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Abstract

In this paper, we study a new type of stochastic functional differential equations
which is called hybrid pantograph stochastic functional differential equations. We
investigate several moment properties and sample properties of the solutions to the
equations by using the method of multiple Lyapunov functions, such as the moment
exponential stability, almost sure exponential stability and almost sure polynomial
stability, etc.
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1 Introduction

Stochastic differential equations (SDEs) are widely used to model stochastic systems in
different branches of science and industry. Stability and boundedness of the solution are the
most popular topics in the area of stochastic systems and control. We refer the reader to
[2, 7, 3] and references therein. Dynamic systems may not only depend on present states
but also the past states. Stochastic delay differential equations (SDDEs) and pantograph
stochastic delay differential equations (PSDDEs) are often used to model these systems,
whose systems depend on the past state x(t − τ) and x(θt) respectively. The form of these
equations are as follows:

dx(t) = f(x(t), x(t− τ), t)dt + g(x(t), x(t− τ), t)dB(t),
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and

dx(t) = f(x(t), x(θt), t)dt + g(x(t), x(θt), t)dB(t),

where τ, θ are two constants satisfying τ > 0, 0 < θ < 1. We here only mention [4, 15, 10, 16,
17], to name a few. However, there are many practical systems whose future state depends on
the states over the whole time interval [t− τ, t] rather than at times t− τ and t. Stochastic
functional differential equations (SFDEs) have therefore been developed to describe such
systems. Generally speaking, SFDEs have the form:

dx(t) = f(xt, t)dt+ g(xt, t)dB(t), t ∈ [t0,∞), xt0 = ξ,

where xt = {x(t−θ), 0 ≤ θ ≤ τ)}, τ > 0 is a constant. As is well known, many scholars real-
ized that numerous system in our real world may experience abrupt changes in their structure
and parameters caused by phenomena such as component failures or repairs, changing sub-
system interconnections and abrupt environmental disturbances. Hybrid systems driven by
continuous-time Markov chains have been used to cope with such situation. Markov chains
play the role of stabilizing factor in the stability of hybrid systems. That means, when some
subsystems are unstable, but others are stable, then the overall system could be stable be-
cause of switching between the subsystems. Since then, the literature on the topic of stability
for stochastic differential equations with Markovian switching (SDEswMS) bloomed, both in
the direction of obtaining qualitative and quantitative results for the generalized emerging
equations and on developing applications which aim to population ecology, network, heat
exchanges, etc. For example, [1] studied the stability of semi-linear SDEswMS, and [14]
investigated the following general nonlinear SDEswMS:

dx(t) = f(x(t), t, r(t))dt+ g(x(t), t, r(t))dB(t),

where r(t) is a Markov chain taking values in S = {1, 2, · · · , N}. Moreover, [9] applied
SDEswMS to solving a control problems, [22] investigated some complex-valued coupled
oscillators, [27] studied the stability of regime-switching jump diffusion systems, [24] ana-
lyzed asymptotic stability in distribution for such type of equations. Later, the study of
stochastic functional differential equations with Markovian switching (SFDEswMS) (includ-
ing stochastic delay differential equations with Markovian switching) and PSDDEs with
Markovian switching have been also developed rapidly. Many scholars have enthusiastically
studied the stability of such equations and given some applications. For example, [21] investi-
gated the exponential stability of highly nonlinear neutral pantograph stochastic differential
equations, [25] built Razumikhin-type theorems on neutral SFDEs, [12] studied stability of
neutral SFDEswMS driven by G-Brownian motion, [6] analyzed asymptotic stability and
boundedness of SFDESwMS. More related work can be seen in [5, 8, 11, 19, 20, 17, 23, 26].

To the best of our knowledge, so far there is little study on hybrid pantograph stochastic
functional differential equations (HPSFDEs), in which the θ changes in interval (0,1], while
the θ is a constant in pantograph stochastic delay differential equations. Inspired by the
works of the above articles, we aim in this paper to study several moment properties and
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sample properties of the solutions such as the moment exponential stability, almost surely
exponential stability and almost sure polynomial stability, etc. for HPSFDEs.

We close this part by giving our organization in this article. In Section 2, we introduce
some necessary notations. In Section 3, we give our main results on the moment properties
and sample properties of analytical solution. Several examples are also given to illustrate
the theory.

2 Preliminaries

2.1 Notations

Throughout this paper, Let (Ω,F , {Ft}t≥0, P ) be a complete probability space satisfying the
usual conditions(i.e., it is increasing and right continuous with F0 contains all P -null sets)
taking along a standard d-Brownian motion process B(t). For x, y ∈ R

n, we use |x| to denote
the Euclidean norm of x, and use 〈x, y〉 or xTy to denote the Euclidean inner product. If A
is a matrix, AT is the transpose of A and |A| represents

√

Tr(AAT ). Let ⌊a⌋ be the integer
parts of a. Moreover, for 0 < θ < 1, denote by C := C ([θ, 1];Rn) the family of all continuous
R

n−valued functions ϕ defined on [θ, 1] with the norm ‖ϕ‖ = supθ≤t≤1 |ϕ(t)|. Let t0 > 0
and h : [t0,∞) → R

n be a continuous function, for t ≥ t0 denote ht(θ) = h(θt), θ ≤ θ ≤ 1.
One can see that ht(·) ∈ C . Let r(t) be a continuous-time Markov chain taking values in
S = {1, 2, · · · , N} with the generator Γ = (γij)N×N such that

P{r(t+ δ) = j|r(t) = i} =

{

γijδ + o(δ), i 6= j,

1 + γiiδ + o(δ), i = j,

where δ > 0. Here γij is the transition rates from i to j and γij ≥ 0 if i 6= j while γii =
−
∑

j 6=i γij. It is well know that almost every sample path of r(t) is a right-continuous step
functions with finite number of sample jumps in any finite subinterval of R+ = [0,∞).
Assume that Markov chain r(t) is independent of Brownian motion.

Denote by C1,2([t0,+∞)×Rn×S; [0,+∞)) the family of all continuous nonnegative func-
tions V (t, x, i) defined on [t0,+∞)×Rn×S, such that for each i ∈ S, they are continuously
once differentiable in t and twice in x.

3 Main Results

Consider the following HPSFDE:

{

dx(t) = f(xt, t, r(t))dt+ g(xt, t, r(t))dB(t), t ∈ [t0,∞),

x(t) = ξ(t), t ∈ [θt0, t0],
(3.1)

where xt = {x(θt), θ ≤ θ ≤ 1)} and 0 < θ < 1 is a constant. We would like to point out that
xt ∈ C is a segment process and xt(θ) = x(θt) while x(t) ∈ Rn is a point.
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Given V ∈ C1,2(Rn × [t0,+∞) × S; [0,+∞)), ϕ ∈ C , i ∈ S, we define an operator
LV : C × [t0,∞)× S → R by

LV (ϕ, t, i) = Vt(ϕ(1), t, i) + Vx(ϕ(1), t, i)f(ϕ, t, i) +
1

2
trace(gT (ϕ, t, i)Vxx(ϕ(1), t, i)g(ϕ, t, i))

+

N
∑

l=1

γilV (ϕ(1), t, l),

where

Vt(x, t, i) =

(

∂V (x, t, i)

∂t

)

, Vx(x, t, i) =

(

∂V (x, t, i)

∂x1
, . . . ,

∂V (x, t, i)

∂xn

)

and

Vxx(x, t, i) =

(

∂2V (x, t, i)

∂xk∂xl

)

kl

.

We have the following the corresponding Itô’s formula for hybrid system (3.1):

V (x(t), t, r(t)) = V (x(0), 0, r(0)) +

∫ t

t0

LV (xs, s, r(s))ds

+

∫ t

t0

Vx(x(s), s, r(s))g(xs, s, r(s))dB(s).

The following assumptions are needed.

(H1) For any ϕ, ϕ′ ∈ C([θ, 1];Rn) satisfying ‖ϕ‖∨‖ϕ′‖ ≤ R, there exists a positive constant
CR such that

|f(ϕ, t, i)− f(ϕ′, t, i)| ∨ |g(ϕ, t, i)− g(ϕ′, t, i)| ≤ CR‖ϕ− ϕ′‖.

(H2) There exist functions V ∈ C2,1(Rn × [t0,∞)× S;R+), U0, Uk ∈ C2,1(Rn × [t0,∞);R+),
and probability measures νk on [θ, 1], and non-negative constants a0, ak, bkl, k =
1, 2, · · · ,M, l = 1, 2, · · · , lk such that

lim
|x|→∞

inf
t0≤t<∞

U0(x, t) = ∞, (3.2)

U0(x, t) ≤ V (x, t, i) ≤ U1(x, t), ∀(x, t, i) ∈ R
n × R

+ × S, (3.3)

LV (ϕ, t, i) ≤ a0 +

M
∑

k=1

[

− akUk(ϕ(1), t)

+

lk
∑

l=1

bkl

∫ 1

θ

e−
∫
t

0
λ(θ,u)duUαkl

k (ϕ(1), t)U1−αkl

k (ϕ(θ), θt)dνk(θ)

]

, (3.4)

where function λ(·, ·) : [θ, 1] × R+ → R+ satisfying inf0≤s<∞ λ(θ, s) ≥ β(1 − θ) and
αkl, β are constants satisfying 0 ≤ αkl ≤ 1, 0 < β < a1.
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3.1 Existence and Uniqueness

In the same way as in [18], we can show that (3.1) has a unique local solution x(t), t ∈ [t0, σ∞)
under (H1), where σ∞ is the explosion time. The following condition (H2’) will guarantee a
global solution to (3.1), that is

(H2’) Assume that (H2) holds, but (3.4) is replaced by

LV (ϕ, t, i) ≤ a0 +

M
∑

k=1

[

− akUk(ϕ(1), t)

+

lk
∑

l=1

bkl

∫ 1

θ

Uαkl

k (ϕ(1), t)U1−αkl

k (ϕ(θ), θt)dνk(θ)

]

, (3.5)

where 0 ≤ αkl ≤ 1 are constants .

Theorem 3.1. Assume that (H1) and (H2’) hold. If

−ak +

lk
∑

l=1

bklαkl +

lk
∑

l=1

bkl
1

θ
(1− αkl) ≤ 0, k = 1, 2, · · · ,M, (3.6)

then the equation (3.1) has a unique global solution.

Proof. Let x(t), t ∈ [t0, σ∞) be the unique local solution and σa = inf{t ≥ t0 : |x(t)| ≥ a}.
Using Itô’s formula and taking the expectation, we have

E[V (x(t ∧ σa), t ∧ σa, r(t ∧ σa))] = E[V (x(t0), t0, r(t0))] + E

∫ t∧σa

t0

LV (xs, s, r(s))ds

≤ E[V (x(t0), t0, r(t0))] + E

∫ t∧σa

t0

{

a0 +

M
∑

k=1

[

− akUk(x(s), s)

+

lk
∑

l=1

bkl

∫ 1

θ

Uαkl

k (x(s), s)U1−αkl

k (x(θs), θs)dνk(θ)

]}

ds

≤ E[V (x(t0), t0, r(t0))] + E

∫ t∧σa

t0

{

a0 +
M
∑

k=1

[

− akUk(x(s), s)

+

lk
∑

l=1

bklαklUk(x(s), s) +

lk
∑

l=1

bkl(1− αkl)

∫ 1

θ

Uk(x(θs), θs)dνk(θ)

]}

ds. (3.7)
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Noting that
∫ t∧σa

t0

∫ 1

θ

Uk(x(θs), θs)dνk(θ)ds =

∫ 1

θ

∫ t∧σa

t0

Uk(x(θs), θs)dsdνk(θ)

≤
1

θ

∫ 1

θ

∫ θ(t∧σa)

θt0

Uk(x(s), s)dsdνk(θ)

≤
1

θ

∫ 1

θ

∫ t∧σa

θt0

Uk(x(s), s)dsdνk(θ)

≤
1

θ

∫ 1

θ

∫ t∧σa

t0

Uk(x(s), s)dsdνk(θ) +
1

θ

∫ 1

θ

∫ t0

θt0

Uk(x(s), s)dsdνk(θ)

≤
1

θ

∫ t∧σa

t0

Uk(x(s), s)ds+
1

θ

∫ t0

θt0

Uk(x(s), s)ds,

and (3.6), one can see that

E[V (x(t ∧ σa), t ∧ σa, r(t ∧ σa))]

≤ E[V (x(t0), t0, r(t0))] + E

∫ t∧σa

t0

{

a0 +
M
∑

k=1

[

− akUk(x(s), s)

+

lk
∑

l=1

bklαklUk(x(s), s) +

lk
∑

l=1

bkl
1

θ
(1− αkl)Uk(x(s), s)

]}

ds

+
M
∑

k=1

lk
∑

l=1

bkl
1

θ
(1− αkl)

∫ t0

θt0

Uk(x(s), s)ds

≤ E[V (x(t0), t0, r(t0))]

+ E

∫ t∧σa

t0

{

a0 +
M
∑

k=1

(

− ak +

lk
∑

l=1

bklαkl +

lk
∑

k=1

bkl
1

θ
(1− αkl)

)

Uk(x(s), s)

}

ds

+
M
∑

k=1

lk
∑

l=1

bkl
1

θ
(1− αkl)

∫ t0

θt0

EUk(ξ(s), s)ds

≤ c0 + a0t, (3.8)

where c0 = E[V (x(t0), t0, r(t0))] +
∑M

k=1

∑lk
l=1 bkl

1
θ
(1− αkl)

∫ t0

θt0
EUk(ξ(s), s)ds.

Setting µa = inf |x|≥a,t0≤t<∞ U0(x, t), we then have

E[U0(x(t ∧ σa), t ∧ σa)] ≥ E[U0(x(σa), σa)1σa≤t] ≥ µaP (σa ≤ t).

This immediately implies

P (σ∞ ≤ t) = lim
a→∞

P (σa ≤ t) ≤ lim
a→∞

E[U0(x(t ∧ σa), t ∧ σa]

µa

= lim
a→∞

c0 + a0t

µa

= 0.

Therefore, σ∞ = ∞, a.s., and there exists unique global solution x(t) on [t0,∞).
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3.2 Exponential Stability

In this subsection, we will investigate several moment properties and sample properties of the
solutions to the equations such as the moment exponential stability, almost sure exponential
stability, etc. Before studying the stability of the solution to E.q.(3.1), we present a semi-
martingale convergence theorem which can be found in [13].

Lemma 3.2. Let A1(t), A2(t) be two continuous adapted increasing processes on t ≥ 0 with
A1(0) = 0, A2(0) = 0, a.s., M(t) a real-valued continuous local martingale with M(0) = 0,
a.s., ξ a nonnegative F0−measurable random variable such that E[ξ] < ∞. Set X(t) =
ξ + A1(t)− A2(t) +M(t), t ≥ 0. If X(t) is nonnegative , then we have the following results:

{ lim
t→∞

A1(t) < ∞} ⊂ { lim
t→∞

A2(t) < ∞} ∩ { lim
t→∞

X(t) < ∞}, a.s.,

where C ⊂ D, a.s. means P (C ∩ Dc) = 0. In particular, if limt→∞A1(t) < ∞, a.s., then,
with probability one,

lim
t→∞

A2(t) < ∞, lim
t→∞

X(t) < ∞, −∞ < lim
t→∞

M(t) < ∞, a.s.

Theorem 3.3. Assume that (H1)− (H2) hold with

−ak +

lk
∑

l=1

bklαkl +

lk
∑

l=1

bkl
1

θ
(1− αkl) < 0, k = 1, 2, · · · ,M.

We then have the following results:

(i) lim supt→∞ E[U0(x(t0, t, ξ, i0), t)] ≤
a0
ε
, where 0 < ε ≤ β is a constant satisfying

a1 − ε−

l1
∑

l=1

b1lα1l −

l1
∑

l=1

b1l
1

θ
(1− α1l) > 0.

(ii)

lim sup
t→∞

1

t

∫ t

t0

E[Uk(x(t0, s, ξ, i0), s)]ds

≤
a0

ak −
∑lk

l=1 bkle
−β(1−θ)t0αkl −

∑lk
l=1 bkl

1
θ
e−β(1−θ)t0(1− αkl)

, k = 1, 2, · · ·M.

(iii) If a0 = 0, then the global solution x(t0, t, ξ, i0) is exponentially stable in moment and
almost surely exponential stable, i.e.

lim sup
t→∞

1

t
log(E[U0(x(t0, t, ξ, i0), t)]) ≤ −ε. (3.9)

lim sup
t→∞

1

t
log(U0(x(t0, t, ξ, i0), t)) ≤ −ε, a.s., (3.10)

where ε satisfies the condition in (i).
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Proof. (i) Using Itô’s formula to eεtV (x(t), t, r(t)), we have

E[eε(t∧σa)V (x(t ∧ σa), t ∧ σa, r(t ∧ σa))]

= E[eεt0V (x(t0), t0, r(t0))] + E

∫ t∧σa

t0

eεs(εV (xs, s, r(s)) + LV (xs, s, r(s)))ds

≤ E[eεt0V (x(t0), t0, r(t0))]

+ E

∫ t∧σa

t0

eεs
{

a0 − (a1 − ε)U1(x(s), s) +

[

−
M
∑

k=2

akUk(x(s), s)

+
M
∑

k=1

lk
∑

l=1

bkl

∫ 1

θ

e−
∫
s

0
λ(θ,u)duUαkl

k (x(s), s)U1−αkl

k (x(θs), θs)dνk(θ)

]}

ds.

(3.11)

Now, we compute

bkl

∫ t∧σa

t0

∫ 1

θ

eεs−
∫
s

0
λ(θ,u)duUαkl

k (x(s), s)U1−αkl

k (x(θs), θs)dνk(θ)ds

≤ bklαkl

∫ t∧σa

t0

∫ 1

θ

eεs−
∫
s

0
λ(θ,u)duUk(x(s), s)dνk(θ)ds

+ bkl(1− αkl)

∫ t∧σa

t0

∫ 1

θ

eεs−
∫
s

0
λ(θ,u)duUk(x(θs), θs)dνk(θ)ds

≤ bklαkl

∫ 1

θ

e−β(1−θ)t0dνk(θ)

∫ t∧σa

t0

eεsUk(x(s), s)ds

+ bkl(1− αkl)

∫ t∧σa

t0

∫ 1

θ

eεs−
∫
s

0
λ(θ,u)duUk(x(θs), θs)dνk(θ)ds

≤ bklαkl

∫ t∧σa

t0

eεsUk(x(s), s)ds+ bkl(1− αkl)

∫ 1

θ

∫ t∧σa

t0

eεs−
∫
s

0
λ(θ,u)duUk(x(θs), θs)dsdνk(θ)

≤ bklαkl

∫ t∧σa

t0

eεsUk(x(s), s)ds+ bkl
1

θ
(1− αkl)

∫ 1

θ

∫ t∧σa

θt0

e
ε

θ
s−

∫ s
θ
0

λ(θ,u)duUk(x(s), s)dsdνk(θ)

≤ bklαkl

∫ t∧σa

t0

eεsUk(x(s), s)ds+ bkl
1

θ
(1− αkl)

∫ t∧σa

t0

eεsUk(x(s), s)ds

+ bkl
1

θ
(1− αkl)

∫ t0

θt0

eεsUk(x(s), s)ds. (3.12)
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This, together with (3.11), yields that

E[eε(t∧σa)V (x(t ∧ σa), t ∧ σa, r(t ∧ σa))]

≤ c̄0 + E

∫ t∧σa

t0

eεs
{

a0 −

(

a1 − ε−

l1
∑

l=1

b1lα1l −

l1
∑

l=1

b1l
1

θ
(1− α1l)

)

U1(x(s), s)

+

M
∑

k=2

(

− ak +

lk
∑

l=1

bklαkl +

lk
∑

l=1

bkl
1

θ
(1− αkl)

)

Uk(x(s), s)

}

ds

≤ c̄0 +
a0

ε
eεt,

(3.13)

where c̄0 = E[eεt0V (x(t0), t0, r(t0))] +
∑M

k=1

∑lk
l=1E

∫ t0

θt0
eεs 1

θ
bkl(1− αkl)Uk(ξ(s), s)ds. Letting

a → ∞, it leads to

E[eεtU0(x(t), t, r(t))] ≤ c̄0 +
a0

ε
eεt.

The assertion (i) follows by letting t → ∞.
(ii) Similar to the proofs of (3.8) and (3.12), we can show that

E[V (x(t ∧ σa), t ∧ σa, r(t ∧ σa))] = E[V (x(t0), t0, r(t0))] + E

∫ t∧σa

t0

LV (xs, s, r(s))ds

≤ E[V (x(t0), t0, r(t0))] + E

∫ t∧σa

t0

{

a0 +
M
∑

k=1

[

− akUk(x(s), s)

+

lk
∑

l=1

bkl

∫ 1

θ

e−
∫
t

0
λ(θ,u)duUαkl

k (x(s), s)U1−αkl

k (x(θs), θs)dνk(θ)

]}

ds

≤ E[V (x(t0), t0, r(t0))]

+ E

∫ t∧σa

t0

{

a0 +
M
∑

k=1

(

− ak +

lk
∑

l=1

bkle
−β(1−θ)t0αkl

+

lk
∑

k=1

bkl
1

θ
e−β(1−θ)t0(1− αkl)

)

Uk(x(s), s)

}

ds

+

M
∑

k=1

lk
∑

l=1

bkl
1

θ
e−β(1−θ)t0(1− αkl)

∫ t0

θt0

Uk(ξ(s), s)ds

≤ c0 + a0t.

(3.14)

Letting a → ∞, we obtain

M
∑

k=1

(

ak −

lk
∑

l=1

bkle
−β(1−θ)t0αkl −

lk
∑

l=1

bkl
1

θ
e−β(1−θ)t0(1− αkl)

)

E

∫ t

t0

Uk(x(s), s)ds

9



≤ c0 + a0t. (3.15)

This means that assertion (ii) holds.
(iii) Since a0 = 0, we derive from (3.13) that

E[eεtU0(x(t), t ∧ a, r(t))] ≤ c̄0.

This implies that (3.9) holds.
Using the similar method in (i) without taking the expectation, we can show that

eεtU0(x(t), t) ≤ c̄0 +M(t), (3.16)

where M(t) =
∫ t

0
eεtVx(x(s), s, r(s))g(xs, t, r(s))dB(s). Due to Lemma 3.2, it follows that

lim sup
t→∞

eεtU0(x(t), t) < ∞, a.s.

Thus, there exists a finite positive random variable η such that

sup
t0≤t<∞

eεtU0(x(t), t) < η, a.s.

Thus, the proof of (3.10) is complete.

We now illustrate the theoretical results in Theorem 3.3 by the following example.

Example 3.4. Let ν(·) be a probability measure on [θ, 1]. Set S = {1, 2}, β = 0.5, λ(θ, t) =
0.5(1− θ), θ = 0.5, d = 1. Let r(t) be a Markov chain with generator

Γ =

(

−1 1
2 −2

)

.

Consider the following equation:

dx(t) = f(xt, t, r(t))dt+ g(xt, t, r(t))dB(t), t ∈ [t0,∞)

x(t) = ξ(t), t ∈ [θt0, t0], (3.17)

where for ϕ ∈ C

f(ϕ, t, i) =

{

−5(ϕ(1) + ϕ3(1) + ϕ5(1)) + 0.5
∫ 1

1

2

e−0.5(1−θ)t|ϕ(θ)|dν(θ), i = 1,

0.05ϕ(1) + 0.05
∫ 1

1

2

e−0.5(1−θ)t|ϕ(θ)|dν(θ), i = 2;

and

g(ϕ, t, i) =

{

0.5
∫ 1

1

2

e−0.5(1−θ)t|ϕ(1)|2|ϕ(θ)|dν(θ), i = 1,

0.2
∫ 1

1

2

e−0.5(1−θ)t|ϕ(θ)|dν(θ), i = 2.

10



Define

V (x, t, i) =

{

x2, i = 1,

2(x2 + x6), i = 2.

When i = 1, it follows that

LV (ϕ, t, 1) = 2ϕ(1)f(ϕ, t, 1) + |g(ϕ, t, 1)|2 +

2
∑

j=1

γ1jV (ϕ(1), t, j)

≤ 2ϕ(1)[−5(ϕ(1) + ϕ3(1) + ϕ5(1))] + ϕ(1)

∫ 1

1

2

e−0.5(1−θ)t|ϕ(θ)|dν(θ)

+ 0.25

∫ 1

1

2

e−0.5(1−θ)t|ϕ(1)|4|ϕ(θ)|2dν(θ)− |ϕ(1)|2 + 2(|ϕ(1)|2 + |ϕ(1)|6)

≤ −9|ϕ(1)|2 − 10|ϕ(1)|4 − 8|ϕ(1)|6 + ϕ(1)

∫ 1

1

2

e−0.5(1−θ)t|ϕ(θ)|dν(θ)

+ 0.25

∫ 1

1

2

e−0.5(1−θ)t|ϕ(1)|4|ϕ(θ)|2dν(θ).

When i = 2, we have

LV (ϕ, t, 2) = (4ϕ(1) + 12ϕ5(1))f(ϕ, t, 2) + 0.02(4 + 60ϕ4(1))

∫ 1

1

2

e−0.5(1−θ)t|ϕ(θ)|2dν(θ)

+

2
∑

j=1

γ2jV (ϕ(1), t, j)

≤ 0.2|ϕ(1)|2 + 0.6|ϕ(1)|6 + 0.2ϕ(1)

∫ 1

1

2

e−0.5(1−θ)t|ϕ(θ)|dν(θ)

+ 0.6ϕ5(1)

∫ 1

1

2

e−0.5(1−θ)t|ϕ(θ)|dν(θ) + 0.08

∫ 1

1

2

e−0.5(1−θ)t|ϕ(θ)|2dν(θ)

+ 1.2

∫ 1

1

2

e−0.5(1−θ)t|ϕ(t)|4|ϕ(θ)|2dν(θ) + 2|ϕ(1)|2 − 4(|ϕ(1)|2 + |ϕ(1)|6)

≤ −1.8|ϕ(1)|2 − 3.4|ϕ(1)|6

+ 0.2ϕ(1)

∫ 1

1

2

e−0.5(1−θ)t|ϕ(θ)|dν(θ) + 0.6ϕ5(1)

∫ 1

1

2

e−0.5(1−θ)t|ϕ(θ)|dν(θ)

+ 0.08

∫ 1

1

2

e−0.5(1−θ)t|ϕ(θ)|2dν(θ) + 1.2

∫ 1

1

2

e−0.5(1−θ)t|ϕ(1)|4|ϕ(θ)|2dν(θ)

≤ −1.8|ϕ(1)|2 − 3.4|ϕ(1)|6

+

∫ 1

1

2

e−0.5(1−θ)t0.2(|ϕ(1)|2)
1

2 (|ϕ(θ)|2)
1

2dν(θ) +

∫ 1

1

2

e−0.5(1−θ)t0.6(|ϕ(1)|6)
5

6 (|ϕ(θ)|6)
1

6dν(θ)
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+

∫ 1

1

2

e−0.5(1−θ)t0.08|ϕ(θ)|2dν(θ) +

∫ 1

1

2

e−0.5(1−θ)t1.2(|ϕ(1)|6)
4

6 (|ϕ(θ)|6)
2

6dν(θ)

≤ −1.8|ϕ(1)|2 − 3.4|ϕ(1)|6

+

∫ 1

1

2

e−0.5(1−θ)t[0.2(|ϕ(1)|2)
1

2 (|ϕ(θ)|2)
1

2 + 0.08|ϕ(θ)|2]dν(θ)

+

∫ 1

1

2

e−0.5(1−θ)t[0.6(|ϕ(1)|6)
5

6 (|ϕ(θ)|6)
1

6 + 1.2(|ϕ(1)|6)
4

6 (|ϕ(θ)|6)
2

6 ]dν(θ).

Then, we have

LV (ϕ, t, i) ≤ −1.8|ϕ(1)|2 − 3.4|ϕ(1)|6

+

∫ 1

1

2

e−0.5(1−θ)t[(|ϕ(1)|2)
1

2 (|ϕ(θ)|2)
1

2 + 0.08|ϕ(θ)|2]dν(θ)

+

∫ 1

1

2

e−0.5(1−θ)t[0.6(|ϕ(1)|6)
5

6 (|ϕ(θ)|6)
1

6 + 1.2(|ϕ(1)|6)
4

6 (|ϕ(θ)|6)
2

6 ]dν(θ).

Obviously, we can choose

U0(x, t) = |x|2, U1(x, t) = |x|2, U2(x, t) = |x|6, a0 = 0, a1 = 1.8,

a2 = 3.4, , b11 = 1, b12 = 0.08, b21 = 0.6, b22 = 1.2.

From Theorem 3.3, we could know that the following results hold.

(i)
lim sup
t→∞

E[|x(t0, t, ξ, i0)|
2] = 0,

(ii)

lim sup
t→∞

1

t

∫ t

t0

E[|x(t0, s, ξ, i0)|
2]ds = 0,

lim sup
t→∞

1

t

∫ t

t0

E[|x(t0, s, ξ, i0)|
6]ds = 0,

(iii)

lim sup
t→∞

1

t
log(E[|x(t0, t, ξ, i0)|

2]) ≤ −0.05.

lim sup
t→∞

1

t
log(|x(t0, t, ξ, i0)|

2) ≤ −0.05, a.s.

Now, we give the second example.
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Example 3.5. Let ν1(·) be a probability measure on [θ, 1] and ν2(·) = δ1(·). Set S =
{1, 2}, β = 0.6, λ(θ, t) = 0.6(1 − θ), θ = 0.7, d = 1. Let r(t) be a Markov chain with
generator

Γ =

(

−1 1
3 −3

)

.

Consider the following equation:

dx(t) = f(xt, t, r(t))dt+ g(xt, t, r(t))dB(t), t ∈ [t0,∞)

x(t) = ξ(t), t ∈ [θt0, t0], (3.18)

where for ϕ ∈ C

f(ϕ, t, i) =

{

−6(ϕ(1) + ϕ3(1) + ϕ7(1)) +
∫ 1

0.7
e−0.6(1−θ)tϕ(θ)dν1(θ), i = 1,

0.04ϕ(1) + 0.04
∫ 1

0.7
e−0.6(1−θ)tϕ(θ)dν2(θ), i = 2;

and

g(ϕ, t, i) =

{

0.5
∫ 1

0.7
e−0.6(1−θ)t|ϕ(1)|2|ϕ(θ)|2dν1(θ), i = 1,

0.1
∫ 1

0.7
e−0.6(1−θ)tϕ(θ)dν2(θ), i = 2.

From above equation, when r(t) = 2, by the definition of ν2 the equation becomes

dx(t) = 0.08x(t)dt + 0.1x(t)dB(t), t ∈ [t0,∞)

x(t) = ξ(t), t ∈ [θt0, t0], (3.19)

Obviously, the solution of the above equation will blow up. But in the following, we will
show that the overall system is stable. Set

V (x, t, i) =

{

x2, i = 1,

2x2 + 3x8, i = 2.

When i = 1, it follows that

LV (ϕ, t, 1) = 2ϕ(1)f(ϕ, t, 1) + |g(ϕ, t, 1)|2 +

2
∑

j=1

γ1jV (ϕ(1), t, j)

≤ 2ϕ(1)[−6(ϕ(1) + ϕ3(1) + ϕ7(1))] + 2|ϕ(1)|

∫ 1

0.7

e−0.6(1−θ)t|ϕ(θ)|dν1(θ)

+ 0.25

∫ 1

0.7

e−0.6(1−θ)t|ϕ(1)|4|ϕ(θ)|4dν1(θ)− |ϕ(1)|2 + 2|ϕ(1)|2 + 3|ϕ(1)|8

≤ −11|ϕ(1)|2 − 12|ϕ(1)|4 − 9|ϕ(1)|8 + 2|ϕ(1)|

∫ 1

0.7

e−0.6(1−θ)t|ϕ(θ)|dν1(θ)

13



+ 0.25

∫ 1

0.7

e−0.6(1−θ)t|ϕ(1)|4|ϕ(θ)|4dν1(θ).

When i = 2, we have

LV (ϕ, t, 2) = (4ϕ(1) + 24ϕ7(1))f(ϕ, t, 2) + 0.005(4 + 168ϕ6(1))

∫ 1

0.7

e−0.6(1−θ)t|ϕ(θ)|2dν2(θ)

+

2
∑

j=1

γ2jV (ϕ(1), t, j)

≤ 0.08(4ϕ(1) + 24ϕ7(1))ϕ(1) + 0.01(2 + 84ϕ6(1))|ϕ(1)|2 + 3ϕ2(1)− 3(2ϕ2(1) + 3ϕ8(1))

≤ −2.64|ϕ(1)|2 − 6.24|ϕ(1)|8.

Then, we have

LV (ϕ, t, i) ≤ −2.66|ϕ(1)|2 − 6.24|ϕ(1)|8

+ 2ϕ(1)

∫ 1

0.7

e−0.6(1−θ)t|ϕ(θ)|dν1(θ) + 0.25

∫ 1

0.7

e−0.6(1−θ)t|ϕ(1)|4|ϕ(θ)|4dν1(θ)

≤ −2.64|ϕ(1)|2 − 6.24|ϕ(1)|8

+

∫ 1

0.7

e−0.6(1−θ)t2(|ϕ(1)|2)
1

2 (|ϕ(θ)|2)
1

2dν1(θ)

+

∫ 1

0.7

e−0.6(1−θ)t0.25(|ϕ(1)|8)
1

2 (|ϕ(θ)|8)
1

2dν1(θ).

Obviously, we can choose

U0(x, t) = |x|2, U1(x, t) = |x|2, U2(x, t) = |x|8, a0 = 0, a1 = 2.64,

a2 = 6.24, , b11 = 2, b21 = 0.25.

From Theorem 3.3, we have the following results:

(i)
lim sup
t→∞

E[|x(t0, t, ξ, i0)|
2] = 0,

(ii)

lim sup
t→∞

1

t

∫ t

t0

E[|x(t0, s, ξ, i0)|
2]ds = 0,

lim sup
t→∞

1

t

∫ t

t0

E[|x(t0, s, ξ, i0)|
8]ds = 0,

(iii)

lim sup
t→∞

1

t
log(E[|x(t0, t, ξ, i0)|

2]) ≤ −0.1.

lim sup
t→∞

1

t
log(|x(t0, t, ξ, i0)|

2) ≤ −0.1, a.s.
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3.3 Polynomial Stability

In this subsection, we will investigate the polynomial stability of the solution for HPSFEDs
(3.1).

Theorem 3.6. Assume (H1), and let (H2’) hold with a0 = 0. If

−ak +

lk
∑

l=1

bklαkl +

lk
∑

l=1

bkl
1

θ
(1− αkl) < 0, k = 1, 2, · · · ,M, (3.20)

then the global solution x(t0, t, ξ, i0) has almost surely polynomial stability, i.e.

lim sup
t→∞

logU0(x(t), t)

log(1 + t)
≤ −ε, (3.21)

where ε is a positive constant satisfying

−ak +

lk
∑

l=1

bklαkl +

lk
∑

l=1

bklθ
−(1+ε)(1− αkl) < 0, k = 2, 3, · · · ,M,

and

ε− a1 +

l1
∑

l=1

b1lα1l +

l1
∑

l=1

b1lθ
−(1+ε)(1− α1l) < 0.

Proof. Define σa = inf{t ≥ t0 : |x(t)| ≥ a} as before. Set

M(t) =

∫ t

t0

(1 + s)εVx(x(s), s, r(s))g(xs, s, r(s))dB(s).

Using Itô’s formula and taking the expectation, we have

(1 + t ∧ σa)
εV (x(t ∧ σa), t ∧ σa, r(t ∧ σa))]

= (1 + t0)
εV (x(t0), t0, r(t0)) +

∫ t∧σa

t0

ε(1 + s)ε−1V (xs, s, r(s))ds

+

∫ t∧σa

t0

(1 + s)εLV (xs, s, r(s))ds+M(t ∧ σa)

≤ (1 + t0)
εV (x(t0), t0, r(t0)) +

∫ t∧σa

t0

ε(1 + s)εV (xs, s, r(s))ds

+

∫ t∧σa

t0

(1 + s)ε
{

a0 +
M
∑

k=1

[

− akUk(x(s), s)

+

lk
∑

l=1

bkl

∫ 1

θ

Uαkl

k (x(s), s)U1−αkl

k (x(θs), θs)dνk(θ)

]}

ds+M(t ∧ σa)

15



≤ (1 + t0)
εV (x(t0), t0, r(t0)) +

∫ t∧σa

t0

ε(1 + s)εV (xs, s, r(s))ds

+

∫ t∧σa

t0

(1 + s)ε
{

a0 +

M
∑

k=1

[

− akUk(x(s), s)

+

lk
∑

l=1

bkl

∫ 1

θ

Uαkl

k (x(s), s)U1−αkl

k (x(θs), θs)dνk(θ)

]}

ds+M(t ∧ σa)

≤ (1 + t0)
εV (x(t0), t0, r(t0)) +

∫ t∧σa

t0

ε(1 + s)εV (xs, s, r(s))ds

+

∫ t∧σa

t0

(1 + s)ε
{

a0 +
M
∑

k=1

[

− akUk(x(s), s) +

lk
∑

l=1

bklαklUk(x(s), s)

+

lk
∑

l=1

bkl(1− αkl)

∫ 1

θ

Uk(x(θs), θs)dνk(θ)

]}

ds+M(t ∧ σa)

≤ c̃0 +

∫ t∧σa

t0

ε(1 + s)εV (xs, s, r(s))ds

+

∫ t∧σa

t0

(1 + s)ε
{ M
∑

k=1

[

− akUk(x(s), s) +

lk
∑

l=1

bklαklUk(x(s), s)

+

lk
∑

l=1

bklθ
−(1+ε)(1− αkl)Uk(ϕ(s), s)

]}

ds+M(t ∧ σa)

≤ c̃0 +

∫ t0

θt0

M
∑

k=1

lk
∑

l=1

bklθ
−(1+ε)(1− αkl)Uk(ξ(s), s)ds

+

∫ t∧σa

t0

(1 + s)ε
(

ε− a1 +
l1
∑

l=1

b1lα1l +
l1
∑

l=1

b1lθ
−(1+ε)(1− α1l)

)

U1(x(s), s)

+

∫ t∧σa

t0

(1 + s)ε
{ M
∑

k=2

(

− ak +

lk
∑

l=1

bklαkl +

lk
∑

l=1

bklθ
−(1+ε)(1− αkl)

)

Uk(x(s), s)

}

ds

≤ c̃0 +M(t ∧ σa), (3.22)

where c̃0 = (1 + t0)
εV (x(t0), t0, r(t0)) +

∫ t0

θt0

∑M

k=1

∑lk
l=1 bklθ

−(1+ε)(1− αkl)Uk(ξ(s), s)ds.
By virtue of the conditions in the theorem, we have

(1 + t)εU0(x(t), t) ≤ c̃0 +M(t).

Then,

lim sup
t→∞

(1 + t)εU0(x(t), t) < ∞.

This implies the required assertion (3.21) immediately.
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The following example illustrates the theory of polynomial stability.

Example 3.7. Let ν1(·) be a probability measure on [θ, 1] and ν2(·) = δ1(·). Set S =
{1, 2}, θ = 0.75, d = 1. Let r(t) be a Markov chain with generator

Γ =

(

−1 1
4 −4

)

.

Consider the following HPSFDE:

dx(t) = f(xt, t, r(t))dt+ g(xt, t, r(t))dB(t), t ∈ [t0,∞)

x(t) = ξ(t), t ∈ [θt0, t0], (3.23)

where for ϕ ∈ C

f(ϕ, t, i) =

{

−6(ϕ(1) + ϕ3(1) + ϕ7(1)) + 0.5
∫ 1

0.75
ϕ(θ)dν1(θ), r(t) = 1,

0.04ϕ(1) + 0.03
∫ 1

0.75
ϕ(θ)dν2(θ), r(t) = 2;

and

g(ϕ, t, i) =

{

0.2
∫ 1

0.75
|ϕ(1)|1.5|ϕ(θ)|2.5dν1(θ), r(t) = 1,

0.1
∫ 1

0.75
|ϕ(θ)|dν2(θ), r(t) = 2.

From above equation, when r(t) = 2, we can see that the equation is

dx(t) = 0.07x(t)dt + 0.1x(t)dB(t), t ∈ [t0,∞)

x(t) = ξ(t), t ∈ [θt0, t0], (3.24)

obviously, the solution of the above equation will blow up. But in the following, we will
show that the overall system is polynomial stable. Set

V (x, t, i) =

{

x4, i = 1,

2x4 + 3x10, i = 2.

When i = 1, it follows that

LV (ϕ, t, 1) = 4ϕ3(1)f(ϕ, t, 1) + 0.24ϕ2(1)|g(ϕ, t, 1)|2 +

2
∑

j=1

γ1jV (ϕ(1), t, j)

≤ 4ϕ3(1)[−6(ϕ(1) + ϕ3(1) + ϕ7(1))] + 2ϕ3(1)

∫ 1

0.75

|ϕ(θ)|dν1(θ)

+ 0.24

∫ 1

0.75

|ϕ(1)|5|ϕ(θ)|5dν1(θ)− |ϕ(1)|4 + 2|ϕ(1)|4 + 3|ϕ(1)|10

≤ −23|ϕ(1)|4 − 24|ϕ(1)|6 − 21|ϕ(1)|10 + 2|ϕ(1)|3
∫ 1

0.75

|ϕ(θ)|dν1(θ)
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+ 0.24

∫ 1

0.75

|x(t)|5|ϕ(θ)|5dν1(θ).

When i = 2, we have

LV (ϕ, t, 2) = (8ϕ3(1) + 30ϕ9(1))f(ϕ, t, 2) + 0.005(24ϕ2(1) + 270ϕ8(1))

∫ 1

0.75

|ϕ(θ)|2dν2(θ)

+

2
∑

j=1

γ2jV (x(t), t, j)

≤ (8ϕ3(1) + 30ϕ9(1))0.07ϕ(1) + 0.01(12ϕ2(1) + 135ϕ8(1))ϕ2(1)

+ 4ϕ4(1)− 4(2ϕ4(1) + 3ϕ10(1))

≤ −3.32|ϕ(1)|4 − 8.55|ϕ(1)|10.

Then, we have

LV (ϕ, t, i) ≤ −3.32|ϕ(1)|4 − 8.55|ϕ(1)|10

+ 2|ϕ(1)|3
∫ 1

0.75

|ϕ(θ)|dν1(θ) + 0.24

∫ 1

0.75

|x(t)|5|ϕ(θ)|5dν1(θ)

≤ −3.32|ϕ(1)|2 − 8.25|ϕ(1)|8

+

∫ 1

0.75

2(|ϕ(1)|4)
3

4 (|ϕ(θ)|4)
1

4dν1(θ)

+

∫ 1

0.75

0.24(|ϕ(1)|10)
1

2 (|ϕ(θ)|10)
1

2dν1(θ)

Obviously, we can choose

U0(x, t) = |x|4, U1(x, t) = |x|4, U2(x, t) = |x|10, a0 = 0, a1 = 3.32,

a2 = 8.55, , b11 = 2, b21 = 0.24.

From Theorem 3.6, we conclude that the overall system is polynomial stable. Obviously,
this example is similar to example 3.5, but f, g in this example satisfy (H2)’ while f, g in
example 3.5 satisfy (H2). This difference leads to different stable properties of the solution.
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[20] Obradović, M. and Milošević, M. Stability of a class of neutral stochastic ¡§ differential
equations with unbounded delay and Markovian switching and the Euler-Maruyama
method. J. Comput. Appl. Math., 309 (2017), 244-266.

[21] Shen, M. , Fei, W. , Mao, X. and Deng, S. Exponential stability of highly nonlinear neu-
tral pantograph stochastic differential equations. Asian Journal of Control, 22(2020),
1-13.

[22] Wang, P., Zou, W., and Su, H. Stability of complex-valued impulsive stochastic func-
tional differential equations on networks with Markovian switching. Appl. Math. Com-
put., 348(2019), 338-354.

[23] Wu, A., You, S., Mao, W., Mao, X. and Hu, L. On exponential stability of hybrid neu-
tral stochastic differential delay equations with different structures. Nonlinear Analysis:
Hybrid Systems, 39 (2021), 100971.

[24] Yuan, C. and Mao, X. Asymptotic stability in distribution of stochastic differential
equations with Markovian switching. Stochastic Process. Appl., 103 (2003), 277-291.

[25] Zhou, S. and Hu, S. Razumikhin-type theorems on neutral stochastic functional dif-
ferential equations. Acta Math. Sci., 29 (2009), 181-190.

[26] Zhu, Q. Stabilization of stochastic nonlinear delay systems with exogenous distur-
bances and the event-triggered feedback control. IEEE Trans. Automat. Control, 9
(2019), 3764-3771.

[27] Zong, X., Wu, F., Yin, G. and Jin, Z. Almost sure and pth-moment stability and
stabilization of regime-switching jump diffusion systems. SIAM J. Control Optim., 52
(2014), 2595-2622.

20


	1 Introduction
	2 Preliminaries
	2.1 Notations

	3 Main Results
	3.1 Existence and Uniqueness
	3.2 Exponential Stability
	3.3 Polynomial Stability


