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Abstract

Given an unstable hybrid neutral stochastic differential equation (NSDE), can we design a delay feedback control to

make the controlled hybrid NSDE become stable? It has been proved that this is possible under the linear growth

condition. However, there is no answer to the question if the drift and diffusion coefficients of the given unstable NSDE

satisfy highly nonlinear growth condition. The aim of this paper is to design delay feedback controls in order to stabilise

a class of highly nonlinear hybrid NSDEs whose coefficients satisfy the polynomial growth condition.

Keywords: Neutral stochastic differential equation, delay feedback control, highly nonlinear, asymptotic stability,

Markovian switching.

1. Introduction

Many stochastic dynamical systems do not only depend

on present and past states but also involve derivatives with

delays. Neutral stochastic differential equations are often

used to model such systems. On other hand, many sys-

tems in the real word may experience abrupt changes in

their structures and parameters due to sudden changes of

system factors. NSDEs with Markovian switching (also

known as hybrid NSDEs) form an important class of hy-

brid dynamical systems. They have been successfully ap-

plied in practice, such as in traffic control, switching power

converters, neural networks, and so on (see, e.g., [1, 9, 20]).

The hybrid NSDEs can be described by

d[x(t)−D(x(t− τ),r(t), t)] = f(x(t), x(t− τ), r(t), t)dt

+ g(x(t), x(t− τ), r(t), t)dB(t),

where x(t) ∈ Rn is the state, τ stands for time delay,

B(t) is a scalar Brownian motion, r(t) is a Markov chain

on the state space S = {1, 2, · · · , N} with generator Γ =

(γij)N×N .

One of the important issue in the study of hybrid NS-

DEs is the analysis of stability (see, e.g., [7, 8, 10, 18, 21,

23, 24]). In the case when a given hybrid NSDE is unsta-

ble, it is classical to find a feedback control u(x(t), r(t), t),
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based on the current state x(t), for the controlled system

d[x(t)−D(x(t− τ), r(t), t)]

=[f(x(t), x(t− τ), r(t), t) + u(x(t), r(t), t)]dt

+ g(x(t), x(t− τ), r(t), t)dB(t)

to become stable. However, taking into account a time

lag δ (δ > 0) between the time when the observation of

the state is made and the time when the feedback control

reaches the system, it is more realistic that the control

depends on a past state x(t − δ) (see, e.g., [2, 3, 17, 25]).

Accordingly, we assume that the control is the form u(x(t−
δ), r(t), t). In this paper, we assume that δ ≤ τ . Hence, the

stabilisation problem becomes to design a delay feedback

control u(x(t− δ), r(t), t) for the controlled system

d[x(t)−D(x(t− τ), r(t), t)]

=[f(x(t), x(t− τ), r(t), t) + u(x(t− δ), r(t), t)]dt
+ g(x(t), x(t− τ), r(t), t)dB(t)

to be stable. Mao et al. [15] were the first to study stabil-

isation problem by the delay feedback control for hybrid

SDEs and there have been some further developments since

then (see, e.g., [14, 26]). Chen et al. investigated the sta-

bilisation problem for hybrid NSDEs by the delay feedback

control(see, e.g., [2, 3]). The common restrict condition

imposed in these existing papers is that both drift coeffi-

cient and diffusion one need to satisfy the linear growth

condition. In fact, this restrict condition excludes many
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NSDE models in the real world, for example, the following

scalar hybrid NSDE

d[x(t)−D(x(t− τ),r(t), t)] = f(x(t), x(t− τ), r(t), t)dt

+ g(x(t), x(t− τ), r(t), t)dB(t)

where

f(x, y, 1, t) = 0.5x+ y3 − 6x3,

f(x, y, 2, t) = x+ y3 − 4x3,

g(x, y, 1, t) = g(x, y, 2, t) = 0.5y2. (1)

It is therefore necessary and important to establish a new

theory which shows how to design delay feedback controls

in order to stabilise highly nonlinear hybrid NSDEs. Re-

cently, a number of new results of feedback control are

obtained for highly nonlinear SDEs. For example, Lu et

al. [12] explored stabilisation of highly nonlinear hybrid

SDEs by delay feedback control, while Fei et al.[4] dis-

cussed stabilisation of highly nonlinear hybrid SDEs based

on discrete-time observation feedback control. However,

the unstable systems they considered are highly nonlinear

SDEs without delay. Only very recently Li and Mao [11]

established a new theory on the stabilisation by delay feed-

back control for highly nonlinear SDDEs. Unfortunately,

there is so far no answer to the question if the given sys-

tem is highly nonlinear hybrid delay NSDEs. In this paper,

we will explore the stabilisation of highly nonlinear hybrid

NSDEs by delay feedback control. The key challenge of

this paper lies in the difficulties arisen from the highly

nonlinear drift and diffusion coefficients.

2. Notation and Assumption

Throughout this paper, unless otherwise specified, we

use the following notation. If x ∈ Rn, then |x| is its Eu-

clidean norm. For τ > 0, denote by C([−τ, 0];Rn) the fam-

ily of continuous functions ϕ from [−τ, 0] → Rn with the

norm ‖ϕ‖ = sup−τ≤u≤0 |ϕ(u)|. Let (Ω,F , {Ft}t≥0, P ) be

a complete probability space with a filtration {Ft}t≥0 sat-

isfying the usual conditions (i.e. it is increasing and right

continuous while F0 contains all P -null sets). Let B(t) =

(B1(t), · · · , Bm(t))T be an m-dimensional Brownian mo-

tion defined on the probability space. Let r(t), t ≥ 0, be

a right-continuous Markov chain on the probability space

taking values in a finite state space S = {1, 2, · · · , N} with

generator Γ = (γij)N×N given by

P{r(t+ ∆) = j|r(t) = i} =

{
γij∆ + o(∆) if i 6= j

1 + γii∆ + o(∆) if i = j,

where ∆ > 0. Here γij ≥ 0 is the transition rate from i

to j if i 6= j while γii = −
∑
j 6=i γij . We assume that the

Markov chain r(·) is independent of the Brownian motion

B(·).
In order to make our stability analysis more under-

standable, we will only consider the simple case in this pa-

per where the neutral term D is independent of the mode

and time. That is we consider the underlying unstable

system which is described by following highly nonlinear

hybrid NSDE

d[x(t)−D(x(t− τ))] = f(x(t), x(t− τ), r(t), t)dt

+ g(x(t), x(t− τ), r(t), t)dB(t) (2)

on t ≥ 0 with initial data

{x(t) : −τ ≤ t ≤ 0} = ϕ ∈ C([−τ, 0];Rn)

and r(0) = r0 ∈ S, (3)

where

f : Rn ×Rn × S ×R+ → Rn,

g : Rn ×Rn × S ×R+ → Rn×m, D : Rn → Rn

are Borel measurable functions. For the sake of simplicity,

we denote x̃(t) = x(t)−D(x(t−τ)). Hence, we are required

to design a feedback control u(x(t− δ), r(t), t) in the drift

part so that the controlled system

dx̃(t) = [f(x(t), x(t− τ), r(t), t) + u(x(t− δ), r(t), t)]dt
+ g(x(t), x(t− τ), r(t), t)dB(t) (4)

becomes stable.

The well-known conditions imposed for the existence

and uniqueness of the global solution are the local Lips-

chitz condition and the linear growth condition [13, 16, 22].

In this paper, we need the local Lipschitz condition . How-

ever, we impose the polynomial growth condition instead

of the linear growth condition [5, 6]. Let us state these

conditions as an assumption for the use of this paper.

Assumption 2.1. Assume that for any h > 0, there ex-

ists a positive constant Kh such that

|f(x, y, i, t)− f(x̄, ȳ, i, t)| ∨ |g(x, y, i, t)− g(x̄, ȳ, i, t)|

≤ Kh(|x− x̄|+ |y − ȳ|) (5)

for all x, y, x̄, ȳ ∈ Rn with |x| ∨ |y| ∨ |x̄| ∨ |ȳ| ≤ h and

all (i, t) ∈ S × R+. Assume also that there exist three

constants K > 0, q1 ≥ 1 and q2 ≥ 1 such that

|f(x, y, i, t)| ≤ K(1 + |x|q1 + |y|q1),

|g(x, y, i, t)| ≤ K(1 + |x|q2 + |y|q2) (6)
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for all (x, y, i, t) ∈ Rn × Rn × S × R+. Assume moreover

that there is a constant κ ∈ (0, 1) such that

|D(u)−D(v)| ≤ κ|u− v| (7)

for all u, v ∈ R, and D(0) = 0.

If q1 = q2 = 1, then condition (6) is the familiar linear

growth condition. However, we emphasise once again that

we are here interested in highly nonlinear NSDEs which

have either q1 > 1 or q2 > 1. We will refer to condition

(6) as the polynomial growth condition.

Let C2,1(Rn × S × R+;R+) denote the family of non-

negative functions U(x, i, t) on Rn × S × R+, which are

continuously twice differentiable in x and once in t. Let

Ut(x, i, t) =
∂U(x, i, t)

∂t
,

Ux(x, i, t) =
(∂U(x, i, t)

∂x1
, · · · , ∂U(x, i, t)

∂xd

)
Uxx(x, i, t) =

(∂2U(x, i, t)

∂xk∂xl

)
d×d

.

Define an operator LŪ : Rn ×Rn × S ×R+ → R by

LŪ(x, y, i, t) = Ūt(x−D(y), i, t)

+ Ūx(x−D(y), i, t)f(x, y, i, t)

+
1

2
trace[gT (x, y, i, t)Ūxx(x−D(y), i, t)g(x, y, i, t)]

+
∑
j∈S

γijŪ(x−D(y), j, t).

To avoid possible explosion, we need to impose an ad-

ditional as an assumption.

Assumption 2.2. Assume that there exists a pair of func-

tions Ū ∈ C2,1(Rn × S × R+;R+) and Λ ∈ C(Rn ×

[−τ,∞);R+), as well as positive numbers c1, c2, c3, c4 and

q ≥ 2(q1 ∨ q2), such that

c3 + c4 < c2, |x|q ≤ Ū(x, i, t) ≤ Λ(x, t),

∀(x, i, t) ∈ Rn × S ×R+ and

LŪ(x, y, i, t) + Ūx(x−D(y), i, t)u(z, i, t)

≤ c1 − c2Λ(x, t) + c3Λ(y, t− τ) + c4Λ(z, t− δ),

∀(x, y, i, t) ∈ Rn ×Rn × S ×R+.

We now cite a result from [23] as a lemma for the use

of this paper.

Lemma 2.3. Under Assumptions 2.1 and 2.2, the NSDE

(4) with the initial data (3) has the unique global solution

x(t) on t ≥ −τ and the solution has the property that

sup
−τ≤t<∞

E|x(t)|q <∞.

3. Asymptotic Stabilisation

In this section, we will use the method of Lyapunov

functionals to investigate the asymptotic stabilisation. We

define two segments x̄t := {x(t + s) : −2τ ≤ s ≤ 0} and

r̄t := {r(t + s) : −2τ ≤ s ≤ 0} for t ≥ 0. For x̄t and r̄t
to be well defined for 0 ≤ t < 2τ , we set x(s) = ϕ(−τ)

for s ∈ [−2τ,−τ) and r(s) = r0 for s ∈ [−2τ, 0). The

Lyapunov functional used in this paper is defined by

V (x̄t, r̄t, t) = U(x̃(t), r(t), t) + ρ

∫ 0

−δ

∫ t

t+s

H(v)dvds

for t ≥ 0, where U ∈ C2,1(Rn × S ×R+;R+) such that

lim
|x|→∞

[ inf
(i,t)∈S×R+

U(x, i, t)] =∞,

H(t) =δ|f(x(t), x(t− τ), r(t), t) + u(x(t− δ), r(t), t)|2

+ |g(x(t), x(t− τ), r(t), t)|2

and ρ is a positive number to be determined later. Here

we set

f(x, y, i, s) = f(x, y, i, 0), u(z, i, s) = u(z, i, 0),

g(x, y, i, s) = g(x, y, i, 0)

for (x, y, i, s) ∈ Rn × Rn × S × [−2τ, 0). Applying the

generalized Itô formula to U(x̃(t), r(t), t), we get

dU(x̃(t), r(t), t) =
(
Ut(x̃(t), r(t), t) + Ux(x̃(t), r(t), t)

× [f(x(t), x(t− τ), r(t), t) + u(x(t− δ), r(t), t)]

+
1

2
trace[gT (x(t), x(t− τ), r(t), t)

× Uxx(x̃(t), r(t), t)g(x(t), x(t− τ), r(t), t)]

+

N∑
j=1

γr(t),jU(x̃(t), r(t), t)
)
dt+ dM(t),

for t ≥ 0, where M(t) is a continuous local martingale

with M(0) = 0 (see, e.g., [19, Theorem 1.45 on page 48]).

Rearranging terms gives

dU(x̃(t), r(t), t) =
(
Ut(x̃(t), r(t), t)

+ Ux(x̃(t), r(t), t)[u(x(t− δ), r(t), t)− u(x(t), r(t), t)]

+ LU(x(t), x(t− δ), r(t), t)
)
dt+ dM(t),
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where the function LU : Rn×Rn×S×R+ → R is defined

by

LU(x, y, i, t) = Ut(x−D(y), i, t)

+ Ux(x−D(y), i, t)[f(x, y, i, t) + u(x, i, t)]

+
1

2
trace[gT (x, y, i, t)Uxx(x−D(y), i, t)g(x, y, i, t)]

+

N∑
j=1

γijU(x−D(y), j, t). (8)

Lemma 3.1. With the notation above, V (x̄t, r̄t, t) is an

Itô process on t ≥ 0 with its Itô differential

dV (x̄t, r̄t, t) = LV (x̄t, r̄t, t)dt+ dM(t),

where M(t) is a continuous local martingale with M(0) = 0

and

LV (x̄t, r̄t, t) = LU(x(t), y(t), r(t), t)

+ Ux(x̃(t), r(t), t)[u(x(t− δ), r(t), t)− u(x(t), r(t), t)]

+ ρδH(t)− ρ
∫ t

t−δ
H(v)dv.

To study the asymptotic stability of the controlled NSDE

(4), we need to impose a couple of new assumptions.

Assumption 3.2. Assume that there are functions U ∈

C2,1(Rn×S×R+;R+), G ∈ C(Rn;R+) and positive num-

bers α, λ and λi(i = 0, 1, 2, 3) such that

α < 1, λ0 < λ

and

LU(x, y, i, t) + λ1|Ux(x̃, i, t)|2

+ λ2|f(x, y, i, t)|2 + λ3|g(x, y, i, t)|2

≤ −λ|x|2 + λ0|y|2 −G(x) + αG(y), (9)

for all (x, y, i, t) ∈ Rn ×Rn × S ×R+.

Assumption 3.3. Assume that there exists a positive num-

ber λ4 such that

|u(x, i, t)− u(y, i, t)| ≤ λ4|x− y| (10)

for all (x, y, i, t) ∈ Rn × Rn × S × R+. Moreover, for the

stability purpose, assume that u(0, i, t) = 0.

This assumption implies

|u(x, i, t)| ≤ λ4|x|, ∀(x, i, t) ∈ Rn × S ×R+. (11)

Theorem 3.4. Let Assumptions 2.1, 3.2 and 3.3 hold.

Assume also that

δ ≤ 2(1− κ)2λ1λ3

λ2
4

∧ (1− κ)
√
λ1λ2

λ4

and δ <
(1− κ)

√
λ1(λ− λ0)

λ2
4

. (12)

Then for any given initial data (3), the solution of the

NSDE (4) has the properties that∫ ∞
0

E[|x(t)|2 +G(x(t))]dt <∞, (13)

sup
0≤t<∞

EU(x(t)−D(x(t− τ)), r(t), t) <∞. (14)

Proof : Fix the initial data ϕ ∈ C([−τ, 0];Rn) and r0 ∈ S
arbitrarily. Let k0 > 0 be a sufficiently large integer such

that ‖ϕ‖ := sup−τ≤s≤0 ϕ(s) < k0. For each integer k > k0,

define the stopping time

σk = inf{t ≥ 0 : |x(t)| ≥ k},

where throughout this paper we set inf ∅ =∞ (as usual ∅
denotes the empty set). By Lemma 2.3 and [23], we can

see that σk is increasing as k → ∞ and limk→∞ σk = ∞
a.s. By the generalized Itô formula we obtain from Lemma

3.1 that

EV (x̄t∧σk
, r̄t∧σk

, t ∧ σk)

= V (x̄0, r̄0, 0) + E

∫ t∧σk

0

LV (x̄s, r̄s, s)ds (15)

for any t ≥ 0 and k ≥ k0. Let ρ =
λ2
4

2λ1(1−κ)2 . By Assump-

tion 3.3, it is easy to see that

Ux(x̃(t), r(t), t)[u(x(t− δ), r(t), t)− u(x(t), r(t), t)]

≤ λ1|Ux(x̃(t), r(t), t)|2 +
λ2

4

4λ1
|x(t)− x(t− δ)|2.

By condition (12), we also have

2ρδ2 ≤ λ2 and ρδ ≤ λ3.

It then follows from Lemma 3.1 that

LV (x̄s, r̄s, s) ≤ LU(x(s), y(s), r(s), s)

+ λ1|Ux(x̃(s), r(s), s)|2 + λ2|f(x(s), x(s− τ), r(s), s)|2

+ λ3|g(x(s), x(s− τ), r(s), s)|2

+
λ2

4

4λ1
|x(s)− x(s− δ)|2 + 2ρδ2λ2

4|x(s− δ)|2

− λ2
4

2λ1(1− κ)2

∫ s

s−δ
H(v)dv.
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By Assumption 3.2, we then have

LV (x̄s, r̄s, s) ≤ −λ|x|2 + λ0|y|2 −G(x) + αG(y)

+
λ2

4

4λ1
|x(s)− x(s− δ)|2 + 2ρδ2λ2

4|x(s− δ)|2

− λ2
4

2λ1(1− κ)2

∫ s

s−δ
H(v)dv.

Substituting this into (15) implies

EV (x̄t∧σk
,r̄t∧σk

, t ∧ σk)

≤ V (x̄0, r̄0, 0) + Π1 + Π2 + Π3 −Π4, (16)

where

Π1 = E

∫ t∧σk

0

[−λ|x(s)|2 + λ0|x(s− τ)|2

+ 2ρδ2λ2
4|x(s− δ)|2]ds,

Π2 = E

∫ t∧σk

0

[−G(x(s)) + αG(x(s− τ))]ds,

Π3 =
λ2

4

4λ1
E

∫ t∧σk

0

|x(s)− x(s− δ)|2ds,

Π4 =
λ2

4

2λ1(1− κ)2
E

∫ t∧σk

0

∫ s

s−δ
H(v)dvds.

Noting that∫ t∧σk

0

|x(s− τ)|2ds ≤
∫ t∧σk

−τ
|x(v)|2dv,

∫ t∧σk

0

|x(s− δ)|2ds ≤
∫ t∧σk

−δ
|x(v)|2dv ≤

∫ t∧σk

−τ
|x(v)|2dv

and ∫ t∧σk

0

G(x(s− τ))ds ≤
∫ t∧σk

−τ
G(x(v))dv,

we have

Π1 ≤ (λ0 + 2ρδ2λ2
4)

∫ 0

−τ
|x(s)|2ds

− (λ− λ0 − 2ρδ2λ2
4)E

∫ t∧σk

0

|x(s)|2ds,

Π2 ≤ α
∫ 0

−τ
G(x(s))ds− (1− α)

∫ t∧σk

0

G(x(s))ds.

Substituting this into (16) yields

EV (x̄t∧σk
, r̄t∧σk

, t ∧ σk)

≤ C1 − (λ− λ0 − 2ρδ2λ2
4)E

∫ t∧σk

0

|x(s)|2ds

− (1− α)E

∫ t∧σk

0

G(x(s))ds+ Π3 −Π4, (17)

where C1 is a constant defined by

C1 = V (x̄0, r̄0, 0) + (λ0 + 2ρδ2λ2
4)

∫ 0

−τ
|x(s)|2ds

+ α

∫ 0

−τ
G(x(s))ds.

Applying the classical Fatou lemma and letting k →∞ in

(17), we obtain

EV (x̄t, r̄t, t) ≤ C1 − (λ− λ0 − 2ρδ2λ2
4)E

∫ t

0

|x(s)|2ds

− (1− α)E

∫ t

0

G(x(s))ds+ Π̄3 − Π̄4,

where

Π̄3 =
λ2

4

4λ1
E

∫ t

0

|x(s)− x(s− δ)|2ds,

Π̄4 =
λ2

4

2λ1(1− κ)2
E

∫ t

0

∫ s

s−δ
H(v)dvds.

By the well-known Fubini theorem, we have

Π̄3 =
λ2

4

4λ1

∫ t

0

E|x(s)− x(s− δ)|2ds.

For t ∈ [0, δ], we have

Π̄3 ≤
λ2

4

2λ1

∫ δ

0

(E|x(s)|2 + E|x(s− δ)|2)ds

≤ δλ2
4

λ1

(
sup
−δ≤v≤δ

E|x(v)|2
)

=: C2,

while for t > δ, we have

Π̄3 ≤ C2 +
λ2

4

4λ1

∫ t

δ

E|x(s)− x(s− δ)|2ds.

Noting that

|x(s)− x(s− δ)| ≤ |x̃(s)− x̃(s− δ)|
+ |D(x(s− τ))−D(x(s− δ − τ))|
≤ κ|x(s− τ)− x(s− δ − τ)|

+ |
∫ s

s−δ
[f(x(v), x(v − τ), r(v), v)

+ u(x(v), x(v − δ), r(v), v)]dv

+

∫ s

s−δ
g(x(v), x(v − τ), r(v), v)dB(v)|.
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Therefore, we have

E|x(s)− x(s− δ)|2

≤ (1 + θ)κ2E|x(s− τ)− x(s− δ − τ)|2

+ (1 +
1

θ
)E|

∫ s

s−δ
[f(x(v), x(v − τ), r(v), v)

+ u(x(v), x(v − δ), r(v), v)]dv

+

∫ s

s−δ
g(x(v), x(v − τ), r(v), v)dB(v)|2

≤ (1 + θ)κ2E|x(s− τ)− x(s− δ − τ)|2

+ 2(1 +
1

θ
)E

∫ s

s−δ
H(v)dv.

Setting θ = 1
κ − 1, then we have∫ t

δ

E|x(s)− x(s− δ)|2ds

≤ κ
∫ t

δ

E|x(s− τ)− x(s− δ − τ)|2ds

+
2

1− κ
E

∫ t

δ

∫ s

s−δ
H(v)dvds

≤ κ
∫ t

−τ+δ

E|x(s)− x(s− δ)|2ds

+
2

1− κ
E

∫ t

δ

∫ s

s−δ
H(v)dvds.

Noting that 0 < κ < 1, it follows that∫ t

δ

E|x(s)− x(s− δ)|2ds

≤ κ

1− κ

∫ δ

−τ+δ

E|x(s)− x(s− δ)|2ds

+
2

(1− κ)2
E

∫ t

δ

∫ s

s−δ
H(v)dvds.

Noting that∫ δ

−τ+δ

E|x(s)− x(s− δ)|2ds

≤ 2E

∫ δ

−τ+δ

|x(s)|2ds+ |x(s− δ)|2ds

≤ 4E

∫ τ

−τ
|x(s)|2ds ≤ 8τ sup

−τ≤v≤τ
E|x(v)|2

Hence

Π̄3 ≤ C2 +
2κτλ2

4

(1− κ)λ1
sup

−τ≤v≤τ
E|x(v)|2 + Π̄4

= C3 + Π̄4,

where C3 = C2+
2κτλ2

4

(1−κ)λ1
sup−τ≤v≤τ E|x(v)|2. That means

(λ− λ0 − 2ρδ2λ2
4)E

∫ t

0

|x(s)|2ds

+ (1− α)E

∫ t

0

G(x(s))ds ≤ C1 + C3.

By condition (12), we have

λ− λ0 − 2ρδ2λ2
4 = λ− λ0 −

δ2λ4
4

λ1(1− κ)2
> 0.

Letting t→∞, the assertion (13) can be obtained.

Similarly, we can see from (16) that

EU
(
x(t ∧ σk)−D(x(t ∧ σk − τ)), r(t ∧ σk), t ∧ σk

)
≤ C1 − (λ− λ0 − 2ρδ2λ2

4)E

∫ t∧σk

0

|x(s)|2ds

− (1− α)

∫ t∧σk

0

G(x(s))ds+ Π3 −Π4, (18)

Letting k →∞, we get

EU(x(t)−D(x(t− τ)), r(t), t) ≤ C1 + C3 <∞,

which shows the assertion (14). Thus the proof is com-

plete. 2

The following corollary will give a criterion on H∞-

stability.

Corollary 3.5. Let the conditions of Theorem 3.4 hold.

If there exists a pair of positive constants c and p̄ > 2 such

that

c|x|p̄ ≤ G(x), ∀(x, t) ∈ Rn ×R+,

then the solution of the controlled system (4) has the prop-

erty that for any p ∈ [2, p̄] and any given initial data (3)∫ ∞
0

E|x(t)|pdt <∞. (19)

That is, the NSDE (4) is H∞-stable in Lp for any p ∈

[2, p̄].

We can see this corollary follows from (13) obviously.

However, it does not follow from (19) that limt→∞E|x(t)|p =

0.

Theorem 3.6. Let the conditions of Corollary 3.5 hold.

If, moreover,

p ≥ 2 and (p+ q1 − 1) ∨ (p+ 2q2 − 2) ≤ q,
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then the solution of the NSDE (4) satisfies

lim
t→∞

E|x(t)|p = 0

for any initial data (3). That is, the NSDE (4) is asymp-

totically stable in Lp.

Proof : Fix the initial data (3) arbitrarily. For any 0 ≤
t1 < t2 <∞, by the Itô formula, we obatain

E|x̃(t2)|p − E|x̃(t1)|p

= E

∫ t2

t1

(
p|x̃(t)|p−2x̃T (t)

× [f(x(t), x(t− τ), r(t), t) + u(x(t− δ), r(t), t)]

+
p

2
|x̃(t)|p−2|g(x(t), x(t− τ), r(t), t)|2

+
p(p− 2)

2
|x̃(t)|p−4|x̃T (t)g(x(t), x(t− τ), r(t), t)|2

)
dt.

This implies∣∣E|x̃(t2)|p − E|x̃(t1)|p
∣∣ ≤ E ∫ t2

t1

(
p|x̃(t)|p−1

× |f(x(t), x(t− τ), r(t), t) + u(x(t− δ), r(t), t)|

+
p(p− 1)

2
|x̃(t)|p−2|g(x(t), x(t− τ), r(t), t)|2

)
dt

≤ E
∫ t2

t1

(
p|x̃(t)|p−1

×
[
K(1 + |x(t)|q1 + |x(t− τ)|q1) + λ4|x(t− δ)|

]
+

3p(p− 1)K2

2
|x̃(t)|p−2

[
1 + |x(t)|2q2 + |x(t− τ)|2q2

])
dt

≤ C4(t2 − t1),

where C4 is a constant independent t1, t2, Thus we have

E|x̃(t)|p is uniformly continuous in t on R+. By (19), we

can have∫ ∞
0

E|x̃(t)|pdt ≤
∫ ∞

0

2p−1E
(
|x(t)|p + κp|x(t− τ)|p

)
dt

≤ 2p−1(1 + κp)

∫ ∞
0

E|x(t)|pdt+ 2p−1κp‖ϕ‖ <∞,

so we obtain limt→∞E|x̃(t)|p = 0. By the inequality (7),

we can get

E|x(t)|p ≤ E[|x̃(t)|+ |D(x(t− τ))|]p

≤ E[(1 + %)p−1(|x̃(t)|p + %1−pκp|x(t− τ)|p)].

Setting % = κ/(1− κ), we obatin

E|x(t)|p ≤(
1

1− κ
)p−1E|x̃(t)|p + κE|x(t− τ)|p, (20)

letting t→∞, we have

lim
t→∞

supE|x(t)|p ≤ κ lim
t→∞

supE|x(t)|p.

This, together with the Lemma 2.3, yields

lim
t→∞

E|x(t)|p = 0.

Thus the proof is complete. 2

4. An Example

In this section, we will use an example to illustrate our

results.

Example 4.1. Consider the following scalar hybrid NSDE

d[x(t)−D(x(t− τ))] = f(x(t), x(t− τ), r(t), t)dt

+ g(x(t), x(t− τ), r(t), t)dB(t), (21)

where r(t) is a Markov chain on the state space S = {1, 2}

with its generator

Γ =

−2 2

1 −1

 ,

the coefficients f and g are given by (1) and D(y) = 0.1y.

Setting τ = 2, letting the initial data x(u) = 2 + cos(u)

for u ∈ [−2, 0], r(0) = 2. The sample paths of the Markov

chain and the solution of the NSDE (21) are plotted in

Figure 1, which indicates that the NSDE is unstable. We
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Figure 1: The computer simulation of the sample paths of the

Markov chain and the NSDE (21) with τ = 2 using the

Euler-Maruyama method.

will use the control function u : R × S ×R+ → R defined

by

u(x, 1, t) = −x, u(x, 2, t) = −2x. (22)
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Thus, the controlled hybrid NSDE has the form

d[x(t)−D(x(t− τ))]

=[f(x(t), x(t− τ), r(t), t) + u(x(t− δ), r(t), t)]dt

+ g(x(t), x(t− τ), r(t), t)dB(t), (23)

In order to get the bound on δ, we need to verify the

assumptions imposed in Section 2. It is easy to see that

Assumption 2.1 is satisfied with q1 = 3 and q2 = 2.

LŪ(x, y, i, t) + Ūx(x−D(y), i, t)u(z, i, t)

= 6|x−D(y)|5f(x, y, i, t) +
15

4
|x−D(y)|4|y|4

+ 6|x−D(y)|5u(z, i, t).

By Young inequality and (20), we have

LŪ(x, y, i, t) + Ūx(x−D(y), i, t)u(z, i, t)

≤



−16.961x8 + 5.762y8

+16.785x6 + y6 + 1.1z6, if i = 1,

−8.229x8 + 4.971y8

+24.41x6 + 1.5y6 + 2.2z6, if i = 2.

≤ −8.229x8 + 5.762y8 + 24.41x6 + 1.5y6 + 2.2z6

≤ c1 − 8(x8 + 2.2x6) + 5.8(y8 + 2.2y6) + (z8 + 2.2z6),

where c1 = supx∈R(33x6 − 0.229x8) < ∞. Therefore, As-

sumption 2.2 is fulfilled with Λ(x, t) = x8 + 2.2x6, c2 =

8, c3 = 5.8, c4 = 1 and q = 6.

To apply our theorems established in the previous sec-

tion, we need to verify assumptions imposed there. Let us

do so one by one. To verify Assumption 3.2, we define

U(x, i, t) =

 2x2 + x4, if i = 1,

x2 + x4, if i = 2,

for (x, i, t) ∈ R× S ×R+.

By the well-known Young inequality, we can show that

LU(x, y, i, t)

≤



−2.75x2 − 12.149x4 − 15.418x6

+0.23y2 + 2.002y4 + 4.577y6 if i = 1,

−2.7x2 − 16.899x4 − 9.422x6

+0.31y2 + 3.803y4 + 4.173y6 if i = 2.

Moreover,

|Ux(x−D(y), i, t)|2

≤



17.6x2 + 1.76y2 + 43.9x4

+3.2y4 + 27.1x6 + 1.6y6, if i = 1,

4.4x2 + 0.44y2 + 21.95x4

+1.6y4 + 27.1x6 + 1.6y6, if i = 2;

|f(x, y, i, t)|2 ≤



x2 − 11.5x4 + 1.5y4 + 42x6 + 7y6,

if i = 1,

x2 − 7.5x4 + 1.5y4 + 20x6 + 5y6,

if i = 2;

|g(x, y, 1, t)|2 = |g(x, y, 2, t|2 = 0.25y4.

Setting λ1 = 0.05, λ2 = 0.1, λ3 = 4, we obtain that

LU(x, y, i, t) + λ1|Ux(x−D(y), i, t)|2

+ λ2|f(x, y, i, t)|2 + λ3|g(x, y, i, t)|2

≤



−1.77x2 + 0.318y2 − 11.099x4

+3.312y4 − 10.863x6 + 5.357y6, if i = 1,

−2.38x2 + 0.332y2 − 15.051x4

+5.033y4 − 6.067x6 + 4.753y6, if i = 2

≤ −1.77x2 + 0.332y2 − 6(x4 + x6) + 5.4(y4 + y6).

Thus, Assumption 3.2 is satisfied with G(x) = 6(x4 +

x6), λ = 1.77, λ0 = 0.332 and α = 0.9. Moreover, we

can see that definition (10) is satisfied with λ4 = 2 and

κ = 0.1. Thus, condition (12) becomes δ ≤ 0.0318. By

Theorem 3.4, we can therefore conclude that the solution

of the NSDE (21) has the properties that∫ ∞
0

(x2(t) + x4 + x6(t))dt <∞ a.s.

and

∫ ∞
0

E(x2(t) + x4(t) + x6(t))dt <∞.

Moreover, as |x(t)|p ≤ x2(t) + x4(t) + x6(t) for any p ∈

[2, 6], we have
∫∞

0
E|x(t)|pdt <∞.

Recalling q1 = 3, q2 = 2 and q = 6, we see that for

p = 4, all the conditions of Theorem 3.6 are satisfied and

hence we have limt→∞E|x(t)|4 = 0.
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We perform a computer simulation with the time-delay

τ = 2 and feedback control time-delay δ = 0.03 for all t ≥ 0

and the initial data x(u) = 2 + cos(u) for u ∈ [−2, 0] and

r(0) = 2. The sample paths of the Markov chain and the

solution of the NSDE (23) are plotted in Figure 2. The

simulation supports our theoretical results.
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Figure 2: The computer simulation of the sample paths of the

Markov chain and the NSDE (23) with τ = 2, δ = 0.03 using

the Euler-Maruyama method.

5. Conclusion

In this paper we have discussed the stabilisation of

highly nonlinear hybrid NSDEs by delay feedback controls.

We should point out, up to now, there’s no result on the

stabilisation for NSDEs without the linear growth condi-

tion. There is hence a need to develop a new theory on the

stabilisation by delay feedback controls for the highly non-

linear NSDE models. In this paper we have successfully

used the method of Lyapunov functionals to study this

stabilisation problem by delay feedback controls. We have

showed that a class of highly nonlinear unstable hybrid

NSDEs whose coefficients satisfy the polynomial growth

condition can be stabilised by delay feedback controls. An

example and computer simulations have been used to il-

lustrate our theory.
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