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Abstract

This work addresses the distributed frequency control problem in power systems considering controllable load with a nonsmooth
cost. The nonsmoothness exists widely in power systems, such as tiered price, greatly challenging the design of distributed optimal
controllers. In this regard, we first formulate an optimization problem that minimizes the nonsmooth regulation cost, where both
capacity limits of controllable load and tie-line flow are considered. Then, a distributed controller is derived using the Clark
generalized gradient. We also prove the optimality of the equilibrium of the closed-loop system as well as its asymptotic stability.
Simulations carried out on the IEEE 68-bus system verifies the effectiveness of the proposed method.
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1. Introduction

With the proliferation of renewable generations, frequency
control in power systems is facing a great challenge as power
mismatch can fluctuate rapidly in a large amount. In this sit-
uation, the conventional centralized hierarchical control archi-
tecture may not respond fast enough due to large inertia of the
traditional synchronous generators [1, 2]. On the other hand,
load-side controllable resources with fast response capabilities
provide a new opportunity to frequency regulation [3]. In addi-
tion, as controllable loads are usually dispersed geographically
vast across the power system, a distributed architecture is more
desirable for load frequency control than the centralized one.

Recently, the so-called reverse engineering methodology is
proposed by combining frequency control with optimal opera-
tion problems in power systems [4, 5, 6, 7, 8]. Under this frame-
work, distributed load frequency control is widely investigated
[8, 9, 10, 11, 12, 13, 14]. In [8], an optimal load frequency
control problem is formulated and a distributed controller is de-
rived using controllable loads to realize primary frequency con-
trol. To eliminated the frequency deviation, the method is fur-
ther extended in [9, 13] to realize a secondary load frequency
control. At the same time, the tie-line power limit is consid-
ered. The design approach is generalized in [11], where the spe-
cific model requirement is eliminated. It only requires that the
bus dynamics satisfy a passivity condition to guarantee asymp-
totic stability. In [10, 12], the operational constraints including
regulation capacity limits and tie-line power limits are consid-
ered, which guarantee both steady-state and transient capacity
limit constraints. In [14], the distributed load frequency con-
trol under time-varying and unknown power injection is inves-
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tigated, which can recover the nominal frequency even under
unknown disturbances. The distributed load frequency control
is of course a paid service, i.e., the system operator needs to
pay for the controllable load to regulate their power. In the ex-
isting literature, the cost of controllable load is assumed to be
differentiable, or equivalently, the price of the controllable load
is continuous. This is not true for a variety of cases, e.g., the
price may have step changes when controllable load values are
in different intervals. In such a situation, the regulation is in-
herently nonsmooth, which makes existing methods difficult to
apply.

This work designs a distributed controller for the optimal
load frequency control in power systems, where the regulation
cost function can be nonsmooth. We relax the assumption of the
objective function from being differentiable to nonsmooth. This
work is partly motivated by [15]. However, different from it, we
consider the interplay between the solving algorithm and the
power system dynamics and prove the stability of the closed-
loop system. Another difference is that the objective function
in [15] is strictly convex with respect to all decision variables.
That is not necessary in our work, where some variables may
not appear in the objective function. In such a situation, we
prove the asymptotic convergence of the closed-loop system as
well as the optimality of equilibrium.

The rest of this paper is organized as follows. In Section
II, we introduce some preliminaries and system models. Sec-
tion III formulates the optimal load frequency control problem
and introduces the distributed controller. In Section IV, con-
vergence of the closed-loop system and optimality of the equi-
librium point are proved. We confirm the performance of the
controller via simulations on IEEE 68-bus system in Section V.
Section VI concludes the paper.

Preprint submitted to xxx June 7, 2019

ar
X

iv
:1

90
6.

02
37

9v
1 

 [
cs

.S
Y

] 
 6

 J
un

 2
01

9



2. Problem Description

2.1. Preliminaries and notations

2.1.1. Notations
In this paper, use Rn (Rn

+) to denote the n-dimensional (non-
negative) Euclidean space. For a column vector x ∈ Rn (matrix
A ∈ Rm×n), xT(AT) denotes its transpose. For vectors x, y ∈ Rn,
xTy = 〈x, y〉 denotes the inner product of x, y. ‖x‖ =

√
xTx

denotes the Euclidean norm of x. Use 1 to denote the vector
with all 1 elements. For a matrix A = [ai j], ai j stands for the
entry in the i-th row and j-th column of A. Use

∏n
i=1 Ωi to de-

note the Cartesian product of the sets Ωi, i = 1, · · · , n. Given
a collection of yi for i in a certain set Y , y denotes the column
vector y := (yi, i ∈ Y) with a proper dimension, and yi as its
components.

2.1.2. Preliminaries
Let f (x) : Rn → R be a locally Lipschitz continuous function

and denote its Clarke generalized gradient by ∂ f (x) [16, Page
27]. For a continuous strictly convex function f (x) : Rn → R,
we have (gx − gy)T(x − y) > 0, ∀x , y, where gx ∈ ∂ f (x) and
gy ∈ ∂ f (y).

Define the projection of x onto a closed convex set Ω as

PΩ(x) = arg miny∈Ω ‖x − y‖ (1)

Use Id to denote the identity operator, i.e., Id(x) = x, ∀x. Define
NΩ(x) = {v| 〈v, y − x〉 ≤ 0,∀y ∈ Ω}. We have PΩ(x) = (Id +

NΩ)−1(x) [17, Chapter 23.1].
A basic property of a projection is

(x − PΩ(x))T(y − PΩ(x)) ≤ 0, ∀x ∈ Rn, y ∈ Ω (2)

Moreover, we also have [18, Theorem 1.5.5]

(PΩ(x) − PΩ(y))T(x − y) ≥ ‖PΩ(x) − PΩ(y)‖2 (3)

Define V(x) := 1
2
(
‖x − PΩ(y)‖2 − ‖x − PΩ(x)‖2

)
, and then

V(x) is differentiable and convex with respect to x [19, Lemma
4]. Moreover, we have

V(x) =
1
2
‖PΩ(x) − PΩ(y)‖2

− (x − PΩ(x))T(PΩ(y) − PΩ(x)) (4)

≥
1
2
‖PΩ(x) − PΩ(y)‖2 ≥ 0 (5)

∇V(x) = PΩ(x) − PΩ(y) (6)

where the inequality is due to (2). From (4), V(x) = 0 holds
only when PΩ(x) = PΩ(y).

2.2. Network model

A power network is usually composed of multiple buses,
which are connected with each other through transmission
lines. It can be modeled as a graph G := (N ,E), where
N = {0, 1, 2, ...n} is the set of buses and E ⊆ N × N is the
set of edges (transmission lines). Let m = |E| denote the num-
ber of lines. The buses are divided into two types: generator

buses, denoted by Ng and load buses, denoted by Nl. A gener-
ator bus contains a generator ( possibly with certain aggregate
load). A load bus has only load with no generator. The graph
G is treated as directed with an arbitrary orientation and use
(i, j) ∈ E or i → j interchangeably to denote a directed edge
from i to j. Without loss of generality, we assume the graph is
connected and node 0 is a reference node. The incidence matrix
of the graph is denoted by C, and we have 1TC = 0.

We adopt a second-order linearized model to describe the fre-
quency dynamics of each bus. We assume that the lines are
lossless and adopt the DC power flow model [10, 8]. For each
bus j ∈ N , let θ j(t) denote the rotor angle at node j at time
t and ω j(t) the frequency. 1 Let Pl

j(t) denote the controllable
load. Let given constant Pm

j denote any change in power injec-
tion, that occurs on the generation side or the load side, or both.
Define θi j = θi − θ j as the angle difference between bus i and j,
and its compact form is denoted by θe = (θi j, (i, j) ∈ E). Then
for each node j ∈ N , the dynamics are

θ̇i j = ωi − ω j, j ∈ N (7a)

ω̇ j =
1

M j

(
Pm

j − Pl
j − D jω j

+
∑

i:i→ j
Bi jθi j −

∑
k: j→k

B jkθ jk

)
, j ∈ Ng (7b)

0 = Pm
j − Pl

j − D jω j

+
∑

i:i→ j
Bi jθi j −

∑
k: j→k

B jkθ jk, j ∈ Nl (7c)

where M j > 0 are inertia constants, D j > 0 are damping con-
stants, and B jk > 0 are line parameters that depend on the reac-
tance of the line ( j, k).

The scenario is that: the system operates in a steady state
at first. A certain power imbalance occurs due to variation
of power injection Pm

j . Then controllable load accordingly
changes its output to eliminate the imbalance.

3. Problem Formulation

In this section, we first formulate the optimal load frequency
problem with a nonsmooth objective function. Then, we pro-
pose a distributed controller based on the Clark generalized gra-
dient to drive the power system to the optimal solution.

3.1. Optimization problem
The optimization problem is

min
Pl

j, φ j

f (Pl) =
∑

j∈N
f j(Pl

j) (8a)

s.t. 0 = Pl
j − Pm

j −
∑

i:i→ j
Bi j(φi − φ j)

+
∑

k: j→k
B jk(φ j − φk), j ∈ N (8b)

Pl
j ≤ Pl

j ≤ P
l
j, j ∈ N (8c)

θi j ≤ φi − φ j ≤ θi j, (i, j) ∈ E (8d)

1Sometimes, we also omit t for simplicity.
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where Pl
j ≤ P

l
j are constants, denoting the lower and upper

bound of Pl
j. θi j ≤ θi j are also constants, denoting the lower

and upper bound of angle difference. The first constraint is the
local power balance. φ j is the virtual phase angle, which equals
to θ j at the optimal solution. Use φi j = φi − φ j to denote the
virtual phase angle difference. In the DC power flow, we have
Pi j = Bi jθi j, where Pi j is the power of line (i, j). Thus, (8d) is in
fact the tie-line power limit constraint. We have the following
assumptions.

Assumption 1. f j(Pl
j) is strictly convex.

Assumption 2. The Slater’s condition [20, Chapter 5.2.3] of (8)
holds, i.e., problem (8) is feasible provided that the constraints
are affine.

Remark 1. Assumption 1 could be further relaxed, since a non-
strictly convex function can be strictly convexified by using a
nonlinear perturbation [21].

Remark 2. Problem (8) allows the cost function f j(Pl
j) to be

nonsmooth, which is required to be differentiable in the existing
literature [8, 9, 10, 11, 12, 13, 14]. Thus, the problem (8) is
more general and suitable for a variety of real problems whose
regulation costs are not smooth. A typical example is the tiered
price, where the price discontinuously increases with respect to
the amount of controllable load. It also should be noted that
the decision variable φ j is absent in the objective function of
(8). It makes the paper not a trivial application of [15], i.e.,
the objective function is not required to be strictly convex to
all the decision variables. It makes the convergence proof more
challenging.

Remark 3. In the existing literature, the controller usually in-
volves the projection of a gradient onto a convex set. If the
objective function is nonsmooth, it becomes the projection of a
subdifferential set onto a convex set. In this situation, the exis-
tence of trajectories is not guaranteed [15, 22], which makes ex-
isting load frequency control methods inapplicable to the nons-
mooth case.

3.2. Controller Design
To help the controller design, we make a modification on the

problem (8).

min
Pl

j, φ j

f (Pl) =
∑

j∈N
f j(Pl

j) +
1
2

∑
j∈N

z2
j (9a)

s.t. (8b), (8c), (8d) (9b)

where z j = Pl
j − Pm

j −
∑

i:i→ j Bi jφi j +
∑

k: j→k B jkφ jk. For any
feasible solution to (8), z j = 0. Thus, (8) and (9) have same
solutions.

Define the sets

Ω j :=
{
Pl

j | P
l
j ≤ Pl

j ≤ P
l
j

}
, Ω =

∏n

j=1
Ω j (10)

Then, we give the controller for each controllable load, which
is denoted by OLC.

ḋ j ∈
{
p : p = −d j + Pl

j + ω j − g j(Pl
j) − z j − µ j,

g j(Pl
j) ∈ ∂ f j(Pl

j)
}

(11a)

µ̇ j = Pl
j − Pm

j −
∑
i:i→ j

Bi jφi j +
∑

k: j→k

B jkφ jk (11b)

φ̇ j =
∑
i:i→ j

Bi j(µi − µ j) −
∑

k: j→k

B jk(µ j − µk)

−
∑

(i, j)∈E

η−i j +
∑

( j,k)∈E

η−jk +
∑

(i, j)∈E

η+
i j −

∑
( j,k)∈E

η+
jk

+
∑
i:i→ j

Bi j(zi − z j) −
∑

k: j→k

B jk(z j − zk) (11c)

ϕ̇+
i j = −ϕ+

i j + η+
i j + φi j − θi j (11d)

ϕ̇−i j = −ϕ−i j + η−i j + θi j − φi j (11e)

Pl
j = PΩ j

(
d j

)
(11f)

η+
i j = PR+

(
ϕ+

i j

)
(11g)

η−i j = PR+

(
ϕ−i j

)
(11h)

Combining with the power system dynamics, we have the
closed-loop system (7), (11).

Remark 4 (Load demand estimate). In power systems, the load
demand Pl

j is difficult to measure. Similar to [9, 13, 12], Pl
j−Pm

j
in (11b) can be substituted equivalently in following ways. For
j ∈ Ng,

Pl
j − Pm

j = −M jω̇ j − D jω j +
∑

i:i→ j
Pi j −

∑
k: j→k

P jk

For j ∈ Nl,

Pl
j − Pm

j = −D jω j +
∑

i:i→ j
Pi j −

∑
k: j→k

P jk

In this way, the measurement of load demand Pl
j is avoided.

We only need to measure ω j, Pi j, which are much easier to re-
alize. Moreover, the power loss can be treated as unknown load
demand, which can be also considered by this method.

4. Optimality and Convergence

In this section, we address the optimality of the equilibrium
point and the convergence of the closed-loop system.

4.1. Optimality

Denote x = (θ, ωg, d, µ, φ, ϕ−, ϕ+) and y = (x, Pl, η+, η−).
Let x∗ = (θ∗, ω∗g, d

∗, µ∗, φ∗, ϕ−∗, ϕ+∗) be an equilibrium of
the closed-loop system (7), (11). Then, there exists g(Pl∗) ∈
∂ f (Pl∗) such that

0 = CTω∗ (12a)

0 = Pm − Pl∗ − Dω∗ −CBCTθ∗ (12b)

0 = −d∗ + Pl∗ + ω∗ − g(Pl∗) − µ∗ (12c)

0 = Pl∗ − Pm + CBCTφ∗ (12d)

0 = −CBCTµ∗ −Cη−∗ + Cη+∗ (12e)

0 = −ϕ+∗ + η+∗ −CTφ∗ − θ (12f)

0 = −ϕ−∗ + η−∗ + θ + CTφ∗ (12g)

Pl∗ = PΩ (d∗) (12h)

3



η+∗ = PRm
+

(
ϕ+∗) (12i)

η−∗ = PRm
+

(
ϕ−∗

)
(12j)

Now, we introduce the properties of the equilibrium points.

Theorem 1. Suppose Assumptions 1 and 2 hold. We have

1. The nominal frequency is restored, i.e., ω∗j = 0 for all j ∈
N .

2. If x∗ is an equilibrium point of (7), (11), then (Pl∗, φ∗) is
an optimal solution to (8) and (µ∗, η+∗, η−∗) is an optimal
solution to its dual problem.

3. φ∗i j = θ∗i j for all (i, j) ∈ E. Moreover, the line limits are
satisfied by x∗, implying θi j ≤ θ∗i j ≤ θi j on every tie line
(i, j) ∈ E.

4. At the equilibrium, (θ∗, φ∗, ω∗g, P
l∗) is unique, with (θ∗, φ∗)

being unique up to (equilibrium) reference angles (θ0, φ0).

Proof. 1) From (12b) and (12d), we have 1TDω∗ = 0. From
(12a), we have ω∗ = ω0 · 1 with a constant ω0. As D is a
diagonal positive definite matrix, we have ω0 = 0.

2) From (12c) and (12f)-(12j), we have

Pl∗ = PΩ

(
Pl∗ − g(Pl∗) − µ∗

)
(13a)

η+∗ = PRm
+

(
η+∗ −CTφ∗ − θ

)
(13b)

η−∗ = PRm
+

(
η−∗ + θ + CTφ∗

)
(13c)

or equivalently,

−g(Pl∗) − µ∗ ∈ NΩ(Pl∗) (14a)

−CTφ∗ − θ ∈ NRm
+
(η+∗) (14b)

θ + CTφ∗ ∈ NRm
+
(η−∗) (14c)

By the KKT condition in [23, Theorem 3.34], (12d), (12e) and
(14) coincide with the KKT optimality condition of the problem
(8). Then, we have this assertion.

3) From (12b) and (12d), we have CBCT(θ∗ − φ∗) = 0, which
holds for any incidence matrix C. Thus, we have θ∗−φ∗ = c0 ·1
with a constant c0. Then, we have θ∗i j − φ

∗
i j = 0. Moreover, by

2), we know θi j ≤ φ
∗
i j ≤ θi j, which implies that θi j ≤ θ

∗
i j ≤ θi j.

4) Pl∗ is unique because the objective function in (8a) is
strictly convex in Pl. ω∗ is unique due to ω∗ = 0. By (12d),
we know φ∗ is unique modulo a rigid (uniform) rotation of
all angles. Since θ∗ − φ∗ = c0 · 1, it implies that θ∗ is also
unique modulo a rigid rotation. This proves the uniqueness of
(θ∗, φ∗, ω∗g, P

l∗).

4.2. Convergence
Define the function

V(x) = V1(x) + V2(x) (15)

where

V1(x) =
1
2

∥∥∥Pl − Pl∗
∥∥∥2

+
1
2
‖µ − µ∗‖2 +

1
2
‖φ − φ∗‖2

+
1
2

∥∥∥η+ − η+∗
∥∥∥2

+
1
2

(
θe − θ

∗
e
)T B

(
θe − θ

∗
e
)

+
1
2

∥∥∥η− − η−∗∥∥∥2
+

1
2

(
ωg − ω

∗
g

)T
M

(
ωg − ω

∗
g

)
(16)

V2(x) = −(d − Pl)T(Pl∗ − Pl) − (ϕ+ − η+)T(η+∗ − η+)

− (ϕ− − η−)T(η−∗ − η−) (17)

Then, we have the following result about V(x).

Lemma 2. Suppose Assumptions 1 and 2 hold. Then the func-
tion V(x) has following properties

1. V(x) ≥ 0 and V(x) = 0 holds only at the equilibrium point.
2. The time derivative of V(x(t)) satisfies V̇(x(t)) ≤ 0.

Proof. 1) By (2), we know that V2(x) ≥ 0. From (15), (16)
and (17), we know V(x) ≥ 0 and V(x) = 0 holds only at the
equilibrium point.

2) By (6), the gradient of V is

∇V =



∇dV
∇µV
∇φV
∇η+ V
∇η−V
∇θV
∇ωg V


=



Pl − Pl∗

µ − µ∗

φ − φ∗

η+ − η+∗

η− − η−∗

B
(
θe − θ

∗
e
)

M
(
ωg − ω

∗
g

)


(18)

Then, there is g(Pl) ∈ ∂ f (Pl) such that the time derivative of
V is

V̇ = (Pl − Pl∗)T(−d + Pl + ω − g(Pl) − z − µ)

+ (µ − µ∗)T(Pl − Pm + CBCTφ) +
(
θe − θ

∗
e
)T BCTω

+ (φ − φ∗)T
(
−CBCTµ −Cη− + Cη+ −CBCTz

)
+

(
η+ − η+∗)T

(
−ϕ+ + η+ −CTφ − θ

)
+

(
η− − η−∗

)T
(
−ϕ− + η− + θ + CTφ

)
+ (ω − ω∗)T (Pm − Pl − Dω −CBθe) (19)

where the last item is due to the fact that, for each j ∈ Nl

0 =
(
ω j − ω

∗
j

) (
Pm

j − Pl
j − D jω j

+
∑
i:i→ j

Bi jθi j −
∑

k: j→k

B jkθ jk

)
(20)

Combing (19) and (12), we have

V̇ = (P̃l)T(−d̃ + P̃l + ω̃ − g(Pl) + g(Pl∗) − z̃ − µ̃)

+ φ̃T
(
−CBCTµ̃ −Cη̃− + Cη̃+ −CBCTz̃

)
+ µ̃T(P̃l + CBCTφ̃) +

(
η̃+)T

(
−ϕ̃+ + η̃+ −CTφ̃

)
+

(
η̃−

)T
(
−ϕ̃− + η̃− + CTφ̃

)
+ θ̃TBCTω̃ + ω̃T(−P̃l − Dω̃ −CBθ̃)

= −(Pl − Pl∗)T(d − d∗) +
∥∥∥Pl − Pl∗

∥∥∥2
(21a)

− (η+ − η+∗)T(ϕ+ − ϕ+∗) +
∥∥∥η+ − η+∗

∥∥∥2
(21b)

− (η− − η−∗)T(ϕ− − ϕ−∗) +
∥∥∥η− − η−∗∥∥∥2

(21c)

− (Pl − Pl∗)T
(
g(Pl) − g(Pl∗)

)
− ω̃TDω̃ (21d)

− (P̃l)Tz̃ − φ̃TCBCTz̃ (21e)
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where x̃ = x − x∗.
By the [18, Theorem 1.5.5], we have

−(Pl − Pl∗)T(d − d∗) +
∥∥∥Pl − Pl∗

∥∥∥2
≤ 0 (22)

Similarly, −(η+ − η+∗)T(ϕ+ −ϕ+∗) + ‖η+ − η+∗‖
2
≤ 0 and −(η− −

η−∗)T(ϕ− − ϕ−∗) + ‖η− − η−∗‖2 ≤ 0 also hold.
The convexity of f implies that

−(Pl − Pl∗)T
(
g(Pl) − g(Pl∗)

)
≤ 0 (23)

We also have −ω̃TDω̃ ≤ 0 because D is positive definite. In
addition,

−(P̃l)Tz̃ − φ̃TCBCTz̃ = −z̃T · z̃ ≤ 0 (24)

Then, (21a)-(21e) are all nonpositive, i.e., V̇(x(t)) ≤ 0.

The following result shows the stability of the closed-loop
system (7), (11).

Theorem 3. Suppose Assumptions 1 and 2 hold. Then the tra-
jectory of the closed loop system (7), (11) has following prop-
erties

1. (x(t), Pl(t), η+(t), η−(t)) is bounded.
2. (x(t), Pl(t), η+(t), η−(t)) converges to equilibrium of the

closed-loop system (7), (11).
3. The convergence of x(t) is a point, i.e., x(t)→ x∗ as t → ∞

for some equilibrium point x∗.

Proof. 1) From Lemma 2, we know that (θ(t), ωg(t), µ(t), φ(t),
Pl(t), η+(t), η−(t)) is bounded. By (7c), ωl(t) is also bounded.
Since ∂ f (Pl) is compact, there exists a constant a1 such that∥∥∥Pl + ω − g(Pl) − µ

∥∥∥ < a1 (25)

Define following function

Ṽd(d) =
1
2
‖d‖2 (26)

The time derivative of Ṽd(d) along the closed-loop system is

˙̃Vd = dT(−d + Pl + ω − g(Pl) − µ)

= − ‖d‖2 + dT(Pl + ω − g(Pl) − µ)

≤ − ‖d‖2 + a1 ‖d‖ = −2Ṽd + a1

√
2Ṽd (27)

Thus, Ṽd(d(t)), t ≥ 0 is bounded, so is d(t), t ≥ 0. Similarly, we
can also have that ϕ+(t), t ≥ 0 and ϕ−(t), t ≥ 0 are bounded.

2) By the invariance principle in [24, Theorem 2], we know
that the trajectory x(t) converges to the largest weakly invariant
subset W∗ contained in W := { x | V̇(x) = 0 }, i.e., once a
trajectory enters this subset, it will never departure from it.

From ω̃TDω̃ = 0, we know ω̃ = 0, i.e., ω(t) = ω∗. Note
that (Pl − Pl∗)T

(
g(Pl) − g(Pl∗)

)
> 0 if x , x∗ due to the strict

convexity of f (Pl). Thus, we have Pl(t) = Pl∗ in the set W∗.
Moreover, from (24), we have P̃l(t) = CBCTφ̃(t), or 0 = ˙̃Pl(t) =

CBCT ˙̃φ(t), which implies that ˙̃φ(t) = 0. Then, we have µ̇ j(t) = 0
from (11b). Similarly, ḋ j(t) = 0 by (11a). Up to now, we know
x(t) is constant except ϕ−(t), ϕ+(t) for t → ∞.

Moreover, the equality in (3) holds only whenPΩ(x) = PΩ(y)
or x = PΩ(x) and y = PΩ(y). Thus, for η+(t), η−(t), t → ∞,
there are four combinations:

1. η+(t) = η+∗ and η−(t) = η−∗;
2. η+(t) = η+∗ and ϕ−(t) = PRm

+
(ϕ−(t)) = η−(t), ϕ−∗ =

PRm
+

(ϕ−∗) = η−∗;
3. ϕ+(t) = PRm

+
(ϕ+(t)) = η+(t), ϕ+∗ = PRm

+
(ϕ+∗) = η+∗ and

η− = η−∗;
4. ϕ+(t) = PRm

+
(ϕ+(t)) = η+(t), ϕ+∗ = PRm

+
(ϕ+∗) = η+∗ and

ϕ−(t) = PRm
+

(ϕ−(t)) = η−(t), ϕ−∗ = PRm
+

(ϕ−∗) = η−∗.

Thus, (x(t), Pl(t), η+(t), η−(t)) converges to equilibrium of the
closed-loop system.

3) Fix any initial state x(0) and consider the trajectory
(x(t), t ≥ 0) of the closed-loop system. As x(t) is bounded,
there exists an infinite sequence of time instants tk such that
x(tk) → x̂∗ as tk → ∞, for some x̂∗ ∈ W∗. Using this specific
equlibrium point x̂∗ in the definition of V , we have

V∗ = lim
t→∞

V(x(t)) = lim
tk→∞

V(x(tk))

= lim
x(tk)→x̂∗

V2
(
x(tk)

)
= V2(x̂∗) = 0

Here, the first equality uses the fact that V(t) is nonincreasing in
t while lower-bounded, and therefore must render a limit value
V∗; the second equality uses the fact that tk is the infinite subse-
quence of t; the third equality uses the fact that x(t) is absolutely
continuous in t; the fourth equality is due to the continuity of
V(x), and the last equality holds as x̂∗ is an equilibrium point of
V .

The quadratic part V1 implies that (θ, ωg, Pl, µ, φ, η−, η+) →
(θ∗, ω∗g, P

l∗, µ∗, φ∗, η−∗, η+∗) as t → ∞. Moreover, from (12c),
(12f) and (12g), we can get the corresponding d∗, ϕ−∗, ϕ+∗. This
completes the proof.

5. Case studies

5.1. Test system
In this section, the IEEE 68-bus New England/New York in-

terconnection test system [8] is utilized to illustrate the perfor-
mance of the proposed controller. The diagram of the 68-bus
system is given in Fig.1. We run the simulation on Matlab us-
ing the Power System Toolbox [25]. Although the linear model
is used in the analysis, the simulation model is much more de-
tailed and realistic. The generator includes a two-axis subtran-
sient reactance model, IEEE type DC1 exciter model, and a
classical power system stabilizer model. AC (nonlinear) power
flows are utilized, including non-zero line resistances. The up-
per bound of Pl

j is the load demand value at each bus. Detailed
simulation model including parameter values can be found in
the data files of the toolbox. The objective function of each
controllable load is

f (Pl
j) =


(
Pl

j

)2
− 0.02, Pl

j ≤ −0.2
1
2

(
Pl

j

)2
, −0.2 < Pl

j ≤ 0.2(
Pl

j

)2
− 0.02, 0.2 < Pl

j

(28)

It can be verified that f (Pl
j) is continuous, strictly convex and

nonsmooth.
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Figure 1: IEEE 68-bus system
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Figure 2: Frequency dynamics under AGC and OLC

5.2. Simulation results

We consider the following scenario: at t = 1s, there is a step
change of (3.5, 3.5, 3.5, 3.5, 3.5, 7)p.u. load demand at buses 4,
8, 20, 37, 42, and 52 respectively. Neither the original load
demand nor its change is known. The load estimate method in
Remark 4 is utilized.

At first, we do not set limits to the tie-line power. In this
subsection, we analyze the dynamic performance of the closed-
loop system under the proposed controller OLC. In addition,
automatic generation control (AGC) is tested in the same sce-
nario as a benchmark. The setting of AGC is the same as that in
[13]. The frequency dynamics under OLC and AGC are given
in Fig.2. It is shown that both AGC and OLC can recover the
frequency to the nominal value. They also have similar fre-
quency nadir. Compared with AGC, the frequency under OLC
has faster convergence speed.

The dynamics of µ and controllable load are illustrated in
Fig.3. If tie-line power is not considered, then η−∗ = η+∗ = 0.
From (12e), we know that CBCTµ∗ = 0, i.e., µ of each bus will
converge to the same value. This is shown in the left of Fig.3,
where µ of buses 1 ∼ 5 is given. The right part of Fig.3 illus-
trates the dynamics of controllable load at these buses. They
also converge to the same value except bus 2 and bus 5 as the
objective function is identical. As there is no controllable load
on buses 2 and 5, their value is always zero. This validates the
correctness of the proposed method.

We further take the tie-line limits into account. In this sce-
nario, the active power limit of line (1, 2) is set to be 0. Then, its
tie-line power dynamics with and without limit is given in Fig.4.
The active power is −2.1p.u. if there is no limit. It decreases to
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Figure 3: Dynamics of µ and controllable load
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Figure 4: Active power dynamics of line 1 and controllable load

zero if the limit is considered, which verifies the effectiveness
of the line power control.

If some tie-line limit is reached, the µ of buses near from this
line will diverge. This is illustrated in the left part of Fig.5,
where µ1, µ3, µ4 are all different. We also find that the µ of
buses far from the line still converges to the same value, which
is given in the right part of Fig.5. It is shown that µ19 ∼ µ23
converge to 0.83.

6. Conclusion

In this paper, we investigate the distributed load frequency
control in power systems when the regulation cost is nons-
mooth. In our formulation, both capacity limits of controllable
load and line flow are considered. A distributed controller is
designed, where the Clark generalized gradient is utilized to ad-
dress the nonsmoothness of the objective function. In addition,
we prove the optimality of the equilibrium of the closed-loop
system as well as its asymptotic stability. Moreover, it is also
proved that the convergence is to a specific point. Finally, nu-
merical experiments on the IEEE 68-bus system show that the
frequency is recovered to the nominal value. Compared with
conventional AGC, it has faster convergence speed.
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