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Abstract. We introduce a class of numerical schemes for optimal stochastic control problems

based on a novel Markov chain approximation, which uses, in turn, a piecewise constant pol-
icy approximation, Euler-Maruyama time stepping, and a Gauß-Hermite approximation of the

Gaußian increments. We provide lower error bounds of order arbitrarily close to 1/2 in time and
1/3 in space for Lipschitz viscosity solutions, coupling probabilistic arguments with regularization

techniques as introduced by Krylov. The corresponding order of the upper bounds is 1/4 in time

and 1/5 in space. For sufficiently regular solutions, the order is 1 in both time and space for
both bounds. Finally, we propose techniques for further improving the accuracy of the individual

components of the approximation.

Keywords: Optimal stochastic control, Markov chain approximation schemes, error estimates

1. Introduction

Let (Ω,F,P) be a probability space with filtration {Ft, t ≥ 0} induced by an Rp-Brownian motion
B for some p ≥ 1. We consider a controlled process governed by{

dXs = µ(s,Xs, αs) ds+ σ(s,Xs, αs) dBs, s ∈ (t, T ),
Xt = x,

(1.1)

where µ and σ take values, respectively, in Rd and Rd×p. We assume that the control vector process
α belongs to the set A of progressively measurable processes with values in A ⊆ Rq. For any x ∈ Rd,
we will denote by Xt,x,α

· the unique strong solution of (1.1), under the assumptions specified later.
To simplify the notation, where no ambiguities arise, we will indicate the starting point (t, x) of the
processes involved as a subscript in the expectation, i.e. Et,x[·].

Given T > 0 and two real valued functions g and ψ, namely the running and terminal cost,
respectively, for any x ∈ Rd, t ∈ [0, T ], the value function of the optimal control problem we
consider is defined by

v(t, x) := sup
α∈A

Et,x

[
ψ(Xα

T ) +

∫ T

t

g(s,Xα
s , αs)ds

]
. (1.2)

It is well known that this problem is related to the solution of a second order Hamilton-Jacobi-
Bellman (HJB) equation for which, in the general case, solutions are considered the viscosity sense
(see, for instance, [12]). Furthermore, explicit solutions for this kind of nonlinear equations are rarely
available, so that their numerical approximation becomes vital. The seminal work by Barles and
Souganidis [5] establishes the basic framework for convergence of numerical schemes to viscosity so-
lutions of HJB equations. The fundamental properties required are: monotonicity, consistency, and
stability of the scheme. We recall that, in multiple dimensions, standard finite difference schemes
are in general non-monotone. As an alternative to finite difference schemes, semi-Lagrangian (SL)
schemes [30, 11, 14] are monotone by construction. The schemes we introduce belong to this family.

In general, the provable order of convergence for second order HJB equations is significantly less
than one. By a technique pioneered by Krylov based on “shaking the coefficients” and mollification
to construct smooth sub- and/or super-solutions, [25, 27, 2, 3, 4] prove certain fractional convergence
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orders, mainly using PDE-based techniques which rely on a comparison principle between viscosity
sub- and super-solutions and estimates on the consistency error of the numerical scheme.

Here, we study a new family of SL schemes based on a discrete time approximation of the optimal
control problem. We use purely probabilistic techniques and a direct comparison of the two optimal
control problems to obtain error estimates which are, to our knowledge, the best ones available in
the literature under these weak assumptions.

An important step in order to define our scheme is to approximate the set of controls A by
piecewise constant controls. This introduces an asymmetry between the upper and the lower bound
of the error, and it is the lower bound where we get an improvement over known results.

The approach most closely related to ours is arguably [26], especially Section 5 therein, where
approximations based on piecewise constant policies and subsequently on discrete-time random
walks are studied. The analysis there utilizes a combination of stochastic and analytic techniques,
in particular through controlling the approximation error by the truncation error between the
generator of the controlled process and its discrete approximation, and Itô’s lemma with the dynamic
programming principle to aggregate the local error over time. We will be able to improve the order
of the error bounds partly by using recent improved estimates for the piecewise constant policy
approximation in [23], but also by avoiding the use of the truncation error, the order of which is
limited to 1, and replacing it by a direct estimate of the strong and weak approximation error of
the scheme for the stochastic differential equation.

The main contributions of this paper are as follows.

• We propose new discrete approximations of controlled diffusion processes based on piecewise
constant controls over intervals of length h and M Gauß-Hermite points.

• We present a novel analysis technique for the resulting semi-discrete approximations by
purely probabilistic arguments and direct use of the dynamic programming principle.

This allows us to derive one-sided, lower error bounds of order h(M−1)/2M + ∆x(M−1)/(3M−1) for
timestep h and spatial mesh size ∆x, for Lipschitz viscosity solutions (assumptions (H1) to (H3)
below). They coincide with the two-sided bounds in [14] for the standard linear-interpolation SL
scheme, i.e. M = 2, and improve them for M > 2. The achieved upper bounds are identical to [14],
i.e. of order h1/4 + ∆x1/5. For sufficiently smooth solutions, the corresponding error bounds are of
order 1 in both h and ∆x.

The paper is organised as follows. In Section 2 we present the setting and the main assumptions
for the optimal control problem and we describe the piecewise constant policy approximation. In
Section 3 the Markov-chain approximation scheme is introduced and error bounds are obtained
in Section 4. Section 5 discusses the order obtained in the case of smooth solutions and further
improvements of the components of the scheme, including higher order time stepping and interpola-
tion, while Section 6 demonstrates the improvement achieved by a higher order scheme numerically.
Section 7 concludes.

2. Main assumptions and preliminaries

In what follows, | · | denotes the Euclidean norm in Rn for any n ≥ 1 and ‖ · ‖ its induced matrix
norm. We consider standard assumptions on the optimal control problem:

(H1) A is a compact subset of a separable metric space;
(H2) µ : [0, T ]×Rd×A→ Rd and σ : [0, T ]×Rd×A→ Rd×p are continuous functions and there

exists C0 ≥ 0 such that for any t, s ∈ [0, T ], x, y ∈ Rd, a ∈ A

|µ(t, x, a)− µ(s, y, a)|+ ‖σ(t, x, a)− σ(s, y, a)‖ ≤ C0

(
|x− y|+ |t− s|1/2

)
;

(H3) ψ : Rd → R and g : [0, T ] × Rd × A → R are continuous functions and there exists L ≥ 0
such that for any t, s ∈ [0, T ], x, y ∈ Rd, a ∈ A

|ψ(x)− ψ(y)|+ |g(t, x, a)− g(s, y, a)| ≤ L
(
|x− y|+ |t− s|1/2

)
.
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Under these assumptions one can prove the following regularity result on v:

Proposition 2.1 ([39, Proposition 3.1, Chapter IV]). Let (H1)-(H3) be satisfied. There exists
C ≥ 0 such that for any x, y ∈ Rd and t ∈ [0, T ]

|v(t, x)− v(t, y)| ≤ LC|x− y|

(where L denotes the Lipschitz constant of ψ and C only depends on T and C0 in assumption (H2)).

Hereafter we assume g ≡ 0. Indeed, if this is not the case it is possible to consider the augmented
dynamics (X·, Y·) ∈ Rd+1 with dYs = g(s,Xs, αs)ds and the modified terminal cost ϕ(x, y) :=
ψ(x)+y. Denoting by w(t, x, y) = supα∈A Et,x,y [ϕ(Xα

T , Y
α
T )], it is sufficient to observe that v(t, x) =

w(t, x, 0) to recover the aforementioned case.
A fundamental property satisfied by the value function v is the following Dynamic Programming
Principle (DPP) (see, for instace [39, Theorem 3.3, Chapter IV]): for any 0 ≤ h ≤ T − t, one has

v(t, x) = sup
α∈A

Et,x
[
v(t+ h,Xα

t+h)
]
. (2.1)

The main ideas of our approach apply to a general class of discrete-time schemes. Let N ∈ N∗
and h = T/N > 0. We introduce a time mesh tn = nh, for n = 0, . . . , N .

The first step in our approximation is to introduce a time discretization of the control set. We
consider the set Ah of controls in A that are constant in each interval [tn, tn+1) for n = 0 . . . N − 1,
i.e.

Ah :=
{
α ∈ A : ∀ω ∈ Ω ∃ai ∈ A, i = 0, . . . , N − 1, s.t. αs(ω) ≡

N−1∑
i=0

ai1s∈[ti,ti+1)

}
.

In what follows, we will identify any element of α ∈ Ah by the sequence of random variables ai
taking values in A (denoted by ai ∈ A for simplicity) and will write α ≡ (a0, . . . , aN−1). We denote
by vh the value function obtained by restricting the supremum in (1.2) to controls in Ah, that is

vh(t, x) := sup
α∈Ah

Et,x [ψ(Xα
T )] . (2.2)

Clearly, since Ah ⊆ A, one has for any t ∈ [0, T ], x ∈ Rd

v(t, x) ≥ vh(t, x). (2.3)

Under assumptions (H1)-(H3), an upper bound of order 1/6 for the error related to this approxi-
mation was first obtained by Krylov in [26]. Recently, this estimate has been improved to the order
1/4 in [23], so that one has

v(t, x) ≤ vh(t, x) + Ch1/4 (2.4)

for some constant C. While the estimates in [26] and [23] are obtained for bounded µ, σ and ψ,
it follows by similar but more tedious steps that the results also hold in our framework taking a
constant C growing polynomially in the space variable, as already remarked in [23].

The DPP for the value function vh reads

vh(tn, x) = sup
a∈A

Etn,x
[
vh(tn+1, X

a
tn+1

)
]
. (2.5)

In particular, the restriction of the control set to Ah implies that the supremum in (2.5) is taken
over the set of control values A (compared with (2.1)). The family of schemes we consider are
recursively defined by an approximation of (2.5) and lead to the definition of a numerical solution
V approximating vh.
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3. Markov chain approximation schemes

We present a class of schemes which are based on a Markov chain approximation of the optimal
control problem (2.2). This follows the classical philosophy presented in [28], although they take the
opposite direction and use finite difference approximations to construct Markov chains, while here
we use time stepping schemes and quadrature formulae to define SL schemes. Similar probabilistic
interpretations of such schemes have been given in [11, 26, 15] for the time-dependent case and in
[30] for the infinite horizon case. What is new here is the construction of schemes with provable
higher order error bounds, and the direct use of the dynamic programming principle for the discrete
approximation to derive these bounds.

3.1. Euler-Maruyama scheme. We start with an approximation of the process Xt,x,α
· by the

Euler-Maruyama scheme. For any given α ≡ (a0, . . . , aN−1) ∈ Ah, we consider the following
recursive relation:

Xti+1 = Xti + µ(ti, Xti , ai)h+ σ(ti, Xti , ai) ∆Bi (3.1)

for i = 0, . . . , N − 1. The increments ∆Bi := (Bti+1 −Bti) are independent, identically distributed
random variables such that

∆Bi ∼
√
hN (0, Ip) ∀i = 0, . . . , N − 1. (3.2)

We will denote by X̃tn,x,α
· the solution to (3.1) associated with the control α ≡ (an, . . . , aN−1) ∈ Ah

and such that X̃tn,x,α
tn = x. Under assumptions (H1)-(H2), the rate of strong convergence of the

scheme (3.1) is 1/2, as given, e.g., in [24]. Although the result from there is not directly applicable
here as the coefficients are non-Lipschitz in time due to the jumps in the control process, we can
follow the same steps as in the proof of [32, Theorem 1.1, Chapter I], using the fact that the controls
α ∈ Ah are constant over individual timesteps. Therefore, one has:

Proposition 3.1. Let assumptions (H1)-(H2) be satisfied. Then there exists a constant C̃ ≥ 0
(independent of h) such that for any α ∈ Ah, n = 0, . . . , N, x ∈ Rd, one has

Etn,x
[ ∣∣∣Xα

T − X̃α
T

∣∣∣ ] ≤ C̃(1 + |x|)h1/2.

For completeness, a sketch of the proof is reported in the appendix.

As a consequence, denoting

ṽ(tn, x) := sup
α∈Ah

Etn,x
[
ψ(X̃α

T )
]
,

for any n = 0, . . . , N − 1, x ∈ Rd, thanks to the Lipschitz continuity of ψ, one has

|vh(tn, x)− ṽ(tn, x)| ≤ sup
α∈Ah

∣∣∣Etn,x [ψ(Xα
T )− ψ(X̃α

T )
]∣∣∣ ≤ LC̃(1 + |x|)h1/2. (3.3)

Moreover, ṽ still satisfies a DPP,

ṽ(tn, x) = sup
a∈A

Etn,x
[
ṽ(tn+1, X̃

a
tn+1

)
]
, n = 0, . . . , N − 1. (3.4)

3.2. Gauß-Hermite quadrature. Recalling that ∆Bi ∼
√
hN (0, Ip), we can also write (3.4) as

ṽ(tn, x) = sup
a∈A

∫
Rp

ṽ
(
tn+1, x+ µ(tn, x, a)h+

√
hσ(tn, x, a)y

) e− |y|22

(2π)p/2
dy. (3.5)

The discrete-time scheme we are going to define is based on the Gauß-Hermite approximation of
the right-hand term in (3.5). Let us start for simplicity with the case p = 1.
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ξi λi ξi λi ξi λi

M = 2 ±1 1/2 M = 3 0 2/3 M = 4 ±
√

3−
√

6 (3 +
√

6)/12

±
√

3 1/6 ±
√

3 +
√

6 (3−
√

6)/12

Table 1. Some {(ξi, λi)}i=1,...,M for M = 2, 3, 4. We refer to [10, p. 464] for larger M .

Let M ≥ 2 and H
M

be the Hermite polynomial of order M , i.e.

H
M

(z) = (−1)Mez
2 dM

dzM
e−z

2

=

bM
2 c∑

k=0

(−1)k
M !

k!(M − 2k)!
(2z)M−2k

(see for instance [22, Section 7.8] for this definition and the following results). We denote by
{zi}i=1,...,M the zeros of H

M
and by {ωi}i=1,...,M the corresponding weights, given by

ωi =
2M−1M !

√
π

M2[H
M−1

(zi)]2
, i = 1, . . . ,M

Therefore, defining

λi :=
ωi√
π

and ξi :=
√

2zi, i = 1, . . . ,M,

for any smooth real-valued function f (say f at least C2M ) we can make use of the following
approximation (see [22, p. 395]):∫ +∞

−∞
f(y)

e−
y2

2

√
2π

dy =

∫ +∞

−∞
f(
√

2y)
e−y

2

√
π
dy ≈

M∑
i=1

1√
π
ωif(
√

2zi) =

M∑
i=1

λif(ξi). (3.6)

Indeed, the quadrature formula in (3.6), is exact when the function f is a polynomial of degree
lower or equal to 2M − 1.

Now observe first that λi ≥ 0,∀i = 1, . . . ,M . Moreover, setting f ≡ 1 in (3.6) and using

that equality holds in this case, one gets
∑M
i=1 λi = 1. We can therefore define a sequence of i.i.d.

random variables {ζn}n=0,...,N−1 such that for any n = 0, . . . , N − 1

P(ζn = ξi) = λi, i = 1, . . . ,M.

Using the fact that the quadrature formula integrates linear and quadratic functions exactly with
respect to the Gaußian measure for M ≥ 2, we have E[ζn] = 0 and Var[ζn] = 1, ∀n = 0, . . . , N − 1.

For any control α ≡ (an, . . . , aN−1) ∈ Ah, in the sequel we will denote by X̂tn,x,α
· the Markov

chain approximation of the process X̃tn,x,α
· recursively defined by

X̂ti+1
= X̂ti + µ(ti, X̂ti , ai)h+

√
hσ(ti, X̂ti , ai) ζi, for i = n, . . . , N − 1 (3.7)

with X̂tn = x. Therefore, starting from (3.5) and applying the Gauß-Hermite quadrature formula
(3.6), our scheme will be defined by

v̂(tn, x) = sup
a∈A

∑M
i=1 λiv̂

(
tn+1, x+ µ(tn, x, a)h+

√
hσ(tn, x, a)ξi

)
= sup

a∈A
Etn,x

[
v̂(tn+1, X̂

a
tn+1

)
]
, n = N − 1, . . . , 0,

v̂(tN , x) =ψ(x).

(3.8)

Remark 1. For M = 2, (3.8) is the SL scheme introduced by Camilli and Falcone in [11], for now
without considering interpolation on any spatial grid.

Iterating, we obtain the following representation formula for v̂:

v̂(tn, x) = sup
α∈Ah

Etn,x
[
ψ(X̂α

T )
]
.
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The rate of weak convergence. In this section, we prove the rate of weak convergence of the random

walk X̂α
· defined by (3.7) to the process X̃α

· given by the Euler-Maruyama scheme (3.1).

Proposition 3.2. Let assumptions (H1)-(H2) be satisfied and let M ≥ 2. Then there exists a

constant Ĉ ≡ Ĉ(M) ≥ 0 such that for any function f ∈ C2M (Rd;R) one has∣∣∣ Etn,x[f(X̃a
tn+1

)
]
− Etn,x

[
f(X̂a

tn+1
)
] ∣∣∣ ≤ Ĉ‖D(2M)f‖∞(1 + |x|2M )hM ,

for any x ∈ Rd, a ∈ A, h ≥ 0 and n = 0, . . . , N − 1, and where we denoted for k ∈ N

‖D(k)f‖∞ := sup
z∈Rd

β∈Nd,|β|=k

∣∣∣∣∣ ∂|β|f(z)

∂xβ1

1 . . . ∂xβd

d

∣∣∣∣∣ .
Proof. We adapt a standard argument from numerical quadrature. Let us take for simplicity d = 1
(the case d > 1 works in the same way) and denote z = x + hµ(tn, x, a). By Taylor expansion, we
can write

Etn,x

[
f(X̃a

tn+1
)
]
=

∫ +∞

−∞
f(z +

√
2hσ(tn, x, a)y)

e−y2

√
π
dy

=

∫ +∞

−∞

{ 2M−1∑
k=0

f (k)(z)

k!
(
√
2hσ(tn, x, a)y)

k +
f (2M)(ẑ)

(2M)!
(
√
2hσ(tn, x, a)y)

2M

}
e−y2

√
π
dy,

for some ẑ. In the same way we get

Etn,x

[
f(X̂a

tn+1
)
]
=

M∑
i=1

ωi√
π

{ 2M−1∑
k=0

f (k)(z)

k!
(
√
2hσ(tn, x, a)ξi)

k +
f (2M)(z̃)

(2M)!
(
√
2hσ(tn, x, a)ξi)

2M

}
,

for some z̃. At this point we recall that, by construction, the Gauß-Hermite quadrature formula is
exact for any polynomial of degree ≤ 2M − 1, so for any k ∈ {0, . . . , 2M − 1} we have

1√
π

f (k)(z)

k!
(
√

2hσ(tn, x, a))k
{∫ +∞

−∞
yke−y

2

dy −
M∑
i=1

ωiz
k
i

}
= 0.

This implies that∣∣∣ Etn,x

[
f(X̃a

tn+1
)
]
− Etn,x

[
f(X̂a

tn+1
)
] ∣∣∣

≤
∣∣∣ ∫ +∞

−∞

f (2M)(ẑ)

(2M)!
(
√
2hσ(tn, x, a)y)

2M e−y2

√
π
dy −

M∑
i=1

ωi√
π

f (2M)(z̃)

(2M)!
(
√
2hσ(tn, x, a)zi)

2M
∣∣∣

≤ Ĉ‖f (2M)‖∞hM (1 + |x|2M ),

where we have used the fact that |σ(t, x, a)| ≤ C1(1 + |x|) for some C1 ≥ 0. Calculating explicitly

in the second line
∫ +∞
−∞ 2My2M e−y2

√
π
dy = (2M − 1)!! and by the fact that C1 depends only on C0 in

(H2), the constant Ĉ can be given as

Ĉ =
22M−1

(2M)!
C2M

1

(
2(2M − 1)!! +

∣∣∣(2M − 1)!!−
M∑
i=1

λiξ
2M
i

∣∣∣)
and only depends on M and the constants in assumption (H2). �

Multi-dimensional Brownian motion. In the case of p > 1, it is classical (see, e.g. [13, Section 5.6])
to define an approximation by a tensor product of the formula (3.6), that is∫

Rp

f(
√

2y)
e−|y|

2

πp/2
dy ≈

M∑
i1,...,ip=1

λi1 · · ·λipf(ξi1 , . . . , ξip). (3.9)
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Then, denoting for any i ≡ (i1, . . . , ip) ∈ {1, . . . ,M}p the vector ξi ≡ (ξi1 , . . . , ξip)> ∈ Rp and the
scalar λi = λi1 · · ·λip ∈ R, one can define an approximation to v by

v̂(tn, x) = sup
a∈A

∑
i∈{1...M}p λiv̂

(
tn+1, x+ µ(tn, x, a)h+

√
hσ(tn, x, a) ξi

)
= sup

a∈A
Etn,x

[
v̂(tn+1, X̂

a
tn+1

)
]
, n = N − 1, . . . , 0,

v̂(tN , x) =ψ(x).

(3.10)

This differs from the traditional Markov chain approximation approach taken in [28, Section 5.3],
where monotone finite difference schemes (i.e., those leading to positive weights) are used to define
the matrix of transition probabilities.

It is easy to observe that the construction in (3.9) leads to an exponential growth of the com-
putational complexity in the dimension p, as it requires at each time step and for each node the
evaluation of the solution at Mp points. Retracing the proof of Proposition 3.2, one can deduce

that in order to guarantee a weak error estimates of order hM , it is sufficient to find weights λ̂i
and nodes ξ̂i, i = 1, . . . , M̂ , for some M̂ ∈ N possibly lower than Mp, which integrate exactly all
polynomials of degree lower or equal than 2M −1. Moreover, the probabilistic interpretation of our

scheme also requires that λ̂i ≥ 0, i = 1, . . . , M̂ . Such pairs {(λ̂i, ξ̂i)}i=1,...,M̂ then have to satisfy

Aλ = b, λ ≥ 0,

with A ∈ R`×Mp

and b ∈ R` defined by

A =

 γ1(ξ1) . . . γ1(ξMp)
...

...
...

γ`(ξ1) . . . γ`(ξMp)

 and bi =

∫
Rp

γi(
√

2y)
e−|y|

2

πp/2
dy, i = 1, . . . , `,

where {γ1, . . . , γ`} is a basis for the space of polynomials of degree 2M−1 in Rp and ` =
(

2M−1+p
p

)
.

The existence of a solution of the form λ̂ = (λ̂1, . . . , λ̂M̂ , 0, . . . , 0) for some M̂ ≤ ` follows from
Tchakaloff’s Theorem (see [35], and also [6] for a recent simpler proof).

A constructive method for independent Gaußian random variables as in the present case is
proposed in [16], while an efficient procedure for the general, dependent case applied to the uniform
measure is given in [36]. This gives a substantial reduction for large p and moderate M in particular.
Table 4.1 in [36] gives numerical values for ` versus Mp for M = 3 and different p, such as: p = 2:
` = Mp = 9; p = 3: ` = 23,Mp = 27; p = 5: ` = 96,Mp = 243; p = 10: ` = 891,Mp = 59049.

We end by noting that sparse grid quadrature (see, e.g. [20]), which has been shown to overcome
the curse of dimensionality for integrals of sufficiently regular functions, is not suitable here because
of the negativity of weights which is essential to their construction. On the other hand, applying
cubature on Wiener space (see [29]) may be a possible extension.

In what follows, we will use the notation {(λ̂i, ξ̂i)}i=1,...,M̂ to generalise (3.8) to any p ≥ 1.

Lipschitz regularity of approximation. We conclude this section with a regularity result for v̂. This
is an important property of our scheme strongly exploited in Proposition 3.4 and Section 4.

Proposition 3.3. Let (H1)-(H3) be satisfied. There exists C ≥ 0 such that

|v̂(tn, x)− v̂(tn, y)| ≤ LC|x− y|

for any x, y ∈ Rd and n = 0, . . . , N (where L is the Lipschitz constant of ψ and C only depends on
T and the constant C0 in Assumption (H2)).

Proof. The result can be proved by backward induction in n. For n = N , v̂(t
N
, ·) is Lipschitz

with constant LN := L given by (H3). Let v̂(ti, ·) be Lipschitz continuous with constant Li (only
depending on T and C0 in Assumption (H2)) for any i = n+ 1, . . . , N . By classical estimates and
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thanks to the definition of (λ̂i, ξ̂i) such that
∑M̂
i=1 λ̂iξ̂i = 0 and

∑M̂
i=1 λ̂i|ξ̂i|2 = p, one can show by

a straightforward calculation that

E
[ ∣∣∣X̂tn,x,a

tn+1
− X̂tn,y,a

tn+1

∣∣∣2 ] ≤ (1 + Ch) |x− y|2.

Hence, by the definition of v̂ one has

|v̂(tn, x)− v̂(tn, y)| ≤ Ln+1E
[ ∣∣∣X̂tn,x,a

tn+1
− X̂tn,y,a

tn+1

∣∣∣ ] ≤ Ln+1(1 + Ch)1/2|x− y|,

where C only depends on C0 in (H2), which gives Ln ≤ Ln+1(1 + Ch)1/2. Iterating, one obtains
Ln ≤ L(1 + Ch)N/2 ≤ LeChN/2 ≤ LeCT , which concludes the proof. �

3.3. The fully discrete scheme. In order to be able to compute the numerical solution practically
in reasonable complexity, we need to introduce some sort of recombination, otherwise the total
number of nodes of all trajectories grows exponentially in N .

Let ∆x ≡ (∆x1, . . . ,∆xd) ∈ (R>0)d and consider the space grid G∆x := {xm = m∆x : m ∈ Zd}.
Let I[·] denote the standard multilinear interpolation operator with respect to the space variable
which satisfies for every Lipschitz function φ (with Lipschitz constant Lφ):

I[φ](xm) = φ(xm), ∀m ∈ Zd, (3.11a)

|I[φ](x)− φ(x)| ≤ Lφ|∆x|, (3.11b)

for any functions φ1, φ2 : Rd → R, φ1 ≤ φ2 ⇒ I[φ1] ≤ I[φ2]. (3.11c)

We define an approximation on this fixed grid, denoted by V , by: V (tn, xm) = sup
a∈A

∑M̂
i=1 λ̂i I[V ]

(
tn+1, xm + µ(tn, xm, a)h+

√
hσ(tn, xm, a) ξ̂i

)
,

V (t
N
, xm) =ψ(xm),

(3.12)

for n = N − 1, . . . , 0 and m ∈ Zd. We will refer to this as the fully discrete scheme.
From the properties of multilinear interpolation, for all x ∈ Rd there exist qk(x) ≥ 0, k ∈ Zd with∑
k qk(x) = 1 and |{k : qk > 0}| ≤ 2p such that I[φ](x) =

∑
k∈Zd qk(x)φ(xk). Then with (3.12),

V (tn, xm) = sup
a∈A

∑
k∈Zd

λ̂m,k(tn, a) V (tn+1, xk)

with λ̂m,k(tn, a) :=
∑M̂
i=1 λ̂i qk

(
xm+µ(tn, xm, a)h+

√
hσ(tn, xm, a) ξ̂i

)
≥ 0 and

∑
k λ̂m,k(tn, a) = 1.

Therefore, λ̂m,k(tn, a) are interpretable as transition probabilities of a controlled Markov chain

with state space G∆x. The number of transitions from node m is |{k : λ̂m,k(tn, a) > 0}| ≤ 2d`.

Proposition 3.4. Let assumptions (H1)-(H3) be satisfied. Then, there exists C ≥ 0 such that

sup
n=0,...,N,

m∈Zd

|v̂(tn, xm)− V (tn, xm)| ≤ C |∆x|
h

.

Proof. The result follows by properties (3.11b)-(3.11c) and by the Lipschitz continuity of v̂ proved
in Proposition 3.3 (see also [14, Lemma 7.1]). �

Observe that, in absence of further regularity assumptions, this introduces the following “inverse
CFL condition” for the convergence of the fully discrete scheme: |∆x|/h→ 0 as |∆x|, h→ 0.
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4. Error estimates

In order to obtain error estimates for the scheme described in Section 3, we will adapt the
technique of “shaking coefficients” and regularization introduced by Krylov in [25, 27] and studied
later by many authors (see for instance [2, 3, 4]) for obtaining the rate of convergence of monotone
numerical scheme for second order HJB equations. We do so without passing through the PDE
consistency error and work instead with the direct estimates we presented in the previous section.

We refer to Section 5 for a discussion of the regular case.

4.1. Regularization. Let ε > 0 and let Eh be the set of Rd-valued progressively measurable
processes e bounded by ε which are constant in each time interval [ti, ti+1], that is,

Eh :=
{
e, progr. meas.:∀ω ∈ Ω∃ei ∈ Rd, |ei| ≤ ε, i = 0, . . . , N − 1 s.t. es(ω) =

N−1∑
i=0

ei1s∈[ti,ti+1)

}
.

For any pair (α, e) ∈ Ah × Eh, let us consider the process X̃tn,x,α,e
· defined by the following ε-

perturbation of the dynamics (3.1):

X̃ti+1
= X̃ti + µ(ti, X̃ti + ei, ai)h+ σ(ti, X̃ti + ei, ai) ∆Bi, (4.1)

for i = n, . . . , N − 1 with X̃tn = x. We define the following “perturbed” value function:

vε(tn, x) := sup
α∈Ah,e∈Eh

Etn,x
[
ψ(X̃α,e

T )
]

n = 0, . . . , N , x ∈ Rd. (4.2)

Proposition 4.1. Let assumptions (H1)-(H3) be satisfied. Then there exists a constant C ≥ 0
such that for any n = 0, . . . , N and x, y ∈ Rd

|vε(tn, x)− vε(tn, y)| ≤ LC|x− y| and |ṽ(tn, x)− vε(tn, x)| ≤ LCε.

Proof. The Lipschitz continuity of vε follows by the standard estimate

E
[

sup
i=n,...,N

∣∣∣X̃tn,x,α,e
ti − X̃tn,y,α,e

ti

∣∣∣] ≤ C|x− y|, n = 0, . . . , N , x, y ∈ Rd.

Let us fix a control α ∈ Ah and e ∈ Eh. For any i = n, . . . , N − 1, By the definition of processes
(3.1) and (4.1) one has for any i = n, . . . , N − 1

X̃tn,x,α
ti+1

− X̃tn,x,α,e
ti+1

=
(
X̃tn,x,α
ti − X̃tn,x,α,e

ti

)
+ h
(
µ(ti, X̃

tn,x,α
ti , ai)− µ(ti, X̃

tn,x,α,e
ti + ei, ai)

)
+
(
σ(ti, X̃

tn,x,α
ti , ai)− σ(ti, X̃

tn,x,α,e
ti + ei, ai)

)
∆Bi.

Using the fact that E[∆Bi] = 0 and E[|∆Bi|2] = ph, and the Lipschitz continuity of b and σ
(assumption (H2)), a straightforward calculation shows that

Etn,x
[∣∣X̃α

ti+1
− X̃α,e

ti+1

∣∣2] ≤ (1 + Ch
)
Etn,x

[∣∣X̃α
ti − X̃

α,e
ti

∣∣2]+ ε2Ch,

with C a positive constant independent of α, e and h. By iteration we finally get

Etn,x
[∣∣X̃α

ti − X̃
α,e
ti

∣∣2] ≤ ε2
i−1∑
k=n

Ch(1 + Ch)k ≤ ε2CTeCT ,

for any i = n, . . . , N and we can conclude that there exists C ≥ 0 such that

|ṽ(tn, x)− vε(tn, x)| ≤ sup
α∈Ah,e∈Eh

Etn,x
[ ∣∣∣ψ(X̃α

T )− ψ(X̃α,e
T )

∣∣∣ ] ≤ LCε.
�
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We point out that for the perturbed value function vε the following DPP holds:

vε(tn, x) = sup
a∈A,|e|≤ε

Etn,x
[
vε(tn+1, X̃

a,e
tn+1

)
]
, n = 0, . . . , N − 1. (4.3)

The step that follows consists in a regularization of the function vε. We consider a smooth function
δ : Rd → [0,+∞) supported in the unit ball B1(0) with

∫
Rd δ(x) dx = 1, and we define {δε}ε>0 as

the sequence of mollifiers δε(x) := ε−dδ (x/ε) . Then define, for any n = 0, . . . , N ,

vε(tn, x) :=

∫
Rd

vε(tn, x− ξ)δε(ξ)dξ. (4.4)

Proposition 4.2. Let assumptions (H1)-(H3) be satisfied. Then,

(i) there exists C ≥ 0 such that∣∣vε(tn, x)− vε(tn, x)
∣∣ ≤ LCε n = 0, . . . , N, x ∈ Rd;

(ii) the function vε(tn, ·) is C∞ for n = 0, . . . , N and for any k ≥ 1 there is C ≥ 0 such that

sup
n=0,...,N

∥∥D(k)vε(tn, ·)
∥∥
∞ ≤ LCε

1−k; (4.5)

(iii) vε satisfies the following super-dynamic programming principle

vε(tn, x) ≥ sup
a∈A

Etn,x
[
vε(tn+1, X̃

a
tn+1

)
]
, n = 0, . . . , N − 1, x ∈ Rd. (4.6)

Proof. Properties (i)-(ii) follow by the properties of mollifiers and the Lipschitz continuity of vε

(Proposition 4.1). It remains to prove (iii). By the definition of vε, equality (4.3) and using the

fact that for any a ∈ A, ξ ∈ Bε(0), n = 0, . . . , N − 1, one has X̃tn,x−ξ,a,ξ
tn+1

= X̃tn,x,a
tn+1

− ξ, one obtains

vε(tn, x) ≥
∫
Rd

sup
a∈A

Etn,x−ξ
[
vε(tn+1, X̃

a,ξ
tn+1

)
]
δε(ξ)dξ ≥ sup

a∈A
Etn,x

[ ∫
Rd

vε(tn+1, X̃
a
tn+1
− ξ)δε(ξ)dξ

]
,

which concludes the proof. �

4.2. Improved lower bound. Applying (3.3), Proposition 4.1 and Proposition 4.2(i), we obtain

v(tn, x) ≥ vε(tn, x)− LC̃(1 + |x|)h1/2 − LCε, (4.7)

for some new C ≥ 0. Moreover, by Proposition 4.2 ((ii) and (iii)) and Proposition 3.2 we also have

v̂(tn, x)− vε(tn, x) ≤ sup
a∈A

Etn,x
[
v̂(tn+1, X̂

a
tn+1

)− vε(tn+1, X̂
a
tn+1

)
]

+ LC(1+|x|2M )ε1−2MhM .

We can then iterate this inequality to get

v̂(tn, x)− vε(tn, x) ≤ ‖v̂(tN , ·)− vε(tN , ·)‖∞ + LC(1 + |x|2M )ε1−2MhM−1, (4.8)

where we have used that for some C ≥ 0

sup
α∈Ah

Etn,x
[

sup
i=n,...,N

∣∣X̂α
ti

∣∣2M] ≤ C(1 + |x|2M
)
.

Hence, combining (4.8) and (4.7), we can conclude that for any n = 0, . . . , N, x ∈ Rd

v(tn, x) ≥ v̂(tn, x)− LC(1 + |x|2M )
(
ε1−2MhM−1 + h1/2 + ε

)
.

Balancing the terms with ε and h, i.e. taking ε = h(M−1)/2M , by 1/2 > (M − 1)/2M one has

v(tn, x) ≥ v̂(tn, x)− LC(1 + |x|2M )h(M−1)/2M . (4.9)

To conclude, the interpolation error has to be added giving an overall error of

O
(
h(M−1)/2M +

|∆x|
h

)
.
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Optimising the choice of ∆x with respect to h we get |∆x| ∼ h(3M−1)/2M . This effectively leads to
order (M − 1)/(2M) in time and (M − 1)/(3M − 1) in space, which can be made arbitrarily close
to 1/2 and 1/3, respectively, by choosing M large enough.

Remark 2 (Comparison with existing results). By a Taylor expansion it is possible to compute
the consistency error of the scheme with respect to the associated HJB equation. Considering, for
simplicity, the uncontrolled one-dimensional (p = d = 1) case with µ ≡ 0, using the fact that∑M
i=1 λi = 1,

∑M
i=1 λiξ

2
i = 1 and

∑M
i=1 λiξ

2k+1
i = 0 (∀k ∈ N), one gets

1

h

(
v(tn+1, x)−

M∑
i=1

λiv(tn, x+
√
hσ(tn, x)ξi)

)
= vt(tn, x)− 1

2
(σ(tn, x))2vxx(tn, x) +

h

2
vtt(tn, x)− h

4!
(σ(tn, x))4v4x(tn, x)

M∑
i=1

λiξ
4
i +O(h2),

which shows that the scheme has order 1 consistency, for all M . Applying the results in [14], this
would lead to error estimates of order h1/4 + ∆x/h, i.e., with the optimal choice of ∆x order 1/4
in h and 1/5 in ∆x. A similar limitation applies to the analysis in [26].

The improvement we get for the lower bound is due to the fact that, splitting the two contribu-
tions of the error coming from Euler-Maruyama time stepping and the Gauß-Hermite quadrature
formula, we can reduce the second one by increasing M , whereas for the first one the lower regularity
requirement allows us to get order 1/2.

4.3. Upper bound. The first important observation is that the estimates based on the convexity
of the supremum operator (Proposition 4.2(iii)) work only in the direction of the lower bound. Due
to the regularity of the numerical solution (see Proposition 3.3), we can apply the approach from
[2, 25, 27] to reverse the role of numerical and exact solution and exploit the same arguments by
regularization of v̂. However, to estimate the error introduced by the piecewise approximation of
the controls we rely on (2.4). This restricts the convergence rate to order 1/4 in h and 1/5 in ∆x
and hence it will not lead to an improvement with respect to the rates in [14] even for large M .

5. The regular case and improvements

5.1. The regular case. If the value function v can be shown to be sufficiently smooth, the regu-
larization step is not necessary and it is also possible to consider the rate of weak convergence of
the Euler-Maruyama scheme, which is one, and under differentiability assumptions on ψ this gives

sup
α∈Ah

∣∣∣Etn,x[ψ(Xα
T )− ψ(X̃α

T )
]∣∣∣ ≤ Ch.

Thus, we obtain the following lower estimate

v(tn, x) ≥ v̂(tn, x) + C(1 + |x|2M )hM−1 + Ch, (5.1)

which is of order 1 as we would expect in the regular case. For sufficiently smooth functions, the
interpolation error reduces to |∆x2|/h. This, together with (5.1), gives estimates for the lower

bound of order O(h+ |∆x|
2

h ). It is also shown in [23] that 0 ≤ v− vh ≤ Ch holds if vh is sufficiently
smooth. For |∆x| ∼ h this leads to error estimates of order 1. In many cases, this corresponds to
the practically observed situation so that choosing |∆x| ∼ h is sufficient to observe convergence,
with order 1, of the fully discrete scheme.

5.2. Higher order time stepping. In the smooth case it can also be beneficial to consider higher
order approximation schemes for the stochastic differential equation (in the non-smooth case, the
necessity of heavier regularization neutralizes the improvements from the higher order schemes).
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For instance, in the case of coefficients independent of time, one could adapt the weak-second order
Taylor scheme (see [24])

Xtn,x
tn+1

=x+ µ(x)h+
(
− 1

2
σσx(x) +

1

2
µµx(x) +

1

4
µxxσ

2(x)
)
h2 + σ(x)∆Bi

+
1

2
σσx(x)∆B2

i +
(1

2
µxσ(x) +

1

2
µσx(x) +

1

4
σxxσ

2(x)
)
h∆Bi

to the controlled equation (1.1) and obtain an error contribution of order h2 from the time stepping
scheme for the semi-discrete approximation. Retracing the steps of the proof of Proposition 3.2,
M ≥ 2 is still sufficient to guarantee order 2 for the Gauß-Hermite approximation, as the higher
order terms resulting from B2

i are integrated sufficiently accurately. The overall lower bound of
the error for the fully discrete scheme would be O(h2 + |∆x|2/h), which leads to order 2 in h and
4/3 in |∆x|. However, no improvement of the upper bound is guaranteed due again to the control
approximation, which, as explained in [23], can be improved only if vh is smooth too, which is
usually not the case even if v is.

5.3. Higher order interpolation. A remaining bottleneck is the accumulated interpolation error
|∆x|2/h, which is dictated by the need for (multi-)linear interpolation to ensure the monotonicity
of the scheme. Some recent results (see [34]) indicate that monotonicity of the interpolation step is
not needed to ensure convergence of the scheme, as long as the interpolation is “limited” to avoid
overshoots. An interesting example is the monotonicity preserving cubic interpolation (see [19], and
[14, Section 6] for an application to semi-Lagrangian schemes) which preserves the monotonicity
of the input data in intervals where the data are monotone, and is of high order if the data are
monotone overall. In special cases where the monotonicity of the value function is known a priori
(such as typical utility maximisation problems in finance), this may lead to a practical improvement
of the order, as evidenced in our numerical tests, although a theoretical proof of the higher order
seems difficult.

6. Numerical tests

In what follows, as application of our method and to test its numerical properties, we consider
a problem from mathematical finance which consists in pricing a European option under a Black-
Scholes model with unequal lending and borrowing rates. This model, originally proposed in [9]
and analysed analytically in [1] as special case of the framework studied therein, has frequently
been used as a test case for numerical methods in the literature (see, e.g., [18, 38] for the solution
of HJB PDEs by discretisation and penalisation, respectively, [21, 7, 8] for regression-based BSDE
methods, and [17] for a deep learning method for the PDE solution).

The relaxation of the assumption of a single funding rate has recently attracted renewed attention
in the financial industry in the context of collateralization (see, e.g., [31]).

The market frictions introduce a nonlinearity of the pricing rule with respect to the payoff and an
asymmetry between long and short positions in the option. We focus here on the latter. Appendix
A.1 in [18] gives a derivation – by a hedging argument – of the following HJB equation for the value
u(s, t) of the option at time t given a value of the underlying asset of s,

∂tu+
1

2
σ2s2∂ssu+ sup

q∈{rb,rl}

{
q(s∂su− u)

}
= 0,

considered with a terminal condition u(T, s) = ψ(s), where ψ is the payoff function of the option at
maturity T , rb and rl are the borrowing and lending rates, respectively, and σ the volatility. With
the change of variable x = log(s) one can pass to the function v(t, x) := u(t, ex) as solution of

∂tv +
1

2
σ2∂xxv −

1

2
σ2∂xv + sup

q∈{rb,rl}

{
q(∂xv − v)

}
= 0. (6.1)
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We note that this PDE is semi-linear, with a nonlinearity in the first and zero order terms. In the
situation of a fixed, globally constant optimiser q, the equation has constant coefficients.

The option price can be interpreted as the value function of a control problem as follows,

v(t, x) = sup
ζ∈Q

Et,x
[
e−

∫ T
t
ζr drψ(exp(Xζ

T ))
]
,

with the set Q of progressively measurable processes with values in {rb, rl} and Xζ
T = x+

∫ T
t

(ζr −
σ2/2) dr +

∫ T
t
σ dBr.

As the volatility is constant, independent of the control process, this is an ideal test for our
method as it singles out the error from the Markov chain approximation and allows us to assess the
improvement achieved by a higher order quadrature rule. The optimal feedback control is piecewise
constant as a function of both time and space, with a small number of jump points for practically
relevant payoffs.

This fits into the previous framework with the minor extension of a controlled discount factor.
For the value function vh of the problem with piecewise constant control processes we have the
following DPP:

vh(t, x) = sup
q∈{rb,rl}

Et,x
[
e−qhv(t+ h,Xq

t+h)
]
, (6.2)

where Xt,x,q
t+h = x+(q− σ2

2 )h+σ(Bt+h−Bt). Therefore, adapting to the present case the definitions
given in Section 3, in particular (3.12), we can define a fully discrete scheme by

V (tn, xm) = sup
q∈{rb,rl}

M∑
i=1

e−qhλi I[V ]
(
tn+1, xm + (q − σ2

2
)h+

√
hσ ξi

)
with n = 0, . . . , N − 1 and m = 0, . . . , J .

We consider as terminal conditions a a call payoff

ψ(s) = (s−K)+

and a so-called butterfly payoff

ψ(s) = 0.25
(
(s−K1)+ − 2(s− 0.5(K1 +K2))+ + (s−K2)+

)
.

The parameters used are given in Table 2.

rl rb σ K1 K2 K T
0.1 0.15 0.4 100 300 100 1

Table 2. Parameters used in numerical experiments (same as in [38] with rf = 0).

The call payoff and numerical solution for the value function are given in Figure 1, left. The
butterfly payoff is shown in Figure 1, right, while the numerical approximation to the value function
is shown in Figure 2, left, blue solid curve. In the call case, the optimal control is constant at
q = rb. For the butterfly, in addition to (rl, rb) = (0.1, 0.15), as used elsewhere throughout the
paper, we also plot the value functions for (rl, rb) = (0.1, 0.1) (dash-dotted magenta curve) and
(rl, rb) = (0.15, 0.15) (dashed black curve), which are seen to be strictly smaller. This demonstrates
that the constant strategies are sub-optimal.

The focus of our tests is to establish whether a higher order version of the semi-Lagrangian
scheme with M > 2, in particular the case M = 4, leads to better accuracy and higher convergence
rate than the standard case M = 2. To this end, we compute numerical approximations with an
increasing number of timesteps, N .

We note that the Euler scheme for fixed control is exact in this setting, and the time discretisation
error therefore of order h3 for M = 4, provided smooth enough solutions. In order to balance this
term and the interpolation error of order (∆x)2/h, we choose ∆x ∼ h2 (an ‘inverse CFL condition’)
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Figure 1. Left: call option payoff (dashed black line) and solution at t = 0 (solid
blue line). Right: butterfly option payoff.

or J ∼ N2. In the case of M = 2, this makes the spatial error negligible compared to the time
stepping error of order h.

In Table 3, we list the error evaluated in the maximum norm over a suitable spatial interval and
the resulting estimated convergence order, for the call payoff (observe that in this case the problem
becomes linear with q = rb and an exact solution is available). In this case, as the optimal control
is constant, this allows us to verify the achievable order in the simplest case of a linear problem
with constant coefficients. Indeed, the order is approximately 1 for M = 2 and 3 for M = 4.

M = 2 M = 4
k error order CPU (s) error order CPU (s)
1 2.25E-01 - 0.02 5.99E-01 - 0.04
2 5.97E-02 1.91 0.03 6.94E-02 3.11 0.08
3 2.64E-02 1.18 0.13 9.80E-03 2.82 0.47
4 1.20E-02 1.13 0.92 2.63E-03 1.90 1.54
5 6.06E-03 0.99 3.85 3.48E-04 2.92 8.10
6 3.28E-03 0.88 26.00 3.00E-05 3.54 59.58
7 1.75E-03 0.91 276.01 2.91E-06 3.36 613.85
8 9.02E-04 0.95 2382.37 4.40E-07 2.73 4834.02

Table 3. Call option. Refinements N = 24 · 2k and J = N2/4 for k = 1, . . . , 8.
Local error computed for s ∈ [70, 90].

The corresponding results for the butterfly payoff are given in Table 4 (in this case, we do not
have an exact solution and the error is considered as the difference between numerical solutions for
subsequent mesh refinements). A typical shape of the error as a function of s (at t = 0) is shown
in Figure 2, right. Here, the optimal control is piecewise constant in space, switching from rb to rl
at a time-dependent value of s, between 150 and 200 in this case. This results in a ‘kink’ in the
controlled term in (6.1), and therefore the best regularity we can expect is that uxx is Lipschitz
at this point, and smooth everywhere else. We therefore show separately the maximum error in
two different intervals, namely [30, 70], sufficiently far from the non-smooth point, and [130, 170],
containing the non-smooth point.

The order of the scheme with M = 2 is still 1 in both cases. For M = 4, the order in the first
interval is still around 3, whereas it is reduced to around 2 close to the non-smooth point.
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Figure 2. Butterfly option. Left: solution at t = 0 (solid blue curve), compared
with the solution of the linear problems rl = rb = 0.1 (dash-dotted magenta curve)
and rl = rb = 0.15 (dashed black curve). Right: difference between solutions
at t = 0 computed with two subsequent mesh refinements (k = 7 and k = 8,
corresponding to last line in Table 4).

M = 2 M = 4
s ∈ [30, 70] s ∈ [130, 170]

CPU(s)
s ∈ [30, 70] s ∈ [130, 170]

CPU(s)
k error order error order error order error order
1 1.39E 00 - 1.81E 00 - 0.01 1.11E 00 - 1.36E 00 - 0.01
2 7.65E-02 4.18 1.81E-01 3.33 0.01 1.69E-01 2.72 3.74E-01 1.86 0.02
3 1.65E-02 2.21 5.13E-02 1.82 0.02 2.40E-02 2.81 6.39E-02 2.55 0.05
4 1.02E-02 0.70 3.75E-02 0.45 0.10 3.63E-03 2.73 1.53E-02 2.06 0.28
5 4.65E-03 1.13 1.44E-02 1.38 0.80 1.35E-03 1.42 5.39E-03 1.51 1.10
6 3.04E-03 0.61 1.13E-02 0.35 3.98 4.03E-04 1.75 1.44E-03 1.91 7.12
7 1.89E-03 0.68 4.99E-03 1.18 28.54 5.48E-05 2.88 3.51E-04 2.03 54.76
8 8.46E-04 1.16 2.32E-03 1.10 302.29 5.77E-06 3.25 1.57E-04 1.16 530.14

Table 4. Butterfly option. Refinements N = 23 · 2k and J = N2/8 for k = 1, . . . , 8.

Finally, in Table 5, we report results where we replace the piecewise linear spatial interpolation
with the piecewise cubic, and piecewise monotone interpolation defined in [19], as discussed in
Section 5.3. Conjecturing an interpolation error of order ∆x4 per timestep, the most efficient
refinement is achieved by balancing the time accumulated error ∆x4/h with h3 (for M = 4) and
we hence choose ∆x ∼ h, or J ∼ N . The results are very similar to those in Table 4, but obtained
for a significantly smaller number of spatial nodes. Due to the higher computational cost of the
interpolation, though, this only results in savings for the highest refinement levels reported here.

7. Conclusions and perspectives

This paper analyses numerical schemes for HJB equations based on a discrete time approximation
of the optimal control problem. Using purely probabilistic arguments and under very general
assumptions, in Section 4 we give a bound for the solution generated by such an approximation.
The error bound obtained in this way allows us to improve one side of previous results from the
literature. In ongoing work [33], we are investigating the use of duality to obtain symmetric bounds.

The theoretically obtained convergence orders, although sharper than previously known results,
are still not sharp in applications, where the solution is often at least piecewise more regular than
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M = 2 M = 4
s ∈ [30, 70] s ∈ [130, 170]

CPU(s)
s ∈ [30, 70] s ∈ [130, 170]

CPU(s)
k error order error order error order error order
1 1.05E-01 - 5.16E-01 - 0.01 4.39E-02 - 2.06E-01 - 0.03
2 5.78E-02 0.86 2.00E-01 1.37 0.02 2.33E-02 0.91 1.18E-01 0.80 0.06
3 1.58E-02 1.87 7.91E-02 1.34 0.04 1.03E-02 1.18 4.23E-02 1.48 0.18
4 1.14E-02 0.47 3.64E-02 1.12 0.09 4.22E-03 1.29 1.62E-02 1.39 0.73
5 5.28E-03 1.11 1.54E-02 1.24 0.38 1.45E-03 1.54 5.44E-03 1.57 2.79
6 3.07E-03 0.78 1.18E-02 0.38 6.66 4.13E-04 1.81 1.36E-03 2.00 13.22
7 1.86E-03 0.72 5.01E-03 1.24 27.54 5.51E-05 2.91 3.47E-04 1.98 53.53
8 8.34E-04 1.16 2.30E-03 1.12 111.57 6.17E-06 3.16 1.56E-04 1.15 218.77

Table 5. Butterfly option. Refinements N = 23 · 2k and J = N/16 for k =
1, . . . , 8, using “monotonicity preserving” third order interpolation.

is assumed for the analysis. The new technique of splitting the total error into contributions from
different approximation stages, however, allows us to understand why our higher order version
outperforms the standard semi-Lagrangian scheme in numerical tests, despite the fact that the
consistency order used in the traditional analysis is identically 1 for all schemes.

Acknowledgements: The first author acknowledges Olivier Bokanowski for a preliminary dis-
cussion on the subject.

Appendix A. Bounds for the Euler-Maruyama approximation

We consider the Euler-Maruyama approximation given by (3.1) for α ≡ (a0, . . . , aN−1) ∈ Ah.

This leads to the following expression for X̃tn,x,α
tk

for k = n, . . . , N :

X̃tn,x,α
tk

= x+

k−1∑
i=n

∫ ti+1

ti

µ(ti, X̃
tn,x,α
ti , ai) ds+

∫ ti+1

ti

σ(ti, X̃
tn,x,α
ti , ai) dBs.

Moreover, by the very definition of Xtn,x,α
· :

Xtn,x,α
tk

= x+

k−1∑
i=n

∫ ti+1

ti

µ(s,Xtn,x,α
s , ai) ds+

∫ ti+1

ti

σ(s,Xtn,x,α
s , ai) dBs.

Hereafter, we do not keep track of individual constants and denote by C any nonnegative constant
depending only on T and C0 in assumption (H2) (an explicit computation of the constants involved
can be found in [33, Appendix A.1]). Using the Cauchy-Schwartz inequality and Itô isometry, and
(H2), one can easily show that

Etn,x
[
|X̃α

tk
−Xα

tk
|2
]
≤ Ch

k−1∑
i=n

Etn,x

[
|X̃α

ti −X
α
ti |

2 + h+ sup
s∈[ti,ti+1]

∣∣Xα
s −Xα

ti

∣∣2] .
We now estimate the last term on the right-hand side. For any α ∈ A, by the Cauchy-Schwartz
and Doob maximal inequalities, one has

Etn,x

[
sup

s∈[ti,ti+1]

∣∣Xα
s −Xα

ti

∣∣2] ≤ C Etn,x
[
h

∫ ti+1

ti

|b(r,Xα
r , αr)|2dr +

∫ ti+1

ti

|σ(r,Xα
r , αr)|2dr

]
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for some constant C ≥ 0 independent of α. Then, thanks to the linear growth of the coefficients b
and σ due to assumption (H2), one obtains

Etn,x

[
sup

s∈[ti,ti+1]

∣∣Xα
s −Xα

ti

∣∣2] ≤ C Etn,x
[
h+

∫ ti+1

ti

|Xα
r |2dr

]
.

Recalling that by classical estimates on the process Xtn,x
· (see for instance [37, Theorem 3.1]) one

has

Etn,x
[

sup
s∈[ti,ti+1]

|Xα
s |

2
]
≤ C

(
1 + |x|2

)
,

we can put these estimates together to obtain

Etn,x
[
|X̃α

tk
−Xα

tk
|2
]
≤ Ch

k−1∑
i=n

Etn,x
[
|X̃α

ti −X
α
ti |

2
]

+ Ch(1 + |x|2).

Then, using the discrete version of Gronwall’s inequality, one can conclude that for any k = n, . . . , N ,

Etn,x
[
|X̃α

tk
−Xα

tk
|2
]
≤ Ch(1 + |x|2)

for some constant C independent of h and α ∈ Ah. The result of Proposition 3.1 then follows
from Hölder’s inequality.
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