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Abstract

We consider a possible application of the Ważewski topological method to feedback control systems and to more general
dynamical systems. We show how this method can be used to prove the impossibility of global stabilization in such
problems. Moreover, we give sufficient conditions for the existence of a solution such that its trajectory never leaves a
subset of the extended phase space of the system and does not tend asymptotically to a given equilibrium. We illustrate
our result with various real-life systems including the Furuta pendulum and the wheeled inverted pendulum.
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1. Introduction

The design of feedback control is among the major prob-
lems of applied mathematics. In applications we often
face the task of making some configuration of the system
asymptotically stable in the sense of Lyapunov. For this
we can usually use a feedback control, and this control is
constrained by the general design of our system. At the
same time, we are not only interested in stability, but also
it is often required to make the corresponding basin of
attraction as large as possible.

In particular, one can try to find sufficient conditions
under which the system is stable in the large and all its
solutions tend to a unique equilibrium. For equations de-
fined on Rn, an overview of such results can be found in
[1] (see also [2–4])

For systems defined on a closed manifold, a fundamental
result was proved in [5]. To be more precise, it was shown
that, given a continuous semi-flow on a manifold M such
that there exists a vector bundle π : M → N, with N a
closed manifold, it is impossible for the system to have a
globally asymptotically stable equilibrium. In particular,
if we consider a dynamical system acting on the tangent
bundle T N of a closed manifold N, then this system cannot
have such an equilibrium.

As an example of such a system one can consider a pla-
nar pendulum with feedback control: the system defined
on TS1 cannot be globally asymptotically stable. How-
ever, if we impose constraints on this pendulum system,
the phase space of the corresponding system can change.
If the pendulum is placed on a horizontal plane of sup-
port, then its phase space is R × [0, π] and the result from
[5] can’t be applied here. It is also possible to consider
systems defined not by semi-flows, but by so-called semi-
processes. For instance, this will be the case when the
corresponding system of ODEs is non-autonomous, i.e.,

explicitly depends on time.
The Ważewski topological method [6–8] has been al-

ready considered by many authors as a useful tool in non-
linear analysis. It can be applied to general problems
when one needs to determine the asymptotic behavior of
the solutions of a given system [7, 9, 10] as well as to
more specific problems, including finding periodic solu-
tions [11, 12], solving boundary value problems [9] or even
detecting chaotic behavior of the system [13].

The main idea of the Ważewski topological method can
be also applied if we want to prove the impossibility of
global stabilization in systems with feedback control. To
be more precise, we will show that if a uniformly Lyapunov
stable equilibrium is located in a larger set such that so-
lutions of the system intersect its boundary transversely
(or, in a more general case, the set of strict egress points
coincides with the set of egress points, if we use the termi-
nology of the Ważewski method), then there is a solution
with the following properties:

• This solution does not tend to an equilibrium as time
tends to infinity.

• Its trajectory never leaves the considered set.

In this paper, we present the above more formally. The
present paper can be considered as a development of the
result in [14]: we remove the requirement that there exists
a Lyapunov function in a vicinity of the equilibrium and
present a general result for a semi-process, not limiting
ourselves to the study of a specific system. We also present
some mechanical examples. Comparing with the result in
[5], we might say that [5] gives a solution to the problem of
global stabilization on a manifold without boundary and
in our paper we outline a possible approach to the same
problem on a manifold with boundary.
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This paper is organized as follows. First, we briefly
explain the main theorem of the Ważewski topological
method for flows. Then we present our main result on
the impossibility of global stabilization. The proof is self-
contained and can be understood without any external
references. The result is illustrated by three classical con-
trol systems: the inverted pendulum, the wheeled inverted
pendulum, and the Furuta pendulum.

2. Results

2.1. The Ważewski method for flows
We start with a brief explanation of the Ważewski topo-

logical method. First, we consider the case of flows on a
smooth manifold. Let M be a smooth (C∞) manifold. Let
ϕ : M ×R→ M be a flow on M, i.e., it is a continuous map
such that

1. For any x ∈ M × R, we have ϕ(x, 0) = x,

2. For any t, s ∈ R, we have

ϕ(x, t + s) = ϕ(ϕ(x, t), s).

Let W ⊂ M be an open subset of M with non-empty bound-
ary: ∂W , ∅. Note that W can be an arbitrary set, but in
the applications it is usually a set with a piecewise smooth
boundary.

For the Ważewski method, the following two notions of
egress and strict egress points play the key rôle.

Definition 2.1. We say that point x ∈ ∂W is an egress point
for W w.r.t. the flow ϕ if there exists an ε > 0 such that
ϕ(x, t) ∈ W for all t ∈ (−ε, 0).

Definition 2.2. We say that the egress point x ∈ ∂W is a
strict egress point for W w.r.t. the flow ϕ if there exists an
ε > 0 such that ϕ(x, t) < W ∪ ∂W for all t ∈ (0, ε).

The set of all egress points will be denoted by W− and
the set of all strict egress points is W−−. Roughly speaking,
the condition W− = W−−, which we are going to use below,
means that there are no trajectories internally tangent to
∂W, i.e., all solutions are either transverse to the boundary
or externally tangent to it.

For the case of smooth ODEs, one can check whether a
point is an egress point or a strict egress point by exam-
ining the corresponding Taylor expansion at the point.

For any point x ∈ M, let us consider the half-trajectory
of the flow:

γτ(x) =
⋃

t∈[0,τ)

ϕ(x, t) ⊂ M.

Definition 2.3. For x ∈ W, we say that

σ(x) = sup{τ > 0: γτ(x) ⊂ W}.

is the time of egress from W. For x ∈ ∂W we put σ(x) = 0.
If σ(x) = ∞, we say that the half-trajectory starting at x
does not leave W.

The Ważewski method provides a robust approach to
proving that there exist points x ∈ W such that σ(x) = ∞,
i.e. the corresponding trajectories never leave W.

Theorem 2.4. Let M be a manifold and ϕ : M × R → M
be a flow. If there exists an open set W ⊂ M and a set
Γ ⊂ W ∪W− such that W− = W−−, and Γ ∩W− is a retract
of W− but is not a retract of Γ. Then there is a point x ∈ Γ

such that σ(x) = ∞.

A proof of this result can be found, for instance, in
[15] (see also [12, 16]). However, the general idea of the
proof can be explained without going into technical de-
tails. First, let us recall the definition of a retract. Let
X be a topological space and Y ⊂ X. Then Y is a retract
of X if there exists a continuous map r : X → Y such that
r(x) = x for any x ∈ Y. Equivalently, Y is a retract of X
if and only if every continuous mapping of Y into an arbi-
trary topological space Z can be extended to a continuous
mapping of the entire space X into Z.

Suppose that for any x ∈ Γ, we have σ(x) < ∞, i.e., all
solutions starting in the considered set reach the boundary
∂W. The key observation that we are going to use is that
σ(x) : Γ → R is a continuous function. This follows from
the assumption that W− = W−− and the continuity of the
flow. Hence, the map x 7→ ϕ(x, σ(x)) is also continuous. We
will denote this map by m and the retraction between W−

and Γ∩W− by r. Then r ◦m defines a retraction between Γ

and Γ∩W− (m maps Γ into W−). This contradiction proves
the statement. Note that the existence of the retraction r is
an assumption of the theorem. That is, we assume that the
required retraction exists, and when one applies Theorem
2.4 to some system, the existence of such a retraction has
to be proved.

Figure 1: All solutions leave W.

Note that the condition W− = W−− is important if we
want to construct a continuous map from Γ into W−. Con-
sider a toy system

ẋ = 1, ẏ = −x.

For this system and W = {x, y : 0 < y < 3}, we have
W− , W−− (see Fig. 1), i.e., we have a trajectory that
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is internally tangent to ∂W, therefore, (0, 3) of the bound-
ary is an egress point, yet not a strict egress point. Along
this trajectory the map m is discontinuous: points located
slightly above it leave W through the upper part of the
boundary; in contrast, points that are below this curve
leave W through the lower part of the boundary.

Before moving on to our main results, we consider a
couple of examples illustrating the method. We start with
an archetypical example: a vector field that transversely
intersects an infinite strip. For instance, let us consider
the nonlinear system

ẋ = 1,
ẏ = a · cos y + x sin y.

For a = 1, there are infinitely many solutions (x(t), y(y))
such that y(t) ∈ [0, π] for all t > 0. This follows from the
two inequalities ẏ

∣∣∣
y=0 > 0 and ẏ

∣∣∣
y=π

< 0. For a = −1 we
have ẏ

∣∣∣
y=0 < 0 and ẏ

∣∣∣
y=π

> 0, i.e., all solutions of the system
leave the strip W defined by the inequalities 0 6 y 6 π
transversely to its boundary (see Fig. 2). Therefore, W− =

W−− and we can apply Theorem 2.4. Consider the segment
Γ defined by x = 0 and 0 6 y 6 π. The set Γ∩W− consists
of two points, and the two lines W− can be retracted to
these points (this retraction is unique). At the same time,
Γ cannot be retracted to its boundary (a line segement
cannot be retracted into its endpoints). Therefore, there
is a solution that never leaves W. Again, note that the
existence of the retraction is an important assumption in
the above considerations.

Figure 2: A numerically obtained solution that never leaves W.

Another example is the system

ẋ = −x − x3,

ẏ = −y + y2.
(1)

Now consider the set W defined by

W = {x, y : ρ1 < x2 + y2 < ρ2}.

Here, ρ1 is a relatively small parameter and, conversely, ρ2
is a large number (Fig. 3). Then W satisfies the conditions
of Theorem 2.4. The part of ∂W defined by x2 + y2 = ρ1

consists of strict egress points only. Let Γ be an arbitrary
smooth curve connecting two disjoint components of W−−.
Then there is a point x ∈ Γ such that the trajectory starting
at this point never leaves W.

Figure 3: The hyperbolic equilibrium (0, 1) and the corresponding
asymptotic solution are highlighted.

Note that for this particular system, the corresponding
solution can be found explicitly: any smooth curve con-
necting the small circle with the set of egress points of the
larger circle inevitably intersects the line y = 1, the stable
manifold for the hyperbolic equilibrium x = 0, y = 1. How-
ever, we only used the information about the vector field
in a vicinity of the boundary ∂W to prove the existence of
such a solution and our approach can be carried over to
higher dimensional and non-autonomous cases, where the
structure of equilibrium points and invariant manifolds is,
in general, unknown.

2.2. Main results

Consideration of a system defined by a flow has its ad-
vantages, yet this requirement is too restrictive and below
we will consider a more general setting that allows us to
deal with the following two cases:

• Our system can be non-autonomous. In other words,
when we consider a system of ordinary differential
equations that describes the motion of our feedback
control system, we allow an explicit dependence on
time for the right hand side. For instance, this depen-
dence can be considered as an external (uncontrollable
and unavoidable) force acting on our system.

• The right hand side of our ODE can be less regu-
lar than is required for the uniqueness of solutions.
Actually, what we will need is the so-called right-
uniqueness of the solutions.
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Both these generalizations can be embraced by the no-
tion of a semi-process. Let Φ be a continuous semi-process
(see, for instance, [12]):

Φ : M × R × [0,∞)→ M. (2)

In other words, Φ is a continuous map such that

ϕ : (x, t0, t) 7→ (Φ(x, t0, t), t0 + t) ∈ M × R

is a continuous semi-flow on M × R, i.e.:

1. A map ϕ : M×R× [0,∞)→ M×R which is continuous;

2. For any (x, t0) ∈ M × R, we have ϕ(x, t0, 0) = (x, t0);

3. For any t, s ∈ [0,∞), we have

ϕ(x, t0, t + s) = ϕ(ϕ(x, t0, t), s).

Below we will use the notation

Φ(x, t0, t) = Φt0,t(x).

Note that any continuous semi-flow on M can be consid-
ered as a continuous semi-process on M × R with no de-
pendence on t0.

We now introduce the notions of egress and strict egress
points for semi-processes. Note that semi-flows and semi-
processes are defined only for non-negative values of t.
Therefore, it is impossible to carry over Definition 2.1 di-
rectly to the case of a semi-process.

First, similarly to the case of a flow, we can consider the
half-trajectory of the semi-process:

γτ(x) =
⋃

t∈[0,τ)

(Φ0,t(x), t) ⊂ M × R. (3)

From now on, we fix the initial moment of time to be zero.
Everywhere below we assume that W ⊂ M × R is such

a set that W ∩ {t = 0} , ∅, i.e., set W has a non-empty
intersection with the plane t = 0.

Definition 2.5. Given a point (x, 0) ∈ W, we say that

σ(x) = sup{τ > 0: γτ(x) ⊂ W}.

is the time of egress from W. For (x, 0) ∈ ∂W we put
σ(x) = 0.

Definition 2.6. We say that (x1, t1) ∈ ∂W, t1 > 0 is an egress
point for W if there exists a point (x, 0) ∈ W such that

(x1, t1) = (Φ0,σ(x)(x), σ(x)). (4)

Since we cannot consider our system in reverse time, but
can only consider our system for t > 0, we have to deal
with the case t1 = 0 separately. A point (x1, t1) ∈ ∂W, t1 = 0
is an egress point if for some ε > 0 we have

(Φ0,t(x1), t) < W ∪ ∂W

for all t ∈ (0, ε). We denote the set of all egress points by
W−.

Definition 2.7. We say that an egress point (x1, t1) ∈ ∂W is
a strict egress point for W if for some ε > 0 we have

(Φ0,σ(x)+t(x), σ(x) + t) < W ∪ ∂W

for all t ∈ (0, ε). Here (x1, t1) = (Φ0,σ(x)(x), σ(x)). We denote
the set of all strict egress points by W−−.

Remark 2.8. We call a point (x1, t1) ∈ ∂W, t1 = 0 an egress
point even when this point is actually a strict egress point.
We do this only for technical reasons. This will not cause
any ambiguity, since everywhere below we assume that for
our systems W− = W−−.

Definition 2.9. We say that x0 is an equilibrium for the
semi-process (2) if Φt0,t(x0) = x0 for all t0 > 0 and t > 0.

Definition 2.10. We say that an equilibrium x0 is uniformly
Lyapunov stable if for any open set U ⊂ M such that
x0 ∈ U, there exists an open set V ⊂ M such that

Φt0,t(x) ∈ U

for any x ∈ V and all t0 > 0 and t > 0.

The uniformity in the above definition is uniformity in
time: the open neighborhood V does not depend on t0. In
particular, if we consider a continuous semi-flow on M (a
continuous semi-process on M×R without any dependence
on t0), then any Lyapunov stable equilibrium, defined in
the usual way, is uniformly stable.

Definition 2.11. We say that x0 is globally attractive if
Φ0,t(x)→ x0 as t → ∞ for any x ∈ M.

Definition 2.12. Let S ⊂ M × R. Define a subset of M × R
by

S τ = {(x, t) ∈ S : t = τ}.

In other words, S τ is the section of S by the plane t = τ.
For the sets of strict egress points, we will use the notation
W−−0 = (W−−)0.

We will now prove the main result. The proof is based
on the idea of the Ważewski topological method.

Theorem 2.13. Let W ⊂ M × R be an open set, Φ be a
continuous semi-process on M and W− = W−− (w.r.t. Φ)
and assume W−−0 , ∅. Let x0 be a uniformly stable equilib-
rium, U ⊂ M be an open subset, and x0 ∈ U be such that
Ū × R ⊂ W. Suppose that W−−0 can be connected with the
equilibrium by a continuous path Γ : [0, 1] → M × R such
that Γ(s) ∈ W0 for s ∈ (0, 1) and Γ(0) = (x0, 0), Γ(1) ∈ W−−0 .
Then x0 cannot be globally attractive for Φ.

Proof. We will prove by contradiction that there is a point
(x, 0) ∈ Γ such that σ(x) = ∞ and Φ0,t(x) 6→ x0 as t → ∞.

For any point (x, 0) ∈ Γ we have two options: either the
corresponding trajectory leaves W (σ(x) < ∞), or the tra-
jectory always remains inside W (σ(x) = ∞). Note that
neither of these sets are empty since Γ(0) = (x0, 0) corre-
sponds to the equilibrium and Γ(1) ∈ W−−0 and, therefore,
the solution starting at this end of Γ, leaves W.
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Assume that for all points (x, 0) ∈ Γ satisfying σ(x) = ∞

we have Φ0,t(x)→ x0 as t → ∞.
Now consider the following map Ω from Γ to its bound-

ary points Γ(0) and Γ(1):

Ω(x, 0) =

 Γ(0), if σ(x) = ∞,

Γ(1), if σ(x) < ∞.
(5)

Now we will prove that Ω is continuous provided our
assumption on the attractiveness holds.

Since the equilibrium x0 is uniformly stable, there is an
open set V ⊂ M, x0 ∈ V such that for any t0 > 0 and any
x ∈ V for all t > 0 we have Φt0,t(x) ∈ U.

Figure 4: A schematic representation of the map between Γ and its
boundary points.

If Ω(x, 0) 7→ Γ(0), then Ω(y, 0) 7→ Γ(0) provided y is close
to x: for some τ we have Φ0,τ(x) ∈ V. Hence, Φ0,τ(y) ∈ V
and Φ0,t(y) ∈ U for all t > τ (Fig. 4). Therefore, the
corresponding trajectory never leaves W and σ(y) = ∞.

We will now prove that Ω is continuous at all points
(x, 0) that are mapped to Γ(1), i.e. σ(x) < ∞. Let y be
close to x. The point (Φ0,σ(x)(x), σ(x)) is a point of strict
egress, therefore (Φ0,σ(x)+δ(x), σ(x) + δ) < W ∪ ∂W for some
δ > 0 (Fig. 4). Since the semi-process is continuous,
we can conclude that (Φ0,σ(y)+δ(y), σ(y) + δ) belongs to a
small neighborhood of (Φ0,σ(x)+δ(x), σ(x) +δ). In particular,
(Φ0,σ(y)+δ(y), σ(y) + δ) < W ∪ ∂W and σ(y) < ∞.

Therefore, we have constructed a continuous map be-
tween a line segment and its boundary. From the contra-
diction we obtain that our assumption cannot be true and
there exists a solution starting at Γ such that this solution
never leaves W and does not tend asymptotically to x0. In
particular, x0 cannot be globally attractive.

One can compare the above statement with system (1).
There is a stable equilibrium inside the small circle and
we have shown that there is a solution that both does not
leave the bigger circle and does not intersect the smaller
one (Fig. 3). Note that the problem is not in the tra-
jectories that leave our region and cannot return without

breaking the continuity of the flow, but there always ex-
ists a solution that does not intersect our circles and is
separated from the equilibrium. In other words, even if we
make our system discontinuous and instantly carry over to
the equilibrium all the solutions leaving the bigger circle,
we still cannot obtain global stabilization.

From the theorem we have that for each curve Γ we have
at least one point x such that Φ0,t(x) 6→ x0. Therefore,
if we can find an n-parameter family of disjoint curves Γ,
then we obtain an n-parameter family of the corresponding
solutions.

Results similar to Theorem 2.13 can be proved for the
case when our system has a stable invariant manifold. For
instance, the following generalization can be considered.

Let M = S × N where S and N are smooth manifolds. If
x0 ∈ S , we say that {x0} × N is an invariant manifold for Φ

if for any (x0, y) ∈ {x0} × N, t0 ∈ R and t > 0 we have

Φt0,t(x0, y) ∈ {x0} × N.

We say that an invariant manifold {x0} × N is uniformly
Lyapunov stable if for any open set U ⊂ S such that x0 ∈ U,
there exists an open set V ⊂ S , x0 ∈ V such that

Φt0,t(x, y) ∈ U × N

for any x ∈ V, y ∈ N and all t0 and t > 0.
We say that an invariant manifold {x0} × N is globally

attractive if for any (x, y) ∈ S × N we have Φ0,t(x, y) →
{x0}×N as t → ∞. We will denote the canonical projection
onto the manifold M by πM : M × R→ M.

The proof of the following result is the same as in The-
orem 2.13.

Theorem 2.14. Let M = S ×N, where S and N are smooth
manifolds, and let Φ be a continuous semi-process on M.
Let W ⊂ M × R be such that W− = W−− (w.r.t. Φ) and
assume W−−0 , ∅. Let {x0} × N ⊂ M be a uniformly stable
invariant manifold, U ⊂ S be an open subset, x0 ∈ U and
Ū × N ×R ⊂ W. Suppose that W−−0 can be connected with
the invariant manifold by a continuous path Γ : [0, 1] →
M × R such that Γ(s) ∈ W0 for s ∈ (0, 1) and πM(Γ(0)) ∈
{x0}×N, Γ(1) ∈ ∂W∩W−−0 . Then {x0}×N cannot be globally
attractive for Φ.

2.3. Remarks on the condition W− = W−−

It is also worth mentioning that the verification of the
fact that W− = W−− can be simplified when our semi-
process is defined by an ODE in a neighborhood of ∂W. In
this case we can use definitions similar to the ones given
above for flows.

To be more precise, suppose given a smooth manifold
M and a continuous semi-process Φ on it. Furthermore,
suppose given an open set W ⊂ M×R. Suppose that Φ can
be defined by a smooth ODE in a neighborhood of ∂W, i.e.
there exists an open set O(∂W) such that ∂W ⊂ O(∂W) and
there exists an ordinary differential equation

ẋ = v(x, t), (6)
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where v(x, t) is a smooth function on O(∂W). Moreover,
for any (x0, t0) ∈ O(∂W), Φt0,t(x0) is a differentiable function
that satisfies (6). In particular, the semi-process Φ can be
considered in reverse time in O(∂W).

Figure 5: A semi-process (semi-flow) defined by an ODE with a
discontinuous right hand side.

Definition 2.15. We say that (x0, t0) ∈ ∂W is an egress
point for W w.r.t. (6) if there exists an ε > 0 such that
(Φt0,t(x0), t0 + t) ∈ W for all t ∈ (−ε, 0).

Definition 2.16. We say that an egress point (x0, t0) ∈ ∂W
is a strict egress point for W w.r.t. (6) if there exists an
ε > 0 such that (Φt0,t(x0), t0 + t) < W ∪ ∂W for all t ∈ (0, ε).

Therefore, if W− = W−− in the sense of Definitions 2.15
and 2.16, then W− = W−− in the sense of Definitions 2.6
and 2.7. Note that in the latter case, the set of egress
points is a subset of W− in the sense of Definition 2.15.

As an illustration of this approach, consider the system
(Fig. 5)

ẋ =


− cos(x) if x > 0,
0 if x = 0,
cos(x) if x < 0.

This system defines a semi-process (semi-flow): for x0 = 0
we cannot consider the corresponding solution x = 0 for t <
t0. There are infinitely many possibilities for a continuous
continuation. However, if we consider the set W = {x : −π <
x < π}, we see that in a neighborhood of the boundary
our semi-flow is defined by the solutions of two ODEs:
ẋ = − cos(x) and ẋ = cos(x). In the sense of Definitions
2.15 and 2.16, we have W− = W−−. Therefore, any solution
starting from the interval t = 0, −π 6 x 6 π that can reach
the boundary, locally leaves W ∪ ∂W and W− = W−− in
the sense of Definitions 2.6 and 2.7. Moreover, x = 0 is a
uniformly stable equilibrium and we can apply Theorem
2.13. There exists a solution (x = π/2 or x = −π/2) that
never leaves W and does not tend asymptotically to an
equilibrium.

3. Examples

3.1. The inverted pendulum

We will begin with the equation

ϕ̈ = u(ϕ, ϕ̇) sinϕ − cosϕ + v(ϕ, ϕ̇). (7)

Equation (7) describes the motion of a controlled in-
verted pendulum in a gravitational field. The feedback
control is given by u and v. The function u defines the
horizontal acceleration of the pivot point and v is a con-
trol torque.

First, we assume that this equation defines a continuous
flow on R2. Here u, v : R2 → R are smooth. We also assume
that |v(0, 0)| < 1 and |v(π, 0)| < 1, with ϕ = π/2 being
a Lyapunov stable equilibrium (this equilibrium can be
made stable by choosing an appropriate u and v). Then
this equilibrium cannot be globally attractive.

For this system, W has the following form

W = {ϕ, ϕ̇, t : 0 < ϕ < π}.

We will show that W− = W−−. This follows from the Taylor
expansion for ϕ(t). Indeed, let ϕ0 = 0 and ϕ̇0 < 0. Then

ϕ(t) = ϕ0 + (t − t0)ϕ̇0 + o(|t − t0|).

Therefore, we can conclude that (ϕ0, ϕ̇0, t0) ∈ W− (i.e.,
ϕ(t) > 0 for t < t0 provided |t − t0| is small). In accor-
dance with Definition 2.15, (ϕ0, ϕ̇0, t0) is an egress point.
Similarly, (ϕ0, ϕ̇0, t0) ∈ W−− (i.e., ϕ(t) < 0 for t > t0 provided
|t − t0| is small). When ϕ0 = 0 and ϕ̇0 = 0, we have

ϕ(t) =
1
2

(t−t0)2ϕ̈(t0)+o(|t−t0|2) =
1
2

(t−t0)2(v(0, 0)−1)+o(|t−t0|2).

Therefore, (ϕ0, ϕ̇0, t0) < W−. Finally, one can show that

W− = W−− = {ϕ, ϕ̇, t : ϕ = 0, ϕ̇ < 0 or ϕ = π, ϕ̇ > 0}.

Similar considerations can be found, for instance, in
[17, 18], where they were used to prove the existence of
non-falling and periodic solutions for the pendulum with
a moving pivot point.

There is a solution of (7) whose trajectory always re-
mains in W and does not tend to the equilibrium. There-
fore, (π/2, 0) cannot be a globally attractive uniformly sta-
ble equilibrium in the system where the pendulum moves
along the plane of support (the horizontal line) and the
rod can hit this plane. Taking into account the fact that
the trajectory of the solution always remain inside the set
0 < ϕ < π, i.e., along this solution the rod of the pendu-
lum never becomes horizontal, we can conclude that the
existence of this solution does not depend on the model of
impact between the rod and the horizontal plane.

Note that the same result holds for the system

ϕ̈ = u(ϕ, ϕ̇, t) sinϕ − cosϕ + v(ϕ, ϕ̇, t) + f (t) sinϕ,
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where f (t) is an external horizontal force acting on the
pendulum (a smooth function). For this system we also
have W− = W−− for the same W.

A similar result can be obtained for the following system
describing the motion of an inverted pendulum on a cart.
The details can be found in [14].

3.2. The Furuta pendulum
We will now consider the Furuta pendulum, a well

known control system introduced in [19] and thoroughly
studied by many authors (for instance, [20–28]). The sys-
tem consists of a pendulum and a rotating base on which
the pendulum is mounted. The pendulum is controlled
by a torque applied to the base (Fig. 6). The governing
equations have the form

[I + m(L + l2 sin2 ϕ)]ψ̈ + mlL cosϕϕ̈ +
1
2

ml2ϕ̇ sin 2ϕψ̇+[
−mlL sinϕ +

1
2

ml2 sin 2ϕψ̇
]
ϕ̇ = u(ϕ, ϕ̇, ψ, ψ̇),

mlL cosϕψ̈ + ml2ϕ̈ −
1
2

ml2 sin 2ϕψ̇ϕ̇ − mgl sinϕ = 0.

(8)

L

m

M

lg
ϕ

Figure 6: Furuta pendulum: An inverted pendulum mounted on a
rotating base.

For the sake of brevity, we assume that the system is
moving without any friction. Here I is the inertia of the
rotating base, L is the radius of the base, l is the length of
the pendulum, m and M are the masses of the pendulum
and the base, respectively. ϕ is the angle between the
upward vertical direction and the rod of the pendulum, ψ
is the angle of rotation of the base. We do not assume that
u is periodic in ϕ or ψ, i.e. u : R4 → R. In particular, we
cannot apply here the result from [5] since we do not have
any rotational degrees of freedom.

Now assume that the solutions define a semi-flow on R4

and u is a smooth function in a neighborhood of points
where ϕ = π/2 or ϕ = −π/2. Then the point ϕ = 0, ψ = ψ0
cannot be a globally attractive Lyapunov stable equilib-
rium. Indeed, let us consider the set

W = {ϕ, ϕ̇, ψ, ψ̇, t : − π/2 < ϕ < π/2}

The right hand side of the system is smooth in a neigh-
borhood of the boundary ∂W. We can consider Taylor

expansions similar to those presented above for the case
of an inverted pendulum. From the second equation of
system (8) we have ϕ̈ > 0 when ϕ̇ = 0 and ϕ = π/2 and
ϕ̈ < 0 when ϕ̇ = 0 and ϕ = −π/2. Therefore W− = W−− and
Theorem 2.13 can be applied.

3.3. The wheeled pendulum
Another example related to the dynamics of pendulum-

like systems is the wheeled pendulum. For instance, var-
ious results for one- and two-wheeled pendulums can be
found in [29–31]. Note that the wheeled pendulum can be
considered as a model for Segway, a self-balancing personal
transporter [32, 33].

The wheeled pendulum is a mathematical pendulum
with its pivot point attached to a disk rolling without slip-
ping on a horizontal line (Fig. 7). We consider this system
as a controlled system and assume that there is a control
torque u applied to the pivot.

g

M

m

l
ϕ

r

Figure 7: An inverted pendulum on a wheel.

By m and M we denote the masses of the pendulum and
the disk, respectively. Let l be the length of the pendu-
lum and r is the radius of the disk. It can be shown that
the equation for the angle between the rod and the verti-
cal direction can be considered independently and has the
form

(a11a22 − a2
12 cosϕ)ϕ̈ + a2

12ϕ̇
2 sinϕ cosϕ−

a11mgl sinϕ = (a11 + a12 cosϕ)u(ϕ, ϕ̇, t).

Here a11 = (2M + m)r2, a12 = mrl, a22 = ml2, while
u : R3 → R is smooth in a vicinity of the planes ϕ = π/2
and ϕ = −π/2. The function u defines the control torque
applied to the rod. We assume that solutions of the above
equation define a semi-process on R2. Then the vertical
upward position cannot be a globally attractive uniformly
stable equilibrium provided |u| < mgl holds for all t, and
for (ϕ, ϕ̇) = (π/2, 0) and (ϕ, ϕ̇) = (−π/2, 0). Again, here we
have ϕ̈ > 0 when ϕ̇ = 0 and ϕ = π/2 and ϕ̈ < 0 when ϕ̇ = 0
and ϕ = −π/2 and for W = {ϕ, ϕ̇, t : − π/2 < ϕ < π/2} we
obtain W− = W−−.

4. Conclusion

We have presented an approach that can be applied to
many real-life systems when one wants to prove that the
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system cannot be globally stabilized by means of a feed-
back control. There are two key requirements that need
to be met to apply the method. First, the right hand sides
of the equations should be relatively regular functions. At
least, they should define a semi-flow (or a semi-process, if
the system is non-autonomous). For instance, in the above
examples we only assumed that the functions that define
our feedback control are smooth only in a neighborhood
of the boundary of W. Second, we need a subset of the
extended phase space such that, broadly speaking, all tra-
jectories of our control system are either transverse to the
boundary of this set, or externally tangent to it and at
least some trajectories leave the region. Here it is worth
mentioning that in this case the reason the system cannot
be globally stabilized is not because of the solutions that
leave our set and cannot return to the equilibrium, but
because there exists a solution (often it is a family of solu-
tions) that neither leaves our set nor asymptotically tends
to the equilibrium.

As it is illustrated by the above examples, for various
pendulum-like systems it is often possible to find the re-
quired set and to prove the impossibility of global stabi-
lization. Note that it is usually needed to stabilize the
upward vertical position in such systems. For this case it
is possible to apply our results. For the downward ver-
tical position the situation is different. For instance, for
the mathematical pendulum (7), the position ϕ = −π/2
can be globally asymptotically stable provided the rod of
pendulum is constrained: ϕ ∈ [−π, 0]. If we assume that
the collisions between the constraint and the rod are elas-
tic, then one can put here ν = −ϕ̇. One can add that it
is also possible to prove the impossibility of global stabi-
lization for the Lagrange top (3D pendulum) controlled by
horizontal forces [34].

In some sense the above results complement a theorem
of Bhat and Bernstein [5]. Our results are not so universal,
but they can be applied to systems with non-compact con-
figuration spaces or configuration spaces with boundaries
and to non-autonomous systems.
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Université Paris-Saclay, paris, france, Ph.D. thesis (2016).

[17] I. Polekhin, Periodic and falling-free motion of an inverted
spherical pendulum with a moving pivot point, arXiv preprint
arXiv:1411.1585.

[18] I. Y. Polekhin, Examples of topological approach to the problem
of inverted pendulum with moving pivot point, Nelineinaya Di-
namika [Russian Journal of Nonlinear Dynamics] 10 (4) (2014)
465–472.

[19] K. Furuta, M. Yamakita, S. Kobayashi, Swing up control of
inverted pendulum, in: IECON, Vol. 91, 1991, pp. 2193–2198.

[20] K. Furuta, M. Yamakita, S. Kobayashi, Swing-up control of in-
verted pendulum using pseudo-state feedback, Proceedings of
the Institution of Mechanical Engineers, Part I: Journal of Sys-
tems and Control Engineering 206 (4) (1992) 263–269.

[21] A. S. Shiriaev, L. B. Freidovich, A. Robertsson, R. Johansson,
A. Sandberg, Virtual-holonomic-constraints-based design of sta-
ble oscillations of Furuta pendulum: Theory and experiments,
IEEE Transactions on Robotics 23 (4) (2007) 827–832.

[22] B. S. Cazzolato, Z. Prime, On the dynamics of the Furuta pen-
dulum, Journal of Control Science and Engineering.

[23] M. Ramı́rez-Neria, H. Sira-Ramı́rez, R. Garrido-Moctezuma,
A. Luviano-Juarez, Linear active disturbance rejection control
of underactuated systems: The case of the Furuta pendulum,
ISA Transactions 53 (4) (2014) 920–928.

[24] S. Nair, N. E. Leonard, A normal form for energy shaping: Ap-
plication to the Furuta pendulum, in: Proceedings of the 41st
IEEE Conference on Decision and Control, 2002., Vol. 1, IEEE,
2002, pp. 516–521.

[25] P. X. La Hera, L. B. Freidovich, A. S. Shiriaev, U. Mettin, New
approach for swinging up the Furuta pendulum: Theory and
experiments, Mechatronics 19 (8) (2009) 1240–1250.
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