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Abstract

The stability radius for finitely many interconnected linear exponentially stable
well-posed systems with respect to static perturbations is studied. If the output
space of each system is finite-dimensional, then a lower bound for the stability
radius in terms of the norm of the corresponding transfer functions is given.
Moreover, for regular linear systems with zero feedthrough operator and finite-
dimensional output spaces a formula for the stability radius is developed.
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1. Introduction

This paper is concerned with a finite number of exponentially stable well-posed
linear systems Σi, i = 1, . . . , N , which are interconnected by a given structure.
For the notion of well-posed linear system we refer the reader to Section 4. Let
Σ := diag(Σ1, . . . ,ΣN ), which is again an exponentially stable well-posed lin-
ear system. Clearly, Σ represents the uncoupled system. We assume that the
magnitudes of the couplings between the systems Σi are uncertain. The matrix
E = (eij) ∈ RN×N describes the structure and the strength of the interconnec-
tion of the systems, that is, the entry eij of E can be interpreted as the strength
of the connection of the output of system Σj to the input of system Σi. If
eij = 0, then the output of Σj does not influence Σi. We denote the input and
output of the system Σi by ui and yi, respectively, and consider interconnections
of the form

ui(t) =

N∑
j=1

∆ijeijyj(t).
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where ∆ij are unknown linear, bounded operators, describing the magnitude of
the coupling. For short we write ∆ = (∆ij) and we denote the interconnected
system by Σ∆◦E .
It is easy to see, that for operators ∆ which are small in some norm, the in-
terconnected system Σ∆◦E is again an exponentially stable well-posed linear
system. In applications it is natural to ask for the largest bound r > 0 such
that exponential stability is preserved for all magnitudes of the coupling ∆ of
norm strictly less than r in a given normed perturbation set. This largest bound
r > 0 is called the stability radius.
The stability radius was introduced in 1986 by Hinrichsen and Pritchard [2, 3]
for finite-dimensional time-invariant systems. We note that for a fixed system
the stability radius may depend on the normed set of perturbations and on
the notion of stability. For finite-dimensional time-invariant systems there are
formulas available for the stability radius with respect to different classes of
perturbations, see [4] for a comprehensive survey. Pritchard and Townley intro-
duced the stability radii for infinite-dimensional systems [9, 10]. The concept
of the stability radius for interconnected systems was introduced by Hinrichsen
and Pritchard in [5] for the finite-dimensional case. In this paper we consider
interconnected infinite-dimensional systems and characterize the stability radius
r(Σ, E), which is given by

r(Σ, E) = sup{r > 0 | ∆ ◦ E is an admissible feed-

back and Σ∆◦E is exponentially stable

for all ∆ with ‖∆‖ < r}.

Here the notion of an admissible feedback guarantees that Σ∆◦E is again a
well-posed linear system, see Section 4. Moreover, the perturbation class under
consideration (in particular the choice for the norm of ∆) will be introduced in
Section 5.
The main result of this paper is as follows. Let

Θ =

sup
ω∈R

ρ


‖G1(iω)‖2 0

. . .

0 ‖GN (iω)‖2

 E◦2



1
2

,

where ρ(·) denotes the spectral radius and Gi is the transfer function of system
Σi.

Theorem 1.1. If Σ is an exponentially stable well-posed linear system and each
system Σi has a finite-dimensional output space, then

r (Σ, E) ≥ 1

Θ
,

If additionally Σ is a regular linear system with feedthrough operator 0, then the
stability radius satisfies

r (Σ, E) =
1

Θ
.
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This theorem comprises the results of Theorems 5.3 and 6.1. We note that The-
orem 1.1 is even new in the finite-dimensional setting as we study the stability
radius also for a norm that is different to the one in [5]. Further, Theorem 1.1
generalizes the main result of [9] slightly as in [9] by assumption system Σ has
feedthrough operator 0.
We proceed as follows. In Section 2 we summarize some known facts on positive
matrices and Hardy spaces. The spectrum of multiplication operators are stud-
ied in Section 3. A short introduction to well-posed linear and regular systems is
given in 4. The main results of this paper are formulated and proved in Sections
5 and 6.

2. Preliminaries

In this section we give a short summary of results concerning the spectrum
and the spectral radius for non-negative matrices as well as operator matrices
which are useful for the proof of the main results of this paper. Moreover, we
summarize some results on Hardy spaces.
A matrixA = (aij)i,j∈{1,...,N} ∈ RN×N , N ∈ N, is called non-negative (we briefly

write A ∈ RN×N≥0 ), if aij ≥ 0 for every entry aij of A. Further, A is called positive

(A ∈ RN×N>0 ) if aij > 0 for every entry aij of A. Similarly, we define non-negative
(resp. positive) vectors and denote the set of such vectors by RN≥0(resp. RN>0).

For a matrix A ∈ RN×N , the spectrum σ(A) is defined by σ(A) = {λ ∈ C | λ
is an eigenvalue of A} and %(A) := C \ σ(A) denotes the resolvent set of A.
Further, we denote the spectral radius by ρ(A) = sup{|λ| | λ ∈ σ(A)}.
Lemma 2.1 (Perron-Frobenius [7, Chapter 8]). Suppose that A,B ∈ RN×N≥0 .
Then the following results hold:

(i) ρ(A) ∈ σ(A) and there exists a non-negative eigenvector z of A corre-
sponding to the eigenvalue ρ(A). The vector z is called Perron vector.

(ii) If there exists α ≥ 0 and z ∈ RN≥0, z 6= 0, such that Az ≥ αz, then
ρ(A) ≥ α.

(iii) If there exists β ≥ 0 and z ∈ RN>0 such that Az ≤ βz, then ρ(A) ≤ β.

(iv) If A ≤ B, i.e. aij ≤ bij for i, j ∈ {1, . . . , N} with A = (aij) and B = (bij),
then ρ(A) ≤ ρ(B).

For A,B ∈ RN×N the Hadamard product ◦ of A and B is defined by

A ◦B =

a11 . . . a1N

...
. . .

...
aN1 . . . aNN

 ◦
 b11 . . . b1N

...
. . .

...
bN1 . . . bNN


:=

 a11 · b11 . . . a1N · b1N
...

. . .
...

aN1 · bN1 . . . aNN · bNN
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as the componentwise multiplication of the entries of both matrices. For A ◦A
we briefly write A◦2.
Let X and Y be complex Banach spaces. We denote the set of all bounded
linear operators from X to Y by L(X,Y ). The operator norm of an operator
A ∈ L(X,Y ) is denoted by ‖ · ‖. In the case of X = Y we briefly write L(X)
for L(X,X). For an operator A ∈ L(X) we denote its spectrum by σ(A), its
approximate point spectrum by σapp(A), its resolvent by %(A) and its spectral
radius by ρ(A).
Suppose that X1, . . . , XN and Y1, . . . , YN are complex Banach spaces and A =
(Aij)i,j∈{1,...,N} ∈ L(X,Y ) with X =

⊕N
i=1Xi, Y =

⊕N
i=1 Yi and Aij ∈

L(Xj , Yi). A matrix of this form is called an operator matrix.
Let E = (eij) ∈ RN×N≥0 and A an operator matrix. The Hadamard product of A
with E , denoted by ◦, is defined via

◦ : L(X,Y )× RN×N≥0 → L(X,Y )

A ◦ E =

 e11A11 . . . e1NA1N

...
. . .

...
eN1AN1 . . . eNNANN

 .
Let H be a complex separable Hilbert space and Z a Banach space. For ω ∈ R
let Cω = {s ∈ C | Re(s) > ω}. We define the Hardy spaces H2(H) and H∞(Z)
by

H2(H) : = {f : C0 → H | f is holomorphic and

‖f‖22 = sup
x>0

1

2π

∫ ∞
−∞
‖f(x+ iω)‖2dω <∞}

and

H∞(Cω;Z) := {G : Cω → Z | G is holomorphic

and sup
Re(s)>ω

‖G(s)‖ <∞}

Lemma 2.2 ([8]). H2(H) has the following properties:

• For each f ∈ H2(H) there exists a unique function f̃ ∈ L2 ((−i∞, i∞);H)
such that

lim
x↘0

f(x+ iω) = f̃(iω)

for almost all ω ∈ R,

• limx↘0 ‖f(x+ ·)− f̃(·))‖L2((−i∞,i∞);H) = 0

• The mapping f → f̃ is linear, injective and satisfies

‖f‖22 =
1

2π

∫ ∞
−∞
‖f̃(iω)‖2dω.
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• H2(H) is a Hilbert space with the inner product

〈f, g〉 :=
1

2π

∫ ∞
−∞
〈f̃(iω), g̃(iω)〉dω.

• Let f ∈ H2(H) be a function different from the zero function. Then f̃ is
non-zero almost everywhere on the imaginary axis.

For a function f ∈ L2([0,∞);H) the Laplace transform is a function f̂ defined
by

f̂(s) =

∫ ∞
0

f(t)e−stdt, s ∈ C0.

Theorem 2.3 (Paley-Wiener theorem [12]). The Laplace transform is an iso-
metric isomorphism from L2([0,∞);H) to H2(H).

3. The spectrum of a multiplication operator

Let (X,Σ, µ) be a σ-finite measure space and q : X → CN×N a measurable
matrix-valued function. The operator Aq on L2(X; CN ), defined by Aq : f 7→ qf ,
i.e.

(Aqf) (s) = q(s)f(s), s ∈ X,
for f ∈ D(Aq) = {f ∈ L2(X; CN ) | qf ∈ L2(X; CN )} is called a matrix multi-
plication operator. We have the following relation between the spectrum of the
multiplication operator Aq and the pointwise computed spectra of the function
q.

Proposition 3.1 ([6, Prop. 1]). For X = iR, µ the Lebesgue-measure and q a
continuous and bounded matrix-valued function on X, we have

σ(Aq) =
⋃
ω∈R

σ(q(iω)).

Let now q ∈ H∞(C−δ; CN×N ), where δ > 0, and let Y = CN . Let Aq be
the multiplication operator on L2(iR;Y ), defined as above. Note that Aq ∈
L(L2(iR;Y )) since q is bounded. Let Ãq ∈ L(H2(Y )) be the operator of multi-
plication by q on H2(Y ), i.e.

(Ãqf)(s) = q(s)f(s), s ∈ C0,

for f ∈ H2(Y ). Then the following result holds.

Lemma 3.2. σapp(Ãq) ⊆ σ(Aq).

Proof. Consider the mapping j : H2(Y ) → L2(iR;Y ), jf = f̃ introduced in
Lemma 2.2. Note that ‖jf‖L2(iR;Y ) =

√
2π‖f‖2. The diagram
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H2(Y ) H2(Y )

L2(iR;Y ) L2(iR;Y )

Ãq

j j

Aq

is commutative since for f ∈ H2(Y )

(Aq f̃)(iω) = q(iω) lim
r↘0

f(r + iω)

= lim
r↘0

q(r + iω)f(r + iω)

= (jÃqf)(iω).

Let λ ∈ σapp(Ãq). Then there exists a sequence (fn)n∈N ⊆ H2(Y ) such that

‖fn‖2 = 1 for n ∈ N and ‖(λ − Ãq)fn‖2 → 0 for n → ∞. Then gn = 1√
2π
jfn

satisfies ‖gn‖L2(iR;Y ) = 1 and

‖(λ−Aq)gn‖L2(iR;Y ) =
1√
2π
‖(λ−Aq)jfn‖L2(iR;Y )

=
1√
2π
‖jλfn − jÃqfn‖L2(iR;Y )

= ‖λfn − Ãqfn‖2 n→∞−→ 0.

Hence λ ∈ σapp(Aq) ⊆ σ(Aq).

4. On well-posed and regular systems

In this section we provide a brief review of well-posed linear as well as regular
linear systems. For more results we refer the reader to [11, 13]. Let Z be a Ba-
nach space. For two functions u, v ∈ L2([0,∞);Z) we define the τ -concatenation
� by

u �
τ
v = P[0,τ ]u+ Sτv,

where P[0,τ ] denotes the truncation of the function u ∈ L2([0,∞);Z) to the
interval [0, τ ] while Sτ denotes the operator of right shift by τ .

Definition 4.1 (Well-posed linear system). Let X,U and Y be Banach spaces.
A well-posed linear system Σ = (T,Φ,Ψ,L) on (X,U, Y ) is a family of op-
erators, where T = (T (t))t≥0 is a C0-semigroup on X, Φ = (Φt)t≥0 with

Φt ∈ L(L2([0,∞);U), X) such that

Φτ+t(u �
τ
v) = T (t)Φτu+ Φtv

6



for u, v ∈ L2([0,∞);U), t, τ ≥ 0, Ψ = (Ψt)t≥0 with Ψt ∈ L(X,L2([0,∞);Y ))
such that

Ψτ+tx = Ψτx �
τ

ΨtT (τ)x

for x ∈ X, t, τ ≥ 0,Ψ0 = 0, and
L = (Lt)t≥0 with Lt ∈ L(L2([0,∞);U), L2([0,∞);Y )) satisfying

Lt+τ (u �
τ
v) = Lτu �

τ
(ΨtΦτu+ Ltv)

for u, v ∈ L2([0,∞);U), t, τ ≥ 0,L0 = 0.

We call X the state space, U the input space and Y the output space of Σ.
The operators Φt are called input operators, the operators Ψt are called output
operators whereas the operators Lt are called input-output operators. Given an
initial state x0 ∈ X and an input u ∈ L2

loc([0,∞);U) the state and output
trajectories x : [0,∞)→ X and y : [0,∞)→ Y of Σ are defined by[

x(t)
P[0,t]y

]
= Σt

[
x0

P[0,t]u

]
(1)

with

Σt =

[
T (t) Φt
Ψt Lt

]
.

Let X1 be the space D(A) equipped with norm ‖x‖1 = ‖(βI−A)x‖, where A is
the generator of the C0-semigroup (T (t))t≥0 and β ∈ %(A) fixed. The space X−1

denotes the completion of X with respect to the norm ‖x‖−1 = ‖(βI −A)−1x‖.
Then X1 ⊆ X ⊆ X−1 are continuous dense embedded. Note that different
β yield equivalent norms ‖ · ‖1 and ‖ · ‖−1. Each operator T (t), t ≥ 0, can
be uniquely extended to a linear bounded operator on X−1. We denote this
extension by T−1(t) and we note that T−1 = (T−1(t))t≥0 is a C0-semigroup on
X−1. The generator A−1 of T−1 has domain D(A−1) = X and is an extension
of A to X−1.
For a well-posed linear system Σ there exists a unique operator B ∈ L(U,X−1),
the control operator of Σ, such that for every t ≥ 0 the operator Φt can be
represented via

Φtu =

∫ t

0

T−1(t− s)Bu(s)ds. (2)

We remark that the integration in (2) is in X−1, but the value of the integral
is an element of X. Moreover, we obtain the existence of a unique operator
Ψ∞ : X → L2

loc([0,∞);Y ), the extended output operator, with P[0,t]Ψ∞ = Ψt for
every t ≥ 0. It can be shown that there exists a unique operator C ∈ L(X1, Y )
such that

(Ψ∞x0)(t) = CT (t)x0, x0 ∈ X1.

Similarly, there exists a uniquely determined operator L∞ : L2
loc([0,∞);U) →

L2
loc([0,∞);Y ), the extended input-output operator, such that P[0,t]L∞ = LtP[0,t]

7



for t ≥ 0. Using the Laplace transform we are able to represent L∞ by the trans-
fer function G of Σ. Let ω > ω0(T), where ω0(T) denotes the growth bound
of the C0-semigroup T and L2

ω([0,∞);U) = eωL
2([0,∞);U) with (eω)v(t) =

eωtv(t) and ‖eωv‖L2
ω

= ‖v‖L2 . G is a bounded analytic L(U, Y )-valued function
on Cω. For s ∈ Cω0(T) and u ∈ L2

ω([0,∞);U) the Laplace-integral of L∞u at s
converges absolutely and

(L̂∞u)(s) = G(s)û(s)

for Re(s) > ω. Furthermore, for α, β ∈ Cω0(T ) the transfer function G satisfies

G(α)−G(β)

= (β − α)C(βI −A−1)−1(αI −A−1)−1B

= C
(
(αI −A−1)−1 − (βI −A−1)−1

)
B.

If the C0-semigroup (T (t))t≥0 is exponentially stable, i.e. ω0(T) < 0, then
Ψ∞ ∈ L(X,L2([0,∞);Y )) and L∞ ∈ L(L2([0,∞);U), L2([0,∞);Y )) with

‖L∞‖ = sup
ω∈R
‖G(iω)‖ (3)

using the Paley-Wiener theorem and the maximum modulus principle.

Remark 4.2. Under the assumption that the C0-semigroup of the well-posed
linear system is exponentially stable, the operator
Φ∞ : L2

loc([0,∞);U)→ L2
loc([0,∞);X), defined by

(Φ∞u)(t) := Φtu,

satisfies
Φ∞ ∈ L(L2([0,∞);U), L2([0,∞);X)).

Indeed, considering Σ(T,Φ,Ψ,L) with an exponentially stable C0-semigroup it
is, as mentioned above, true that L∞ ∈ L(L2([0,∞), U), L2([0,∞), Y )).

Defining the new well-posed system Σ̃ =
(

T,Φ, Ψ̃, L̃
)

with T and Φ as in the

original system, Ψ replaced by

(Ψ̃tx)(τ) := 1[0,t](τ)T (τ)x,

and L replaced by
(L̃tu)(τ) := 1[0,t](τ)Φτu,

we get Φ∞ = L̃∞ ∈ L(L2([0,∞), U), L2([0,∞), X)).

A well-posed linear system together with a feedback law u = Ky + v, where
K ∈ L(Y, U), defines a closed loop system ΣK , see Figure 1.

8



Σ

K

v u y

Figure 1: Closed-loop system ΣK

K is called admissible if the closed-loop system ΣK is also well-posed. If K is
admissible, the closed-loop system

ΣKt =

[
TK(t) ΦKt
ΨK
t LKt

]
fulfills (see [14])

ΣKt − Σt = Σt

[
0 0
0 K

]
ΣKt , t ≥ 0. (4)

For explicit formulas for TK ,ΦK ,ΨK and LK we refer to [11, Thm. 7.1.2.].
We note that if the semigroup of Σ is exponentially stable and the operator
I − L∞K is bijective on L2([0,∞);Y ) then K is admissible ([11, Thm.7.1.8]).
Here, the operator K in I − L∞K acts as the multiplication operator induced
by K.
A special case of well-posed linear systems are regular linear systems. We call
a well-posed linear system regular, if for every v ∈ U the limit

Dv := lim
τ→0

1

τ

∫ τ

0

(
L∞(1[0,∞)v)

)
(s)ds

exists. Then D ∈ L(U, Y ) and this operator is called the feedthrough operator
of the system Σ.
For a well-posed linear system, we define the Lebesgue extension CL of C ∈
L(X1, Y ) by

CLx = lim
τ↘0

C
1

τ

∫ τ

0

T (s)xds

with domain D(CL) defined as the set of all x ∈ X for which the limit exists in
Y . We note that D(C) ⊆ D(CL).

Theorem 4.3 ([11, Thm. 5.6.5]). If Σ is regular, then the output of Σ is given
by

y(t) = CLx(t) +Du(t). (5)

Thus a regular linear system with generating operators A,B,C and D is com-
pletely determined by

ẋ(t) = A−1x(t) +Bu(t)

9



y(t) = CLx(t) +Du(t)

Accordingly, we also denote the system by Σ = (A,B,C,D). For α ∈ Cω0(T )

the transfer function G satisfies

G(α) = CL(αI −A−1)−1B +D,

in particular (αI −A)−1Bu ∈ D(CL) for u ∈ U .
As in the well-posed case we are interested in the closed loop system generated
by an admissible feedback operator K ∈ L(Y, U). If K is admissible, then
the semigroup corresponding to the closed-loop system is generated by AK :
D(AK) ⊆ X → X with

AKx =
(
A−1 +BK(I −DK)−1CL

)
x, x ∈ D(AK),

D(AK) ={x ∈ D(CL) |
(A−1 +BK(I −DK)−1CL)x ∈ X}.

5. Stability radius for well-posed systems

Let X1, . . . , XN , U1, . . . , UN , Y1, . . . , YN be Hilbert spaces. Furthermore, we
assume that Σi = (Ti,Φi,Ψi,Li), i = 1, . . . , N , are well-posed, exponentially
stable linear systems, i.e. for i = 1, . . . , N , Σi is a well-posed linear system and
Ti is exponentially stable. We will now investigate the stability of interconnec-
tions of these systems. Let

X =

N⊕
i=1

Xi, Y =

N⊕
i=1

Yi and U =

N⊕
i=1

Ui (6)

equipped with the norms

‖x‖2 =

N∑
i=1

‖xi‖2, ‖y‖2 =

N∑
i=1

‖yi‖2, ‖u‖ =
N

max
i=1
‖ui‖.

It is easy to see that Σ := (T,Φ,Ψ,L), defined by
(diag(Ti),diag(Φi),diag(Ψi),diag(Li)) is an exponentially stable well-posed lin-
ear system as well.
We consider interconnections of the form

ui(t) =

N∑
j=1

∆ijeijyj(t).

with ∆ij ∈ L (Yj , Ui) and eij ≥ 0. Setting E =
(
eij
)
i,j=1,...,N

, ∆ = (∆ij)ij ∈

L(Y,U), u =

[
u1

...
uN

]
and y =

[ y1

...
yN

]
this leads to u = (∆ ◦ E) y and hence to the

10



closed-loop system Σ∆◦E as described in Figure 1 with K = ∆ ◦ E .
The matrix E describes the structure and the strength of the interconnection
of the systems. More precisely, the entry eij of E can be interpreted as the
strength of the connection of the output of system Σj to the input of system
Σi. If eij = 0, then the output of Σj does not influence Σi.

Example 5.1 (construction of E). Consider four subsystems with an intercon-
nection structure given by Figure 2.

Σ1 Σ2

Σ3 Σ4

Figure 2: Example of an interconnection structure

Then the matrix E is given by

E =


e11 e12 0 e14

e21 0 0 e24

e31 e32 0 0
0 0 e43 0

 .
When determining the stability of the interconnected systems we regard E and
Σi, i = 1, . . . , N as fixed, while ∆ is unknown. Clearly, for ∆ = 0 the system
Σ∆◦E is exponentially stable and one may expect that this remains true if ∆ is
small.
We are interested in the largest r such that Σ∆◦E is exponentially stable for all
∆ of norm smaller than r. This leads to the concept of the stability radius; for
finite-dimensional interconnected systems it was introduced by Hinrichsen and
Pritchard in [5].
We consider the stability radius for two different norms of ∆: The first is the
operator norm ‖∆‖, which is induced by the chosen norms on U and Y and
satisfies

‖∆‖ =
N

max
i=1
‖∆i‖,

where ‖∆i‖ is the operator norm of the ith row ∆i = [∆i1, . . . ,∆iN ] ∈ L(Y, Ui)
of ∆. The second norm is given by

‖∆‖2,∞ =
N

max
i=1

 N∑
j=1

‖∆ij‖2
 1

2

. (7)

Note that both norms are related by ‖∆‖ ≤ ‖∆‖2,∞.

11



Definition 5.2. Let

Σ = (diag(Ti),diag(Φi),diag(Ψi),diag(Li))

be a well-posed, exponentially stable linear system and E = (eij) ∈ RN×N≥0 . Then
the stability radius r(Σ, E) with respect to the operator norm ‖∆‖ is defined by

r(Σ, E) = sup{r > 0 | ∆ ◦ E is admissible and

Σ∆◦E is exponentially stable

for all ∆ ∈ L(Y, U) with ‖∆‖ < r}.

The stability radius r2,∞(Σ, E) is defined in the same way with respect to the
norm ‖∆‖2,∞.

It is easy to see that
r(Σ, E) ≤ r2,∞(Σ, E).

Theorem 5.3. If Σ = (diag(Ti),diag(Φi),diag(Ψi),diag(Li)) is a well-posed
exponentially stable linear system and Y is finite-dimensional, then the stability
radii satisfy

r2,∞(Σ, E) ≥ r(Σ, E) ≥ 1

Θ
,

where

Θ =

sup
ω∈R

ρ

 ‖G1(iω)‖2 0

...
0 ‖GN (iω)‖2

 E◦2


1
2

and Gk denotes the transfer function of Σk.

Remark 5.4. We use the convention 1/0 = ∞ here. In particular, if Θ = 0
then we obtain r(Σ, E) = ∞, i.e., the system remains stable for every ∆ ∈
L(Y,U). We note that Θ = 0 holds if the graph corresponding to E does not
contain any cycles [5, Remark 4.6].

Proof of Theorem 5.3. As a first step we show that for ‖∆‖ < 1
Θ the operator

I−L∞(∆◦E) is invertible in L
(
L2([0,∞);Y )

)
. By the Paley-Wiener theorem 2.3

this is equivalent to the fact that I−G(·)(∆◦E), with G = diag(G1, . . . ,GN ) is
invertible in L

(
H2(Y )

)
. Consider Ãq = G(·)(∆◦E) as a multiplication operator

on H2(Y ) and Aq = G(·)(∆ ◦ E) as a multiplication operator on L2(iR;Y ).

By Lemma 3.2 σapp(Ãq) ⊆ σ(Aq). Using the assumption that Y is finite-
dimensional, we can then apply Proposition 3.1 to obtain

σapp(Ãq) ⊆
⋃
ω∈R

σ(G(iω)(∆ ◦ E)).

To prove the invertibility of I −G(·)(∆ ◦ E), it is now sufficient to show⋃
ω∈R

σ (G(iω)(∆ ◦ E)) ⊆ Br(0) (8)
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for some r < 1, where Br(0) denotes the ball around zero with radius r. Indeed,
since Ãq is bounded and the boundary of the spectrum is contained in the

approximate point spectrum, this implies σ(Ãq) ⊆ Br(0) and hence 1 ∈ %(Ãq).
So let λ ∈ ⋃

ω∈R
σ (G(iω)(∆ ◦ E)). Then there exist ω ∈ R and y 6= 0 such that

λy = G(iω)(∆ ◦ E)y.

Componentwise this implies for k = 1, . . . , N

|λ|2‖yk‖2 = ‖Gk(iω)

N∑
j=1

ekj∆kjyj‖2

≤ ‖Gk(iω)‖2
∥∥∥∆k

 ek1y1

...
ekNyN

∥∥∥2

≤ ‖Gk(iω)‖2‖∆k‖2
N∑
j=1

‖ekjyj‖2

≤ ‖∆‖2‖Gk(iω)‖2
N∑
j=1

e2
kj‖yj‖2.

With z =
(
‖yk‖2

)
k=1,...,N

it follows that

|λ|2z ≤ ‖∆‖2 diag(‖Gk(iω)‖2)E◦2z.

Lemma 2.1 now implies

|λ|2
‖∆‖2 ≤ ρ

(
diag(‖Gk(iω)‖2)E◦2

)
≤ Θ2.

Thus, |λ| ≤ ‖∆‖Θ and hence (8) holds with r = ‖∆‖Θ < 1.
Therefore I − L∞(∆ ◦ E) is invertible. In particular, it follows that ∆ ◦ E is an
admissible feedback operator. Moreover, the exponential stability of (T (t))t≥0

implies Ψ∞ ∈ L(X,L2([0,∞);Y )). Thus for every x0 ∈ X the equation

y = Ψ∞x0 + L∞(∆ ◦ E)y (9)

has a unique solution y = yx0 ∈ L2([0,∞);Y ) that fulfills

‖yx0
‖ ≤M‖x0‖ (10)

for some M > 0, M independent of x0. Thanks to (4), we have

yx0
= Ψ∆◦E

∞ x0

for every x0 ∈ X. Since Σ∆◦E is well-posed, the C0-semigroup (T∆◦E(t))t≥0 of
Σ∆◦E satisfies, see (4),

T∆◦E(t)x0 = T (t)x0 + Φt((∆ ◦ E)Ψ∆◦E
∞ x0)
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= T (t)x0 + Φt((∆ ◦ E)yx0)

t ≥ 0, x0 ∈ X.
Since T is exponentially stable, Datko’s theorem (cf. [1, Thm.V.5.8.]) yields a
constant M0 > 0 such that∫ ∞

0

‖T (t)x0‖2dt ≤M0‖x0‖2 (11)

for every x0 ∈ X. Now inequality (10), Remark 4.2 and inequality (11) imply∫ ∞
0

‖T∆◦E(t)x0‖2dt

≤ 2

∫ ∞
0

‖T (t)x0‖2dt+ 2

∫ ∞
0

‖Φt((∆ ◦ E)yx0
)‖2dt

≤ 2M0‖x0‖2 + 2

∫ ∞
0

‖Φ∞((∆ ◦ E)yx0)(t)‖2dt

≤ 2M0‖x0‖2 + 2M1

∫ ∞
0

‖yx0
(t)‖2dt

≤ 2(M0 +M1M
2)‖x0‖2.

By Datko’s theorem, it follows that (T∆◦E(t))t≥0 is exponentially stable. Thus
r(Σ, E) ≥ 1

Θ .

6. Stability radius for regular systems

In this section we give an upper bound for the stability radius of N well-
posed linear systems under the additional assumption that every subsystem
(Ti,Φi,Ψi,Li) is a regular linear system with feedthrough operator Di = 0.
More precisely, we consider N regular linear systems Σj = (Aj , Bj , Cj , 0),
j = 1 . . . , N , of the form

ẋj(t) = Ajxj(t) +Bjuj(t), (12)

yj(t) = (Cj)Lxj(t)

and assume that Aj generates an exponentially stable C0-semigroup (Tj(t))t≥0

on Xj , Bj ∈ L(Uj , (Xj)−1) and Cj ∈ L(D(Aj), Yj). Clearly,

A =

[
A1 0

. . .
0 AN

]
: D(A) :=

N⊕
i=1

D(Ai) ⊆ X → X

generates an exponentially stable C0-semigroup (T (t))t≥0 on X, where X is
defined by (6). Additionally we define

B =

B1 0
. . .

0 BN

 ∈ L(U,X−1),
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C =

C1 0
. . .

0 CN

 ∈ L(D(A), Y ),

where U and Y are defined by (6). Note, that X−1 =
⊕N

i=1(Xi)−1. Then
Σ = (A,B,C, 0) is a regular linear system. With ∆, E and the couplings of
the systems defined as in Section 5 the entire interconnected system can be
represented via

ẋ(t) = A∆◦Ex(t) = (A−1 +B (∆ ◦ E)CL)x(t) (13)

with CL = diag ((C1)L, . . . , (CN )L).

Theorem 6.1. If Σ = (A,B,C, 0) is a regular exponentially stable linear sys-
tem, then the stability radii satisfy

r(Σ, E) ≤ r2,∞(Σ, E) ≤ 1

Θ
,

with Θ defined as in Theorem 5.3. If additionally, Y is finite-dimensional, then

r(Σ, E) = r2,∞(Σ, E) =
1

Θ
.

Proof. By the definition of the stability radii it suffices to show that for every
δ ∈ (0,Θ) there exists ∆ ∈ L(Y, U) with ‖∆‖2,∞ ≤ 1

Θ−δ such that either ∆ ◦ E
is not an admissible feedback or A∆◦E does not generate an exponentially stable
C0-semigroup.
Let δ ∈ (0,Θ) be arbitrary. Choose α ∈ (0, 1) with Θ−δ

α < Θ. By the definition
of Θ there exist ω0 ∈ R such that

λ := ρ

 ‖G1(iω0)‖2 0

. . .
0 ‖GN (iω0)‖2

 E◦2


≥
(

Θ− δ
α

)2

.

In particular λ > 0. By Lemma 2.1 there exists a vector z ∈ RN≥0, z 6= 0, such
that ‖G1(iω0)‖2 0

. . .

0 ‖GN (iω0)‖2

 E◦2z = λz.

Componentwise this reads

‖Gk(iω0)‖2
N∑
l=1

e2
klzl = λzk. (14)
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Now for every k ∈ {1, . . . , N} we choose uk ∈ Uk such that ‖Gk(iω0)uk‖ ≥
α‖Gk(iω0)‖‖uk‖ and set yk = Gk(iω0)uk. If zk 6= 0 then also ‖Gk(iω0)‖ 6= 0
by (14), and we can choose the norm of uk such that zk = ‖yk‖2. If zk = 0 then
we set uk = yk = 0.
For k, l ∈ {1, . . . , N} we define

∆kl =

{
ukekl〈·,yl〉∑N
j=1 e

2
kj‖yj‖2

if
∑N
j=1 e

2
kj‖yj‖2 6= 0,

0 otherwise.
(15)

Next we set xk = (iω0I − (Ak)−1)
−1
Bkuk and x =

[
x1

...
xN

]
. Note that xk ∈

D((Ck)L) and (Ck)Lxk = Gk(iω0)uk = yk. Hence xk 6= 0 if zk 6= 0 and thus
x 6= 0.
Now we show that

(Ak)−1xk +Bk

N∑
l=1

ekl∆kl (Cl)L xl = iω0xk (16)

for all k ∈ {1, . . . , N}. If
∑N
j=1 e

2
kj‖yj‖2 6= 0, then indeed

(Ak)−1xk +Bk

N∑
l=1

ekl∆kl (Cl)L xl

= (Ak)−1xk +Bk

N∑
l=1

ekl
ukekl‖yl‖2∑N
j=1 e

2
kj‖yj‖2

= (Ak)−1xk +Bkuk = iω0xk.

If
∑N
j=1 e

2
kj‖yj‖2 = 0, then ∆kl = 0 for all l ∈ {1, . . . , N}. Moreover zk = 0 by

(14), which in turn implies xk = 0 by construction. Hence (16) holds too. We
have thus shown that

(A−1 +B(∆ ◦ E)CL)x = iω0x. (17)

Since iω0x ∈ X it follows that x ∈ D(A∆◦E). If ∆ ◦ E is admissible, equation
(17) implies that A∆◦E does not generate an exponentially stable C0-semigroup.
It remains to show that ‖∆‖2,∞ ≤ 1

Θ−δ .

If zk 6= 0, then (14) yields
∑N
l=1 e

2
kl‖yl‖2 6= 0 and ‖Gk(iω0)‖ 6= 0, and we

compute

N∑
l=1

‖∆kl‖2 =

N∑
l=1

(
‖uk‖ · ekl‖yl‖∑N
j=1 e

2
kj‖yj‖2

)2

=

N∑
l=1

‖uk‖2 · e2
kl‖yl‖2(∑N

j=1 e
2
kj‖yj‖2

)2
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=
‖uk‖2∑N

j=1 e
2
kj‖yj‖2

≤ ‖Gk(iω0)uk‖2
α2‖Gk(iω0)‖2∑N

j=1 e
2
kjzj

=
zk

α2‖Gk(iω0)‖2∑N
j=1 e

2
kjzj

=
1

α2λ
≤ 1

(Θ− δ)2
.

If zk = 0, then uk = 0 and therefore ∆kl = 0 for l ∈ {1, . . . , N},
i.e.

∑N
l=1 ‖∆kl‖2 = 0. Consequently,

‖∆‖2,∞ = max
k=1,...,N

(
N∑
l=1

‖∆kl‖2
) 1

2

≤ 1

Θ− δ .

The statement for finite-dimensional output spaces Y now follows from Theorem
5.3.

7. Conclusion

In this paper we studied the stability radius for finitely many interconnected
linear exponentially stable well-posed systems with respect to static perturba-
tions. If the output space of each system is finite-dimensional, then we were
able to show a sharp lower bound. Moreover, for regular linear systems with
zero feedthrough operator and finite-dimensional output spaces a formula for
the stability radius has been developed. An interesting problem for future re-
search is the characterization of the real stability radius and the stability radius
with respect to dynamic perturbations.
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