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Abstract

Sadeghi et al. [4, 5] considered a bottleneck system with periodic
inflow rate, and proved that a constant-rate input maximizes the time-
averaged output rate among all periodic inflow rates. Here we provide a
short and elementary proof of this result, without use of optimal control
theory. The new approach developed here allows us to prove an extension
of the result to the case of a general non-periodic inflow rate.

1 Introduction

A question of fundamental importance in the theory of process control is whether
it is possible to improve the performance of a system by operating it in a time-
varying manner rather than with constant parameters. Indeed it has been es-
tablished that in some circumstances periodic operation can lead to efficiency
gains [1, 2, 6].

In recent studies Sadeghi et al. [4, 5] considered this question in the context
of a simple model for a system with bottleneck entrance, which, as they note,
can approximate the behavior of traffic systems, queues for security checks,
and biological machines. In this model occupancy is described by the variable
x ∈ [0, 1], and inflow rate is a given non-negative function σ(t). Occupancy
increases at a rate proportional to the inflow and the vacancy 1−x, and output
rate w = λx (λ > 0) is proportional to the occupancy, so that

x′(t) = σ(t)(1 − x(t))− λx(t). (1)

When the inflow rate σ is constant, the system converges to the steady state
x = σ

λ+σ
, so that the output rate converges to w = λσ

λ+σ
. If the inflow rate σ(t)

is a T -periodic function, x(t) converges to the unique T -periodic solution xp(t)
of (1), so that the long-term time-averaged output rate is given by

w[σ] = λ ·
1

T

∫ T

0

xp(t)dt. (2)
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The question of interest is to choose σ(t) so as to maximize this average output
rate, for a given average input rate

σ̄ =
1

T

∫ T

0

σ(t)dt. (3)

In [4] this question is studied in the case in which σ(t) describes switching be-
tween two values, and it is proved that in this case constant-rate input provides
the optimal average output rate for a given average input rate. In other words,
switching can never out-perform a constant input rate. In [5] it is proved that
the same result holds more generally, that is for an arbitrary periodic function
σ(t). The proof is quite elaborate: it uses Pontryagin’s maximum principle to
reduce the problem to the case of switching case, and then a detailed study of
the switching case is made.

In section 2 of this letter we obtain a very short and elementary proof of the
optimality of constant imput rate among all periodic input rates in the bottle-
neck system, using only elementary calculus, without the use of optimal control
theory. In fact we show that the result follows from an identity, which thus
quantifies the gap between the outputs obtained in for a general periodic input
rate and that obtained for the corresponding constant input rate with the same
average.

In section 3 we use the new approach developed here to prove an extension of
the result for the case in which σ(t) is not periodic, showing that the long-term
average output rate cannot exceed that obtained using a constant input rate
with the same long-term average.

2 Periodic input rate

Theorem 1. For any non-negative periodic σ(t) with σ|[0,T ] ∈ L1[0, T ], the
time-averaged output rate (2) satisfies

w[σ] ≤ w[σ̄] =
λσ̄

λ+ σ̄
,

with σ̄ given by (3), and equality holds only when σ(t) = σ̄ almost-everywhere.

Theorem 1 follows immediately from the following identity:

Lemma 1. For any non-negative σ ∈ L1[0, T ], if xp is the solution of (1)
satisfying xp(0) = xp(T ), we have

w[σ] = w[σ̄]−
1

T

∫ T

0

(xp(t)− x∗)
2
(λ+ σ(t))dt,

where x∗ = σ̄
λ+σ̄

.

Note that the integral on the right-hand side is non-negative, and vanishes only
if xp(t) =

σ̄
λ+σ̄

, that is only if σ(t) = σ̄. Therefore Theorem 1 follows.
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To prove Lemma 1, we write (1) in the form

(λ+ σ(t))x(t) = σ(t) − x′(t) (4)

and integrate both sides over [0, τ ] (τ > 0), obtaining

∫ τ

0

(λ + σ(t))x(t)dt =

∫ τ

0

σ(t)dt − (x(τ) − x(0)). (5)

We now multiply both sides of (4) by x(t)

(λ+ σ(t))x(t)2 = σ(t)x(t) − x(t)x′(t)

and integrate over [0, τ ], to obtain

∫ τ

0

(λ+ σ(t))x(t)2dt =

∫ τ

0

σ(t)x(t)dt −
1

2
(x(τ)2 − x(0)2),

which together with (5) gives

∫ τ

0

(λ+σ(t))x(t)2dt =

∫ τ

0

σ(t)dt−λ

∫ τ

0

x(t)dt−(x(τ)−x(0))−
1

2
(x(τ)2−x(0)2).

(6)
Assuming now that x = xp is the periodic solution of (1), and taking τ = T ,
(5),(6) become, after dividing both sides by T ,

1

T

∫ T

0

(λ+ σ(t))xp(t)dt = σ̄, (7)

1

T

∫ T

0

(λ+ σ(t))xp(t)
2dt = σ̄ − w[σ]. (8)

We now compute, using (7),(8),

1

T

∫ T

0

(xp(t)− x∗)2 (λ+ σ(t))dt

=
1

T

∫ T

0

(λ+σ(t))xp(t)
2dt+x∗2 ·

1

T

∫ T

0

(λ+σ(t))dt−2x∗ ·
1

T

∫ T

0

(λ+σ(t))xp(t)dt

= σ̄ − w[σ] + x∗2 · (λ+ σ̄)− 2x∗σ̄

= σ̄ − w[σ] +
σ̄2

(λ+ σ̄)2
· (λ+ σ̄)−

2σ̄

λ+ σ̄
· σ̄

=
λσ̄

λ+ σ̄
− w[σ] = w[σ̄]− w[σ],

and we have proved Lemma 1.
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3 Extension to non-periodic input rate

We now no longer assume that σ(t) is periodic, but only that it is a locally-L1

non-negative function. We now define

σ̄ = lim sup
t→∞

1

τ

∫ τ

0

σ(t)dt. (9)

We use the lim sup because in general a limit will not exist. However for the im-
portant class of almost-periodic functions, the limit will exist [3]. In particular,
when σ(t) is periodic, (9) coincides with (3).

The long-time average output rate is at most

w[σ] = λ · lim sup
τ→∞

1

τ

∫ τ

0

x(t), (10)

where x is any solution of (1). The choice of solution does not matter, since for
any two solutions x1, x2, their difference will be a solution of the corresponding
homogeneous equation, so that

∣

∣

∣

1

τ

∫ τ

0

x1(t)dt−
1

τ

∫ τ

0

x2(t)dt
∣

∣

∣
= |x1(0)− x2(0)|

1

τ

∫ τ

0

e−
∫

t

0
(λ+σ(s))dsdt

≤ |x1(0)− x2(0)|
1

τ

∫ τ

0

e−λtdt ≤
|x1(0)− x2(0)|

λτ
→ 0

as τ → ∞. Note that (10) coincides with (2) when σ(t) is periodic. We will
prove

Theorem 2. For any non-negative σ ∈ L1
loc[0,∞] we have

w[σ] ≤ w[σ̄] =
λσ̄

λ+ σ̄
, (11)

with σ̄ given by (9).

To prove this theorem, we set x∗ = σ̄
λ+σ̄

, and compute, using (5),(6)

0 ≤
1

τ

∫ τ

0

(x(t)− x∗)
2
(λ+ σ(t))dt

=
1

τ

∫ τ

0

(λ+ σ(t))x(t)2dt+ x∗2 ·
1

τ

∫ τ

0

(λ+ σ(t))dt− 2x∗ ·
1

τ

∫ τ

0

(λ+ σ(t))x(t)dt

=
1

τ

∫ τ

0

σ(t)dt − λ ·
1

τ

∫ τ

0

x(t)dt−
1

τ
(x(τ) − x(0))−

1

2τ
(x(τ)2 − x(0)2)

+x∗2 ·
1

τ

∫ τ

0

(λ+ σ(t))dt − 2x∗ ·
1

τ

(
∫ τ

0

σ(t)dt− (x(τ) − x(0))

)

= (1− x∗)2 ·
1

τ

∫ τ

0

σ(t)dt + λx∗2 − λ ·
1

τ

∫ τ

0

x(t)dt

+(2x∗ − 1) ·
1

τ
(x(τ) − x(0))−

1

2τ
(x(τ)2 − x(0)2)
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so that

λ ·
1

τ

∫ τ

0

x(t)dt ≤ (1− x∗)2 ·
1

τ

∫ τ

0

σ(t)dt+ λx∗2

+(2x∗ − 1) ·
1

τ
(x(τ) − x(0))−

1

2τ
(x(τ)2 − x(0)2).

Taking the lim sup as τ → ∞ on both sides, the last two terms vanish, since
x(τ) ∈ [0, 1], and we get

w[σ] ≤ σ̄(1− x∗)2 + λx∗2 =
λσ̄

λ+ σ̄
,

concluding the proof.
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