kt

1
m

∑m

k=1 EP
θnk

[(xt − ζ)2]

= limm→∞ infζ∈Kt
EP [gm(xt − ζ)2].

(3.1)

By Lemma 1 in [9], for any given constants p > 1 and m, we have EP (gm)K ≤ M where K = (1 + 2
ǫ
)p

and M = exp(K
2−K
2 µ2T ). Then, we have

{
|gm|1+

2
ε : m = 1, 2, · · ·

}
is uniformly integrable. Therefore,

gm
L

1+ 2
ǫ (Ω,F ,P )

−−−−−−−−−→ f∗ and f∗ ∈ L1+ 2
ǫ (Ω,F , P ). According to the convexity weak compactness of set { dP θ

dP
:

P θ ∈ P}, there exists a θ∗ such that dP θ∗

dP
= f∗ and the following relations hold

supP θ∈P infζ∈Kt
EP θ [(xt − ζ)2] ≥ infζ∈Kt

EP θ∗ [(xt − ζ)2]

= infζ∈Kt
EP [f

∗(xt − ζ)2]

= infζ∈Kt
EP [limm→∞ gm(xt − ζ)2]

≥ lim supm→∞ infζ∈Kt
EP [gm(xt − ζ)2]

≥ supP θ∈P infζ∈Kt
EP θ [(xt − ζ)2]

where the second ′ ≥′ is based on upper semi-continuous property. It follows that

sup
P θ∈P

inf
ζ∈Kt

EP θ [(xt − ζ)2] = inf
ζ∈Kt

EP θ∗ [(xt − ζ)2].

By minimax theorem, we obtain

sup
P θ∈P

inf
ζ∈Kt

EP θ [(xt − ζ)2] = inf
ζ∈Kt

sup
P θ∈P

EP θ [(xt − ζ)2].

It results that

inf
ζ∈Kt

sup
P θ∈P

EP θ [(xt − ζ)2] = inf
ζ∈Kt

EP θ∗ [(xt − ζ)2].

�

Once we find the optimal θ∗, model (1.3) and problem (2.4) can be expressed under the new probability

measure P θ∗

correspondingly. In more details, for this filtered probability space (Ω,F , {Ft}0≤t≤T , P
θ∗

), the

processes (xt) and (mt) satisfy respectively





dxt = (Ftxt + ft)dt+ dwt,

x(0) = x0,

dmt = (Gtxt + gt + θ∗t )dt+ dvθ
∗

t ,

m(0) = 0

(3.2)
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and problem (2.4) turns into the minimum mean square estimate problem under probability measure P θ∗

:

EP θ∗ ‖xt − x̂t‖
2 = inf

ζ∈Kt

EP θ∗ ‖xt − ζ‖2. (3.3)

With the above theorem, we consider the following estimate problem which is a Kalman-Bucy filtering

problem with the parameter θ∗:

EP θ∗ ‖xt − ζ̂‖2 = inf
ζ∈K̄t

EP θ∗ ‖xt − ζ‖2 (3.4)

where K̄t = {ζ : Ω → Rn; ζ ∈ L2
Zt
(Ω, P θ∗

,Rn)}.

The model (3.2) and problem (3.4) constitute a classical construction for a linear, partially observable

system with a parameter θ∗. This estimate problem is to characterize the conditional distribution P θ∗

(xt ∈

A|Zt), where A is a Borel set in Rn. Then, we are in the realm of Kalman-Bucy filtering and it is well

known(see [13] and [16]) that the conditional distribution is again Gaussian and conditional mean x̂t =

EP θ∗ (xt|Zt) solves the following equation:




dx̂t = (Ftx̂t + ft)dt+ (PtG
⊺

t + x̂tθ
∗⊺
t − x̂tθ̂

∗⊺
t )R−1

t dÎt,

x̂(0) = x0

(3.5)

where θ̂∗t = EP θ∗ [θ∗t |Zt], x̂tθ
∗⊺
t = EP θ∗ [xtθ

∗⊺
t |Zt], Ît = mt−

∫ t

0
(Gsx̂s+gs+ θ̂∗s )ds is Zt-measurable Brownian

motion and the variance of error equation Pt = EP θ∗ [(xt − x̂t)
2|Zt] = EP θ∗ [(xt − x̂t)

2] satisfies




dPt

dt
= FtPt + PtF

⊺

t − EP θ∗ [(PtG
⊺

t + x̂tθ
∗⊺
t − x̂tθ̂

∗⊺
t )R−1

t (GtPt + θ̂∗t x
⊺

t − θ̂∗t x̂
⊺
t)] +Qt,

P (0) = 0.

(3.6)

So far, the optimal estimator of problem (3.4) has been obtained. Next, we expound that this solution

x̂t is also the optimal estimator of problem (2.5) at time t ∈ [0, T ].

Theorem 3.3 Under the above assumptions, x̂t governed by equation (3.5) is also the optimal solution of

problem (2.5) for any time t ∈ [0, T ].

Proof. Note that

inf
ζ∈Kt

sup
P θ∈P

EP θ (xt − ζ)2 = inf
ζ∈Kt

EP θ∗ (xt − ζ)2 ≥ inf
ζ∈K̄t

EP θ∗ (xt − ζ)2. (3.7)

In addition, since Ft, Gt, ft and gt are bounded continuous functions in t and θ∗ is bounded, it is easy

to verify that x̂t is not only square integrable but also (4 + 2ǫ) integrable under probability measure P θ∗

by

Theorem 6.3 in Chapter 1 of [25]. Then, the solution x̂t of equation (3.5) also belongs to Kt. It yields that

x̂t is the optimal solution of problem (2.5) at time t ∈ [0.T ].

�

Corollary 3.4 If the optimal θ∗t adapted to subfiltration Zt, then the optimal estimator x̂t satisfies the

following simpler equation. 



dx̂t = (Ftx̂t + ft)dt+ PtG
⊺

tR
−1
t dÎ1,t,

x̂(0) = x0

(3.8)
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where Î1,t = mt −
∫ t

0
(Gsx̂s + gs+ θ∗s )ds is Zt-measurable Brownian motion and Pt reduces to equation (2.2).

Define A(t, s) = PsGsR
−1
s exp

∫
t

s
(Fr−PrG

2
rR

−1
r )dr, which is the impulse response of the classical Kalman-

Bucy filter. After some simple calculations, the optimal estimator x̂ can be decomposed to two parts. One

part is the optimal estimator of the signal process under the probability measure P and the other part

contains the parameter θ∗.

Corollary 3.5 If the optimal θ∗t adapted to subfiltration Zt, with equations (2.1) and (3.8), then the optimal

estimator x̂t for any time t ∈ [0.T ] can be expressed as

x̂t = x̄t −

∫ t

0

A(t, s)θ∗sds. (3.9)

where x̄t is defined by equation (2.1).

Similar to Theorem 5.6 in Sun and Ji [20], we give a sufficient and necessary condition for the existence

of the optimal estimator in the following corollary.

Corollary 3.6 For a given t ∈ [0, T ], x̂t is the optimal solution of problem (2.5) if and only if it is the

solution of the following equation

inf
ζ∈Kt

E [(xt − x̂t)(xt − ζ)] = E(xt − x̂t)
2. (3.10)
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