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Abstract

In this paper, we establish a large deviations principle (LDP) for interacting par-
ticle systems that arise from state and action dynamics of discrete-time mean-
field games under the equilibrium policy of the infinite-population limit. The
LDP is proved under weak Feller continuity of state and action dynamics. The
proof is based on transferring LDP for empirical measures of initial states and
noise variables under setwise topology to the original game model via contrac-
tion principle, which was first suggested by Delarue, Lacker, and Ramanan to
establish LDP for continuous-time mean-field games under common noise. We
also compare our work with LDP results established in prior literature for inter-
acting particle systems, which are in a sense uncontrolled versions of mean-field
games.

Keywords: Mean-field games; Large deviations principle; Interacting particle
systems.

1. Introduction

The purpose of this paper is to establish a large deviations principle (LDP)
for interacting particle systems that arise from state and action dynamics of
discrete-time mean-field games under the infinite-population equilibrium poli-
cies. Namely, by assuming the existence of an equilibrium in the infinite-
population, our goal is to establish exponential decline of the large deviation
probabilities of empirical state-action measures from limiting distribution when
each agent applies infinite-population equilibrium policy in the finite agent set-
ting.

Large deviations principle for mean-field games has been studied recently
in [9, 6]. In [9], authors consider a static mean-field game with a centralized
information structure (i.e., each agent has access to the entire type vector).
They establish that sets of empirical measures of type and action vectors under
Nash equilibria of the finite agent game, where in this case it is indeed feasible
to attain Nash equilibria due to the centralized information structure, satisfy
LDP. In [6], authors study a continuous-time mean-field game under a common
noise with again a centralized information structure (i.e., each agent has access
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to the entire state vector). In this setting, owing to the centralized information
structure, it is possible to characterize the unique Nash equilibria of the finite-
agent games by solving the so-called Nash systems. Then, they demonstrate
that under the above-mentioned unique Nash equilibria, empirical measures of
states satisfy LDP. The main challenge in this work is the common noise that
affects dynamics of the every agent.

It is important to note that our LDP result is intrinsically different than
LDP results in [9, 6], since we establish LDP for empirical measures of state-
action pairs under the infinite-population equilibrium policy, whereas in [9, 6],
LDP results are proved under finite-population equilibrium policies. Therefore,
in our case, the mean-field game model reduces to a weakly interacting par-
ticle system. The first reason for this distinction is that under decentralized
information structure, we need quite restrictive assumptions to establish the
existence of a Nash equilibrium in the finite-population setting for discrete-
time mean-field games. Secondly, mean-field game theory has been developed
to approximate Nash equilibria of finite-population games, which are hard to
compute, via equilibrium in the infinite-population limit. The approximation
result depends highly on the asymptotic convergence of the empirical measures
of state-action pairs under the infinite-population equilibrium policy to the lim-
iting distribution. Therefore, it is also interesting to study the large deviations
behavior of the same empirical measures of state-action pairs.

In continuous-time, one of the classical references for LDP of interacting
particle systems is [4], which establishes a LDP for empirical measures of states
using discretization and projective limit arguments. Another work toward that
direction is [2], where a LDP principle for empirical measures of states is demon-
strated via weak convergence method. We refer the reader to [2, 6] for a more
comprehensive literature review on continuous-time setup. There are also some
works on LDP for discrete-time weakly interacting particle systems [5, 3, 11],
which are intimately related to our model. However, in those works, LDP re-
sults are established under more restrictive conditions on system components
than ours. Moreover, in [3, 11], dynamics of interacting particle systems are
slightly different than the system dynamics considered in this paper, and so,
corresponding LDP results are incompatible. We refer the reader to Section 3
and Remark 1 to see the precise distinction between our work and those works.
Notation. For a metric space E, we let P(E), Cb(E), and B(E) denote the set of
all Borel probability measures, the set of all bounded and continuous real-valued
functions, and the set of all bounded and Borel measurable real-valued functions
on E, respectively. A sequence or a net {µα} of probability measures on E is
said to converge weakly (setwise) to a probability measure µ if

∫

E
g(e)µα(de) →

∫

E
g(e)µ(de) for all g ∈ Cb(E) (for all g ∈ B(E)). The set of probability measures

P(E) is endowed with the Borel σ-algebra induced by the weak convergence

topology. For any 0 < T ≤ ∞, let E
T def

=
∏T

t=0 E. Given Λ ∈ P(ET ), let Λz(t) def

=
Λ( · |z(t)) denote the conditional distribution of {z(k)}Tk 6=t given z(t) under Λ.
For any ν ∈ P(E1×E2), where E1 and E2 are metric spaces, we let νEi

denote the
marginal of ν on Ei, i = 1, 2. A sequence or a net {µα} of probability measures
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on E1 × E2 is said to converge in ws-topology to a probability measure µ if
∫

E1×E2
g(e1, e2)µα(de1, de2) →

∫

E1×E2
g(e1, e2)µ(de1, de2) for all g ∈ B(E1 × E2)

continuous on E1. The notation v ∼ ν means that the random element v has
distribution ν. Unless specified otherwise, the term ”measurable” will refer to
Borel measurability.

2. Game Model

Although the main result is a LDP for discrete-time interacting particle
system, we still need to briefly describe the mean-field game model as the inter-
acting particle system arises from its state-action dynamics under the infinite-
population equilibrium policy.

In the game model, we have N -agents with an identical state space X and
an identical action space A, where X and A are Polish spaces. For every t ∈
{0, 1, 2, . . .} and every i ∈ {1, 2, . . . , N}, the random elements xN

i (t) ∈ X and
aNi (t) ∈ A denote the state and the action of Agent i at time t. The state xN

i (t)
of Agent i evolves as follows:

xN
i (0) ∼ µ(0), xN

i (t + 1) = Ft

(

xN
i (t), aNi (t), eN (t), wN

i (t)
)

,

where Ft : X × A × P(X) ×W → X is a measurable function. Here, eN (t)( · )
def

=
1
N

∑N
i=1 δxN

i
(t)( · ) ∈ P(X) is the empirical measure of the states at time t, where

δx ∈ P(X) is the Dirac measure at x, and wN
i (t) ∈ W is the noise with distri-

bution ξt. The initial states xN
i (0) are independent and identically distributed

(i.i.d.) according to µ(0), and noise variables {wN
i (t)}t≥0 are independent in

time t and in position i, and also independent of initial states.
A (Markov) policy πi = {πi

t}t≥0 ∈ Πi for Agent i is a sequence of stochas-
tic kernels on A given X. Therefore, given the current state configuration
(

xN
1 (t), . . . , xN

N (t)
)

, the actions are generated as follows:
(

aN1 (t), . . . , aNN(t)
)

∼
⊗N

i=1 π
i
t

(

·
∣

∣xN
i (t)

)

. For each Agent i, the initial distribution µ(0) and the N -
tuple of policies (π1, . . . , πN ) induces a cost function WN

i (π1, . . . , πN ) (e.g., dis-
counted cost, average cost, finite-horizon cost). An N -tuple of policies π

(N∗) =

(π1∗, . . . , πN∗) is a Nash equilibrium if WN
i (π(N∗)) = infπi∈Πi

WN
i (π

(N∗)
−i , πi)

for each i = 1, . . . , N , where π
(N∗)
−i

def

= (πj∗)j 6=i.
For this game model, it is, in general, infeasible to obtain a Nash equilibrium

due to the decentralized information structure (i.e., each agent has only access to
its own state) and the large number of coupled agents. However, if the number
of agents is large enough, a canonical method to deal with this challenge is
to introduce the infinite-population limit N → ∞ of the game to obtain an
approximate Nash equilibrium.

In the infinite population game model, if we suppose that the empirical
distribution eN(t) converges to the deterministic measure µ(t) for each t ≥ 0,
the state x(t) of a generic agent evolves as follows:

x(0) ∼ µ(0), x(t + 1) = Ft (x(t), a(t), µ(t), w(t)) .
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Let µ
def

= (µ(t))t≥0, which describes the collective behavior of all agents in the
infinite population limit. In this model, a (Markov) policy π = {πt}t≥0 ∈
Π of a generic agent is again a sequence of stochastic kernels on A given X.
A policy π∗ ∈ Π is optimal for µ if Wµ(π∗) = infπ∈Π Wµ(π), where Wµ is
obtained by replacing eN (t) with µ(t) in WN

i . The equilibrium notion for the
infinite-population game is defined as follows. A pair (πm,µm) is a mean-

field equilibrium if πm is optimal for µ
m and µ

m is the collection of state
distributions under the policy πm.

In the literature, the existence of mean-field equilibrium has been established
under mild assumptions (see [12]), which will not be stated here. Instead, we
suppose that there exists a mean-field equilibrium (πm,µm). Note that one can
always write the evolution of the action process a(t) under πm as a noise-driven
dynamical system

a(t) = Gt(x(t), v(t)),

where Gt : X × V → A is measurable and {v(t)}t≥0 is an independent noise
process on some Polish space V with v(t) ∼ αt for each t ≥ 0. To establish the
large deviations principle, we impose the following assumption.

Assumption 1. We suppose that for each t ≥ 0, the mapping Ft( · , w) is contin-
uous in (x, a, µ) ∈ X × A × P(X) for any w ∈ W, where P(X) is endowed with
weak topology, and the mapping Gt( · , v) is continuous in x ∈ X for any v ∈ V.

Note that given the noise variable w, continuity of Ft with respect to (x, a, µ)
corresponds to the weak Feller continuity of the transition probability p

µ
t ( · |x, a),

where the transition probability is defined as:

p
µ
t ( · |x, a)

def

=

∫

W

δF (x,a,µ,w)( · ) ξt(dw).

This is a quite weak assumption and is satisfied by most of the systems in
real-life. However, the continuity assumption on Gt is a bit restrictive. For
discounted-cost and finite-horizon cost, one way to establish the continuity of
Gt is to assume that X = R

d and A ⊂ R
m is convex. Moreover, suppose that

p
µ
t (dx′|x, a) = ̺

µ
t (x′|x, a)m(dx′), where m denotes the Lebesgue measure and

̺
µ
t is the corresponding density function. Then, we assume that both ̺t and ct

are strictly convex in a (see [12, Remark 7]).

2.1. Main Result

Note that the mean-field equilibrium policy πm, if it is used by all agents,
constitutes an approximate Nash equilibrium for the N -agent game model if
N is sufficiently large. This result depends highly on the following law of large

numbers (LLN) principle. To state the LLN, for each t ≥ 0, let bm(t)
def

= µm(t)⊗
πm

t and for the N -agent game model, we define the empirical measure of state-
action pairs under policy (πm, . . . , πm) as follows:

bN (t)
def

=
1

N

N
∑

i=1

δ(xN
i
(t),aN

i
(t)).
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Theorem 1. Under Assumption 1, for each t ≥ 0, the empirical measure bN(t)
converges in distribution to the deterministic measure bm(t) as N → ∞.

Proof. The proof can be done as in the proof of [12, Proposition 4.4].

In this paper, we are interested in deviations of empirical measures (bN (t))t≥0

from their limits (bm(t))t≥0. To this end, we establish the below large deviations
principle, which is the main result of this paper. Before, we state the main
result, let us recall the definition of LDP and contraction principle. Note that
a function I : E → [0,∞] on a Hausdorff space E is called a rate function if
{z ∈ E : I(z) ≤ M} is compact for each M < ∞.

Definition 1. A process {ZN}N≥1 satisfies LDP on a Hausdorff space E with a
rate function I : E → [0,∞] if for each closed subset F ⊂ E and for each open
subset G ⊂ E, we have

lim sup
N→∞

1

N
log P{ZN ∈ F} ≤ − inf

z∈F
I(z) (LDP upper bound)

lim inf
N→∞

1

N
logP{ZN ∈ G} ≥ − inf

z∈G
I(z) (LDP lower bound).

Theorem 2 (contraction principle). Let X and Y be Hausdorff spaces, I be a
rate function on X, and f is a continuous mapping from X to Y. Then, we have
the following conclusions.

(a) For each y ∈ Y, J(y)
def

= inf{I(x) : f(x) = y} is a rate function on Y.

(b) If a process {ZN}N≥1 satisfies LDP on X with a rate function I : E →
[0,∞], then the process {f(ZN)}N≥1 satisfies LDP on Y with a rate func-
tion J : Y → [0,∞].

Now we can state the main result of this paper. Here, we suppose that
P(X × A)∞ is endowed with the product topology, where P(X × A) has weak
convergence topology.

Theorem 3. Under Assumption 1, empirical measures {(bN(t))t≥0}N≥1 satisfy
large deviations principle (LDP) on P(X×A)∞ with the following rate function:

J(ν)
def

= inf
{

R
(

Λ
∣

∣Λν

ν(0)

)

: Λ ∈ P(X∞ × A
∞), Λt = νt ∀ t ≥ 0

}

,

where ν = (νt)t≥0, R( · | · ) is the relative entropy,

Λν

ν(0) (dx(0), da(0), dx(1), da(1), . . .)
def

= ν(0)(dx(0), da(0))

∞
⊗

t=0

(

p
νt,X
t (dx(t + 1)|x(t), a(t)) ⊗ πm

t+1(da(t + 1)|x(t + 1))

)

,

ν(0)(dx(0), da(0))
def

= µm(0)(dx(0)) ⊗ πm

0 (da(0)|x(0)),

and Λk ∈ P(X× A) is the kth-marginal of Λ on X× A.
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Before we compare our result with the prior literature, let us analyze the
rate function when the time horizon is T = 2 instead of infinity. In this case,
the rate function becomes

J(ν0, ν1, ν2) = inf
{

R
(

Λ
∣

∣Λν

ν(0)

)

: Λ ∈ P(X3 × A
3), Λt = νt ∀ t = 0, 1, 2

}

,

where Λν

ν(0) is the joint distribution of (x(0), a(0), x(1), a(1), x(2), a(2)) in the

infinite-population limit of the game under the measure flow (ν0,X, ν1,X, ν2,X),
the policy (πm

0 , πm

1 , πm

2 ), and the initial distribution µm(0). One can also prove
that (see Proposition 1)

J(ν0, ν1, ν2) ≥ R(ν0|ν(0)) + R(ν1|Γ0(ν0)) + R(ν2|Γ1(ν1)),

where Γt(ν)(dx′, da′) =
∫

X×A
πm

t+1(da′|x′) pνXt (dx′|x, a) ν(dx, da). Therefore, for
t = 0, 1, if νt+1 is quite different than the distribution of (x(t + 1), a(t + 1))
under the policy πm

t+1 and transition probability p
νt,X
t when (x(t), a(t)) ∼ νt,

then the rate function becomes large. Hence, convergence of empirical measures
of state-action pairs to such limiting distributions is highly unlikely.

3. Comparison with Prior Literature

In [11, 3], authors analyze the following interacting particle system. Let E

be a Polish space. For each t ≥ 0, consider the nonlinear mapping Γt : P(E) →
P(E) given by

Γt(ν(t))( · ) =

∫

E

κ
ν(t)
t ( · |z) ν(t)(dz)

def

= ν(t) ⊗ κ
ν(t)
t ,

for some κν
t ( · |z) : E×P(E) → P(E). Let {ǫN(t)}t≥0 be a Markov chain with the

state space E
N def

=
∏N

i=1 E, the initial distribution
⊗N

i=1 ν0, and the transition
probability

P
{

ǫN (t + 1) ∈ dzN1 (t + 1), . . . , dzNN (t + 1)
∣

∣ ǫN(t)
}

=

N
⊗

i=1

1

N

N
∑

j=1

κ
bN (t)
t (dzNi (t + 1) | zNj (t)), (1)

where bN (t) ∈ P(E) is the empirical distribution of the vector ǫN (t) ∈ E
N . Note

that the state-action dynamics in our game model is almost the same with (1).
It is almost the same because, in our case, in place of (1), we have the following
dynamics:

P
{

ǫN(t + 1) ∈ dzN1 (t + 1), . . . , dzNN (t + 1)
∣

∣ ǫN (t)
}

=

N
⊗

i=1

κ
bN (t)
t (dzNi (t + 1) | zNi (t)), (2)
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where zNi (t) = (xN
i (t), aNi (t)) ∈ X× A

def

= E and

κν
t (dz′|z) = pνXt (dx′|x, a) ⊗ πm

t+1(da′|x′),

z′ = (x′, a′), and z = (x, a). Because of this distinction, the analysis of our
system is different than the one in (1).

Let us consider the model in (1) with κν
t (dz′|z) = pνXt (dx′|x, a)⊗πm

t+1(da′|x′).
In [3], under minorization and absolute continuity conditions on the nonlinear
mapping Γt (which are more restrictive than Assumption 1), it has been estab-
lished that for any T ≥ 0, the empirical process {(bN (t))Tt=0}N≥1 satisfies LDP
on P(E)T with the rate function

VT (γ0, . . . , γT ) = R(γ0|ν(0)) +

T
∑

t=1

R(γt|Γt−1(γt−1)).

Note that under our model (2), by Theorem 3 and Theorem 2 (contraction
principle), the same empirical process {(bN(t))Tt=0}N≥1 satisfies the LDP on
P(E)T with the rate function

JT (γ0, . . . , γT ) = inf
{

R(Λ|Λγ

ν(0)) : Λ ∈ P(ET ), Λt = γt ∀t = 0, . . . , T
}

,

where

Λγ

ν(0)(dx(0), da(0), . . . , dx(T ), da(T ))
def

= ν(0)(dx(0), da(0))

⊗ κ
γ0

0 (dx(1), da(1)|x(0), a(0)) ⊗ . . .⊗ κ
γT−1

T−1 (dx(T ), da(T )|x(T − 1), a(T − 1))

and Λk ∈ P(E) is the kth-marginal of Λ on E. In [3, p. 181], although JT could
not be characterized, it has been suggested that JT should be greater than VT .
This is indeed the case as will be shown below. Before we state the result, let
us introduce the following notation. For each t ≥ 0, define

θt,t+1(dz(t + 1), dz(t))
def

= κ
γt

t (dz(t + 1)|z(t)) γt(dz(t)).

If we disintegrate θt,t+1(dz(t + 1), dz(t)) in the reverse order, we obtain the
following stochastic kernel

κ̄
γt

t (dz(t)|z(t + 1))
def

= θt,t+1(dz(t)|z(t + 1)),

which obviously depends on γt.

Proposition 1. For any T ≥ 0, we have JT ≥ VT . Indeed, we have the following
relation:

JT (γ0, . . . , γT ) = VT (γ0, . . . , γT ) + inf
{

R(Λ|Λ̄γ) : Λ ∈ P(ET ), Λt = γt ∀t = 0, . . . , T
}

,

where

Λ̄γ(dx(T ), da(T ), . . . , dx(0), da(0))
def

= γ(T )(dx(T ), da(T ))

⊗ κ̄
γ(T−1)
T−1 (dx(T − 1), a(T − 1)|x(T ), a(T )) ⊗ . . .⊗ κ̄

γ0

0 (dx(0), da(0)|dx(1), da(1)).

7



Proof. We give the proof for T = 3 and leave the general case as an exercise
to the reader. Let Λ ∈ P(E3) with Λt = γt for all t = 0, 1, 2, 3. By repeatedly
applying the chain rule [7, Theorem C.3.1] for relative entropy, we obtain

R(Λ|Λγ

ν(0))

= R(γ0|ν(0)) +

∫

E

R(Λz(0)|κγ0

0 ( · |z(0)) ⊗ κ
γ1

1 ⊗ κ
γ2

2 ) γ0(dz(0))

= R(γ0|ν(0)) + R(Λ|γ0 ⊗ κ
γ0

0 ⊗ κ
γ1

1 ⊗ κ
γ2

2 )

= R(γ0|ν(0)) + R(γ1|Γ0(γ0))

+

∫

E

R(Λz(1)|κγ1

1 ( · |z(1)) ⊗ κ̄
γ0

0 ( · |z(1)) ⊗ κ
γ2

2 ) γ1(dz(1))

= R(γ0|ν(0)) + R(γ1|Γ0(γ0)) + R(Λ|γ1 ⊗ (κγ1

1 ⊗ κ̄
γ0

0 ) ⊗ κ
γ2

2 )

= R(γ0|ν(0)) + R(γ1|Γ0(γ0)) + R(γ2|Γ1(γ1))

+

∫

E

R(Λz(2)|κ̄γ1

1 ( · |z(2)) ⊗ κ
γ2

2 ( · |z(2)) ⊗ κ̄
γ0

0 ) γ2(dz(2))

= R(γ0|ν(0)) + R(γ1|Γ0(γ0)) + R(γ2|Γ1(γ1)) + R(Λ|γ2 ⊗ (κ̄γ1

1 ⊗ κ
γ2

2 ) ⊗ κ̄
γ0

0 )

= R(γ0|ν(0)) + R(γ1|Γ0(γ0)) + R(γ2|Γ1(γ1)) + R(γ3|Γ2(γ2))

+

∫

E

R(Λz(3)|κ̄γ2

2 ( · |z(3)) ⊗ κ̄
γ1

1 ⊗ κ̄
γ0

0 ) γ3(dz(3))

= R(γ0|ν(0)) + R(γ1|Γ0(γ0)) + R(γ2|Γ1(γ1)) + R(γ3|Γ2(γ2))

+ R(Λ|γ3 ⊗ κ̄
γ2

2 ⊗ κ̄
γ1

1 ⊗ κ̄
γ0

0 ).

By taking the infimum of the above identity with respect to Λ, we complete the
proof for T = 3.

Consider again the model in (1) with κν
t (dz′|z) = pνXt (dx′|x, a)⊗πm

t+1(da′|x′).
In [11], under continuity of {Γt}t≥0 and a condition that ensures the exponential
tightness of {bN(t)}N≥1 for all t ≥ 0 (which are again more restrictive than
Assumption 1), it has been proved that for all t ≥ 0, the empirical measures
{bN(t)}N≥1 satisfy the LDP on P(E) with the rate function

Vt(γ) = sup
g∈Cb(E)

{
∫

E

g(z) γ(dz) + inf
ν∈P(E)

(

Vt−1(ν) − log

∫

E

eg(z) Γt−1(ν)(dz)

)}

.

Here, V0(γ) = R(γ|ν(0)). If we consider our model (2) instead of (1), then by
Theorem 3 and Theorem 2 (contraction principle), for each t ≥ 0, the same
empirical measures {bN(t)}N≥1 satisfy the LDP on P(E) with the rate function

Jt(γ) = inf
{

R(Λ|ΛΛ
ν(0)) : Λ ∈ P(Et), Λt = γ

}

,

where

ΛΛ
ν(0)(dx(0), da(0), . . . , dx(t), da(t))

def

= ν(0)(dx(0), da(0))

8



⊗ κΛ0

0 (dx(1), da(1)|x(0), a(0)) ⊗ . . .⊗ κ
Λt−1

t−1 (dx(t), da(t)|x(t − 1), a(t− 1))

In this case, Jt is again greater than Vt for each t ≥ 0 as will be shown below.

Proposition 2. For any t ≥ 0, we have Jt ≥ Vt.

Proof. For t = 0, J0 = V0. Hence the claim holds for t = 0. Suppose that it
is true for all t ≤ k and consider k + 1. Let Λ ∈ P(Ek+1) with Λk+1 = γ. By
chain rule [7, Theorem C.3.1] for relative entropy, we can write

R(Λ|ΛΛ
ν(0)) = R(Λk

0 |Λ
Λ,k

ν(0),0) + R(Λ|Λk
0 ⊗ κΛk

k )

= R(Λk
0 |Λ

Λ,k

ν(0),0) + R(γ|Γk(Λk)) + R(Λ|γ ⊗ κ̄
Λk

0

k ),

where Λk
0 and ΛΛ,k

ν(0),0 are marginals of Λ0 and ΛΛ
ν(0) on E

k, and

(Λk
0 ⊗ κΛk

k )(d(z(0), . . . , z(k)) | z(k + 1))
def

= κ̄
Λk

0

k (d(z(0), . . . , z(k)) | z(k + 1)).

By Donsker-Varadhan variational formula [7, Lemma 1.4.3], we then have

Jk+1(γ) = inf
{

R(Λ|ΛΛ
ν(0)) : Λ ∈ P(Ek+1), Λk+1 = γ

}

= inf
{

R(Λk
0 |Λ

Λ,k

ν(0),0) + R(γ|Γk(Λk)) + R(Λ|γ ⊗ κ̄
Λk

0

k ) : Λ ∈ P(Ek+1), Λk+1 = γ
}

≥ inf
{

R(Λk
0 |Λ

Λ,k

ν(0),0) + R(γ|Γk(Λk)) : Λ ∈ P(Ek+1), Λk+1 = γ
}

= inf
Λ∈P(Ek+1)
Λk+1=γ

{

R(Λk
0 |Λ

Λ,k

ν(0),0) + sup
g∈Cb(E)

(
∫

E

g(z) γ(dz) − log

∫

E

eg(z) Γk(Λk)(dz)

)

}

≥ sup
g∈Cb(E)











∫

E

g(z) γ(dz) + inf
Λ∈P(Ek+1)
Λk+1=γ

(

R(Λk
0 |Λ

Λ,k

ν(0),0) − log

∫

E

eg(z) Γk(Λk)(dz)

)











= sup
g∈Cb(E)

{
∫

E

g(z) γ(dz) + inf
ν∈P(E)

(

Jk(ν) − log

∫

E

eg(z) Γk(ν)(dz)

)}

≥ sup
g∈Cb(E)

{
∫

E

g(z) γ(dz) + inf
ν∈P(E)

(

Vk(ν) − log

∫

E

eg(z) Γk(ν)(dz)

)}

= Vk+1(ν),

where the last inequality follows from induction hypothesis. Hence the claim
also holds for k + 1. This completes the proof.

Proposition 1 and Proposition 2 will not be used to prove the main result
of the paper. However, these results establish the distinction between inter-
acting particle systems that arise from the state-action dynamics of mean-field
games and interacting particle systems that were studied in prior literature. In
particular, they show that decline of large deviations probabilities of empirical
measures from limiting distributions is faster in our setting.
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4. Proof of Large Deviations Principle

To prove LDP in Theorem 3, we first use the elegant method of Delarue,
Lacker, and Ramanan [6, Section 6.3.1], which was suggested to prove the LDP
for the continuous-time mean-field games under the common noise. Here, the
idea is to transfer the LDP, satisfied by the empirical measure of initial states
and noise variables due to the Sanov’s theorem, to empirical measures of states.

To this end, let us define wN
i

def

= {wN
i (t)}t≥0 and vNi

def

= {vNi (t)}t≥0. Note that
random elements {(xN

i (0), wN
i , vNi )}Ni=1 are i.i.d. with a common distribution

µ(0)
⊗∞

t=0 ξt
⊗∞

t=0 αt
def

= µ(0)⊗Θw ⊗Θv. Let us define the empirical measure of
the above process:

QN def

=
1

N

N
∑

i=1

δ(xN
i
(0),wN

i
,vN

i
).

Let us endow the set of probability measures P(X × W
∞ × V

∞) with setwise
convergence topology. Then, by Sanov’s Theorem in setwise convergence topol-
ogy [1, Theorem 1.1], {QN}N≥1 satisfies LDP on P(X × W

∞ × V
∞) with the

rate function R( · |µ(0) × Θw × Θv). Our first step is to transfer this LDP to
empirical measures {(bN (t))t≥0}N≥1 via the contraction principle. To this end,
let us define the function

Φ : P(X×W
∞ × V

∞) → P(X× A)∞

as follows. Given any Q ∈ P(X×W
∞ × V

∞), let

(x(0), w(0), . . . , v(0), . . .) ∼ Q (3)

and define recursively the following random elements:

x(t + 1) = Ft (x(t), a(t),  L{x(t)}, w(t)) (4)

a(t) = Gt(x(t), v(t)) (5)

for t ≥ 0. Then, we define Φ(Q)
def

= ( L{x(t), a(t)})t≥0. The following lemma

states that the image of QN under Φ is (bN (t))t≥0
def

= bN .

Lemma 1. For each N ≥ 1, Φ(QN ) = bN .

Proof. Any realization of QN def

= 1
N

∑N

i=1 δ(xN
i
(0),wN

i
,vN

i
) must be of the form

(xN
i (0), wN

i , vNi ) for some i = 1, . . . , N with equal probability 1
N

. We claim that
for each t ≥ 0,

 L{x(t), a(t), w(t), v(t)} =
1

N

N
∑

i=1

δ(xN
i
(t),aN

i
(t),wN

i
(t),vN

i
(t))

under QN . For t = 0, with probability 1
N

,

x(0) = xN
i (0), a(0) = G0(xN

i (0), vNi (0))
def

= aNi (0), w(0) = wN
i (0), v(0) = vNi (0).

10



Hence the claim is true for t = 0. Suppose that the claim is true for all t ≤ k

and consider k + 1. In this case, with probability 1
N

,

x(k + 1) = Fk(xN
i (k), aNi (k), sN (k), wN

i (k))
def

= xN
i (k + 1),

a(k + 1) = Gk+1(x(k + 1), v(k + 1)),

w(k + 1) = wN
i (k + 1), v(k + 1) = vNi (k + 1),

and so, a(k + 1) = Gk+1(xN
i (k + 1), vNi (k + 1))

def

= aNi (k + 1). Therefore, the
claim is also true for k + 1. By the induction hypothesis, the claim is true for
all t ≥ 0.

To be able to use the contraction principle, we need to establish that Φ is
continuous. Before we prove the continuity of Φ, let us introduce the following
notation. For each t ≥ 0, let F t+1 : X ×

∏t
k=0(W × V × P(X)) → X and

Gt+1 : X×
∏t

k=0(W × V × P(X)) × V → A be defined recursively as follows:

F 0(x(0))
def

= x(0), G0(x(0), v(0))
def

= G0(x(0), v(0))

F t+1
(

x(0), [w(k), v(k),  L{x(k)}]
t

k=0

)

def

= Ft

(

F t, Gt,  L{x(t)}, w(t)
)

Gt+1
(

x(0), [w(k), v(k),  L{x(k)}]
t

k=0 , v(t + 1)
)

def

= Gt+1

(

F t+1, v(t + 1)
)

.

By Assumption 1, for each t ≥ 0, the mapping

F t
(

· , [w(k), v(k)]
t

k=0

)

is continuous in
(

x(0), [ L{x(k)}]
t

k=0

)

for any [w(k), v(k)]
t
k=0; that is it is continuous for all its arguments except the

noise variables, and same is true for Gt; that is,

Gt
(

· , [w(k), v(k)]
t

k=0 , v(t + 1)
)

is continuous in
(

x(0), [ L{x(k)}]tk=0

)

for any ([w(k), v(k)]
t

k=0 , v(t + 1)). Using above definitions, we also introduce
another notation. Let f : X

∞ × A
∞ × W

∞ × V
∞ → R be a continuous and

bounded function. Then, we introduce recursively the following functions:

h
0
f (x(0), . . . , a(1), . . . , w(0), . . . , v(0), . . .)

def
= f

(

F
0
, x(1), . . . , G0

, a(1), . . . , w(0), . . . , v(0), . . .
)

h
1
f (x(0), x(2), . . . , a(2), . . . , w(0), . . . , v(0), . . . ,  L{x(0)})

def
= h

0
f

(

x(0), F 1
, x(2), . . . , G1

, a(2), . . . , w(0), . . . , v(0), . . .
)

11



...

h
t+1
f (x(0), x(t + 2), . . . , a(t + 2), . . . , w(0), . . . , v(0), . . . ,  L{x(0)}, . . .  L{x(t)})

def
= h

t
f

(

x(0), F t+1
, x(t + 2), . . . , Gt+1

, a(t + 2), . . . , w(0), . . . , v(0), . . . ,

 L{x(0)}, . . .  L{x(t− 1)}
)

...

By Assumption 1 and continuity of f , bounded functions {ht
f}t≥0 are also con-

tinuous for all its arguments except the noise variables. It is now time to prove
that Φ is continuous.

Proposition 3. Under Assumption 1, the mapping Φ : P(X×W
∞×V

∞) → P(X×
A)∞ is continuous, where P(X×W

∞×V
∞) is endowed with setwise convergence

topology and P(X×A)∞ has product topology with weak convergence topology
on P(X× A).

Proof. Since the setwise topology is non-metrizable for non-finite sets, we work
with nets instead of sequences to prove continuity. To this end, let {Qα} be a

net in P(X×W
∞×V

∞) that converges to Q setwise. Define Φ(Qα)
def

= (bα(t))t≥0

and Φ(Q)
def

= (b(t))t≥0. We need to prove that bα(t) → b(t) weakly for each t ≥ 0
since P(X× A) is endowed with weak convergence topology.

Let {xα(t), aα(t), wα(t), vα(t)}t≥0 be random elements defined by equations
(3)-(5) under Qα, and let {x(t), a(t), w(t), v(t)}t≥0 be random elements defined
by equations (3)-(5) under Q. We claim that for each k ≥ 0, we have

 L
(

{xα(t), aα(t), wα(t), vα(t)}kt=0

)

→  L
(

{x(t), a(t), w(t), v(t)}kt=0

)

weakly. For k = 0, let f ∈ Cb(X× A×W × V). Then we have
∫

f d L (xα(0), aα(0), wα(0), vα(0)) = E
[

f
(

x
α(0), G0(xα(0), vα(0)), wα(0), vα(0)

)]

= E
[

h
0
f (xα(0), wα(0), vα(0))

]

−→ E
[

h
0
f (x(0), w(0), v(0))

]

=

∫

f d L (x(0), a(0), w(0), v(0))

since h0
f is measurable and bounded, and Qα → Q setwise. Hence the claim

holds for k = 0. Suppose that the claim holds until k and consider k + 1. Let
f ∈ Cb(X

k+1 × A
k+1 ×W

k+1 × V
k+1). Since Qα → Q setwise and

δ L{xα(0)} × . . .× δ L{xα(k)} → δ L{x(0)} × . . .× δ L{x(k)}

weakly as  L{xα(t)} →  L{x(t)} weakly for each 0 ≤ t ≤ k by the induction
hypothesis, by [13, Theorem 3.7(ii)], we have

(

δ L{xα(0)} × . . .× δ L{xα(k)}

)

×Qα →
(

δ L{x(0)} × . . .× δ L{x(k)}

)

×Q (6)

in ws-topology on P ([P(X) × . . .× P(X)] × [X×W
∞ × V

∞]). Then, we have
∫

f d L
(

{xα(t), aα(t), wα(t), vα(t)}k+1
t=0

)
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= E
[

hk+1
f

(xα(0), wα(0), . . . , wα(k + 1), vα(0), . . . , vα(k + 1),  L{xα(0)}, . . . ,  L{xα(k)})
]

=

∫

hk+1
f

(x0, w0, . . . , wk+1, v0, . . . , vk+1, µ0, . . . , µk)

dQα (x0, w0, . . . , wk+1, v0, . . . , vk+1) × δ L{xα(0)}(dµ0) × . . .× δ L{xα(k)}(dµk)

(a)
−→

∫

hk+1
f

(x0, w0, . . . , wk+1, v0, . . . , vk+1, µ0, . . . , µk)

dQ (x0, w0, . . . , wk+1, v0, . . . , vk+1) × δ L{x(0)}(dµ0) × . . .× δ L{x(k)}(dµk)

= E
[

hk+1
f

(x(0), w(0), . . . , w(k + 1), v(0), . . . , v(k + 1),  L{x(0)}, . . . ,  L{x(k)})
]

=

∫

f d L
(

{x(t), a(t), w(t), v(t)}k+1
t=0

)

,

where (a) follows from (6) and the fact that the bounded function hk+1
f is con-

tinuous for all its arguments except noise variables. Therefore, by mathematical
induction, this establishes the claim for each k ≥ 0. Note that the claim implies
that

bα(t)
def

=  L{xα(t), aα(t)} →  L{x(t), a(t)}
def

= b(t)

weakly for each t ≥ 0. This completes the proof.

Now using the contraction principle (i.e., Theorem 2), we obtain the follow-
ing result.

Theorem 4. The empirical measures
{

(bN(t))t≥0

}

N≥1
satisfy the LDP on P(X×

A)∞ with the rate function

J(ν) = inf {R(Θ |µ(0) × Θw × Θv) : Φ(Θ) = ν} .

In the above characterization of the rate function J , we need the exact
knowledge of the noise distributions Θw and Θv, which may not be available.
Therefore, we should replace this rate function with an equivalent one that can
be expressed in terms of the components of the game dynamics. Note that, for
any Θ, by the chain rule [7, Theorem C.3.1] for relative entropy, we have

R(Θ |µ(0) × Θw × Θv) = R(Θ0 |µ(0)) +

∫

R(Θx(0) |Θw × Θv) Θ0(dx(0))

= R(Θ0 |µ(0)) + R(Θ0 |Θ0) +

∫

R(Θx(0) |Θw × Θv) Θ0(dx(0))

= R(Θ0 |µ(0)) + R(Θ |Θ0 × Θw × Θv).

Hence, we can alternatively write the rate function J as follows:

J(ν) = R(ν0,X |µ(0)) + inf {R(Θ | ν0,X × Θw × Θv) : Φ(Θ) = ν} . (7)

We now prove that the function inf {R(Θ | ν0,X × Θw × Θv) : Φ(Θ) = ν} is the
rate function at ν of the following simplified particle model.
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4.1. Simplified Particle Model

Given any ν ∈ P(X× A)∞, consider the following simplified particle model.
For each i = 1, . . . , N , Agent i has the following state-action dynamics:

x̃N
i (0) ∼ ν0,X, x̃N

i (t + 1) = Ft

(

x̃N
i (t), ãNi (t), νt,X, w̃

N
i (t)

)

ãNi (t) = Gt

(

x̃N
i (t), ṽNi (t)

)

, t ≥ 0.

Similar to the original model, we suppose that {(x̃N
i (0), w̃N

i , ṽNi )}Ni=1 are i.i.d.

with the common distribution ν0,X⊗Θw⊗Θv, where w̃N
i

def

= (w̃N
i (t))t≥0 and ṽNi

def

=

(ṽNi (t))t≥0. Let us define the empirical measure Q̃N def

= 1
N

∑N

i=1 δ(x̃N
i
(0),w̃N

i
,ṽN

i
).

We again endow the set of probability measures P(X×W
∞ ×V

∞) with setwise
convergence topology. Then, by Sanov’s Theorem in setwise convergence topol-
ogy [1, Theorem 1.1], {Q̃N}N≥1 satisfies the LDP on P(X × W

∞ × V
∞) with

the rate function R( · |ν0,X × Θw × Θv).
In the simplified model, instead of the empirical measure eN (t) of states, we

have the fixed measure νt,X in the state dynamics. Therefore, in this model,
agents are decoupled from each other. For each t ≥ 0, let us define the state-
action empirical measure

b̃N (t)
def

=
1

N

N
∑

i=1

δ(x̃N
i
(t),ãN

i
(t)).

We let b̃N
def

= (b̃N (t))t≥0. Similar to the Φ, we now define

Φν : P(X×W
∞ × V

∞) → P(X× A)∞

as follows. Given any Q ∈ P(X×W
∞ × V

∞), let

(x̃(0), w̃(0), . . . , ṽ(0), . . .) ∼ Q

and define recursively the following random elements:

x̃(t + 1) = Ft(x̃(t), ã(t), νt,X, w̃(t)), ã(t) = Gt(x̃(t), ṽ(t)), t ≥ 0.

Then, we let Φν(Q)
def

= { L(x̃(t), ã(t))}t≥0. The following results can be proved
using the same ideas in the proofs of Lemma 1 and Proposition 3, and so, we
omit the details.

Lemma 2. For each N ≥ 1, we have Φν(Q̃N ) = b̃N .

Proposition 4. Under Assumption 1, the mapping Φν : P(X × W
∞ × V

∞) →
P(X×A)∞ is continuous, where P(X×W

∞×V
∞) is endowed with setwise con-

vergence topology and P(X×A)∞ has product topology with weak convergence
topology on P(X× A).

Using LDP of the empirical process {Q̃N}N≥1, Lemma 2, Proposition 4, and
the contraction principle (i.e., Theorem 2), we can conclude that the empirical
measures {(b̃N (t))t≥0}N≥1 satisfy the LDP on P(X×A)∞ with the rate function

J̃(γ) = inf {R(Θ | ν0,X × Θw × Θv) : Φν(Θ) = γ} .

The next result will be used to connect the rate functions J and J̃ .
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Lemma 3. For any ν ∈ P(X× A)∞, we have

{Θ : Φν(Θ) = ν} = {Θ : Φ(Θ) = ν} .

Proof. Let Θ ∈ {Θ : Φ(Θ) = ν}. Given (x(0), w(0), . . . , v(0), . . .) ∼ Θ, we define
recursively the following random elements

x(t + 1) = Ft(x(t), a(t),  L{x(t)}, w(t)) (8)

a(t) = Gt(x(t), v(t)), t ≥ 0.

Then, by definition Φ(Θ)
def

= { L(x(t), a(t))}t≥0. Since Φ(Θ) = ν, we have
 L{x(t)} = νt,X for each t ≥ 0. Therefore, we can equivalently write (8) as
follows:

x(t + 1) = Ft(x(t), a(t), νt,X, w(t)).

This implies that Φν(Θ) = ν if we recall the definition of Φν . Hence

{Θ : Φν(Θ) = ν} ⊃ {Θ : Φ(Θ) = ν} .

The reverse inclusion can be proved similarly.

In view of equation (7), Lemma 3 implies that

J(ν) = R(ν0,X |µ(0)) + J̃(ν).

Note that if a process satisfies LDP with a rate function, then this rate function
must be unique [7, Theorem 1.3.1]. Using this fact, we obtain another charac-
terization of J̃ in terms of the components of the game dynamics. Therefore,
this will lead to the characterization of J in the statement of Theorem 3.

For each i = 1, . . . , N , let us define x̃N
i

def

= (x̃N
i (t))t≥0 and ãNi

def

= (ãNi (t))t≥0.
Then, {x̃N

i , ãNi }Ni=1 are i.i.d. with the common distribution

Λν(dx(0), da(0), . . .)
def

= ν0,X(dx(0)) ⊗ πm

0 (da(0)|x(0))
∞
⊗

t=0

(

p
νt,X
t (dx(t + 1)|x(t), a(t)) ⊗ πm

t+1(da(t + 1)|x(t + 1))

)

.

For each N ≥ 1, define the following empirical measure

ẽN
def

=
1

N

N
∑

i=1

δ(x̃N
i ,ãN

i ).

By Sanov’s Theorem in weak convergence topology [7, Theorem 2.2.1] (in this ar-
gument, we do not need Sanov’s Theorem in setwise convergence topology), em-
pirical measures {ẽN}N≥1 satisfy the LDP on P(X∞×A

∞), where P(X∞×A
∞)

is endowed with weak convergence topology, with the rate function R( · |Λν).
Note that for each k ≥ 0, the kth-marginal of ẽN on X× A is b̃N (k). Since tak-
ing marginal of a measure is continuous with respect to the weak convergence
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topology, by the contraction principle (i.e., Theorem 2), we can conclude that
{(b̃N(t))t≥0}N≥1 satisfies the LDP on P(X× A)∞ with the rate function

Ṽ (γ) = inf {R(Λ|Λν) : Λt = γt ∀t ≥ 0} .

Since the rate function must be unique, we must have Ṽ = J̃ . Recall that
J(ν) = R(ν0,X |µ(0)) + J̃(ν). Hence, J can equivalently be written as

J(ν) = R(ν0,X |µ(0)) + inf {R(Λ|Λν) : Λt = νt ∀t ≥ 0}

= inf
{

R(Λ|Λν

ν(0)) : Λt = νt ∀t ≥ 0
}

(as Λ0,X = Λν

0,X = ν0,X)

where Λν

ν(0)

def

= ν(0)
⊗∞

t=0(p
νt,X
t ⊗ πm

t+1) and ν(0)
def

= µ(0) ⊗ πm

0 . This completes
the proof of Theorem 3.

Remark 1. Instead of an LDP for the marginal empirical measures, we can also
establish an LDP for empirical measures of the paths using the same method.
To this end, for each N ≥ 1, define the empirical measure of the paths as follows:

dN
def

=
1

N

N
∑

i=1

δ(xN
i
,aN

i
),

where xN
i

def

= (xN
i (t))t≥0 and aNi

def

= (aNi (t))t≥0. Using the LDP for the empirical
measures of the initial states and the noise variables, we can prove that {dN}N≥1

satisfies the LDP on P(X∞ × A
∞) with the rate function

L(ϕ) = inf{R(Θ |µ(0) ⊗ Θw ⊗ Θv) : Ξ(Θ) = ϕ},

where Ξ : P(X×W
∞ × V

∞) → P(X∞ × A
∞). Here, Ξ is defined as follows: let

(x(0), w(0), . . . , v(0), . . .) ∼ Θ and define recursively random elements

x(t + 1) = Ft(x(t), a(t),  L{x(t)}, w(t)), a(t) = Gt(x(t), v(t)), t ≥ 0.

Then, we let Ξ(Θ)
def

=  L{x(0), a(0), x(1), a(1), . . .}. Now, using simplified particle
model, we can indeed equivalently characterize L as follows:

L(ϕ) = R(ϕ|Λϕ

ν(0)),

where Λϕ

ν(0)

def

= ν(0)
⊗∞

t=0(p
ϕt,X

t ⊗πm

t+1) and ϕt is the tth marginal of ϕ on X×A.

The same result has been proven in [5] under more restrictive conditions on
the system components (see [5, p. 59]). There, authors have established LDP
for {dN}N≥1 by transferring LDP for the simplified particle model introduced
in Section 4.1 to the mean-field game model by generalizing Laplace-Varadhan
integral lemma. In our case, we transfer LDP for initial states and noise variables
to the original mean-field game model. This enables us to establish LDP under
milder conditions on the system components.
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5. Conclusion

In this paper, we have developed a large deviations principle for empirical
measures of state-action pairs of mean-field games under the mean-field equi-
librium policy. The large deviations result has been established via contraction
principle by transferring LDP for empirical measures of initial states and noise
variables. One interesting future research direction is to study the concentra-
tion bound for the same empirical measures. However, in this case, we need to
establish that the mean-field equilibrium policy is Lipschitz continuous, which
can, in general, be proved under quite restrictive convexity assumptions on the
system components.
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