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Abstract

This paper proposes an anti-windup like scheme for an LTI plant with rate-limits. The

plant is controlled using a model-reference adaptive controller, making the anti-windup

design problem highly nonlinear. It is assumed that the rate-limit is modelled as a first

order feedback loop for which the state is unavailable, but that the bandwidth of this

loop is known. The anti-windup scheme uses a “hedging” term and a “positive µ” term.

The structure of the problem makes the rate-limit case considerably more difficult than

the magnitude limit case. Nevertheless it is proved that convergence of the system

state to the ideal model can be accomplished under conditions similar to those found

in anti-windup compensation for purely linear systems.
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1. INTRODUCTION

Control constraints, an ever-present nonlinearity, are often a thorn in the side of con-

trol engineers, sometimes causing well-behaved systems to exhibit unexpectedly poor

behaviour. They have been tackled using various approaches in the control systems

literature, with the earliest approach probably being the anti-windup approach used

successfully in industry. The idea behind anti-windup is to introduce an extra element

into the control system which monitors the control signal and, if it experiences satura-

tion, modifies the control system so that it behaves better during and after these periods

of saturation. An enormous amount of research activity was devoted to anti-windup in

the late 1990s and 2000s. The main thrust of this research was to develop more system-

atic anti-windup approaches which could guarantee stability of the closed-loop system
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during saturation and also to ensure that performance did not dramatically deteriorate

- see [4, 18, 25, 3, 19].

A common feature in much of the anti-windup literature is that most of the available

schemes are model-based, with their design depending on the system parameters. Most

of the modern anti-windup methods frame the anti-windup design problem as linear

matrix inequality feasibility/optimisation problems which necessarily entail a reason-

able knowledge of the plant parameters. This is in stark contrast to the more traditional

anti-windup approaches which were ad hoc and rarely dependent on plant parameters.

In model reference adaptive control (MRAC), it is typically assumed that only the

structure of the plant is known, with many of its parameters unknown. For this rea-

son the anti-windup schemes described above are not appropriate, without significant

alteration. In addition, the problem with traditional anti-windup schemes (i.e. the ad

hoc nature and lack of rigour) are even more troublesome for adaptive controllers due

to their greater complexity, and also because saturation may corrupt both the control

law itself and the adaptive up-dating mechanism. Therefore techniques for handling

saturation in adaptive controllers, with some exceptions such as [9], which is appli-

cable to indirect adaptive control schemes, have followed a somewhat different path.

Notable techniques include [10, 8, 1, 23, 13, 20]. These schemes do not act like anti-

windup compensators in the sense that an anti-windup compensator is not activated

solely during periods of saturation, with control handled by the baseline controller at

other times.

Unlike most of the approaches for handling saturation in adaptive controllers men-

tioned above, the so-called positive-µ scheme described in [14] (see also [24]), func-

tions somewhat differently and, when expressed appropriately, one can observe an

anti-windup structure in the algorithm [21]. This anti-windup scheme features a clas-

sical anti-windup element (the µ parameter) which feeds back the difference between

the control signal and its saturated version to the controller output. This same signal

also modifies the on-line model states and introduces an additional adaptive parame-

ter which is adjusted during periods of saturation. The functionality of the scheme is

relatively simple, somewhat intuitive to tune, and fits snugly within the anti-windup

framework.

One limitation with the positive-µ scheme is that it is applicable to systems with con-

trol magnitude limits; it is not “out of the box” applicable to systems with rate-limited

actuators. In certain control problems such as flight control law design, actuator rate-

limits are of more concern than magnitude limits. It therefore makes sense to try to

extend some of the ideas of the positive-µ approach to systems with rate-limited actu-

ators. There are a number of technical issues with such an extension, however. One

of these issues centres around the measurement of the states: MRAC assumes that all

states are available for measurement, but it is typically unlikely that the actuator states

will be available for measurement, or even desirable to use in the adaptive controller.

Furthermore, it transpires, that even with the assumption of rate-limit state measure-

ment, the resulting structure of the system then becomes too limiting, with unrealistic

structural requirements placed on the plant and model.

With the above in mind, the aim of this paper therefore is to devise an anti-windup
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scheme for MRAC schemes with rate-limited actuators. The idea is to maintain the

spirit of the original positive-µ scheme but to modify it so that it can cope with rate-

limits instead of magnitude limits. The cost of making this extension is that some of the

anti-windup properties proved in [21] are no longer retained in general, although the

hope is that the intuition in the scheme remains. For simplicity, this paper considers

SISO systems, although an extension to MIMO systems could be performed using

similar ideas.

1.1. Notation

Notation is standard throughout. A positive (negative) definite matrix M is denoted

M > 0 (< 0). The scalar saturation function satū(.) : R 7→ [−ū, ū] is defined as

satū(u) = sign(u)min{|u|, ū} ū > 0 (1)

The scalar deadzone function Dzū(.) : R 7→ R is defined as

Dzū(u) = sign(u)max{0, |u| − ū} ū > 0 (2)

The saturation and deadzone functions satisfy the identity

satū(u) + Dzū(u) = u (3)

Note that both functions are globally Lipschitz with a Lipschitz constant of unity, mean-

ing that

‖φ(x1 + x2)− φ(x1)‖ ≤ ‖x2‖ ∀x1, x2 ∈ R (4)

where φ(.) is either the saturation or the deadzone function and ‖ · ‖ denotes the Eu-

clidean norm.

A signal x(t) is said to belong the Lebesgue space L2 if its L2 norm is finite, i.e.

‖x‖2 :=
(∫ ∞

0

‖x(t)‖2dt
) 1

2

< ∞ (5)

Similarly a signal is said to belong to the Lebesgue space L∞ if its L∞ norm is finite,

i.e.

‖x‖∞ := sup
t≥0

max
i

|xi(t)| < ∞

2. PRELIMINARY RESULTS

Several results will be used in the proof of the main results. Most of these are stan-

dard results in nonlinear control [11], but there are two particular results which are

introduced below.
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Lemma 1. Consider the dynamics

ẋ(t) = Ax(t) +Bw(t) x(t) ∈ R, w(t) ∈ R (6)

If A is Hurwitz and w(t) is bounded, then the state x(t) is bounded.

Proof: In essence, this result is a well-known fact. It is proved in the first part of

Theorem 1 in [14]; see also Section 6, [12]. �

Lemma 2. Consider the dynamics

ẋ = −λx+ satū(w)

where x(t), w(t) ∈ R and λ > 0 is a positive scalar. Then x(t) is bounded.

Proof: This is a corollary of Lemma 1: satū(w) is bounded, regardless of w(t). �

Another standard fact will also be useful.

Fact 1. Let φ(.) : R 7→ R be a slope-restricted nonlinearity with slope ∂φ ∈ [0, 1];
this means that it satisfies the relation

0 ≤ φ(u1)− φ(u2)

u1 − u2
≤ 1 ∀u1, u2 6= u1

Then the following inequality holds:

(φ(u1)− φ(u2))[u1 − u2 − (φ(u1)− φ(u2))] ≥ 0

The following lemma from [6] (Lemma 3.2.5) will be used later in the paper. It is a

special case of the more general Barbalat’s Lemma.

Lemma 3. Consider the function w(t). If w(t), ẇ(t) ∈ L∞ and w(t) ∈ L2 then

limt→∞ w(t) = 0.

The first two conditions, i.e. w(t), ẇ(t) ∈ L∞, guarantee uniform continuity of w(t),
with the L2 property guaranteeing convergence. The following simple lemma, proved

in the appendix, is useful for the technical results reported in the paper

Lemma 4. Assume π(.) : [0,∞) 7→ [0, δ], then the following inequality holds

‖Dzū[π(t)u]‖ ≤ ‖Dzū[δu]‖ ∀u ∈ R
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The final preliminary result which is needed is an adaption of the Comparison Lemma

([12] Lemma 2.5); the appendix contains a proof for completeness.

Lemma 5. Consider the quadratic function V (x(t)) = x(t)′Px(t), where x(t) ∈ R
n,

and the following inequality

V̇ (x(t)) ≤ −α1‖x(t)‖2 + α2‖x(t)‖
m∑

i=1

‖ui(t)‖

where α1 and α2 are positive constants. Then if ui(t) ∈ L2 for all i ∈ 1, . . . ,m,

limt→∞ x(t) = 0.

3. Problem Formulation

Figure 1: Model of actuator with rate-limit: η determines the actuator bandwidth and λ1 represents the

integrator leakage.

The plant dynamics under consideration are given below.

ẋ = Ax+Bv (7)

where A ∈ R
n×n and B ∈ R

n; it is assumed that the states are available for feedback.

The input to the plant is the signal v(t) ∈ R which is the output of the (rate-limited)

actuator dynamics, illustrated in Figure 1, and given below

ẋa = −λ1xa + satū[η(u− xa)] (8)

v = xa (9)

Here, u(t) ∈ R is the “real” control input, η > 0 is the actuator bandwidth and the

saturation function models the rate-limits. The actuator is assumed to have a “leaky

integrator” with λ1 ≪ 1. In the limit as λ1 → 0, one recovers the typical first order

rate-limit model used frequently in the anti-windup literature [7, 2, 17]. This is done

mainly to facilitate the proof of convergence of the closed loop system; it is well known

that the presence of integrators in the plant can complicate stability analysis of saturated

systems and a body of work has been dedicated to this topic e.g. [22, 15]. The system

can be represented compactly as

ẋ = Ax+Bxa (10)

ẋa = −λ1xa + satū[η(u− xa)] (11)

It is important to mention the fact that the actuator state xa (i.e. the plant input v(t))
are not directly measured, hence they must be estimated.

5



Assumption 1. A ∈ R
n×n is unknown but Hurwitz; B ∈ R

n is known; η, λ1 ∈ R+

are known.

If A is not Hurwitz, it is well-known that global asymptotic stability cannot be es-

tablished for a plant with input constraints. In this case, the region of attraction [7]

becomes of interest. However, estimation of the region of attraction requires precise

knowledge about A and it is therefore difficult to propose a rigorous anti-windup tech-

nique for non-Hurwitz A in the MRAC framework.

Remark 1: The results of the paper are derived assuming that the plant states are

available, but the actuator state is not. Typically, actuator states are not available for

feedback, or at least they are not available to the main control system, whereas data

modelling, approximately, an actuator’s dynamic characteristics are often available.

This assumption means that there are non-trivial technical differences between the re-

sults derived here and those obtained in [21], as will be seen by a careful perusal of the

proofs which follow. �

The reference model (see Figure 2) used for the adaptive controller is

ẋm = Amxm +Bmr +B(x̂a − u)−BµDzū[η(u − x̂a)]−BK̂uDzū[η(u − x̂a)]
(12)

where xm ∈ R
n is the model state, r ∈ R the reference to be tracked, x̂a ∈ R the

estimate of the actuator state (defined below) and K̂u(t) ∈ R an adaptive gain. Am and

Bm are known matrices representing the ideal system (introduced below) and µ ∈ R+

is a positive scalar chosen by the designer. The idea with this on-line model is that

if the rate-limit is not active, that is if Dzū[η(u − x̂a)] ≡ 0 and if the actuator state

perfectly matches the control input (during constant control activity for example), the

dynamics of the model reduce to

ẋm = Amxm +Bmr (13)

which is the standard reference model used in MRAC. The extra terms are present

to accommodate the rate-limited actuator dynamics. The third term on the r.h.s. of

Figure 2: Modified reference model used in adaptive control law.
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equation (12) is a “hedging term” ([8, 5]) and is useful to prove convergence, but is

also problematic because only at steady state will x̂a converge to u. The effect of the

hedging term will be discussed later.

A crucial contributor to the reference model (12) is the actuator state estimator (see

Figure 3), which has the following dynamics,

˙̂xa = −λ1x̂a + satū[η(u − x̂a)] +B′Pe (14)

where e = x− xm and P = PT is the solution to the Lyapunov equation:

A′
mP + PAm = −Q < 0, Q > 0 (15)

The control signal is given by

u = K̂ ′
xx+ K̂ ′

rr − µDzū[η(u− x̂a)] (16)

where K̂x(t) ∈ R
n and K̂r(t) ∈ R. This control signal has a similar form to that in

[21], except that the additional portion - the anti-windup term involving µ - is activated

when the rate-limit saturates (instead of when the magnitude limit saturates). The next

assumption is standard in MRAC

Assumption 2. There exist matrices K∗
x and K∗

r such that

Am = A+BK∗
x (17)

Bm = BK∗
r (18)

Assummption 2 restricts freedom in the choice of reference model and is a well-known

limitation of MRAC. Similar to anti-windup for linear systems, the anti-windup modi-

fication proposed in this paper is carried out on the basis of a “good” existing (MRAC)

controller design. Therefore, in the sections which follow, the modified adaptive con-

troller which is given necessarily requires that Assumptions 1 and 2 are satisfied.

Figure 3: Rate-limit state-estimator for use with modified reference model (state of actuator is assumed not

to be available directly).
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4. MAIN RESULTS

This section presents an adaptive update law which is used in conjunction with con-

troller (16) to prove that the plant states, x, converge to those of the reference model

xm. Comments will also be made about the possibility of convergence to an ideal

model, without additional terms. Before stating the main result, it is convenient to note

that the control law (16) can be re-written as

u = K∗
xx+K∗

r r +∆K ′
xx+∆K ′

rr − µDzū[η(u− x̂a)] (19)

where

∆K ′
x := K̂ ′

x −K∗
x (20)

∆K ′
r := K̂ ′

r −K∗
r (21)

and K∗
x and K∗

r are the matrices mentioned in Assumption 2. Similar to [14, 21],

the adaptive updates are modified to incorporate an additional adaptive term which is

dependent on whether the synthetic rate-limit (14) is saturated or not, viz







˙̂
Kx = −Γxx(e

′PB) Γx > 0
˙̂
Kr = −Γrr(e

′PB) Γr > 0
˙̂
Ku = −ΓuDzū[η(u− x̂a)](e

′PB) Γu > 0

(22)

The first two updates are standard ([6]); the third is inspired by [14], and is only active

if rate saturation occurs. The main result of the paper is the following proposition.

Proposition 1. Consider the interconnection of the plant (10), the rate limits (11), the

controller (16), the update law (22), and the dynamics (12) and let Assumptions 1 and

2 be satisfied. Assume further that µ ∈ R+ and that r ∈ L∞. Then the signals e =
x−xm, ea = xa−x̂a, K̂x, K̂r and K̂u are all bounded. Furthermore limt→∞ e(t) = 0
and limt→∞ ea(t) = 0.

Proof: Please see appendix for full proof. The main idea of the proof is to use a

Lyapunov function to prove boundedness of e(t), ea(t) and the adaptive gains and then

to use Lemma 3 to prove that e(t) and ea(t) converge - in a similar way to standard

MRAC proofs. The technical complications in the proof arise to the presence of the

anti-windup compensator and the saturation nonlinearity: Facts 1 and Lemmas 1 and 2

allow these obstacles to be overcome. �

Remark 2: Proposition 1 also holds when the adaptive gain K̂u(t) is absent; that is the

errors e(t) and er(t) converge if K̂u ≡ 0. However, the presence of K̂u(t) provides

more freedom for the anti-windup compensator to modify the system’s behaviour dur-

ing saturation, and it seems to have a favourable effect on the transient response of the

system. This is demonstrated in simulation later in the paper. �
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4.1. Convergence to ideal behaviour

In [21] it was shown how, under conditions similar to those found in linear anti-windup

- that is, that the ideal control law was not saturated in steady state - the state of the

system was actually able to converge to the ideal reference model

ẋr = Amxr +Bmr (23)

[21] considered the magnitude limit problem and unfortunately, for the rate-limit prob-

lem, considered here, the results do not carry over in a straightforward manner. This

difficulty arises, essentially, because the rate-limit dynamics prevent plant input v from

converging to the ideal control signal except if the ideal control signal is constant.

However, convergence to ideal behaviour can be proved if we modify our expectations

a little. With this in mind, we therefore propose the following ideal model which we

would like our constrained adaptive system to converge to

{
ẋr = Amxr +Bmr +B(x̂ar − u)
˙̂xar = −(λ1 + η)x̂ar + ηu

(24)

The xr dynamics represent the ideal behaviour of our plant state; note that in steady

state if x̂ar → u, this becomes our initial choice for ideal system (23). The x̂ar dynam-

ics represent the ideal dynamics of the rate-limit and is essentially the rate-limit model

earlier sans the saturation nonlinearity. It is convenient to note the following fact.

Fact 2. Consider the dynamics (24). Then it follows that

‖x̂ar‖∞ ≤ η

1 + η
‖u‖∞ ∀η > 0

and furthermore x̂ar(t) = K(t)u(t) for some K(t) ∈ [−1, 1]

Proposition 1 has already proved that x → xm (under certain assumptions) and xa →
x̂a, so it follows that ideal behaviour, will therefore result if

xm → xr and x̂a → x̂ar (25)

Stated another way, we would like to enforce

lim
t→∞

em(t) = 0 em := xm − xr (26)

lim
t→∞

er(t) = 0 er := x̂a − x̂ar (27)

The next proposition gives conditions which ensure this convergence takes place. The

proposition is stated in terms of certain signals belonging to the space L2. In particular,

it is covenient to partition the control signal as

u = κ(u)




K∗

xx+K∗
r r

︸ ︷︷ ︸

=u∗(t)

+∆K ′
xx+∆K ′

rr
︸ ︷︷ ︸

=∆u(t)




 (28)
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in the same way as in [21]. In this partition, u∗(t) represents the ideal control signal

(i.e. that which would be applied if the ideal gains K∗
x and K∗

r were applied) and

∆u(t) represents the perturbation from this ideal, due to the adaptation. These two

signals play a central role in the proposition below.

Proposition 2. Consider the interconnection of the plant (10), the rate limits (11),

the controller (16), the update law (22), and the dynamics (12), (24) and let Assump-

tions 1 and 2 be satisfied. Assume further that µ ∈ R+ and that r ∈ L∞. Then

limt→∞ em(t) = 0 and limt→∞ er(t) = 0 if the following conditions are satisfied

1. Dzū(2 ηu∗(t)) ∈ L2

2. ∆u(t) ∈ L2

Proof: Please see appendix for full proof. The main idea is to use Lyapunov functions

for the dynamics governing the errors em(t) and er(t) and then to apply the comparison

lemma (Lemma 5) to these inequalities to obtain Conditions 1 and 2 above, which are

the conditions for convergence. Lemma 4 is required to treat the deadzone and Fact 2

is need to bound the rate-limit state estimation.

In a nutshell, Proposition 2 proves that the state of the system and actuator will con-

verge to the “ideal” states defined by the model (24) if Dz(2ηu∗) ∈ L2. Roughly

speaking, for most signals this effectively means that convergence will occur if, in

steady state we have the signal satisfying

|ηu∗| < 1

2
ū

Essentially, this means that the signal entering the saturation block in the rate-limit

must converge to half the limit of the saturation signal, which is stronger than requiring

|ηu∗| < ū

However, it has not been possible to prove the former relaxed bound because of the

presence of the dynamics of the rate-limit. Nevetheless, this bound is again reminiscent

of what would be expected in anti-windup for linear controllers with rate-limits.

Remark 3: In a similar way to [21], it is possible to prove Proposition 2 under slightly

different conditions which make it more applicable in practice. Note that Proposition 2

requires that ∆u(t) ∈ L2, which effectively requires K̂x to converge to its ideal value,

which it may not always do - it is only known that it is bounded. To overcome this

restriction, one may instead partition the control signal as

u = κ(u)[u∗ +∆uss +∆u−∆uss]

where

∆uss(t) := ∆K̂x,ssx(t) + ∆K̂r,ssr(t) (29)
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and

lim
t→∞

∆Kx(t) :=∆Kx,ss (30)

lim
t→∞

∆Kr(t) :=∆Kr,ss (31)

In other words ∆Kx,ss and ∆Kr,ss indicate that, in steady state, the adaptive gains

will converge to a value, probably different from zero. In this case, the conditions on

Proposition 2 can be changed to

1. Dzū[2η(u
∗(t) + ∆uss(t)] ∈ L2

2. ∆u(t)−∆uss(t) ∈ L2

This means that we simply require the ideal value of the saturation input - plus some

perturbation - to fall below 1/2ū and that the adaptive gains converge to their steady

state values. The latter condition is much more typical in practice. �

5. SIMULATION RESULTS

The results are demonstrated using an example proposed in [16], and also used in [21]

to illustrate an anti-windup scheme for MRAC systems with magnitude limits. The

plant state-space matrices are given by:

A =





0 1 0
−10 −1.167 25
0 0 −0.8



 B =





0
0
2.4



 (32)

A nominal MRAC controller was found by choosing Γx = 0.5I3 and Γu = 0.5. The

state-space matrices of the reference model were chosen as

Am =





0 1 0
−10 −1.167 25
1.933 −0.974 −10.833



 Bm = B (33)

It is easy to see that Assumption 2 is satisfied. With Q = I3, P > 0 was was calculated

from (15). The choice of Γx, Γu and Q was based on some initial simulation and was

straightforward; it seemed to enable swift adaptation but without too much control

activity; other choices are of course possible. This adaptive controller works well in

the absence of saturation, but the system is very sensitive to saturation [16].

The plant above was augmented with the first order actuator model discussed earlier.

The bandwidth of the actuator, set by the parameter η, was set at 100 rad/s. The leakage

term λ1 of the plant actuator was actually set to zero i.e. the rate-limit was chosen to

be a standard first order rate-limited actuator. The anti-windup scheme was designed

using Proposition 1 with µ = 0.5 and the anti-windup adaptive weight, Γu = 0.5.

Simulations revealed that larger values for µ tended to lead to more oscillatory transient

responses; the system was fairly insensitive to the choice of Γu, which was chosen to

be consistent with Γx and Γr.
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Figure 4 shows the response of the unconstrained system to reference which consists

of a step input of 20 [cm] applied at 1 [sec], followed by a step down to 10 [cm], a

step down to 4 [cm] and then a ramp to 2 [cm]. The simulation was conducted with

the first order actuator dynamics present, i.e. the rate-limit was just a first order low-

pass filter. One can note that the system responds generally satisfactorily, although it is

noted that there is a great deal of control activity which may cause problems when rate-

limiting is introduced. Indeed, when rate-limits of 100 V/s are imposed on the system,

the response degrades to that shown in Figure 5. Note the control signal displays the

typical triangular wave form indicative of extensive rate-saturation.

Figure 6 shows the response of the system with rate-limits present but with the anti-

windup compensator described above implemented in addition to the nominal MRAC

controller. The response of the system is much improved and nominal performance

has almost been recovered. Interestingly, one might argue that the response is, in some

ways, superior even to the nominal response shown in Figure 4: during the initial phase

of adaptation the rate-limited MRAC with anti-windup shows lower control activity and

the convergence of the states to the model values is rather less oscillatory. However,

the control signal does show high frequency behaviour which takes some time to de-

cay: recall no explicit decay rate for the system has been found - this issue could be

overcome in practice through the use of sigma modification.

The anti-windup method proposed here adds an adaptive gain K̂u(t) to the control

system but, as noted in Remark 2, the approach can work without this and with only

the parameter µ present. However, this deprives the anti-windup compensator of a

useful degree of freedom and one would expect the performance of the compensator

to be worse, in some sense. Figure 7 confirms this, with both the plant and control

response begin somewhat more oscillatory without the presence of K̂u(t).
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Figure 4: Response of adaptive control system without rate-limits: left, plant/model state evolution; centre,

plant input v; right adaptive gains K̂x, K̂r

6. CONCLUSION

This paper has proposed a simple anti-windup scheme for MRAC with rate-limits.

The scheme is inspired by the positive-µ scheme introduced in [14], but is developed

in an anti-windup framework [21]. Unlike for standard anti-windup problems, where

the difference between magnitude-limited and rate-limited anti-windup schemes are
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Figure 5: Response of adaptive control system with input rate-saturation and no anti-windup: left,

plant/model state evolution; centre, plant input v; right adaptive gains K̂x, K̂r
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Figure 6: Response of adaptive control system with input saturation and anti-windup: left, plant/model state

evolution; centre, plant input v; right adaptive gains K̂x, K̂r
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Figure 7: Response of adaptive control system with input saturation and anti-windup with K̂u ≡ 0: left,

plant/model state evolution; centre, plant input v; right adaptive gains K̂x, K̂r

relatively modest, in the case of MRAC, the differences are somewhat more profound

and the hedging term, B(x̂ − u), used in the scheme appears crucial, although this

prevents the system from converging to exactly the same response as the ideal model.

Numerical simulations have demonstrated the effectiveness of the scheme.
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Appendix A. Proofs of preliminary results

Appendix A.1. Proof of Lemma 4

First note that Dzū[π(t)u] and Dzū[δu] share the same sign for all u(t) and any π(.)
stipulated above. Next assume that |π(t)u| < ū, then Dzū[π(t)u] = 0 and hence the

inequality in the lemma certainly holds. Finally, assume that |π(t)u| ≥ ū. In this case

we have

‖Dzū[π(t)u]‖ = |π(t)u| − ū (A.1)

≤ δ|u| − ū (A.2)

= ‖Dzū[δu]‖ (A.3)

which completes the proof. �
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Appendix A.2. Proof of Lemma 5

V (x) = x′Px implies that there exists postive constants c1 and c2 such that c1‖x‖2 ≤
V (x) ≤ c2‖x‖2. The inequality can also be bounded as

V̇ (x) ≤ −c3‖x‖2 + α2‖x‖
m∑

i=1

‖ui‖ (A.4)

≤ −c4V (x) + c5
√

V (x)

m∑

i=1

‖ui‖ (A.5)

where c3, c4 and c5 are appropriate positive constants. Now, similar to [12], Section

5.4, let W (x) =
√

V (x) and note that Ẇ (x) = V̇ (x)/2
√

V (x). This then implies

Ẇ (x) ≤ −c4
2
W (x) +

c5
2

m∑

i=1

‖ui‖ (A.6)

Application of the Comparison Lemma (Lemma 2.5, [12]) then implies that

‖W (x)‖ ≤ e−
c4

2
t‖W (0)‖+ c5

2

∫ t

0

m∑

i=1

e−
c4

2
(t−τ)‖ui(τ)‖dτ (A.7)

As W (x) =
√
x′Px, this then implies there exist positive constants c6, c7 and c8 such

that

‖x(t)‖ ≤ c7e
−c6t‖x(0)‖+ c8

∫ t

0

m∑

i=1

e−c6(t−τ)‖ui(τ)‖dτ (A.8)

Then, following arguments similar to those found in [12] Section 6.1 and using Holder’s

Inequality, it follows that x(t) converges to zero if ui ∈ L2 for all i ∈ {1, . . . ,m}. �.

Appendix B. Proofs of main results

Appendix B.1. Proof of Prop 1

First consider the dynamics of the error between the plant state x and the reference

model state xm

ė = Ax+Bu+B(xa − u)−Amxm −Bmr −B(x̂a − u)

+ µBDzū[η(u − x̂a)] +BK̂ ′
uDzū[η(u− x̂a)]

Substituting for u and cancelling terms in µ yields

ė = Ax+B {K∗
xx+K∗

r r +∆K ′
xx+∆K ′

rr} +B(xa−u)
−B(x̂a − u)−Amxm −Bmr +BK̂ ′

uDzū[η(u − x̂a)]
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Noting that (A + BK∗
x) = Am, BK∗

r = Bm and ea = xa − x̂a, the following

expression for the error dynamics is obtained:

ė = Ame+B(∆K ′
xx+∆K ′

rr)+Bea+BK̂ ′
uDzū[η(u−x̂a)]

Also, the actuator error dynamics can be written as

ėa = ẋa − ˙̂xa

= −λ1ea + satū[η(u− xa)]− satū[η(u− x̂a)]−B′Pe

Now consider a Lyapunov candidate function

V = e′Pe+∆K ′
xΓ

−1
x ∆Kx +∆K ′

rΓ
−1
r ∆Kr + K̂ ′

uΓ
−1
u K̂u + e2a

The derivative of the Lyapunov function is then given by:

V̇ = 2e′P {Ame +B(∆K ′
xx+∆K ′

rr) +Bea

+BK̂ ′
uDzū[η(u− x̂a)]

}

+ 2∆K ′
xΓ

−1
x

˙̂
Kx + 2∆K ′

rΓ
−1
r

˙̂
Kr + 2K̂uΓ

−1
u

˙̂
Ku

− 2ea {λ1ea−satū[η(u−xa)]+satū[η(u−x̂a)]+B
′Pe}

= e′(A′
mP + PAm)e+ 2e′PB(∆K ′

xx+∆K ′
rr)

+ 2e′PBK̂ ′
uDzū[η(u − x̂a)]

− 2∆K ′
xx(e

′PB)− 2∆K ′
rr(e

′PB)

− 2K̂uDzū[η(u − x̂a)](e
′PB)

+ 2e′a {−λ1ea + satū[η(u − xa)]− satū[η(u − x̂a)]}
= e′(A′

mP + PAm)e+ 2e′PB(∆K ′
xx+∆K ′

rr)

− 2(∆K ′
xx+∆K ′

rr)(e
′PB)

+ 2e′a {−λ1ea + satū[η(u − xa)]− satū[η(u − x̂a)]}
= −e′Qe−2λ1e

2
a+2e

′
a {satū[η(u−xa)]− satū[η(u−x̂a)]}

Next, define u1 = xa − u and u2 = x̂a − u. Note that ea can be expressed as

ea = u1 − u2, which means that

V̇ =−e′Qe−λ1e
2
a+2

1

η
η(u1−u2)

′ {satū[−ηu1]−satū[−ηu2]}

=−e′Qe−λ1e
2
a−2

1

η
η(u2−u1)

′ {satū[ηu2]−satū[ηu1]}

Now because satū(.) is slope restricted within the interval [0, 1], Fact 1 implies that

−η(u2 − u1)
′ {satū[ηu2]− satū[ηu1]} ≤

−{satū[ηu2]− satū[ηu1]}2 (B.1)
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Therefore

V̇ ≤ −e′Qe− 2λ1e
2
a − 2

1

η
{satū[ηu2]− satū[ηu1]}2

≤ −e′Qe− 2λ1e
2
a (B.2)

So far, only negative semi-definiteness of V̇ has been proved and hence (B.2) only

implies that e, ea, K̂x, K̂r and K̂u are bounded. In order to prove convergence of

e(t) and ea(t), we use Lemma 3. Inequality (B.2) implies that e(t) and ea(t) are in

L∞. Also note that V (t) is bounded from below and non-increasing, which implies

limt→∞ V (t) = V (∞) < ∞. Furthermore, inequality (B.2) implies that

‖ẽ‖2 ≤ − 1

λmin(Q̃)
V̇ (t) (B.3)

where ẽ = [e′ e′a]
′ and Q̃ = diag(Q, 2λ1). Using this,

∫ ∞

0

‖ẽ‖2dt ≤
∫ ∞

0

(

V̇ (t)

−λmin(Q̃)

)

dt =
V (0)− V (∞)

λmin(Q̃)

which shows that e(t) ∈ L2 and ea(t) ∈ L2. Thus convergence follows if ė and ėa
are both themselves bounded. Unfortunately, boundedness of e and ea does not imply

boundedness of x, xa, x̂a or u, hence this condition must be further investigated. The

expressions for ė and ėa are

ė = Ame+Bea+B(∆K ′
xx+∆K ′

rr)+BK̂uDzū[η(u−xa)]

ėa = −λ1ea + satū[η(u− xa)]− satū[η(u− x̂a)] +B′Pe

Because of boundedness of e, ea, K̂x, K̂r and K̂u and because r is bounded by assump-

tion, it is clear that ė ∈ L∞ if u, xa, x̂a and x are themselves bounded. Boundedness

of these signals is proved next.

• Consider the dynamics of the actuator

ẋa = −λ1xa + satū[η(u− xa)]

Direct application of Lemma 2 implies that xa is bounded.

• Noting that x̂a = ea + xa, then x̂a is bounded because ea and xa are bounded.

• The plant dynamics are given by

ẋ = Ax+Bxa

Because xa is bounded, application of Lemma 1 implies that x is also bounded.

18



• The deadzone nonlinearity can be written as

Dzū(v) = β(v)v β(.) : R 7→ [0, 1)

Using this, the equation for the control signal becomes

u =K̂ ′
xx+ K̂ ′

rr − µβ(.)η(u − x̂a) (B.4)

=
1

1 + µηβ(.)
(K̂ ′

xx+ K̂ ′
rr + µβ(.)ηx̂a) (B.5)

where the first term on the right exists because µ is assumed to be positive, η is

also a positive constants and β(.) ∈ [0, 1). It is clear that u is bounded because

all terms on the right hand side are bounded.

As a result, it is possible to conclude that ė ∈ L∞ and ėa ∈ L∞. Together with

e, ea ∈ L∞ ∪ L2 this implies, by Lemma 3, that both signals converge to zero. �

Appendix B.2. Proof of Proposition 2

The proof is quite long, simply due to the algebra, so is broken down into shorter

steps. In addtion, to simplify the algebra further, the case where µ ≡ 0 is proved.

When µ 6= 0, the essence of the proof remains the same but the algebra becomes more

lengthy.

Step 1: er dynamics. The er dynamics can be written

ėr = −λ1er + satū[η(u − x̂a)] + η(x̂ar − u) +B′Pe (B.6)

= −(λ1 + η)er −Dzū[η(u − x̂a)] +B′Pe (B.7)

Using the partition (28), u(t) = u∗(t) + ∆u(t) so

ėr = −(λ1 + η)er −Dzū[η(u
∗ +∆u− x̂a)] +B′Pe (B.8)

= −(λ1 + η)er − {Dzū[η(u
∗ +∆u− x̂a)]−Dzū[η(u

∗ − x̂a)]}
−Dzū[η(u

∗ − x̂a)] +B′Pe (B.9)

Step 2: Lyapunov function er. With

V (er) =
1

2
e2r

it follows that

V̇ (er) = −(λ1 + η)‖er‖2 − e′r {Dzū[η(u
∗ +∆u − x̂a)]−Dzū[η(u

∗ − x̂a)]}
− e′rDz(η(u∗ − x̂a)) + e′rB

′Pe (B.10)

≤ −(λ1 + η)‖er‖2 + ‖er‖η‖∆u‖+ ‖er‖ (‖B′P‖‖e‖+ ‖Dzū[η(u
∗ − x̂a)]‖)

(B.11)
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where the inequality follows from the Lipschitz property of the deadzone. Also,

Dzū[η(u
∗ − x̂a)] = Dzū[η((u

∗ − x̂a + x̂ar − x̂ar)] (B.12)

= Dzū[η((u
∗ − er − x̂ar)]

−Dzū[η(u
∗ − x̂ar)] + Dzū[η(u

∗ − x̂ar)] (B.13)

From this it follows (Lipschitz property and noting η > 0) that

‖Dzū[η(u
∗ − x̂a)]‖ ≤ η‖er‖+ ‖Dzū[η(u

∗ − x̂ar)]‖ (B.14)

Now from Fact 2, we have that x̂ar = K(t)(u∗(t) + ∆u(t)) so,

‖Dzū[η(u
∗ − x̂a)]‖ ≤ η‖er‖+ ‖Dzū[η(u

∗(1 −K(t)) +K(t)∆u)]‖ (B.15)

≤ η‖er‖+ η‖K(t)‖‖∆u‖+ ‖Dzū[ηu
∗(1−K(t))]‖ (B.16)

Thus the derivative of the Lyapunov function is bounded

V̇ (er) ≤ −(λ1 + η)‖er‖2 + ‖er‖η‖∆u‖+ ‖er‖‖B′P‖‖e‖
+ η‖er‖2 + η‖K(t)‖‖er‖‖∆u‖+ ‖er‖‖Dzū[ηu

∗(1−K(t))]‖ (B.17)

= −λ1‖er‖2 + η(1 + ‖K(t)‖)‖er‖‖∆u‖+ ‖er‖‖B′P‖‖e‖
+ ‖er‖‖Dzū[ηu

∗(1−K(t))]‖ (B.18)

≤ −λ1‖er‖2 + 2η‖er‖∆u‖+ ‖er‖‖B′P‖‖e‖+ ‖er‖‖Dzū[ηu
∗(1−K(t))]‖

(B.19)

Using, Lemma 4, it then follows, for all u(t) ∈ R, that

‖Dzū[ηu
∗(1−K(t))]‖ ≤ ‖Dzū[2ηu

∗]‖ K(t) ∈ [−1, 1] (B.20)

we finally have

V̇ (er) ≤ −λ1‖er‖2 + 2η‖er‖‖∆u‖+ ‖er‖‖B′P‖‖e‖+ ‖er‖‖Dzū[2ηu
∗]‖ (B.21)

Now, because e ∈ L2 , Lemma 5 implies that limt→∞ er(t) = 0 if

Dzū[2ηu
∗],∆u ∈ L2

which are the conditions given in the proposition.

Step 3. em dynamics. Using equations (12) and (24), the dynamics of em become

ėm = Amem +Ber − K̂uDzū[η(u ∗+∆u− x̂a)] (B.22)

= Amem +Ber − K̂u {Dzū[η(u ∗+∆u− x̂a)]−Dzū[η(u
∗ − x̂a)]}

−Dzū[η(u
∗ − x̂a)] (B.23)

Step 4. Lyapunov function V (em). Choosing V (em) = e′mPem we have

V̇ (em) = 2e′mPAmem +Ber − K̂u {Dz(η(u ∗+∆u− x̂a))−Dz(η(u∗ − x̂a))}
−Dzū[η(u

∗ − x̂a)] (B.24)

≤ −e′mQem + 2e′mPBer + 2‖em‖‖ηP‖‖K̂u‖∆u‖
+ 2‖em‖‖P‖‖K̂u(t)‖‖Dzū[η(u

∗ − x̂a)]‖ (B.25)
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From equation (B.16) in the earlier part of the proof we have

‖Dzū[η(u
∗ − x̂a)]‖ ≤ η‖er‖+ η‖K(t)‖‖∆u‖+ ‖Dzū[η(1 −K(t))u∗]‖ (B.26)

So we have

V̇ (em) ≤ −emQem + 2‖em‖‖P‖(‖Bm‖+ ‖Ku(t)‖η)‖er‖
+ 2‖em‖‖ηP‖‖Ku(t)‖(1 + ‖K(t)‖)‖∆u‖
+ 2‖em‖‖P‖‖Ku(t)‖‖Dzū[η(1−K(t))u∗]‖ (B.27)

≤ −emQem + 2‖em‖‖P‖(‖Bm‖+ ‖Ku(t)‖η)‖er‖
+ 4‖em‖‖ηP‖‖Ku(t)‖∆u‖+ 2‖em‖‖P‖‖Ku(t)‖‖Dzū[2ηu

∗]‖
(B.28)

Note that er ∈ L2, so em converges to zero, by Lemma 5 if

Dzū[2ηu
∗],∆u ∈ L2

which is, again precisely the condition given in the proposition. ��

21


