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Differential dissipativity analysis of reaction-diffusion systems⋆

Felix A. Miranda-Villatoro, Rodolphe Sepulchre

Engineering Department, University of Cambridge, UK

Abstract

This note shows how classical tools from linear control theory can be leveraged to provide a global analysis of nonlinear
reaction-diffusion models. The approach is differential in nature. It proceeds from classical tools of contraction analysis
and recent extensions to differential dissipativity.
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1. Introduction

Reaction-diffusion equations are broadly used for mod-
eling the spatio-temporal evolution of processes appearing
in many fields of science such as propagation of electri-
cal activity on cells in cellular biology [16]; reactions be-
tween substances on active media in chemistry [18]; trans-
port phenomena in semiconductor devices in electronics
[26]; and combustion processes and heat propagation in
physics [31], to name a few. They have attracted recent
interest in control, most notably [1] and [2], because the
close link between reaction-diffusion systems and synchro-
nization models under diffusive coupling: the linear dif-
fusion term in reaction-diffusion partial differential equa-
tions is the continuum limit of the diffusive (or incremen-
tally passive) interconnection network of agents sharing
the same reaction dynamics. In that sense, the results in
[1] and [2] are infinite dimensional generalizations of classi-
cal finite dimensional results pertaining to synchronization
[24, 27, 29, 32].

Our contribution in the present note is to further em-
phasize the potential of classical tools from linear control
theory in the analysis and design of reaction-diffusion sys-
tems. Our observation is twofold. First, we model reac-
tion diffusion systems as the interconnection of a linear
spatially and time-invariant (LTSI) model with a static
nonlinearity. This natural decomposition calls for a dissi-
pativity analysis of the interconnection, with complemen-
tary input-output dissipation inequalities imposed on the
LTSI model and on the static nonlinearity, respectively.
Second, we study this interconnection differentially along
arbitrary solutions, thereby studying a nonlinear model
through a family on linearized systems.

⋆The research leading to these results has received funding from
the European Research Council under the Advanced ERC Grant
Agreement Switchlet n.670645.
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Sepulchre)

The proposed approach is largely inspired from [1] and
[2], which analyze spatial homogeneity via contraction the-
ory. The purely differential approach in the present paper
is thought to offer further potential especially in situations
where the attractor is difficult to characterize explicitely.
In this note, we illustrate the benefits of a differential ap-
proach in two distinct ways: (i) we use the classical KYP
lemma to complement existing state-space analysis results
with a frequency-domain analysis; and (ii) we use recent
results of differential dissipativity theory [12] to character-
ize the attractor of two classical reaction-diffusion models:
Nagumo model of bistability [21], and Fitzugh-Nagumo
model of oscillation [11].

Some notation

Let L2
n(Ω) denote the Hilbert space of square integrable

functions mapping Ω ⊂ R to R
n with the conventional

inner product 〈x, y〉L2
n
(Ω) =

∫

Ω
x(θ)⊤y(θ)dθ and norm de-

noted by ‖ · ‖L2
n
(Ω). When clear from the context, we will

drop the subindex. For vectors ξ, ψ in Rn, the inner prod-
uct is denoted as ξ⊤ψ and the associated norm as | · |. The
set C+ := {a+ jb ∈ C|a ≥ 0} denotes the set of complex
numbers with non-negative real part, whereas R+ denotes
the set of non-negative real numbers. A symmetric, posi-
tive (semi-) definite matrix Π is denoted as (Π � 0) Π ≻ 0,
whereas, In represents the identity matrix of dimension n.

2. Reaction-diffusion systems

The family of distributed systems under consideration
has the form

∂x

∂t
(θ, t) = D∆x(θ, t) +Ax(θ, t) −Bϕ(Cx(θ, t))

where x(θ, t) ∈ Rn denotes the state of the system at po-
sition θ ∈ Ω ⊂ R and time t ≥ 0. The nonlinear function
ϕ : Rm → Rm represents a static nonlinearity and its prop-
erties are stated below. Spatial diffusion is modeled via the
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matrixD ∈ Rn×n which is symmetric and positive definite,
and the Laplace operator ∆ : Dom(∆) ⊂ L2

n(Ω) → L2
n(Ω)

with domain specified below, whereas the matrices A,B
and C are constant and of the appropriate dimensions.

Here, we regard reaction-diffusion systems as the feed-
back interconnection of a linear system and a static non-
linearity:

Σ :

{

∂x
∂t
(θ, t) = D∆x(θ, t) +Ax(θ, t) +Bu(θ, t)

y(θ, t) = Cx(θ, t)
(1a)

u(θ, t) = −ϕ(y(θ, t)) (1b)

where u(θ, t) ∈ Rm, y(θ, t) ∈ Rm are the distributed input
and output, respectively. For simplicity we consider the
spatial domain Ω ⊂ R as the boundary of the unit circle
S1. Thus, θ ∈ [0, 2π] and we have the following periodic
boundary conditions

x(0, t) = x(2π, t) (2a)

∂x

∂θ
(0, t) =

∂x

∂θ
(2π, t) (2b)

Such models on the circle find application in compu-
tational biology for modeling directional sensing in living
cells and systems with symmetries see, e.g., [8, 22, 30]. Ad-
ditionally, a compact domain simplifies some of the tech-
nical assumptions. For instance, it guarantees a discrete
frequency spectrum for the Laplace operator with domain

Dom(∆) = {x(·, t) ∈ H2(Ω;Rn)| (2) holds}. (3)

Here H2(Ω;Rn) = H2(Ω) × · · · × H2(Ω) denotes the
Sobolev space of functions in L2

n(Ω) such that the i-th com-
ponent xi(·, t) is differentiable (in the generalized sense)
with derivatives in L2(Ω).

The static nonlinearity ϕ : Rm → Rm is assumed to be
continuously differentiable (i.e., ϕ ∈ C1(Rn)) and satisfies
the following standing assumption.

Assumption 2.1.

1. There exists 0 < M < ∞ such that η⊤ϕ(η) < 0 for
all η ∈ Rm with ‖η‖ ≥M .

2. The function ϕ : Rm → Rm satisfies the differential
dissipation inequality

[

Im
−Jϕ(η)

]⊤ [

Q L
L⊤ R

] [

Im
−Jϕ(η)

]

� 0 (4)

for all η ∈ Rm, where Jϕ(η) ∈ Rm×m denotes the
Jacobian matrix of ϕ at η, the matrices Q,L,R ∈
Rm×m are constant and R = R⊤ ≻ 0.

The dissipation inequality (4) is a classical differential
sector condition. In the scalar case (m = 1), it reduces to

(Jϕ(η)−K1)
⊤(Jϕ(η)−K2) � 0 (5)

with Q = 1
2

(

K⊤
1 K2 +K⊤

2 K1

)

, L = 1
2 (K1+K2)

⊤ and R =
Im. Condition (5) then expresses that the slope of ϕ at
any point lies in the interval [K1,K2], whenever K1 < K2.
See Figure 1 for an illustration.

The reader will note that model (1) reduces to

∂x

∂t
(θ, t) = D∆x(θ, t) − ϕ(x(θ, t)) (6)

in the special case defined by m = n, A = 0, and B = C =
In. This latter form is the classical form of a reaction-
diffusion system in the literature [25].

Remark 2.2. Assumption 2.1 ensures that the system (1)-
(2) admits a unique (classical) solution for any initial con-
dition x(θ, 0) = x0(θ) which is defined in the whole time
interval t ∈ [0,+∞), given as

x(θ, t) = T (t)x0(θ) +

∫ t

0

T (t− τ)F (x(θ, τ))dτ

where T (t) : L2
n(Ω) → L2

n(Ω) is the C0-semigroup gen-
erated by the operator D∆ and F (x(θ, t)) = Ax(θ, t) +
Bϕ(Cx(θ, t)). See e.g., [23, Theorems 1.4 and 1.5, Chap-
ter 6].

3. Differential analysis of reaction diffusion sys-
tems

Differential analysis consists in analyzing the proper-
ties of infinitesimal variations δx(θ, t) around an arbitrary
solution x(θ, t) of (1)-(2) as is made in [9, 28] for the case
of finite-dimensional systems.

Namely, let φ(θ, t, x0) denote the solution of the reaction-
diffusion system (1)-(2) at position θ and time t with initial
condition x(θ, 0) = x0(θ). Let x

1(θ, 0) and x2(θ, 0) be two
given initial conditions and let γ : S1 × [0, 1] → Rn be a
smooth curve such that γ(·, 0) = x1(·, 0), γ(·, 1) = x2(·, 0)
and γ(0, s) = γ(2π, s) for all s ∈ [0, 1]. In addition, let
ψ(θ, t, s) = φ(θ, t, γs), where γs(·) = γ(·, s), i.e., ψ(θ, t, s)
is the solution of (1)-(2) at position θ and time t with ini-
tial condition ψ(θ, 0, s) = γs(θ) = γ(θ, s), s ∈ [0, 1]. It
follows that

∂

∂t

(

∂ψ

∂s
(θ, t, s)

)

=
∂

∂s

(

∂ψ

∂t
(θ, t, s)

)

=
∂

∂s
(D∆ψ(θ, t, s) +Aψ(θ, t, s)

−Bϕ(Cψ(θ, t, s)))

= D∆
∂ψ

∂s
(θ, t, s) +A

∂ψ

∂s
(θ, t, s)

−BJϕ(Cψ(θ, t, s))C
∂ψ

∂s
(θ, t, s)

Defining δx(θ, t, s) := ∂ψ
∂s

(θ, t, s), leads to the variational
equation

∂δx

∂t
(θ, t, s) = D∆δx(θ, t, s) +Aδx(θ, t, s)

−BJϕ(Cψ(θ, t, s))Cδx(θ, t, s)
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Equivalently, in Lur’e form

δΣ :

{

∂δx
∂t

(θ, t) = D∆δx(θ, t) +Aδx(θ, t) +Bδu(θ, t)

δy(θ, t) = Cδx(θ, t)

(7a)

δu(θ, t) = −Jϕ(y(θ, t))δy(θ, t) (7b)

with boundary conditions

δx(0, t) = δx(2π, t) (8a)

∂δx

∂θ
(0, t) =

∂δx

∂θ
(2π, t) (8b)

The variational system is linear. It is the interconnection
of the same LTSI model (1) with a time-varying output
feedback gain evaluated along an arbitrary solution x(θ, t).
In the following subsections we focus on the analysis of the
differential model (7)-(8). We analyze spatial and tempo-
ral variations separately.

3.1. Differential inhomogeneous dynamics

The spatial infinitesimal variation of the solution x(θ, t)
at time t is

lim
ν→0

x(θ + ν, t)− x(θ, t)

ν
=
∂x

∂θ
(θ, t)

Note that ∂x
∂θ

is an infinitesimal variation for the family

of curves γ(θ, s) = γ(θ + s). Thus, ∂x
∂θ

satisfies (7)-(8). In
addition, it follows from (2a) and the fundamental theorem
of calculus that ∂x

∂θ
satisfies the integral constraint

1

2π

∫ 2π

0

∂x

∂θ
(θ, t) dθ = x(2π, t) − x(0, t) = 0, (9)

which means that ∂x
∂θ

is a zero mean solution of (7)-(8).
Let us consider the bounded linear operator T : L2

n(Ω) →
L2
n(Ω) mapping

δx 7→

∫

Ω

δx(θ, t)dθ =: δx (10)

where δx : R+ → Rn is a function dependent on time
but no longer dependent on the spatial variable. More
generally, any variation δx admits the decomposition

δx = δx+ δξ

with δξ ∈ N (T ) and δx ∈ R(T ), where N (T ) and R(T )
denote the null and range space of T , respectively. It
follows from (9) and the uniqueness of the splitting that
δξ = ∂x

∂θ
∈ N (T ). Motivated by the discussion above, we

label the dynamics associated to δx = Tδx as the spatially
homogeneous dynamics, whereas we refer to the dynamics
associated to δξ ∈ N (T ) as the spatially inhomogeneous
dynamics.

In the sequel we analyze separately the exponential
contraction of δξ and the convergence of δx leading to
spatially homogeneous motions. The definition of spatial
homogeneity was introduced in [1], which we recall in the
following lines.

Definition 3.1 (Spatial homogeneity [1]). The system
(1)-(2) is spatially homogeneous with rate µ > 0 if for any
given initial condition

‖
∂x

∂θ
(·, t)‖L2

n
(Ω) ≤Me−µt‖

∂x

∂θ
(·, 0)‖L2

n
(Ω), (11)

where M > 0.

Definition 3.1 states that for any initial condition the
spatial mismatch between any two trajectories, that are
infinitesimally close, decays exponentially to zero, that is,
all trajectories converge to each other in the spatial do-
main, enforcing an homogeneous motion in space. Spatial
homogeneity is thus equivalent to contraction of the spa-
tially inhomogeneous dynamics.

Proposition 3.2. System (1)-(2) is spatially homogeneous
with rate µ ≥ 0, if and only if, the origin of the system (7)-
(8)-(9) is uniformly exponentially stable with the same rate
µ ≥ 0.

Proof. The proof is a direct consequence of Definition
3.1 and the fact that δξ = ∂x

∂θ
is the solution to (7)-(8)-(9).

�

Conditions guaranteeing the exponential homogeneity
of (1)-(2) have been studied extensively, see e.g., [1, 2, 6,
15]. The dissipativity formulation of those conditions is as
follows. Let σ : Rm×Rm → R be the quadratic differential
supply rate

σ(δy(θ, t), δu(θ, t)) :=

[

δy(θ, t)
δu(θ, t)

]⊤ [

Q L
L⊤ R

] [

δy(θ, t)
δu(θ, t)

]

(12)
where the matricesQ,L and R are constant andR = R⊤ ≻
0.

Definition 3.3. The LTSI system (1a)-(2) is uniformly
differential dissipative with rate µ ≥ 0 and with respect to
the supply rate (12), if there exists a matrix Π = Π⊤ ≻ 0
such that the following inequality holds for all admissible
δu with (δx, δy) satisfying (7a)-(8)

∫

Ω

[

∂
∂t
δx
δx

]⊤ [

0 Π
Π 2µΠ+ εIn

] [

∂
∂t
δx
δx

]

dθ ≤

∫

Ω

σ(δy, δu)dθ (13)

Addtionally, if (13) holds in an invariant subspace V ⊂
Ln2 (Ω) of δx then we say that the system is uniformly dif-
ferential dissipative in V. The property is strict if ε > 0
in (13).

Henceforth, dissipativity is always asssumed with re-
spect to the supply rate (12). With those definitions in
place, the dissipativity analysis of spatial homogeneity of
(1)-(2) is an infinite-dimensional version of the classical
circle criterion.
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Theorem 3.4. Let ϕ satisfy the dissipation inequality (4).
If the LTSI system (1a)-(2) is uniformly differential dissi-
pative with rate µ ≥ 0 in N (T ), then the closed-loop system
(1)-(2) is spatially homogeneous with the same rate µ.

Proof. From Proposition 3.2 it follows that spatial ho-
mogeneity of (1)-(2) is equivalent to exponential stabil-
ity of the gradient dynamics given by (7)-(9). Let δξ =
∂x
∂θ

∈ N (T ). By hypothesis, there exists Π = Π⊤ ≻ 0
such that (13) holds for δx = δξ. Now, let S(δξ) =
〈δξ(·, t),Πδξ(·, t)〉L2

n
(Ω), then (13) is equivalent to

d

dt
S(δξ) ≤

∫

Ω

σ(δy, δu)dθ − 2µS(δξ)− ε‖δξ(·, t)‖L2
n
(Ω)

Using δu(θ, t) = −Jϕ(y(θ, t))δy(θ, t) together with the sec-
tor bound (4) leads to

d

dt
S(δξ) ≤ −2µS(δξ)− ε‖δξ(·, t)‖L2

n
(Ω) (14)

Now, multiplying both sides of (14) by e2µt and integrating
from τ = 0 up to τ = t, yields

‖δξ(·, t)‖L2
n
(Ω) ≤

√

λmax(Π)

λmin(Π)
e−µt‖δξ(·, 0)‖L2

n
(Ω)

where λmax(Π) and λmin(Π) denote the maximum and
minimum eigenvalue of Π. Therefore, δξ = ∂x

∂θ
goes ex-

ponentially to the zero with rate µ ≥ 0. �

The following theorem provides a numerical test for
uniform differential dissipativity of the LTSI system (1a)-
(2). The result is a reformulation of [2, Theorem 1] for
reaction-diffusion systems with periodic spatial domain S1.

Theorem 3.5. Let Π ∈ Rn×n be a symmetric positive
definite matrix such that

ΠD +D⊤Π � 0 (15)

and
[

Θ1,1 ΠB − C⊤L
B⊤Π− L⊤C −R

]

� 0 (16)

where Θ1,1 = (A−λ2D)⊤Π+Π(A−λ2D)+2µΠ−C⊤QC+
εIn. Then the inhomogeneous dynamics of (1)-(2) is uni-
formly differential dissipative with rate µ ≥ 0, where λq
is the q-th eigenvalue of the opertor ∆ with domain (3),
respectively.

Proof. The reader is addressed to [2] for a detailed proof
of this fact. �

For the differential spatial dynamics (9) implies that
N (T ) = span{ν1}, where ν1 is the eigenvector associated
to the eigenvalue λ1. Therefore, uniform differential dissi-
pativity of the inhomogenous dynamics is tested by solving
(15)-(16) with λ2 = 1.

3.2. Differential homogeneous dynamics

The gradient dynamics describes the time evolution of
fluctuations in space. The complementary dynamics asso-
ciated to δx := Tδx, describes the homogeneous behavior
of the differential dynamics. Thus, the differential dynam-
ics constrained to R(T ) is constant in space and therefore
can be described by an ODE. Such intuition is formalized
in the following theorem.

Theorem 3.6. The dynamics of (7)-(8) projected into the
subspace R(T ) reduces to

{

d
dt
δx(t) = Aδx(t) +Bδu(t)

δy(t) = Cδx(t)
(17a)

δu(t) = −

(
∫

Ω

Jϕ(y(θ, t))dθ

)

δy(t) (17b)

Proof. Applying the projection T , previously defined
in (10), on both sides of (7a) yields

{

d
dt
δx(t) = Aδx(t) +Bδu(t)

δy(t) = Cδx(t)
(18)

where δx denotes the average in space of the differential
variable δx, introduced in (10), similar for δy, and δu. We
recall that δx = δx + δξ, where δξ = ∂x

∂θ
∈ N (T ). Hence,

δu(t) obeys,

δu(t) = −

∫

Ω

(Jϕ(y(θ, t))δy(θ, t)) dθ

= −

∫

Ω

(

∂

∂θ
ϕ(y(θ, t)) + Jϕ(y(θ, t))δy(t)

)

dθ

= −

(
∫

Ω

Jϕ(y(θ, t))dθ

)

δy(t)

where we used the fact that δy = Cδx + Cδξ in the sec-
ond equation, and the fundamental theorem of calculus
together with (2) to obtain the last equation. �

The above result agrees with the traditional approach
of [6, 15] in which spatial homogeneity reduces a PDE into
an ODE. Thus, (17) describes the differential dynamics of
the homogeneous behavior which we identify as the differ-
ential temporal dynamics.

We now illustrate the use of differential dissipativity
analysis to study non-equilibrium asymptotic behaviors of
the homogeneous dynamics. We make use of a recent de-
velopment of the theory in [12, 19, 20]. We recall that
the inertia of a symmetric matrix P ∈ Rn×n is the triple
(ν, ζ, π) where each entry denotes the number of negative,
zero and positive eigenvalues, respectively.

Note that for the homogeneous dynamics, the associ-
ated supply rate is the same as (12) but with functions
that are independent of the spatial variable. Namely, it
follows from (4) that
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0 ≥ 〈δy,Qδy〉L2
n
(Ω) + 〈(Jϕ ◦ y)δy,R (Jϕ ◦ y) δy〉L2

n
(Ω)

− 〈δy, L(Jϕ ◦ y)δy〉L2
n
(Ω) − 〈(Jϕ ◦ y)δy, L⊤δy〉L2

n
(Ω)

≥

[

δy(t)

δu(t)

]⊤ [

Q L
L⊤ R

] [

δy(t)

δu(t)

]

=: σ̄(δy, δu) (19)

where we applied Jensen’s inequality to the quadratic term
〈η,Rη〉L2

n
(Ω) to obtain the last inequality.

Associated to the variational dynamics (17) we con-
sider the family of lumped systems

{

d
dt
x̄(t) = Ax̄(t) +Bū(t)

ȳ(t) = Cx̄(t)
(20a)

[

δy(t)

δu(t)

]⊤ [

Q L
L⊤ R

] [

δy(t)

δu(t)

]

≤ 0 (20b)

where ū is defined implicitly through its variational rep-
resentation δu.

Definition 3.7. The linear system (20a) is p-dissipative
with rate λ ≥ 0 and with respect to the supply rate σ̄,
if there exists a symmetric matrix P = P⊤ with inertia
(p, 0, n− p) such that for all admissible δu and all (δx, δy)
satisfying (17) the following holds

[

d
dt
δx

δx

]⊤ [

0 P
P 2λP + εIn

] [

d
dt
δx

δx

]

≤ σ̄(δy, δu) (21)

The property is strict if ε > 0.

Analogous to the inhomogeneous case above, in what
follows, we consider only quadratic supply rates of the
form (19). The following theorem, taken from [19] and re-
peated here for completeness, provides useful information
for characterizing the homogenous part of the asymptotic
behavior.

Theorem 3.8. Let ϕ satisfy the dissipation inequality (4).
If the system (20a) is strictly p-dissipative with rate λ ≥ 0.
Then the homogeneous dynamics of the closed-loop (1)-
(2) is p-dominant. In particular, each bounded solution
asymptotically converges to an equilibrium for p = 1 and to
a simple limit set (equilibrium, closed orbit, or connected
arc of equilibria) for p = 2.

Proof. The homogeneous differential dynamics of the closed-
loop (1)-(2) is given by (17), which is a lumped Lur’e
system, Theorem 3.6. The result thus follows from [19,
Theorem 4.2]. �

It follows from Definition 3.7 that the homogeneous
dynamics associated to (1)-(2) is strictly p-dissipative with
rate λ ≥ 0 if there exist ε > 0 and a matrix P = P⊤ with
inertia (p, 0, n− p) satisfying

[

Θ̂1,1 PB − C⊤L
B⊤P − L⊤C −R

]

� 0 (22)

where Θ̂1,1 = A⊤P + PA+ 2λP − C⊤QC + εIn
In this way, the differential model (7)-(8) contains all

the information needed for the study of the global behavior
of (1)-(2).

Example 3.9. We illustrate the above analysis with an
application to the Nagumo model describing the spatio-
temporal dynamics of a bistable transmission line [21],

∂x

∂t
(θ, t) = D∆x(θ, t) + Ax(θ, t)− ϕ(x(θ, t)) (23)

where x(θ, t) ∈ R, D > 0, and ϕ : R → R is an “N -shape”
function as the one shown in Figure 1. Thus, ϕ satisfies
(5) for some K1 < 0 < K2. The boundary conditions are
the same as in (2).

0

0

K2

K1

η
ϕ
(η
)

Figure 1: “N-shape” nonlinear function in the differential sector
[K1,K2].

In this example, condition (15) reduces to Π > 0 and
by using Schur’s complement formula it follows that (16)
is equivalent to the condition,

Π2 + 2

(

A+ µ−D −
K1 +K2

2

)

Π+
(K1 −K2)

2

4
< 0

Straightforward computations reveal that uniform differen-
tial dissipativity of the inhomogeneous dynamics with rate
at least µ is guaranteed whenever

D > A+ µ−K1 (24)

which implies spatial homogeneity of the closed-loop (1)-
(2) according to Theorem 3.4. Now, the complementary
dynamics in R(T ) is given by (17), whose dissipativity
property is verified by (22), which in this case reduces into

P 2 + 2

(

A+ λ−
K1 +K2

2

)

P +
(K1 −K2)

2

4
< 0 (25)

It is easy to verify that if K1 > A then (25) admits a pos-
itive solution P > 0, that is, the homogeneous dynamics
is 0-dissipative with rate 0 < λ < K1 − A. In such case,
there is a unique equilibrium for (1)-(2) that is globally
asymptotically stable, that is, the complete spatio-temporal
behavior goes towards the unique equilibrium. On the other
hand, if A > K1, then (25) admits a negative solution
P < 0, that is, the homogeneous dynamics is 1-dissipative
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with positive rates λ satisfying λ > K2−A. Further, from
a conventional local stability analysis one gets that the ori-
gin of the dynamics in R(T ) is unstable whenever A > K1.
Thus, when condition (24) and A > K1 hold, then the
PDE (23) will have a homogeneous bistable behavior. Fig-
ure 2 shows the spatio-temporal evolution of the system to
two different initial conditions with the following parame-
ters A = 0, D = 1.1, K1 = −1, and K2 = 1.

0

π

2π

0
5

10

−2

0

2

ψ0(x)

x
t

ψ

−2

−1

0

1

ψ(x, t)

0

π

2π

0
5

10

−2

0

2 ψ0(x)

x
t

ψ

Figure 2: Spatio-temporal evolution of trajectories of Nagumo’s
equation (23) to two different initial conditions showing both, the
spatial homogeneity of solutions and the bistable nature of the trans-
mission line.

4. Analysis in the frequency domain

The linear system (1)-(2) is both space and time invari-
ant (LTSI): solutions shifted in time and in space satisfy
the same equation [5].

Spatial and temporal invariance properties of linear
systems allow for insightful frequency domain analysis. In
this section, we briefly illustrate the frequency-domain in-
terpretation of the results of the previous sections.

4.1. Differential inhomogeneous dynamics

Spatial invariance allows to analyze a linear PDE as
a family of ODEs parametrized by the spatial frequency
ζ [4, 5, 10, 13]. By taking the Fourier transform of (7a)
with respect to the spatial variable θ, we transform the
PDE (7a) into the family of linear systems

{

d
dt
δxζ(t) = (A− ζ2D)δxζ(t) +Bδuζ(t)

δyζ(t) = Cδxζ(t)
(26)

where, for the case of Ω = S1, ζ ∈ Z (the dual group to
S1). Notice that each δxζ(t), ζ ∈ Z, is a coefficient on the
Fourier series expansion of δx(·, t), [10].

The splitting between spatial and temporal differential
dynamics in the previous section has an obvious interpre-
tation in the frequency domain: (26) reduces to the dif-
ferential temporal dynamics for the uniform spatial mode,
that is ζ = 0, whereas the differential spatial dynamics
correspond to all other modes ζ ∈ Z \ {0}.

The following theorem provides sufficient conditions
that guarantee the spatial homogeneity of the closed-loop
(1)-(2) via the family of ODEs (26).

Theorem 4.1. Suppose that for each ζ ∈ Z \ {0}, the
linear system (26) is 0-dissipative with rate µ ≥ 0 and
with the same storage function S(δxζ) = δx⊤ζ Πδxζ . Then
the closed-loop (1)-(2) is spatially homogeneous with the
same rate µ.

Proof. The hypothesis on the family of systems (26)
is equivalent to the existence of a matrix Π = Π⊤ ≻ 0
satisfying the following family of parametrized LMIs

Θζ(Π) :=

[

Θ1,1(ζ) ΠB − C⊤L
B⊤Π− L⊤C −R

]

� 0 (27)

were Θ1,1(ζ) = (A−ζ2D)⊤Π+Π(A−ζ2D)+2µΠ−C⊤QC+
εIn. The rest of the proof consists in showing that (27)
is equivalent to conditions (15)-(16). To that end, let τ =
1
ζ2

∈ (0, 1]. It then follows that condition (27) holds for

all ζ ∈ Z \ {0} if and only if
[

Θ̃1,1(τ) τ
(

ΠB − C⊤L
)

τ
(

B⊤Π− L⊤C
)

−τR

]

� 0 (28)

holds for all τ ∈ (0, 1], where Θ̃1,1,(τ) = (τA − D)⊤Π +
Π(τA−D)− τ(C⊤QC + 2µΠ+ εIn). Now, let us assume
first that (28) holds. Thus, setting τ = 1 in (28) implies
(16). Next, a necessary condition for (28) to hold is

−D⊤Π−ΠD + τ(A⊤Π+ΠA− C⊤QC + 2µΠ+ εIn) � 0

for all τ ∈ (0, 1]. Such condition is possible only if (15)
holds. The converse statement follows directly by noting
that (28) is contained in the convex combination of con-
ditions (15)-(16). Hence (27) implies uniform differential
dissipativity of (1a)-(2) with rate µ on N (T ) and the con-
clusion follows from Theorem 3.4. �

Remark 4.2. The LMI (27) has the interpretation of a
dissipativity analysis of the family of systems (26) in feed-
back interconnection with a family of ζ-parametrized time-
varying gains δuζ = −J̃ζ(t)ỹζ satisfying

[

Im
−J̃ζ(t)

]⊤ [

Q L
L⊤ R

] [

Im
−J̃ζ(t)

]

� 0. (29)

For each value of ζ, the storage S(δxζ) = δx⊤ζ Πδxζ , where
Π = Π � 0 satisfies

d

dt
S(δxζ) =

[

δxζ
δuζ

]⊤ [

(A− ζ2D)⊤Π+Π(A − ζ2D) ΠB
B⊤Π 0

] [

δxζ
δuζ

]
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and the application of the S-procedure yields (27) as a suf-
ficient condition for the uniform exponential stability of the
family of closed-loops. It is worth stressing that in general
J̃ζ(t)δyζ(t) is not the spatial Fourier transform of the term
Jϕ(y(θ, t))δy(θ, t) in (7b).

In the previous subsection we analyzed spatial homogen-
ity via the LMIs (15)-(16). The analysis in the spatial fre-
quency domain in this section provides an alternative: be-
cause the Fourier transform is an isometry between L2

n(Ω)
and l2n(Z), it is sufficient to show that the dynamics of each
Fourier coefficient, given by (26), converges exponentially
to zero with rate at least µ for each ζ ∈ Z \ {0}. There-
fore, it is enough to verify the stability of (26) subject
to the quadratic constraint σ(δyζ , δuζ) ≤ 0. That is, to
verify only the individual dissipativity properties of each
Fourier coefficient. To this end, let us introduce the family
of transfer functions associated to (26) as

Gζ(s) = C
(

sI − (A− ζ2D)
)−1

B (30)

where s ∈ C and ζ ∈ Z \ {0}. In the SISO case, graphical
tests (circle criterion) can be derived. Let D(K1,K2) be
the disk in the complex plane given by the set

D(K1,K2) :=

{

x+ jy ∈ C
∣

∣

(

x+
K1 +K2

2K1K2

2)

+ y2

≤

(

K2 −K1

2K1K2

)2
}

(31)

Theorem 4.3. Let ϕ : Rm → Rm be such that it satisfies
the differential sector condition (5). If for each ζ ∈ Z\{0}
there exists µ ≥ 0 such that

1. Gζ(s− µ) has no poles on the closure of C+;

2. one of the following conditions is satisfied

(a) 0 < K1 < K2 and the Nyquist plot of G(s − µ)
lies outside the disk D(K1,K2).

(b) K1 < 0 < K2 and the Nyquist plot of G(s − µ)
lies inside the disk D(K1,K2).

(c) K1 < K2 < 0 and the Nyquist plot of G(s − µ)
lies outside the disk D(K1,K2).

Then the closed-loop (1)-(2) is spatially homogeneous with
rate µ.

Proof. The proof is the same as in the standard circle
criterion, see e.g., [14, 17]. �

Remark 4.4. It is worth to stress that in Theorem (4.3)
we have disregarded the cases in which the Nyquist plot
make encirclements of the disk D(K1,K2). This is because
the Riemann-Lebesgue lemma [7, p. 36] states that δxζ →
0 as |ζ| → +∞. Therefore, the family of Nyquist plots
cannot make encirclements of any given disk.

4.2. Differential homogeneous dynamics

The second part of the analysis concerns the asymp-
totic behavior of the model (17), which is finite dimen-
sional. In such case the frequency domain approach is ex-
plored in [19], where sufficient conditions are guaranteed.

The analysis is now centered around the feedback in-
terconnection of (26) with ζ = 0 and a nonlinear term
ϕ : Rm → Rm satisfying (5). For the sake of complete-
ness we state the main result for the case of SISO systems,
whose proof can be found in [19].

Theorem 4.5 (Extended circle criterion). Consider the
closed-loop system (20). Let G0(s) be the transfer function
associated to (20a) and let ϕ : R → R satisfy the differen-
tial sector condition (5). Then the homogeneous dynamics
is p-dominant with rate λ ≥ 0 if

1. G0(s − λ) has q poles on the interior of C+ and no
poles on the jω-axis;

2. The Nyquist plot of G0(s − λ) makes E = p − q
clockwise encirclements of the point −1/K1;

3. one of the following conditions is satisfied

(a) 0 < K1 < K2 and the Nyquist plot of G(s − λ)
lies outside the disk D(K1,K2).

(b) K1 < 0 < K2 and the Nyquist plot of G(s − λ)
lies inside the disk D(K1,K2).

(c) K1 < K2 < 0 and the Nyquist plot of G(s − λ)
lies outside the disk D(K1,K2).

Theorem 4.3 gives us a sufficient condition for spatial
homogeneity of reaction-diffusion systems, whereas The-
orem 4.5 gives us a sufficient condition for the type of
homogeneous motion.

Example 4.6. We apply our approach to the FitzHugh-
Nagumo equation



















∂x1

∂t
(θ, t) = D1,1∆x1(θ, t)− x2(θ, t) + u(θ, t)

ε∂x2

∂t
(θ, t) = D2,2∆x2(θ, t) + ax1(θ, t)− bx2(θ, t)

y(θ, t) = x1(θ, t)

u(θ, t) = −ϕ(y(θ, t))

(32)
where ϕ : R → R is a nonlinear “N -shape” function in the
differential sector [K1,K2], as the one shown in Figure 1.
We first focus on the analysis of spatial homogeneity. The
family of transfer functions Gζ(s) has the form

Gζ(s) =
s+ 1

ε
(b+ ζ2D2,2,)

(s+ ζ2D1,1)
(

s+ 1
ε
(b+ ζ2D2,2)

)

+ a
ε

(33)

Now, we check the conditions stated in Theorem 4.3.
Thus, if

µ < min

{

D1,1,
1

ε
(b+D2,2)

}

then condition 1 holds for all ζ ∈ Z \ {0}.
Setting the parameters as, D1,1 = 0.5, D2,2 = 0.02,

ε = 0.1, a = 0.1, b = 0.05, K1 = −1.0 and K2 = 1.0, we
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−
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Figure 3: Family of Nyquist plots of (33) for ζ ∈ Z \ {0} and with
parameters D1,1 = 0.5, D2,2 = 0.02, ε = 0.1, a = 0.1, b = 0.05 and
µ = 0.01.

now look for the values of µ for which condition 2-(b) also
holds. Thus, setting µ = 0.01, we get the family of Nyquist
plots depicted in Figure 3.

From Figure 3 it follows that, with our choice of param-
eters, we can expect a rate of convergence of the synchro-
nization error of at least µ = 0.01. With that information
on the rate µ, we verify a solution to the LMI conditions
(15)-(16) and we get a positive definite solution Π as

Π =

[

1.16451 −0.61023
−0.61023 1.1594

]

which confirms the spatial homogeneity of the FitzHugh-
Nagumo equation with the selected parameters.

The following step consists in retrieving the type of syn-
chronized motion. To that end, we make use of the exten-
sion of the circle criterion on Theorem 4.5. The transfer
function of interest is

G0(s) =
s+ b

ε

s2 + b
ε
s+ a

ε

whose poles are at
{

−b±
√
b2−4aε
2ε

}

. Now, we proceed to

verify assumptions 1-3 in Theorem 4.5. First, with our
choice of parameters, we have that b2−4aε = −0.0375 < 0.
It follows that for any λ > b

2ε = 0.25, assumption 1 is
satisfied with q = 2. Selecting λ = 0.8, we get the Nyquist
diagram of Figure 4 from which, we verify condition 2,
(with E = 0 and therefore p = 2), and 3-(b). Hence, the
homogeneous dynamcis is 2-dominant.

Further analysis shows that the origin of the closed-
loop (20) is the unique equilibrium point and it is unstable.
Hence, a cohesive oscillatory behavior is expected. Figure
5 confirms the analysis.

It is noteworthy that the methods presented here also
find application in the analysis of systems with compact
spatial domain and Neumann boundary conditions, as stated

-1 0 1

-1

0

1 D(K1, K2)

ℜ(G0(jω − λ))

ℑ
(G

0
(j
ω
−

λ
))

Figure 4: Nyquist plot of the transfer function G0(s− λ) associated
to system (17a) with temporal rate λ = 0.8.
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Figure 5: Spatio-temporal evolution of state trajectories of
FitzHugh-Nagumo model (32) showing an homogeneous oscillatory
behavior.

in [3]. Roughly speaking, let F (x) = D∆x+Ax−Bϕ(Cx),
then F is equivariant if

Tϑ ◦ F = F ◦ Tϑ, and R ◦ F = F ◦R

where Tϑx(θ, t) = x(θ + ϑ, t) and Rx(θ, t) = x(−θ, t).
Thus, for equivariant equations, any solution satisfying
Neumann boundary conditions can be extended, by re-
flection around the origin, to a solution of the periodic
problem. Additionally, the even part of solutions to the
periodic problem are also solutions to the Neumann prob-
lem, see [3] for details. Thereby, our approach also extends
to the analysis of reaction-diffusion systems with Neumann
constraints.

5. Conclusions

We illustrated the potential of differential dissipativ-
ity for the analysis of nonlinear reaction-diffusion systems.

8



The differential dynamics naturally decompose into two
components, the differential inhomogeneous dynamics and
the differential homogeneous dynamics. We illustrated suf-
ficient conditions for spatial homogeneity, that is, contrac-
tion of the differential inhomogeneous dynamics, and for
p-differential dissipativity of the differential homogeneous
dynamics. Future work will explore the same framework
to analyze asymptotic spatiotemporal behaviors that are
homogeneous neither in space nor in time. Such behaviors
include traveling waves and spatiotemporal patterns.
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