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Abstract

In this work, we establish different control design approaches for discrete-time systems, which build upon the notion
of finite-step control Lyapunov functions (fs-CLFs). The design approaches are formulated as optimization problems
and solved in a model predictive control (MPC) fashion. In particular, we establish contractive multi-step MPC with
and without reoptimization and compare it to classic MPC. The idea behind these approaches is to use the fs-CLF as
running cost. These new design approaches are particularly relevant in situations where information exchange between
plant and controller cannot be ensured at all time instants. An example shows the different behavior of the proposed
controller design approaches.
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1. Introduction

Lyapunov functions are a central tool in the context
of nonlinear control theory as they do not only serve as
certificates of stability and simplify stability proofs, but
also provide means to quantify robustness or redesign the
controller to improve robustness of the feedback connec-
tion [1]. This has the drawback that systematic methods
for obtaining Lyapunov functions for general nonlinear sys-
tems still do not exist. In particular, standard Lyapunov
function candidates, including quadratic, weighted supre-
mum norm and weighted 1-norm functions, do not neces-
sarily decay at each time step.1

In contrast to classic Lyapunov functions, so-called
finite-step Lyapunov functions are energy functions which
do not have to decay at each time step, but only after a
fixed and finite number of steps. This relaxation leads to
significant contributions in the context of stability analysis
of (large-scale) nonlinear systems [2, 3, 4, 5, 6]. In particu-
lar, it has been shown that any proper scaling of a p-norm
function is a finite-step Lyapunov function for a large class
of asymptotically stable nonlinear systems [2]. Such con-
verse Lyapunov theorems are constructive for control pur-
poses in the sense that they provide an explicit way of con-
struction of a Lyapunov function for control systems. This
motivates the use of such results for the controller design in
nonlinear control systems. In this paper, we generalize the
notion of finite-step Lyapunov functions to control systems

∗The work of N. Noroozi was supported by the Alexander von
Humboldt Foundation.

1Here we consider discrete-time systems. A similar conclusion
also holds for continuous-time systems.

by introducing the notion of finite-step control Lyapunov
functions (fs-CLF).

Given a fs-CLF, we reformulate a fs-CLF-based control
design into an optimization problem. In particular, we
link the fs-CLF-based control design to model predictive
control (MPC) approaches. By considering three differ-
ent optimization setups for the fs-CLF-based design, we
come up with three fs-CLF-based MPC approaches: a)
contractive multi-step MPC; b) contractive updated multi-
step MPC; and c) classic (i.e. one-step) MPC. In c), we
focus on MPC without terminal constraints and/or costs,
see, e.g. [7, Section 7.4] and the references therein for a
thorough discussion on MPC with or without additional
stabilizing terminal ingredients. In a) and b), the opti-
mization problem includes a contractive condition guar-
anteeing a decay rate after a finite number of time steps.
In all these schemes the running cost in the respective op-
timization problem is taken as the fs-CLF. The a priori
knowledge of such a fs-CLF is guaranteed by the converse
Lyapunov theorem stated as Theorem 9 below.

Classic MPC approaches are based on the following phi-
losophy: at each time step we measure the current state
value of the system, optimize a cost over the control input
using model based predictions of the system response over
a fixed optimization horizon, implement the first compo-
nent of the computed control sequence, and repeat these
steps ad infinitum [7]. However, in practice, the controller
and the plant may not communicate with each other at
each time step. In networked control systems applications,
multiple (physically decoupled) plants often need to share
a communication channel for exchanging information with
their corresponding remotely located controllers; see Fig-
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û1y1

C2

P2

u2ŷ2
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Figure 1: The implementation of M independent control loops over
a single communication channel N .

ure 1. Therefore only a few plants can exchange infor-
mation with their controllers at any instant of time and
the remaining plants operate in open-loop until they are
granted access to the communication channel. The allo-
cation (also known as scheduling) of communication re-
sources is frequently performed in a periodic fashion. In
such a situation, we need to develop a control setting in
which the controller (if possible) sends not only one compo-
nent, but a control sequence of the length equal to the pe-
riodicity of the allocation process at each transmission in-
stant; see [8, 9] for such networked control systems config-
urations. Such a scenario motivates our contractive multi-
step MPC, where the MPC does not communicate with
the plant at each time step, but only after a fixed number
of time steps. The whole optimal control sequence is sent
to the plant to compensate for the lack of access to the net-
work. To guarantee the stability of the resulting system,
we include a contractive constraint, which is obtained from
the corresponding fs-CLF, into the optimization problem
as an inequality constraint.

Another problem with the classic implementation of
MPC is that the execution of the optimization problem
at each time step may result in high computational cost
(here we assume the controller and the plant can commu-
nicate at each time step). To keep the computational cost
low, inspired by [10, 11], the second control scheme pro-
poses an updating approach based on re-optimizations on
shrinking horizons which are computationally less expen-
sive than re-optimizations on the full horizon in classic
MPC schemes. Similar to the first scheme, a contrac-
tive constraint is also used in the optimization problem
to ensure the stability of the overall system. Finally, the
third control scheme proposes a classic MPC approach in
which the optimization problem is solved over a fixed op-
timization horizon at each time step; and hence only the
first component of the computed control sequence is ap-
plied to the plant. Moreover, the contraction condition
is not considered as an additional inequality constraint in
the optimization problem. The absence of the contractive
constraint reduces the computational complexity, though

considering a fixed optimization horizon will increase the
computational burden.

The MPC schemes we are proposing have similarities
with MPC schemes known from the literature. Particu-
larly, the scheme from Algorithm 11, in which the whole
open loop optimal control sequence is used, is an in-
stance of a contractive MPC scheme, as investigated, e.g.,
in [12, 13, 14, 15]. The contractivity constraint in Prob-
lem 10 can be seen as a nonlinear version of the respective
condition in [13, 14, 15]. Actually, under suitable condi-
tions the explicit use of a contractive constraint can be
replaced by a term in the cost functional with sufficiently
high weight, see [16, Theorem 3.18] or [12]. The paper [12]
already mentions the possibility to use a fs-CLF in con-
tractive MPC. Contractivity assumptions have also been
used in MPC schemes with additional terminal constraints,
see [17, 18]. The updating technique with shrinking hori-
zon in Algorithm 15 was inspired by [10, 11], where a theo-
retical robustness analysis of this method is performed. Fi-
nally, the MPC Algorithm 19 without terminal constraints
is classical and the particular stability analysis in Theorem
22 uses techniques from [19, 20] (see also [7, Section 6]),
which in turn can be seen as a refinement of earlier, similar
approaches in [21, 22, 23].

Throughout this paper we consider a stabilization prob-
lem with respect to a closed (not necessarily compact) set.
This treatment enables us to formulate several stabiliza-
tion problems in a unified manner.

This paper is organized as follows: First, relevant nota-
tion is recalled in Section 2. Then the notion of fs-CLFs
together with some other relevant notions are introduced
in Section 3. The fs-CLF-based MPC schemes are devel-
oped in Section 4. Section 5 concludes the paper.

2. Notation

In this paper, R≥0(R>0) and N(N∗) denote the nonnega-
tive (positive) real numbers and the nonnegative (positive)
integers, respectively. For a set S ⊆ Rn, int(S) and co(S),
respectively, denote the interior and the convex hull of S.
Given S ⊆ Rn, S` := S × · · · × S︸ ︷︷ ︸

` times

is the `-fold Cartesian

product. The ith component of v ∈ Rn is denoted by vi.
For any x ∈ Rn, x> denotes its transpose. We write (x, y)
to represent [x>, y>]> for x ∈ Rn, y ∈ Rp. For x ∈ Rn, we,
respectively, denote the Euclidean norm and the maximum
norm by |x| and by |x|∞. Given a nonempty set A ⊂ Rn
and any point x ∈ Rn, we denote |x|A := inf

y∈A
|x− y|. A

function ρ : R≥0 → R≥0 is positive definite if it is con-
tinuous, zero at zero and positive otherwise. A positive
definite function α is of class-K (α ∈ K) if it is zero at
zero and strictly increasing. It is of class-K∞ (α ∈ K∞)
if α ∈ K and also α(s) → ∞ if s → ∞. A continuous
function β : R≥0 × R≥0 → R≥0 is of class-KL (β ∈ KL),
if for each s ≥ 0, β(·, s) ∈ K, and for each r ≥ 0, β(r, ·)
is decreasing with β(r, s) → 0 as s → ∞. The interested
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reader is referred to [24] for more details about comparison
functions. The identity function is denoted by id. Compo-
sition of functions is denoted by the symbol ◦ and repeated
composition of, e.g., a function γ by γi. For positive def-
inite functions α, γ we write α < γ if α(s) < γ(s) for all
s > 0.

3. Preliminaries

We first introduce the notions of admissible finite-step
feedback control laws and fs-CLFs. We then show that our
definition implies that an admissible finite-step feedback
control law generated by a fs-CLF stabilizes the system of
interest. The idea how to construct a fs-CLF is given by
a converse Lyapunov theorem.

3.1. Finite-step control Lyapunov function

Consider the discrete-time system

x(t+ 1) = g
(
x(t), u(t)

)
, t ∈ N (1)

with state x ∈ X ⊆ Rn and control input u ∈ U ⊆ Rm.
We assume g : X × U → Rn is continuous. Moreover, we
assume that g is K-bounded on (X ,U) as defined below.

Definition 1. A continuous and nonnegative ω : Rn →
R≥0 is called a measurement function, if the preimage of
0 satisfies ω−1(0) 6= ∅.

Definition 2. Consider system (1). Given measurement
functions ω1 : Rn → R≥0 and ω2 : Rm → R≥0, we call g
K-bounded on (X ,U) with respect to (ω1, ω2) if there exist
κi ∈ K, i = 1, 2 such that

ω1(g(ξ, µ)) ≤ κ1(ω1(ξ)) + κ2(ω2(µ))

for all ξ ∈ X and all µ ∈ U .

The concept of K-boundedness was introduced in [2] for
the case when ωi(·) = |·|. Extensions to K-boundedness
with respect to one (resp. two measurement functions) are
given in [6] (resp. [25]). Here we extend this concept to
the constraint sets X and U . Frequently, ω2 will be taken
as a norm. Note that in the classic case ωi(·) = |·|, K-
boundedness is equivalent to continuity of g in the origin
and boundedness of g on bounded sets, see [25, Lemma 5].
Thus, any closed-loop system, consisting of a continuous
plant controlled by an optimization-based or quantized
controller, is K-bounded. We note that K-boundedness
is a necessary condition for input-to-state stability, see [5,
Remark 3.3].

Let u = (u(0), u(1), . . .) denote a possibly infinite con-
trol sequence for system (1), where u(i) ∈ U for all
i = 0, 1, . . .. If we only study trajectories of (1) over a
finite horizon, we might restrict to finite control sequences
denoted by uk := (u(0), . . . , u(k − 1)) ∈ Uk. Given a
control sequence u and an initial value ξ ∈ X , the corre-
sponding solution to (1) is denoted by x(·, ξ,u(·)), also the
notation x(·, ξ,u) or x(·) will be used.

We require some notation to state the definitions be-
low. Let M ∈ N∗ be fixed. For ξ ∈ X and uM =
(u(0), . . . , u(M − 1)) ∈ UM we define

g1(ξ,uM ) := g(ξ, u(0))

and inductively, for j = 1, . . . ,M − 1,

gj+1(ξ,uM ) := g
(
gj(ξ,uM ), u(j)

)
.

We note that strictly speaking gj is only a function of ξ
and (u(0), . . . , u(j − 1)), but there is no benefit in making
this precise notationaly so we stick to the simpler version.
Consider system (1) and a map q : X → UM . We wish to
interpret q as a feedback evaluated every M steps. Given
an initial condition x(0) = ξ ∈ X , the feedback q deter-
mines a closed-loop trajectory xq of (1) as follows. For
j = 0, . . . ,M − 1 we let xq(j+ 1) = gj+1(x(0), q(x(0)) and
at time M we evaluate the feedback again and repeat the
process. We obtain inductively for k ∈ N, j = 0, . . . ,M−1
that

xq(kM + j + 1) = gj+1
(
xq(kM), q(xq(kM))

)
.

In the sequel we use the notation uq ∈ UN to denote the
sequence of control inputs generated by the repeated ap-
plication of the feedback q and we denote interchangeably

x(·, ξ, uq) = xq(·). (2)

Definition 3. Let a measurement function ω : Rn → R≥0

and some M ∈ N∗ be given. A map q : X → UM is
called an admissible finite-step feedback (of length M) for
system (1), if for all ξ ∈ X and all j = 1, . . . ,M , the
following properties hold:

(i) gj
(
ξ, q(ξ)

)
∈ X ;

(ii) ξ 7→ gj
(
ξ, q(ξ)

)
is K-bounded on X with respect to ω,

i.e., there exist κj ∈ K such that

ω
(
gj(ξ, q(ξ))

)
≤ κj

(
ω(ξ)

)
∀ξ ∈ X . (3)

Condition (i) of Definition 3 justifies the terminology
admissible as it ensures that trajectories of the closed-loop
system obtained by applying the map q to (1) stay in X . In
addition, condition (ii) ensures that along trajectories the
measure ω remains bounded on bounded time intervals.

Definition 4. Consider system (1) and let a measurement
function ω : Rn → R≥0 and some M ∈ N∗ be fixed. Con-
sider an admissible finite-step feedback q : X → UM for
system (1). We say that q asymptotically ω-stabilizes the
set A := ω−1(0), if there exist β ∈ KL and γ ∈ K such
that for all ξ ∈ X and all t ∈ N we have

ω
(
x(t, ξ, uq)

)
≤ β

(
ω(ξ), t

)
. (4)

In this case, the resulting closed-loop system

xq(t+ 1) = g
(
xq(t), uq(t)

)
, t ∈ N, (5)
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is asymptotically ω-stable in A. If the function β in (4)
can be taken as

β(r, s) = Cσsr, (6)

with C ≥ 1 and σ ∈ [0, 1), then we call q exponentially
ω-stabilizing.

Note that standard asymptotic stability of the origin is
obtained by taking the measurement function ω(·) = |·|.

Remark 5. We note that while the definition of the con-
cept of ω-stabilization looks familiar, some care has to be
applied in its interpretation. As the notion of a measure-
ment function is quite general and as we do not assume
continuity of the closed-loop system several surprising ef-
fects can appear. In particular, in the generality of Defi-
nition 4 the following situations cannot be ruled out:

(i) A is compact and all trajectories not starting in A
diverge to ∞ or to the boundary of X . This requires
discontinuity of q.

(ii) The feedback q is continuous, A is unbounded and
for certain trajectories distA(xq(·, x0)) is strictly in-
creasing.

(iii) Given ε > 0 there is no δ > 0 such that distA(x0) < δ
implies distA(xq(t, x0)) < ε for all t ≥ 0.

Examples for these effects are easy to construct and we
leave the details to the reader. There are easy addi-
tional assumptions that remove these peculiarities. For
instance, one could assume that there is α ∈ K such that
α(distA(x)) ≤ ω(x) for all x ∈ X . This assumption al-
ready rules out (i) and (ii).

Now we introduce finite-step control Lyapunov func-
tions, which is the key concept used for the control design
in the next section.

Definition 6. Let α, α ∈ K∞, M ∈ N∗ and ω : Rn →
R≥0 be a measurement function. Consider a continuous
function V : Rn → R≥0 satisfying for all ξ ∈ Rn,

α(ω(ξ)) ≤ V (ξ) ≤ α(ω(ξ)). (7)

The function V is called a finite-step control Lyapunov
function (fs-CLF) (for the time step M) for system (1) if
there exists an admissible finite-step feedback q : X → UM
for (1) and a function α ∈ K∞, α < id such that for all
ξ ∈ X ,

V (x(M, ξ, uq)) ≤ α(V (ξ)). (8)

Remark 7. If the conditions in Definition 6 are satis-
fied with M = 1, we call V a control Lyapunov function
(CLF). We note that this definition of a CLF differs from
the usual definition in the literature by the assumption that
the Lyapunov function comes together with an admissible
feedback. This is equivalent to the fact that the control
value u realizing the decrease of the Lyapunov function
satisfies the constraint f(x, u) ∈ X , because once such a

control value exists, the existence of a — possibly discon-
tinuous — admissible feedback is immediate. In this sense,
Definition 6 extends the definition of a CLF.

In the case M = 1, the understanding of a CLF is the
following: The existence of a CLF ensures the existence
of an admissible feedback control law for which the result-
ing CLF is a Lyapunov function, implying asymptotic ω-
stability of system (5).
Definition 6 now demands that the same is true for M > 1,
a similar reasoning applies: The existence of a fs-CLF en-
sures the existence of an admissible finite-step feedback for
which the resulting fs-CLF is a finite-step Lyapunov func-
tion, again implying asymptotic ω-stability, see [2].

Similarly as for (1-step) CLFs also the existence of a
fs-CLF yields asymptotic stability as shown next.

Proposition 8. Let V : Rn → R≥0 be a fs-CLF for mea-
surement function ω : Rn → R≥0. Let q be the admissible
finite-step feedback associated to V . Then q asymptotically
ω-stabilizes the level set A for system (1).

Proof. The invariance of the set X , i.e. gi
(
x, q(x)

)
∈ X for

all x ∈ X and all i = 1, . . . ,M , is ensured by the admissible
finite-step feedback q by definition. With this observation,
the asymptotic ω-stability of system (5) follows directly
from [6, Theorem 7].

3.2. Measurement functions as finite-step Lyapunov func-
tion candidates

As stated in Proposition 8, system (1) is asymptotically
ω-stabilized in A if a fs-CLF and its associated admissible
finite-step feedback q are given. Generally speaking, it is
an open problem to find a (finite-step) (control) Lyapunov
function candidate V . Most existing converse Lyapunov
theorems for nonlinear systems are not constructive in the
sense that the results are not usually useful for control pur-
poses. Recently, constructive converse Lyapunov theorems
have been introduced in the case of asymptotic stability
with respect to the origin in [2, Theorem 13]. Here we ex-
tend Theorem 13 in [2] to the case of asymptotic stability
with respect to closed sets. Our results show that, under
a certain condition, the measurement function itself is a
finite-step control Lyapunov function for the system.

Theorem 9. Consider system (1) with measurement
function ω : Rn → R≥0, M ∈ N∗ and an admissible finite-
step feedback q : X → UM . Assume that the resulting
closed-loop system (5) satisfies (4) with

β(r,M) < r (9)

for all r > 0. Then the function V : Rn → R≥0 defined by

V (ξ) := ω(ξ) ∀ξ ∈ Rn, (10)

is a finite-step control Lyapunov function for the time step
M for (1) with α = α = id and α(r) = β(r,M).
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Proof. This is proved using the same arguments as those
in the proof of [2, Theorem 13].

Theorem 9 states that, under condition (9), a measure-
ment function is a fs-CLF. It is not hard to see that con-
dition (9) always holds for exponentially stable systems.
Moreover, there exist systems which are not exponentially
stable, but only asymptotically stable and satisfy condi-
tion (9) (cf. [2, Example 16] for more details). Theorem 9
can, therefore, be used for controller design: Assume that
system (1) is asymptotically ω-stabilized by a feedback q in
A. Motivated by Theorem 9, one can take ω as the fs-CLF.
In particular, if system (1) is exponentially ω-stabilizable
in A, then ω is always a fs-CLF for the system and only
M needs to be determined.

4. fs-CLF-Based MPC Approaches

This section elaborates how to construct stabilizing feed-
back laws via fs-CLFs. In particular, we reformulate the
control problem into an optimization problem which can
be solved efficiently.

4.1. fs-CLF-based contractive multi-step MPC

To derive an optimization-based controller design, we
impose the following problem.

Problem 10. Consider system (1). Let ω be a measure-
ment function. Let M ∈ N∗ and a fs-CLF V for the time
step M with the associated decay function α ∈ K∞, α < id
be given. Also, let x(0) =: ξ ∈ X be given. Compute
u∗M =

(
u∗0, . . . , u

∗
M−1

)
∈ UM as an optimal solution of the

following optimal control problem

min
uM=(u0,...,uM−1)

M−1∑
i=0

V
(
x(i, ξ,uM )

)
s.t. for all j ∈ {0, ...,M − 1}

x(j + 1) = g(x(j), uj)
uj ∈ U

g(x(j), uj) ∈ X
V (x(M, ξ,uM )) ≤ α(V (ξ)).

(OCP-1)

We note that under our general assumptions an optimal
input u∗M need not exist for OCP-1. A minimal require-
ment is controlled invariance of X , which we tacitly assume
from now on. Even then the existence of u∗M is not guar-
anteed. In the sequel, we will assume this existence for
the sake of simplicity. Otherwise similar arguments can
be applied using approximately optimal inputs. A sim-
ilar comment holds for the optimal control problems we
formulate below.

Note that M in OCP-1 also determines the optimization
horizon of the problem. Here we make use of the optimal
control sequence obtained from OCP-1 as an admissible

finite-step feedback. This implies that the controller com-
municates with the sensor every M time steps and gener-
ates an optimal control sequence of length M by solving
OCP-1. Then the whole optimal control sequence is ap-
plied to the system and the procedure is repeated. This
procedure is summarized by the following algorithm.

Algorithm 11. At each time step t = kM , k ∈ N:

1) Measure the state x(t) ∈ X of system (1).

2) Set ξ := x(t), solve Problem 10 and denote the optimal
control sequence satisfying (OCP-1) by u∗M .

3) Define the finite-step feedback control value q̂(ξ) by

q̂(ξ) := u∗M (ξ) (11)

and apply it to system (1) on the time interval
kM, . . . , (k + 1)M − 1,

4) Go to Step 1.

We note that that the map ξ 7→ q̂(ξ) implicitly defined
in (11) is an admissible feedback. The following lemma
shows that even small perturbations of such a feedback
are admissible, which accommodates computational errors
that are to be expected in applications.

Lemma 12. Let ω : Rn → R≥0 be a measurement func-
tion. Assume V : Rn → R≥0 is a fs-CLF with asso-
ciated admissible finite-step feedback q. Then a feedback
h : X → UM is admissible, if it satisfies the constraints of
OCP-1 and if in addition

M−1∑
i=0

V
(
x(i, ξ, h(ξ))

)
≤
M−1∑
i=0

V
(
x(i, ξ, q(ξ))

)
∀ξ ∈ X .

(12)

Proof. The requirement of invariance of X is part of the
assumption, so that we only need to check K-boundedness
of the maps gj for h. To this end note that for j =
1, . . . ,M − 1 we have

ω(gj(ξ, h(ξ))) ≤ α−1 ◦ V (gj(ξ, h(ξ)))

≤ α−1

(
M−1∑
i=0

V (gi(ξ, h(ξ)))

)
≤ α−1

(
M−1∑
i=0

V (gi(ξ, q̂(ξ)))

)

≤ α−1

(
M−1∑
i=0

α ◦ ω(gi(ξ, q̂(ξ)))

)
≤ α−1

(
M−1∑
i=0

α ◦ κi(ω(ξ))

)
,

where the κi are the functions guaranteed by (3) for the
admissible feedback q̂. Finally, for j = M and all ξ ∈ X
we have using the constraints of OCP-1 that

ω(gM (ξ, h(ξ))) ≤ α−1◦V (gM (ξ, h(ξ))) ≤ α−1◦α◦α(ω(ξ)).

This shows the assertion.

Now we show that solving Problem 10 provides an
admissible finite-step feedback which renders system (1)
asymptotically ω-stable.
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Proposition 13. Consider system (1) and let a mea-
surement function ω : Rn → R≥0 as well as a fs-CLF
V : Rn → R≥0 be given. Let q be the admissible finite-
step feedback associated with the fs-CLF V . Then the
admissible finite-step feedback (11) obtained from Algo-
rithm 11 yields an admissible feedback which asymptoti-
cally ω-stabilizes the set A := ω−1(0).

Proof. The feasibility of the Problem 10 is guaranteed by
the existence of the admissible finite-step feedback q gen-
erated by the fs-CLF V and our standing assumption that
maximizing arguments exist. It follows from (OCP-1) that
for all ξ ∈ X

M−1∑
i=0

V
(
x(i, ξ,uq̂)

)
≤
M−1∑
i=0

V
(
x(i, ξ,uq)

)
(13)

and Lemma 12 the feedback defined by (11) is admissi-
ble. Take any ξ ∈ X . For any t = kM + j, k ∈ N,
j ∈ {0, . . . ,M − 1} we have

x(t, ξ,uq̂) = x(j, x(kM, ξ,uq̂),uq̂(·+ kM)). (14)

With (13) we obtain

M−1∑
i=0

V
(
x(i, x(kM, ξ,uq̂),uq̂)

)
≤
M−1∑
i=0

V
(
x(i, x(kM, ξ,uq̂),uq)

)
.

(15)

Moreover, it follows from (3) and (7) that

M−1∑
i=0

V
(
x(i, x(kM, ξ,uq̂),uq)

)
≤M max

{
α
(
ω(x(kM, ξ,uq̂))

)
,

max
i∈{1,...,M−1}

α ◦ κi
(
ω
(
x(kM, ξ,uq̂)

))}
=: κ

(
ω
(
x(kM, ξ,uq̂)

))
. (16)

It follows from (15) and (16) that for all i ∈ {0, . . . ,M−1}

M−1∑
i=0

V
(
x(i, x(kM, ξ,uq̂), uq̂)

)
≤ κ

(
ω
(
x(kM, ξ,uq̂)

))
.

(17)

It follows from the first inequality of (7) that for all i ∈
{0, . . . ,M − 1}

ω
(
x(i, x(kM, ξ,uq̂),uq)

)
≤ α−1 ◦ κ

(
ω
(
x(kM, ξ,uq̂)

))
=: γ

(
ω
(
x(kM, ξ,uq̂)

))
.

For M > 0 we now denote by α1/M := χ ∈ K∞ a fixed
solution of the equation χM = α, which exists by [26,
Proposition 3.1], though it may not be unique. Then for
t ≥ 0, the function αt/M ∈ K∞ is the t-fold composition

of χ. As α < id, it follows that α1/M < id, because the
condition α1/M (r) ≥ r leads by induction to α(t+1)/M (r) ≥
αt/M (r) ≥ r, t ∈ N. But the latter condition for t = M
implies that α(r) ≥ r, whence r = 0.

Now as α1/M < id, it follows for all r > 0 that the
map t 7→ αt/M (r), t ∈ N is strictly decreasing to 0 as t →
∞. As the map is strictly decreasing we may interpolate
linearly in each interval [t, t+ 1], t ∈ N, to obtain a strictly
decreasing map defined on all of [0,∞). With slight abuse
of notation we continue to call this map α·/M (r). With this
convention, the function (r, t) 7→ αt/M (r) is in KL. Also
with the decomposition t = kM + j, j ∈ {0, . . . ,M − 1},
we obtain that

αt/M ◦ α−1 = αk ◦ α−(M−j)/M ≥ αk.

From the last two inequalities we can conclude

ω
(
x(t, ξ,uq̂)

)
≤ γ

(
ω(x(kM, ξ,uq̂))

)
≤ γ ◦ α−1

(
V (x(kM, ξ,uq̂))

)
≤ γ ◦ α−1 ◦ αk

(
V (ξ)

)
≤ γ ◦ α−1 ◦ αk ◦ α

(
ω(ξ)

)
≤ γ ◦ α−1 ◦ α t

M ◦ α−1 ◦ α
(
ω(ξ)

)
=: β

(
ω(ξ), t

)
.

It is easy to see that β ∈ KL, as α·/M (·) is. See also [1,
Lemma 4.2] for a discussion of the necessary details.

We note that one has to make some standard convexity
assumption on the dynamics g to guarantee OCP-1 is nu-
merically solvable via existing algorithms. We emphasize
that OCP-1 needs no knowledge of an admissible control
q. The difficultly in the computation of uq̂ via OCP-1 is,
however, the need for the knowledge of a fs-CLF before-
hand and the choice of a suitable time-step. As discussed
in Section 3.2, a fs-CLF candidate can be chosen as the
corresponding measurement function for which only the
time-step M remains to be determined.

4.2. fs-CLF-based contractive updated multi-step MPC

An obvious drawback of the control scheme proposed by
Proposition 13 is that it only communicates with the sen-
sor every M time-steps. Hence, the control loop is closed
less often than that for a classic closed-loop control, which
may make the system less robust with respect to pertur-
bations. As shown in [10, 11], a remedy to this problem
is to re-compute the remaining part of the optimal control
sequence at each time instant. This amounts to solving an
optimal control problem with shortened horizon.

Problem 14. Consider system (1). Let a measurement
function ω, M ∈ N∗ and a fs-CLF V : Rn → R≥0 with as-
sociated decay function α ∈ K∞, α < id be given. Further-
more, let j ∈ {1, . . . ,M}. For a given initial value ξ̃ ∈ X
consider a control sequence ũ = (ũ0, . . . , ũM−j−1) satisfy-

ing x(M − j, ξ̃, ũ) ∈ X . Define x(0) = ξ := x(M − j, ξ̃, ũ).
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Compute uj =
(
u1(ξ), . . . , uj(ξ)

)
as the optimal solution

the following optimal control problem

min
uj=(uj(0),...,uj(j−1))

j−1∑
i=0

V
(
x(i, ξ,uj)

)
s.t. for all ` ∈ {0, ..., j − 1}

x(`+ 1) = g(x(`), uj(`))
uj(`) ∈ U

g(x(`), uj(`)) ∈ X
V (x(j, ξ,uj)) ≤ α(V (ξ̃)).

(OCP-2j)

Note that feasibility of Problem 14 depends, among
others, on the initial control sequence ũ. However, it is
not hard to see that if we consider a control sequence
û = (û1, . . . , ûM ) solving Problem 10, then for any j =
1, . . . ,M and initial control sequence ũ := (û1, . . . , ûM−j)
a solution of Problem 14 is given by uj = (ûMj+1, . . . , ûM ).
The idea is to iteratively solve Problem 14 and only to ap-
ply the first control value to shrink the horizon by one.
The algorithm for such a control strategy is formalized as
follows.

Algorithm 15. At each time step t = kM + j, k ∈ N,
j = 0, . . . ,M − 1:

1) Measure the state x(t) ∈ X of system (1).

2) Set ξ := x(t), j = j(t) and solve Problem 14 and denote
the optimal control sequence satisfying (OCP-2j) by u∗j .

3) Set the control value to

u(k) = u∗j (0) (18)

and apply it to system (1) at time t = kM + j.

4) Go to Step 1.

Remark 16. We note that by the optimality principle [7,
Corollary 3.16] the solutions to Algorithm 11 and Algo-
rithm 15 coincide in the absence of perturbations.

To illustrate the two proposed algorithms, we give an
example.

Example 17. Here we consider an illustrative numeri-
cal example for which we compare the two different MPC
approaches. Since both algorithms produce identical results
in the case without perturbations, we compare them for the
situation in which the controller is derived by optimizing
over the nominal, i.e., unperturbed system but then applied
to a perturbed system. We consider the nominal system
described by

x+
1 = x1 + x2

x+
2 = x2 + x3

x+
3 = 3

2x3 + u
(19)

and the corresponding perturbed system

x+
1 = x1 + x2 + 0.1 sin(k/4)
x+

2 = x2 + x3

x+
3 = 3

2x3 + u.
(20)

Note that the nominal system (19) is open-loop unstable.
Motivated by the converse Lyapunov function result in

Theorem 9 we start by considering the candidate fs-CLF
V (x) = x>Px with

P =

 1 0 0.25
0 1 0.25

0.25 0.25 1

 ,

which is obviously of the form (10). This choice of the
matrix P contains cross terms between the states. It is
easy to check that the function V thus defined is an M -step
Lyapunov function for M = 3. However, in order to obtain
more pronounced differences between Algorithms 11 and
15, we used M = 6 in the simulations. Moreover, we used
α(r) = 0.9r in both Problem 10 and 14 and all simulations
were performed with the initial condition ξ = (−1, 1, 1)T .

Figure 2 illustrates the state trajectories corresponding
to the nominal case for Algorithm 11.
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Figure 2: State trajectories of the nominal system (19), x1 (black ◦◦◦),
x2 (red ×××), x3 (blue ���) with control input computed via Algo-
rithm 11.

The case in which the control sequence computed by Al-
gorithm 11 is applied to the perturbed system (20) is de-
picted by Figure 3. One clearly sees that the x1-component,
in which the perturbation enters in (20), is more strongly
affected by the perturbation than the other components of
the solution.

Finally, Figure 4 illustrates the state trajectories as-
sociated with the shrinking horizon strategy with re-
optimization, i.e., Algorithm 15 applied to the perturbed
system (20). It may be observed that the re-optimization
on shrinking horizons is able to mitigate the effect of
the perturbation, as the maximal deviation of the x1-
component from the desired equilibrium x1 = 0 after the
transient phase is reduced by about 37%, from 0.615 to
0.387.
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Figure 3: State trajectories of the perturbed system (20), x1

(black ◦◦◦), x2 (red ×××), x3 (blue ���) with control input computed
via Algorithm 11.
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Figure 4: State trajectories of the perturbed system (20), x1

(black ◦◦◦), x2 (red ×××), x3 (blue ���) with control input computed via
Algorithm 15.

4.3. fs-CLF-based classic MPC

The shrinking horizon method is a rather unusual way
of obtaining a feedback law via optimization based tech-
niques. More commonly, one would use a classic MPC
approach, in which the optimization is performed at ev-
ery time step over a fixed horizon length N and always
the first element of the resulting control sequence is im-
plemented. In this section we show that this approach can
also be applied using fs-CLFs. To this end, we consider
the following optimal control problem.

Problem 18. Consider system (1) and let M,N ∈ N∗.
Let ω be a measurement function and V be a fs-CLF
with the associated decay function α ∈ K∞, α < id
be given. Also, let x(0) =: ξ ∈ X . Compute u∗N =(
u∗0(ξ), . . . , u∗N−1(ξ)

)
as the optimal solution of the follow-

ing optimal control problem (OCP-3)

min
uN

N−1∑
i=0

V
(
x(i, ξ,uN )

)
s.t. for all j ∈ {0, . . . , N − 1} x(j + 1) = g(x(j), uj)

uk ∈ U
g(x(j), uj) ∈ X .

(OCP-3)

Here we make use of the feedback signal at every time
step. To do this, one can solve Problem 18 every single
time-step and apply the first element of the corresponding
optimal control sequence uN to the system and then the
(OCP-3) is solved again. This procedure is summarized
by the following algorithm.

Algorithm 19. At each time step t ∈ N:

1) Measure the state x(t) ∈ X of system (1).

2) Set ξ := x(t), solve Problem 18 and denote the optimal
control sequence satisfying (OCP-3) by u∗N .

3) Define the MPC-feedback value q̂MPC by

q̂MPC(ξ) := u∗0(ξ) (21)

and apply it to system (1).

4) Go to Step 1.

The solution to the resulting MPC closed-loop system
starting from some initial value ξ and with optimization
horizon N is denoted by xMPC(N)(·, ξ). We denote the
optimal value function related to Problem 18 by

VN (ξ) :=

N−1∑
i=0

V
(
x(i, ξ,u∗N )

)
. (22)

In order to analyze the resulting MPC closed-loop system,
we make use of the following result.

Definition 20. We say that the MPC scheme described
in Algorithm 19 is semiglobally practically asymptotically
ω-stabilizing with respect to the optimization horizon N in
A := ω−1(0), if there exists β ∈ KL such that the fol-
lowing property holds: for each δ > 0 and ∆ > δ there
exists Nδ,∆ ∈ N∗ such that for all optimization horizons
N ≥ Nδ,∆ and all ξ ∈ Rn with ω(ξ) < ∆ the closed-loop
solutions xMPC(N)(·, ξ) satisfy

ω
(
xMPC(N)(t, ξ)

)
≤ max

{
β
(
ω(ξ), t

)
, δ
}

∀t ∈ N.

Proposition 21. Let ω : Rn → R≥0 be a measurement
function and V be a fs-CLF. Assume that there is a K∞-
function σ such that the optimal value function VN from
(22) satisfies

VN (ξ) ≤ δ(V (ξ)), ∀x ∈ X , N ∈ N∗.

Then the MPC scheme obtained from Algorithm 19
is semiglobally practically asymptotically ω-stabilizing in
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A := ω−1(0) for system (1) with respect to the optimiza-
tion horizon N . If, moreover, σ is a linear function, i.e.,
σ(r) = γr for some γ ∈ R, then the resulting MPC closed-
loop is asymptotically ω-stable in A := ω−1(0) for all

N > 2 + ln(γ−1)
ln γ−ln(γ−1) .

Proof. The first statement is proved by following similar
arguments as those in [7, Theorem 6.37]. For the second
statement, see [7, Corollary 6.21 and Remark 6.22]. We
note that Theorem 6.37 and Corollary 6.21 in [7] consider
stabilization at an equilibrium point. However, it is not
hard to see that with the obvious modification of the ar-
guments in these references we obtain that

VN
(
xMPC(N)(t, ξ))

)
≤ max{β̃(VN (ξ), i), δ̃}

for all ξ with VN (ξ) ≤ ∆̃, ∆̃ > 0, β̃ ∈ KL, and δ̃ ≥ 0,

where ∆̃ → ∞ and δ̃ → 0 as N → ∞. Moreover, the
inequality holds for arbitrarily large ∆̃ > 0 and δ̃ = 0 if σ
is linear. Now, the inequalities

V (ξ) ≤ VN (ξ) ≤ δ(V (ξ)),

which follow by definition of VN and by the assumption
of the proposition, imply that VN is a Lyapunov function
for the closed loop, which proves (practical) asymptotic
stability.

In order to check whether the optimal value function
(22) satisfies the conditions in Proposition 21, we make
the following observation: From (7) and (3) it follows that
there exists a K∞-function κ̂ such that for each admissible
finite-step feedback control law q : X → UM the inequality

V
(
gi
(
ξ, q1(ξ), . . . , qi(ξ)

))
≤ κ̂(V (ξ)) (23)

holds for all i = 1, . . . ,M − 1. This fact is easily verified
for κ̂(r) = maxi=1,...,M−1 α ◦ κi ◦α−1(r). Now we give the
main result of this section.

Theorem 22. Consider system (1) and let M,N ∈ N∗.
Let ω : Rn → R≥0 be a measurement function and V be a
fs-CLF for the step size M . Then, the following statements
hold.

(i) If in (8) α(s) = cs with c ∈ [0, 1) and in (23) κ̂(r) =
dr with d > 0, then the MPC closed-loop is asymptoti-
cally ω-stable with respect to the optimization horizon

N in A := ω−1(0) for all N > 2 + ln(γ−1)
ln γ−ln(γ−1) with

γ = Md/(1− c).
(ii) If in (8) α(s) = cs with c ∈ [0, 1) and κ̂ in (23)

satisfies κ̂(r) ≤ qmax{ra, rb} for constants a, b, q >
0, then the MPC scheme is semiglobally practically
asymptotically ω-stabilizing with respect to the opti-
mization horizon N in A.

(iii) There exists ρ ∈ K∞ such that if we replace V by

Ṽ = ρ(V ) in Problem 18, then the MPC scheme
is semiglobally practically asymptotically ω-stabilizing
with respect to the optimization horizon N in A.

Proof. (i) Iterating (8) yields the existence of a con-
trol function u satisfying V (x(kM, ξ,u)) ≤ ckV (ξ) and
V (x(kM + j, ξ,u)) ≤ dV (x(kM, ξ,u)) for all k ∈ N and
j = 0, . . . ,M − 1. Together this yields

V (x(kM + j, ξ,u)) ≤ ckdV (ξ),

which implies for K ∈ N such that KM ≥ N

VN (ξ) ≤
N−1∑
i=0

V
(
x(i, ξ,u)

)
≤

K−1∑
k=0

M−1∑
j=0

V
(
x(kM + j, ξ,u)

)
≤

K−1∑
k=0

MckdV (ξ) ≤ Md

1− c
V (ξ).

Now the second part of Proposition 21 with δ(r) = Md
1−cr

yields the claim.
(ii) Iterating (8), as in (i) we obtain the inequality

V (x(kM + j, ξ,u)) ≤ qmax{(ckV (ξ))a, (ckV (ξ))b}
≤ qmax{ca, cb}k max{V (ξ)a, V (ξ)b}.

Abbreviating ĉ = max{ca, cb} ∈ [0, 1) the same computa-
tion as in (i) yields

VN (ξ) ≤
K−1∑
k=0

Mqĉk max{V (ξ)a, V (ξ)b}

≤ Mq

1− ĉ
max{V (ξ)a, V (ξ)b}.

This implies that the assumptions of the first part of
Proposition 21 are satisfied with δ(r) = Mq

1−ĉ max{ra, rb}
and the claim follows.

(iii) Recall κ̂ from (23). From (8) it follows that

κ̂(V (x(M, ξ,uq))) ≤ κ̂ ◦ α(V (ξ)) = κ̂ ◦ α ◦ κ̂−1︸ ︷︷ ︸
=:µ

(κ̂(V (ξ)).

Since α < id it follows that µ < id. Hence, applying
Proposition 3.2 from [27] to V̂ = κ̂(V ) implies that there

exists ρ ∈ K∞ and λ ∈ (0, 1) such that W := ρ(V̂ ) satisfies
W (x(M, ξ,uq)) ≤ λW (ξ). Iterating this inequality yields
the existence of u with

W (x(kM, ξ,u)) ≤ λkW (ξ)

V (x(kM + j, ξ,u)) ≤ κ̂(V (x(kM, ξ,u))).

For Ṽ = ρ(V ) this implies

Ṽ (x(kM + j, ξ,u)) = ρ(V (x(kM + j, ξ,u))

≤ ρ ◦ κ̂(V (x(kM, ξ,u))

= W (x(kM, ξ,u))

≤ λkW (ξ) = λk ρ ◦ κ̂ ◦ ρ−1︸ ︷︷ ︸
=:σ∈K∞

(Ṽ (ξ)).
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With an analogous computation as in (i) and (ii) we obtain

VN (ξ) ≤
K−1∑
k=0

M−1∑
j=0

Ṽ
(
x(kM + j, ξ,u)

)
≤
K−1∑
k=0

Mλkσ(Ṽ (ξ)) ≤ M

1− λ
σ(Ṽ (ξ)).

Hence, the assumptions of the first part of Proposition 21
are satisfied for Ṽ in place of V with δ(r) = Mσ(r)/(1−λ).
Thus, Proposition 21 yields the assertion.

Example 23. We illustrate the performance of the clas-
sic MPC approach again for the nominal and perturbed
systems (19) and (20). We use the same initial con-
dition ξ = (−1, 1, 1)T as in Example 17, the fs-CLF
V (x) = xTPx from Example 17 as stage cost and the op-
timization horizon N = 6. Figure 5 shows the resulting
state trajectory for applying the control computed by Algo-
rithm 19 to the perturbed system (20). The effect of the
perturbation is comparable to the updated shrinking horizon
MPC Algorithm in Figure 4; after the transient phase the
maximal deviation of x1 to the desired equilibrium is 0.363
here compared to 0.387 in the shrinking horizon algorithm.
However, one observes that the trajectories in Figure 5 ap-
pear smoother than those in Figure 4. Further numerical
tests have revealed that the loss of smoothness in Figure 4
is mainly due to the contractive constraints and not due
to the shrinking horizon. Hence, this is an advantage for
MPC without using contraction constraints. However, we
emphasize that we have not rigorously checked the assump-
tions of Theorem 22 (which are usually quite conservative,
anyway), but rather determined the optimization horizon
N by trial and error. Hence, in contrast to Algorithms 11
and 15, there is no formal guarantee for asymptotic stabil-
ity here.
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Figure 5: State trajectories of the perturbed system (20), x1

(black ◦◦◦), x2 (red ×××), x3 (blue ���) with control input computed via
Algorithm 19.

5. Conclusions and outlook

We have exploited the notion of fs-CLF to develop con-
trol design approaches for discrete-time systems. To this
end, the controller design problem has been reformulated
into an optimization problem. Motivated by state-of-the-
art applications, we have provided three different MPC
schemes via fs-CLFs: i) contractive multi-step MPC, ii)
contractive updated multi-step MPC, iii) classic MPC
without stabilizing terminal constraints. We have illus-
trated the MPC schemes via an example.

The results of the paper can be extended in several di-
rections: fs-LFs are leveraged to develop nonconservative
small-gain and dissipativity conditions for stability anal-
ysis of large-scale systems [28, 3, 4, 6]. We aim to fuse
the results of the current paper with the nonconservative
small-gain and dissipativity to develop distributed MPC
schemes. Applications of such results to smart grids, smart
city and mobile robots are expected. The analysis in this
work can also be generalized to systems subject to distur-
bances.
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