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Abstract

This paper is concerned with optimal control problems for control sys-
tems in continuous time, and interacting particle system methods designed
to construct approximate control solutions. Particular attention is given to
the linear quadratic (LQ) control problem. There is a growing interest in re-
visiting this classical problem, in part due to the successes of reinforcement
learning (RL). The main question of this body of research (and also of our
paper) is to approximate the optimal control law without explicitly solving
the Riccati equation. A novel simulation-based algorithm, namely a dual en-
semble Kalman filter (EnKF), is introduced. The algorithm is used to obtain
formulae for optimal control, expressed entirely in terms of the EnKF par-
ticles. An extension to the nonlinear case is also presented. The theoretical
results and algorithms are illustrated with numerical experiments.

1. Introduction

The field of reinforcement learning (RL) is concerned with optimal con-
trol, to design a policy for a dynamical system that minimizes some perfor-
mance criterion. All of the standard choices are treated in the literature:
discounted cost, finite time-horizon, and average cost. What makes the RL
paradigm so different from optimal control as formalized by Bellman and
Pontryagin in the 1950s is that in RL the system identification step is usually
avoided. Instead, the optimal policy is approximated based on input-output
measurements.
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There are two standard approaches to obtain an algorithm for this pur-
pose: (i) critic methods, in which a value function is approximated within
a parameterized family, and the policy is obtained as a functional of the
approximation, and (ii) actor methods in which a parameterized family of
policies is given, and the algorithm is designed to obtain the best policy
within this family.

In popular media, RL is often described as an “agent” that learns an ap-
proximately optimal policy based on interactions with the environment. Im-
portant examples of this ideal include advertising, where there is no scarcity
of real-time data. In the vast majority of applications we are not so fortu-
nate, which is why successful implementation usually requires simulation of
the physical system for the purposes of training. For example, DeepMind’s
success story with Go and Chess required weeks of simulation for training on
a massive collection of super-computers [1].

This paper focuses on model-based RL in which the model is available
only in the form of a simulator. The proposed approach is novel, draw-
ing on mean-field techniques similar to those appearing in state estimation
(data assimilation) in high dimension. It is likely that the concepts will lead
to new approaches for online RL—see directions for future research in the
conclusions.

We consider the finite-horizon optimal control problem,

min
u

J(u) =

∫ T

0

(
1
2
|c(xt)|2 + 1

2
u>t Rut

)
dt+ g(xT ) (1a)

subject to: ẋt = a(xt) + b(xt)ut, x0 = x (1b)

where xt ∈ Rd is the state at time t, and u = {ut ∈ Rm : 0 ≤ t ≤ T}
is the control input. The functions a(·), b(·), c(·), g(·) are continuously
differentiable (C1), and the control penalty matrix positive definite, R � 0.

In the linear quadratic (LQ) setting the model is linear (a(x) = Ax and
b(x) = B) and the cost function is quadratic (c(x) = Cx and g(x) = xᵀPTx).
The infinite-time horizon (T =∞) case is referred to as the linear quadratic
regulator (LQR) problem. Although it is a historical problem, LQR has been
the subject of recent research interest in the control community. The goals
of this research are much like ours: design simulations for the purposes of
learning the optimal control policy.

The proposed solution involves construction of N stochastic processes
{Y i

t ∈ Rd : 0 ≤ t ≤ T, 1 ≤ i ≤ N} where the i-th particle evolves according
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to a stochastic differential equation (SDE) of the form,

dY i
t = a(Y i

t ) dt+ b(Y i
t ) dvit︸ ︷︷ ︸

i−th copy of model (1b)

+ U it dt, 0 ≤ t ≤ T (2)

where the input vi = {vit ∈ Rm : 0 ≤ t ≤ T} and the data assimilation
process U i = {U it ∈ Rd : 0 ≤ t ≤ T} is obtained as part of the RL design.
The goal is to design these processes so that the empirical distribution of
the N particles at time t approximates a smooth density pt (for the N =∞
mean-field limit), encoding the optimal policy as follows:

φ∗t (x) = R−1b>(x)∇ log pt(x) (3)

where ∇ denotes the gradient operator. In the infinite-horizon case, a sta-
tionary policy is obtained by letting T →∞.

We make the following assumption:

Assumption 1. 1. Functions f(x, α) = a(x) + b(x)α and c(x) are avail-
able in the form of an oracle (which allows function evaluation at any
state action pair (x, α) ∈ Rd × Rm).

2. Matrices R and PT are available. Both of these matrices are strictly
positive-definite.

3. Simulator is available to simulate (2). In particular, this requires an
ability to add additional inputs outside the control channel.

Part 1 of the assumption is standard for any RL algorithm. Part 2 is not
too restrictive for the following reasons: In physical systems, one typically
is able to assess relative costs for different control inputs (actuators). For
the LQR problem, under certain technical conditions, the optimal policy is
stationary and does not depend upon the choice of PT . A possibility is to
take R and PT to be identity matrices of appropriate dimensions. The main
restriction comes from part 3 of the assumption.

A motivation comes from data assimilation applications such as weather
prediction and geosciences where Assumption 1 is standard. The ensem-
ble Kalman Filter (EnKF) is a particle system method which serves as a
workhorse in these applications [2, 3]. The computational complexity of the
EnKF is O(Nd) where d is dimension, and N is the number of particles, with
N � d typical in these applications.
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Part of the tremendous success of the EnKF in these domains is that it
works directly with the simulator. Multiple copies are run in a Monte-Carlo
manner where the data assimilation process is used to assimilate the most
recent measurement.

The goal of the research summarized here is to create approximation tech-
niques with similar success for applications in control.

1.1. Contributions of this paper

In order to elucidate these new ideas as clearly as possible, the main focus
of this paper is on the linear quadratic (LQ) problem. This also allows us to
highlight and contrast our work with recent developments. The algorithm (2)
for the LQ problem is presented first in Sec. 2 before describing its nonlinear
extension in Sec. 3. The details of the original contributions of our work are
as follows:

1. For the LQ problem, the proposed algorithm is an ensemble Kalman filter
(EnKF) referred to here as the dual EnKF. The mean-field limit (N =∞) of
the dual EnKF is shown to be exact (Prop. 1). For the finite-N algorithm, an
error bound on the approximation is obtained under additional assumptions
on the model (see (11)). An extensive discussion is included in Sec. 2.4 to
situate the algorithm in the RL landscape. In particular, it is shown that
(i) the process vi implements the exploration step of RL whereby the cheap
control directions are explored more; and (ii) the process U i implements the
value iteration step of RL.

2. For the nonlinear problem (1), a dual algorithm is presented to approxi-
mate the Hamilton-Jacobi-Bellman (HJB) equation. The algorithm requires
a solution of a (linear) Poisson equation that is far more easily approximated.
It is shown that the dual EnKF algorithm for the LQ problem is a special
case in which the Poisson equation admits an analytical solution.

3. A numerical comparison of the dual EnKF algorithm against the state-of-
the-art is described for benchmark examples. It is shown that the proposed
algorithm can be up to two orders of magnitude more computationally ef-
ficient (Fig. 4). Scalings with respect to both the number of particles N
and the problem dimension d are numerically illustrated and compared with
analytical bounds (Fig. 3).

1.2. Literature review

There are three areas of prior work that are related to the subject of
this paper: (i) RL algorithms for the LQR problem; (ii) EnKF and related
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control-type algorithms for data assimilation; and (iii) duality theory between
optimal control and estimation.

(i) RL for LQR: The LQ problem has a rich and storied history in modern
control theory going back to the original work on the subject [4]. Its solu-
tion requires solving a Riccati equation – the differential Riccati equation
(DRE) in finite-horizon settings or the algebraic Riccati equation (ARE) in
the infinite-horizon setting. There is a large body of literature devoted to
the analytical study of the Riccati equations [5] and specialized numerical
techniques have been developed to efficiently compute the solution [6].

There are two issues which makes the LQ and related problems a topic
of recent research interest: (i) In high-dimensions, the matrix-valued nature
of the DRE or ARE means that any algorithm is O(d2) in the dimension
d of the state-space, and (ii) the model parameters may not be explicitly
available to write down the DRE (or the ARE) let alone solve it. The latter
is a concern, e.g., when the model exists only in the form of a black-box
numerical simulator.

These two issues have motivated the recent research on the infinite-
horizon linear quadratic regulator (LQR) problem [7, 8, 9, 10, 11]. Of partic-
ular interest are policy gradient type algorithms that seek to bypass solving
an ARE by directly searching over the space of stabilizing gain matrices. The
algorithms are of iterative type where each iteration requires a policy evalu-
ation step (using N simulations much like (2)). This step is used to estimate
a gradient which is then used to obtain a improved policy based on a gra-
dient descent procedure. Global convergence rate estimates are established
for both discrete-time [7, 12] and continuous-time [11] settings of the LQR
problem. Extensions to the H∞ regularized LQR [13] and Markov jump lin-
ear systems [14] have also been carried out. In the recent thesis [15, Chapter
4], finite horizon extensions are considered under additional assumptions.

Additional comparison with this prior work appears in Sec. 2.4 and nu-
merical comparison is in Sec. 4.

(ii) EnKF for data assimilation: Although novel for RL, the proposed
algorithms are inspired by the data assimilation (nonlinear filtering) litera-
ture [3]. During the past decade, a key breakthrough in the data assimilation
theory and its applications is the design of controlled interactions between
particles (such as U it in (2)) to approximate the solution of the nonlinear
filtering problem; c.f., [16] and references therein. Such an approach is in
contrast to the traditional importance sampling type approaches which suf-
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fer from issues such as particle degeneracy [17]. Two well known examples
of the controlled interacting particle systems are the ensemble Kalman filter
(EnKF) and the feedback particle filter (FPF). The EnKF is an exact al-
gorithm for the linear Gaussian filtering problem [18, 19] while the FPF is
an exact algorithm for the nonlinear non-Gaussian case [20]. The two major
algorithmic contributions of this work represent the optimal control (dual)
counterparts of the EnKF and the FPF.

Notably, EnKF is a workhorse in data assimilation applications such as
weather prediction where models are simulation-based and high-dimensional
[2, 3]. As noted above, these two issues have also motivated much of recent
work on the LQ problem in the control community.

(iii) Duality: The formula (3) for the optimal policy is a consequence of the
so-called log transformation. The transformation relates the value function of
an optimal control problem to the posterior distribution of the dual optimal
estimation problem [21]. Duality is an old subject [22, Chapter 7.5],[23,
Chapter 15]. In recent years, there has been renewed interest in duality
for algorithm design. In much of the classical literature on the subject,
duality was used to obtain optimal control algorithms for solving estimation
problems [24]. Although it remains an important theme [25], some of the
more recent work has been in the opposite direction: to solve optimal control
problems by using sampling techniques [26]. Our work fits within this latter
body of work.

A salient aspect of this paper is a detailed comparison with literature
appearing in each of the three main sections after technical details have been
presented.

1.3. Paper outline

The outline of the remainder of this paper is as follows. The LQ optimal
control problem and its dual EnKF solution is described in Sec. 2. The
nonlinear extension and its connection to duality appears in Sec. 3. The
algorithms are illustrated with numerical examples in Sec. 4. The proofs
appear in the Appendix.

Notation: N (m,Σ) is a Gaussian probability distribution with mean m
and covariance Σ. The notation Σ � 0 is used when the matrix Σ is positive
definite. The n × n identity matrix is denoted In. The trace of a matrix is
denoted by Tr(·). For a smooth function f : Rd → R,∇f(x) = [ ∂f

∂x1
, . . . , ∂f

∂xd
]>

denotes the gradient of f , and∇2f(x) = [ ∂2f
∂xm∂xn

(x)]dn,m=1 denotes the Hessian
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matrix. For a smooth vector-field v : Rd → Rd, ∇ · v(x) =
∑d

n=1
∂vn
∂xn

(x)

denotes the divergence. And for a smooth tensor D : Rd → Rd×d, ∇ ·D(x)
is a vector field whose m-th component is

∑d
n=1

∂Dmn
∂xn

(x), and ∇2 · D(x) =∑d
n,m=1

∂2Dmn
∂xn∂xm

(x).

2. LQ problem

The finite-horizon linear quadratic (LQ) optimal control problem is a
special case of (1) as follows:

min
u

J(u) =

∫ T

0

1
2
|Cxt|2 + 1

2
u>t Rut dt+ 1

2
x>TPTxT (4a)

subject to: ẋt = Axt +But, x0 = x (4b)

It is assumed that (A,B) is controllable, (A,C) is observable, and the ma-
trices PT , R � 0. The T = ∞ limit is referred to as the linear quadratic
regulator (LQR) problem.

It is well known that the optimal control ut = φt(xt) where the optimal
policy is linear

φt(x) = Ktx where Kt = −R−1B>Pt

is the optimal gain matrix and Pt is a solution of the backward (in time)
DRE

− d

dt
Pt = A>Pt + PtA+ C>C − PtBR−1B>Pt, PT (given) (5)

The ARE is obtained by setting the left-hand side to 0. As T →∞, for each
fixed time t, Pt → P∞, exponentially fast [27, Remark 2.1], where P∞ � 0 is
the unique positive-definite solution of the ARE, and therefore the optimal
gain converges, Kt → K∞ := −R−1B>P∞. Approximation of the LQR gain
K∞ is a goal in recent RL research [7, 11].

2.1. Main contribution: Dual EnKF algorithm

Under the assumptions of this paper, Pt � 0 for 0 ≤ t ≤ T whenever
PT � 0 [28, Sec. 24]. Set St = P−1

t . It is readily verified that St also solves
a backward DRE

d

dt
St = ASt + StA

> −BR−1B> + StC
>CSt, ST = P−1

T (6)
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Our objective is to approximate St using simulations. The proposed con-
struction proceeds in two steps: (i) definition of an exact mean-field process
and (ii) its finite-N approximation.

Step 1. Mean-field process: Define Y = {Yt ∈ Rd : 0 ≤ t ≤ T} as a
solution of the following backward (in time) stochastic differential equation
(SDE):

dYt = AYt dt+B d
�
ηt + 1

2
S̄tC

>(CYt + Cn̄t) dt, 0 ≤ t < T

YT
d
= N (0, ST ) (7)

where η = {ηt ∈ Rm : 0 ≤ t ≤ T} is a Wiener process (W.P.) with covariance
matrix R−1, and

n̄t := E[Yt], S̄t := E[(Yt − n̄t)(Yt − n̄t)>] (8)

The process Y is an example of a mean-field process because its evolution
depends upon the statistics (n̄t, S̄t) of the process. An SDE of this type
is called a McKean-Vlasov SDE. The meaning of the backward arrow on
d

�
η in (7) is that the SDE is simulated backward in time starting from the

terminal condition specified at time t = T . The reader is referred to [29, Sec.
4.2] for the definition of the backward Itô-integral.

The mean-field process is useful because of the following proposition
whose proof is included in Appendix A.

Proposition 1. The solution to the SDE (7) is a Gaussian stochastic pro-
cess, in which the mean and covariance of Yt are given by

n̄t = 0, S̄t = St, 0 ≤ t ≤ T

Consequently, Xt := S̄−1
t (Yt − n̄t) is also a Gaussian satisfying

E(Xt) = 0, E(XtX
>
t ) = Pt, 0 ≤ t ≤ T

The significance of Prop. 1 is that the optimal control policy φt(·) can now
be obtained in terms of the statistics of the random variable Xt. Specifically,
we have the following two cases:

(i) If the matrix B is explicitly known then the optimal gain matrix

Kt = −R−1B>E(XtX
>
t )
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(ii) If B is unknown, define the Hamiltonian (the continuous-time counter-
part of the Q-function [30]):

H(x, α, t) := 1
2
|Cx|2 + 1

2
α>Rα︸ ︷︷ ︸

cost function

+x>E(XtX
>
t ) (Ax+Bα)︸ ︷︷ ︸

model (4b)

from which the optimal control law is obtained as

φt(x) = arg min
α∈Rm

H(x, α, t)

by recalling the minimum principle, which states that the optimal con-
trol is the unique minimizer of the Hamiltonian. It is noted that the
Hamiltonian H(x, α, t) is in the form of an oracle because (Ax + Bα)
is the right-hand side of the simulation model (4b).

Step 2. Finite-N approximation: The mean-field process is empirically
approximated by simulating a system of controlled interacting particles ac-
cording to

dY i
t = AY i

t dt+B d
�
η
i

t︸ ︷︷ ︸
i-th copy of model (4b)

+S
(N)
t C>

(
CY i

t + Cn
(N)
t

2

)
︸ ︷︷ ︸

data assimilation process

dt, (9)

Y i
T

i.i.d∼ N (0, P−1
T ), 1 ≤ i ≤ N

ηi is an i.i.d copy of η, n
(N)
t = N−1

∑N
i=1 Y

i
t , and

S
(N)
t =

1

N − 1

N∑
i=1

(Y i
t − n(N)

t )(Y i
t − n(N)

t )>

The data assimilation process has a linear feedback control structure where
S

(N)
t C> is the Kalman gain matrix and 1

2
(CY i

t +Cn
(N)
t ) is the state feedback

term similar to the error in the FPF [31]. The process serves to couple the
particles. Without it, the particles are independent of each other.

The finite-N system (9) is referred to as the dual EnKF.

Optimal control: Set X i
t = (S

(N)
t )−1(Y i

t − n(N)
t ). There are two cases as

before:
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(i) If the matrix B is explicitly known then

K
(N)
t = − 1

N − 1

N∑
i=1

R−1(B>X i
t)(X

i
t)
> (10)

(ii) If B is unknown, define the Hamiltonian

H(N)(x, α, t) := 1
2
|Cx|2 + 1

2
α>Rα︸ ︷︷ ︸

cost function

+
1

N − 1

N∑
i=1

(x>X i
t)(X

i
t)
> (Ax+Bα)︸ ︷︷ ︸

model (4b)

from which the optimal control policy is approximated as

φ
(N)
t (x) = arg min

a∈Rm
H(N)(x, a, t)

There are several zeroth-order approaches to solve the minimization
problem, e.g., by constructing 2-point estimators for the gradient. Since
the objective function is quadratic and the matrix R is known, m
queries of H(N)(x, ·, t) are sufficient to compute φ

(N)
t (x).

The overall algorithm including its numerical approximation appears in
Appendix E.

2.2. Remarks

The following remarks are included to help provide an intuitive explana-
tion to various aspects of the dual EnKF.

1. Representation. In designing any RL algorithm, the first issue is rep-
resentation of the unknown value function (Pt in the linear case). Our novel
idea is to represent Pt is in terms of statistics (variance) of the particles.
Such a representation is fundamentally distinct from representing the value
function, or its proxies, such as the Q function, within a parameterized class
of functions.

2. Value iteration. The algorithm is entirely simulation based: N copies
of the model (4b) are simulated in parallel where the terms on the right
hand-side of (9) have the following intuitive interpretations:

1. Dynamics: The first term “AY i
t dt” on the right-hand side of (9) is

simply a copy of uncontrolled dynamics in the model (4b).
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2. Control: The second term is the control input U for the i-th parti-
cle, specified as a white noise process with covariance R−1. One may
interpret this as an approach to exploration whereby cheaper control
directions are explored more.

While there are similarities with traditional approaches to RL, the nov-
elty comes from the data assimilation process that represents an original
contribution.

3. Arrow of time. The particles are simulated backward – from terminal
time t = T to initial time t = 0. This is consistent with the dynamic
programming (DP) equation which also proceeds backward in time.

2.3. Convergence and error analysis
The mean-field process (7) represents the mean-field limit of the finite-N

system (9), as the number of particles N → ∞. The convergence analysis
is a challenging problem but impressive progress has been made in some
groundbreaking work appearing in recent years [32, 33]. In Appendix B,
under certain additional assumptions on system matrices, the following error
bound is derived:

E[‖S(N)
t − S̄t‖F ] ≤ C1√

N
+ C2e

−2λ(T−t)E[‖S(N)
T − S̄T‖F ], (11)

where C1, C2 are time-independent positive constants, and || · ||F denotes
Frobenius norm for matrices. The proof largely follows the techniques devel-
oped in [33].

2.4. Comparison to literature

Function approximation: Classical RL algorithms for the LQR problem
are based on a linear function approximation, using quadratic basis func-
tions, of the value function or the Q-function [34, 35, 36]. The basic idea
is to run the system for a time horizon T , and successively update an esti-
mate of the parameters based on new data collected, using a least-squares
approximation. Convergence guarantees typically require (i) a persistence of
excitation condition, see e.g. [35, Equation (9)], [37, Remark 3, Page 173]
and (ii) use of the on-policy methods whereby the parameters are learned for
a given fixed policy (which is subsequently improved), see e.g. [34, Page 299].
For the deterministic LQR problem, the persistence of excitation condition
is difficult to justify using on-policy RL methods. These limitations have
spurred recent research on the LQR problem.
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Policy gradient algorithms: An inspiration for our work comes from
the pioneering contributions of [11] and [7] who consider the infinite-horizon
LQR objective ((4) with T = ∞). With x0 drawn from a given initial
distributionD, and control policies restricted to the linear form ut = Kxt, the
optimal control problem reduces to the finite-dimensional static optimization
problem:

K? = arg min
K

J(K) = E

(∫ ∞
0

x>t Qxt + u>t Rut dt

)
(12)

where the expectation is over the initial condition. The authors apply a
pure-actor method using “zeroth order” methods to approximate gradient
descent, much like the early REINFORCE algorithm for RL [38].

In a technical tour de force, a Lyapunov function is obtained to carry out
convergence analysis of the approximate gradient descent algorithm. The
result is surprising because the problem is non-convex in K. Error bounds are
obtained to quantify the effect of finite T and the finite number of iterations
of the gradient descent algorithm. The number of particles Ng is of the order
of the dimension of the system [12, Section VIII].

The trade-off between our algorithm and this prior work is as follows:
While policy optimization methods require multiple iterations with a small
number Ng of particles, the EnKF requires only a single iteration with rela-
tively larger number N of particles. Using the EnKF, it is not necessary to
have a stabilizing initial gain.

For a quantitative comparison, consider using the EnKF algorithm to
approximate the infinite-horizon optimal gain (or equivalently the solution
to the algebraic Ricatti equation). Choosing t = 0 in (11), the error is
smaller than ε if the number of particles N > O( 1

ε2
) and the simulation time

T > O(log(1
ε
)), while the iteration number is one. This is compared with

policy optimization approach in [7] where the number of particles and the
simulation time scales polynomially with ε, while the number of iterations
scale as O(log(1

ε
)). This result is later refined in [11] where the required num-

ber of particles and the simulation time are shown to be O(1) and O(log(1
ε
))

respectively (although this result is valid with probability that approaches
zero as the number of iterations grow [11, Thm. 3].).

The overall comparison between the three algorithms appears in Sec. 4.
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Algorithm particles/samples simulation time iterations

EnKF O( 1
ε2

) O(log(1
ε
)) 1

[7] poly
(

1
ε

)
poly

(
1
ε

)
O(log(1

ε
))

[11] O(1) O(log(1
ε
)) O(log(1

ε
))

Table 1: Computational complexity comparison of the algorithms to achieve ε error in
approximating the infinite-horizon LQR optimal gain.

3. Nonlinear extensions

We return to the nonlinear optimal control problem (1) in Sec. 1. Its
solution is obtained using a standard DP argument.

Dynamic programming: For t ∈ (0, T ), the value function

vt(x) := min
{us:t≤s≤T}

∫ T

t

(
1
2
|c(xs)|2 + 1

2
u>s Rus

)
ds+ g(xT ) (13)

From the DP optimality principle, the value function solves the HJB equation

∂vt
∂t

+
1

2
c2 − 1

2
∇v>t D∇vt + a>∇vt = 0, vT (x) = g(x), x ∈ Rd (14)

where D(x) := b(x)R−1b>(x), and the optimal control input is of the state
feedback form ut = φt(xt) where

φt(x) = −R−1b>(x)∇vt(x), x ∈ Rd (15)

is the optimal control policy. For the LQ special case, the value function
vt(x) = 1

2
x>Ptx is quadratic and the HJB equation (14) reduces to the

DRE (5) for the matrix Pt.
In the following, a mean-field process is introduced to solve the HJB

equation based on the use of a log transformation.

Log transformation: Define a probability density as

pt(x) :=
exp(−vt(x))∫
exp(−vt(x)) dx

, x ∈ Rd

In Appendix C, it is shown that the density solves a backward nonlinear
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PDE:

∂pt
∂t

= pt(ht − ĥt)−∇ · (pt(a−∇ ·D))− 1

2
∇2 · (ptD)

pT (x) =
exp(−g(x))∫
exp(−g(x)) dx

, x ∈ Rd (16)

where

ht(x) :=
1

2
|c(x)|2 + (∇ · a)(x)− 1

2
∇2 ·D(x) +

1

2
Tr
(
(D(x))∇2 log(pt(x))

)
and ĥt :=

∫
ht(x)pt(x) dx.

Our objective is to design simulations to sample from pt. As in the LQ
case, the construction proceeds in two steps: (i) definition of an exact mean-
field process and (ii) its finite-N approximation.

Mean-field process: A mean-field process Y = {Yt ∈ Rd : 0 ≤ t ≤ T} is
defined as follows:

dYt = a(Yt) dt+ b(Yt) d
�
ηt +∇ ·D(Yt) dt+ Vt(Yt) dt,

YT
d
= pT (17)

where η := {ηt ∈ Rm : 0 ≤ t ≤ T} is a W.P. with covariance R−1, and Vt(·)
is a vector-field that solves the first order linear PDE

− 1

p̄t(x)
∇ · (p̄t(x)Vt(x)) = (ht(x)− h̄t), ∀ x ∈ Rd (18)

where h̄t :=
∫
ht(x)p̄t(x) dx and p̄t is the density of Yt at time t.

The following proposition relates the density p̄t(x) of the mean-field pro-
cess and the value function vt(x) of the optimal control problem. Its proof
appears in Appendix D.

Proposition 2. Suppose pT = p̄T . Then

pt(x) = p̄t(x), ∀ x ∈ Rd, 0 ≤ t < T

Consequently, the optimal control law is given by

φt(x) = R−1b>(x)∇ log p̄t(x)
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Consistency with the LQ setting: With a(x) = Ax, c(x) = Cx, b(x) =
B, and pt = N (0, P−1

t ) . Then ∇ · D = 0 and the function ht(x) simplifies
considerably because

∇ · a(x) = (constant), ∇2 ·D = 0,

Tr
(
D∇2 log(pt(x))

)
= (constant)

Therefore, the right-hand side of the PDE (18) is given by

ht(x)− h̄t =
1

2
|Cx|2 − 1

2
Tr(C>C(S̄t + n̄tn̄

>
t ))

It is straightforward to verify that

Vt(x) =
1

2
StC

>C(x+ n̄t)

solves the PDE (18), from which it follows that the equation for Y reduces
to the form described in (7).

The first order PDE (18) is well known to arise in the nonlinear data
assimilation literature [39, 40, 41]. One of the issues with the PDE is that its
solution is not unique. For this reason, it is useful to consider the gradient
form solution such that Vt(x) = ∇φt(x). The resulting PDE

− 1

p̄t(x)
∇ · (p̄t(x)∇φt(x)) = ht(x)− h̄t

is referred to as the Poisson equation, where the operator on the left-hand side
is the weighted Laplacian. Based on assuming a suitable Poincare inequality,
there is a well developed theory for existence and uniqueness of the solution
of the Poisson equation [42, Theorem 1]. Given its importance in nonlinear
filtering, numerical algorithms for solving the PDE is an area of ongoing
research [39, 43]. Approximate formulae for the solution are also available,
e.g., the constant gain approximation formula [44, Example 2].

3.1. Dual EnKF for nonlinear systems

Although one may numerically approximate the solution of the Poisson
equation, one difficulty is that such approximations will require explicit forms
of the vector-fields a(x) and b(x), and will violate Assumption 1. It is noted
that the terms simplify in the following case:
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1. If a(x) is conservative then ∇ · a(x) = 0.

2. If b(x) = B then ∇2 ·D(x) = 0 and ∇ ·D = 0.

Upon these simplifications, the mean-field process becomes

dYt = a(Yt) dt+ b(Yt) d
�
ηt + Vt(Yt) dt

where Vt is obtained from solving the PDE (18) with

ht =
1

2
|c|2 +

1

2
Tr
(
BᵀR−1B∇2 log(pt)

)
Now, it is natural to consider a Gaussian approximation of the density pt
whereupon ht(x) = 1

2
|c(x)|2 + (constant). This is useful to obtain a dual

EnKF algorithm:

dY i
t = a(Y i

t ) dt+ b(Y i
t ) d

�
η
i

t︸ ︷︷ ︸
i−th copy of model (1b)

+K
(N)
t (

c(Y i
t ) + ĉ

(N)
t

2
) dt,

Y i
T

i.i.d∼ exp(−gT ), 1 ≤ i ≤ N

where (as before) ηi := {ηit ∈ Rm : i : 0 ≤ t ≤ T} is an independent copy of

η, ĉ
(N)
t := N−1

∑N
i=1 c(Y

i
t ), and the gain is a constant matrix:

K
(N)
t =

1

N − 1

N∑
i=1

(Y i
t − n(N)

t )(c(Y i
t )− ĉ(N)

t )>

One may interpret the above as the dual counterpart of the FPF algorithm
with a constant gain approximation [31, Example 2].

The optimal control is approximated as in the foregoing via the Hamil-
tonian,

H(N)(x, α, t) := 1
2
|c(x)|2 + 1

2
α>Rα +

1

N

N∑
i=1

(x>X i
t)(X

i
t)
> (a(x) + b(x)α)︸ ︷︷ ︸
i−th copy of model (1b)

where as before X i
t := (S

(N)
t )−1(Y i

t − n(N)
t ). Pseudo-code for the dual EnKF

appears in Appendix E.
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3.2. Comparison with literature

In the introduction of [45], the authors write “Transformations based on
an exponential change of measures have a rich tradition . . . and are regularly
re-discovered”. Indeed, the pathwise (robust) representation of the nonlinear
filter is based on a log transformation and its link to the HJB equation is at
least as old as the works of [21, 46]. In the early 2000s, these classical ideas
were re-purposed and extended for the purposes of algorithm design. There
were two sets of ground-breaking contributions:

1. Inference as control. In [47], Mitter and Newton proposed a dual
optimal control formulation of the nonlinear smoothing equations (see [25]
for a recent review including a discussion of log transformation).

2. Control as inference. In [48, 49], Kappen described the so called path
integral formulation of optimal control, where the log transformation is used
to convert the HJB equation into a linear equation. In a closely related but
independent work, Todorov used duality to express a class of optimal control
problems as graphical inference problems [50]. Both these works continue to
impact RL for robotics (a recent review is in [26]).

A key idea in these works is the classical connection between Kullback-
Leibler (KL) divergence and Bayes’ formula: Let P denote the law for a
stochastic process X and Qz denote the conditional law for X given an ob-
servation path z (this is given for inference problems). Let us construct a
controlled process Xu and denote its law as Pu (this is given for control
problems). Assuming Pu is absolutely continuous with respect to P (denoted
Pu � P), let us define the objective function as the KL divergence between
Pu and Qz as follows:

min
Pu

EPu

(
log

dPu

dP

)
− EPu

(
log

dQz

dP

)
In going from inference to control, a model for the controlled process Xu

is prescribed. In going from control to inference, the integral state cost is
interpreted as the conditional law Qz (the second expectation). Of course,
this places restriction on both the structure of the control system and the
structure of the running cost. In both Mitter-Newton and in Kappen, the
model structure is as follows:

dXu
t = b(Xu

t , t) dt+ σ(Xu
t )(Ut dt+ dBt)

where b(·), σ(·) are C1 vector fields and B̃ is a W.P. For such a model, Pu � P
and divergence (the first expectation) equals the quadratic control cost based
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on the use of the Girsanov transformation [51, Eq. (35)]. Extension of these
concepts to discrete Markov decision processes (MDP) can be found in [52,
Chapter 3] and is referred to as linearly solvable MDPs in [50].

In [53], Kappen and Ruiz write “Despite these elegant theoretical results,
this idea has not been used much in practice. The essential problem is the
representation of the controller as a parametrized model and how to adapt the
parameters such as to optimize the importance sampler”. Indeed, the design
of algorithms based on these ideas remains an important area of research.

Since our focus is on inference algorithms for solving optimal control prob-
lems, we mention some salient points: The most direct approach is based on
exact or approximate inference to compute the posterior. Computationally
efficient message passing algorithms for the same are attractive in the linear
Gaussian settings or if the state and action space is finite [54, 55]. The op-
timal control formulation of the smoothing equations in the linear Gaussian
case is completely classical [23, Chapter 15], as are the message passing al-
gorithms for the these cases. In a discrete MDP setting, a relevant example
is the posterior policy iteration algorithm [56, Section II-C].

For nonlinear SDEs, the link is again classical – based on log transfor-
mation relating the pathwise filter and the HJB equation [25, Section 3.5].
The optimal policy is expressed as a certain Feyman-Kac type expectation
which is approximated using importance sampling. For MDPs as well, the
use of importance sampling for policy evaluation while sampling from an-
other (simpler) policy is a standard approach in RL [38, Chapter 5.5, 5.7]. It
allows the user to explore the state space using an exploratory policy while
updating the optimal policy.

In practice, approximations are necessary. Based on the KL divergence,
a natural approximation is to parametrize the control policy as θ and denote
the law of the controlled process as P θ. Then policy improvement is obtained
using

θ ←− arg min
θ

EP θ
(

log
dP θ

dP

)
− EP̃ θ

(
log

dQz

dP

)
The resulting algorithm is referred to as the cross-entropy method in [53]
where formulae for the gradient are also obtained and approximated using
importance sampling. Related concepts and algorithms appear in a some-
what more general form in [56] for discrete state-space MDPs.

Given this history, we make the following points to distinguish our work
from this earlier literature:
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1. Log transformation. While our use of the log transformation is same as
the path integral approach of Kappen [48, 49], an important difference is that
for us pt is a (normalized) probability density. The governing equation (16)
is nonlinear because of the terms involving h̄t. In contrast, the path integral
method works with the un-normalized density whose equation is linear. The
linearity is crucial for the Feyman Kac formula and its empirical approxi-
mation using importance sampling. For us, the equation for the normalized
density is necessary because our aim is to construct a McKean-Vlasov SDE.

2. Algorithm. The controlled interacting particle system via a finite-N
approximation of the McKean-Vlasov SDE is original. It is conceptually
and structurally distinct from earlier work, same as the distinction between
important sampling and control-type algorithms in the filtering context; the
latter class of algorithms is of much recent origin [18, 20]. In particular, we
are not aware of any work using EnKF (or similar constructions) to solve an
optimal control problem.

4. Numerics

The performance of the dual EnKF algorithm is numerically evaluated
for three benchmark examples. In each of the three examples, the optimal
control problem is formulated as an infinite-horizon LQR problem. This
allows also for a comparison with the state-of-the-art methods that have
focussed on this problem.

In a numerical implementation, the terminal time T is fixed and EnKF is
simulated to obtain an empirical approximation {P (N)

t ∈ Rd×d : 0 ≤ t < T},
typically using PT = I, the identity matrix. For the sake of comparison, the
exact {Pt ∈ Rd×d : 0 ≤ t ≤ T} is obtained by numerically integrating the
DRE (5). The stationary solution P∞ is obtained as a solution of the ARE
using scipy package in Python. Pseudo-code is contained in Algorithm 2 of
Appendix E. All the code is available on Github [57].

4.1. Linear system with randomly chosen entries

A d-dimensional system is in its controllable canonical form

A =


0 1 0 0 . . . 0
0 0 1 0 . . . 0
...

...
a1 a2 a3 a4 . . . ad

 , B =


0
0
...
1


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where the entries (a1, . . . , ad) ∈ Rd are i.i.d. samples from N (0, 1). The
matrices C,R, PT are identity matrices of appropriate dimension. We fix T =
10, chose the time-discretization step as 0.02, and use N = 1000 particles.

Figure 1a depicts the convergence of the four entries of the matrix P
(N)
t

for the case where the state dimension d = 2. Figure 1b depicts the analogous
results for d = 10. Figures 2a and 2b depict the open-loop poles (eigenvalues
of the matrix A) and the closed-loop poles (eigenvalues of the matrix (A +

BK
(N)
0 )), for d = 2 and d = 10, respectively. Note that the closed-loop poles

are stable, whereas some open-loop poles have positive real parts.
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Figure 1: Comparison of the numerical solution obtained from the EnKF, the DRE, and
the ARE. Note the x-axis for these plots is T − t for 0 ≤ t ≤ T .

4.2. Mass spring damper system

We present numerical comparison of EnKF with policy gradient algo-
rithms in [11] (denoted as [M21]) and [7] (denoted as [F18]). Comparison
is made on the benchmark spring mass damper example [58, Section VI].
Additional details on modeling along with the numerical values of various
simulation parameters can be found in Appendix F.1.

Figure 3 depicts the variation of the relative mean-squared error, defined
as

MSE :=
1

T
E

(∫ T

0

‖Pt − P (N)
t ‖2

F

‖Pt‖2
F

dt

)
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Figure 2: Open and closed-loop poles.

The figure depicts two trends: the O( 1
N

) decay of the MSE as N increases
(for d fixed), which is an illustration of the error bound (11), and a plot of
the MSE as a function of dimension d (for N fixed).

A side-by-side comparison with [F18] and [M21] is depicted in Fig. 4. The
comparison is for the following metrics (taken from [11]):

errorgain =
‖Kest −K∞‖F
‖K∞‖F

, errorvalue =
cest − c∞

c
(N)
init − c∞

where the LQR optimal gain K∞ and the optimal value c∞ are computed
from solving the ARE. The value c

(N)
init is approximated using the initial gain

K = 0 (Note such a gain is not necessary for EnKF). Because [F18] is for
discrete-time system, we use the Euler approximation to obtain a discrete-
time model. Such an approximation is consistent with our choice of numerical
integration in Algorithm 2.

To obtain the relationship between the error and computational time, the
number of particles N is varied in the EnKF algorithm while the number of
gradient descent steps is changed in [M21] and [F18].

In the numerical experiments, the dual EnKF is found to be significantly
more computationally efficient–by two orders of magnitude or more. Com-
parison was carried out for a range of d and is qualitatively similar, see
Appendix F.2. The main reason for the order of magnitude improvement in
computational time is as follows: An EnKF requires only a single iteration
over a fixed time-horizon [0, T ]. We found that the number of particles (N)
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Figure 3: Mean-squared error (MSE) as a function of the number of particles N and
system dimension d

for the EnKF algorithm is typically one or two orders of magnitude larger
than Ng. Since our algorithm is designed to be written as a matrix vector
multiplication, vectorization features of the numpy package in Python yield
significant gains in computational time. In contrast, [F18] and [M21] require
several steps of gradient descent, with each step requiring an evaluation of
the LQR cost, and because these operations must be done serially, these com-
putations are slower. In our comparisons, the same time-horizon [0, T ] and
discretization time-step ∆t was used for all the algorithms. It is certainly
possible that some of these parameters can be optimized to improve the per-
formance of the other algorithms. In particular, one may consider shorter or
longer time-horizon T or use parallelization (over the Ng copies) to speed up
the gradient calculation. Codes are made available on Github for interested
parties to independently verify these comparisons [57].

4.3. Nonlinear cart-pole system

Figure 5 depicts the closed-loop trajectories of a four-dimensional non-
linear cart pole model. The control acts as external force applied to the
cart. The four-dimensional state for the system is (θ, x, θ̇, ẋ), where θ ∈ S1

(the circle) is the angle of the pole (pendulum) as measured from the stable
equilibrium, x ∈ R is the displacement of cart along the horizontal. The
control objective is to balance the pole – stabilize the system at the inverted
equilibrium (π, 0, 0, 0), assuming full state feedback. (See Appendix G for
details on the model parameters and their numerical values).
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Figure 4: Comparison with algorithms in [7] (labeled [F18]) and [11] (labeled [M21]). The
comparisons depict the computation time (in Python) as a function of the relative error
in approximating the LQR gain and cost.

For the purposes of control design, the nonlinear system is first linearized
at the desired equilibrium and an LQR problem is formulated based on [59,
Chapter 3.2]. The (nonlinear) dual EnKF is used to approximate the opti-
mal control law which is numerically evaluated on the fully nonlinear model.
Figure 5 depicts the numerically obtained results. It was found that reason-
able levels of performance is obtained with as few as N = 10 particles. With
N = 1000 particles, the closed-loop trajectories are virtually indistinguish-
able from the exact optimal control solution.

5. Conclusions

In this paper, we present a new class of algorithms for learning optimal
policies using simulations. A key message is that log transforms combined
with mean field techniques can lead to simulation based methods for optimal
policy approximation. We have demonstrated this for LQ in full detail, and
shown how the techniques generalize to nonlinear systems.

There are two key innovations: (i) the representation of the unknown
value function in terms of the statistics (variance) of a suitably designed
process; and (ii) design of interactions between simulations for the purposes
of policy optimization.

We fully believe that the two key innovations may be useful for many other
types of models including MDPs and partially observed problems. For policy
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Figure 5: Trajectories of the closed-loop nonlinear cart pole.

evaluation, use of Monte Carlo techniques is already standard. It is shown in
this paper is that by designing careful interaction amongst simulations, one
can also solve the policy optimization problem.

Another notable aspect is the learning rate. Because the N =∞ limit is
exact tor the LQR problem, the proposed algorithms yields a learning rate
that closely approximates the exponential rate of convergence of the solution
of the DRE. This is rigorously established with the aid of error bound (11)
(although such an analysis is conservative). In numerical examples, this
property is shown to lead to an order of magnitude better performance than
the state-of-the-art algorithms.

Given the enormous success of EnKF in data assimilation [3, 2], the con-
tributions of this paper potentially open up new opportunities for RL. It
is our hope that the paper will engender new synergies between the data
assimilation and the RL communities.

Appendix A. Proof of Prop. 1

The equation for the mean n̄t is obtained by taking the expectation of
SDE (7),

dn̄t = (A+ S̄tC
>C)n̄t dt

Because n̄T = 0, we have n̄t = 0 for all t ∈ [0, T ].
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The equation for the covariance S̄t is obtained by writing the SDE for the
error et := Ȳt − n̄t:

det = (A+
1

2
S̄tC

>C)et dt+B d
�
ηt,

Using the Itô rule for ete
>
t ,

d(ete
>
t ) = B d

�
ηte
>
t + et(B d

�
ηt)
> −BR−1B>

+ (A+
1

2
S̄tC

>C)(ete
>
t ) dt+ (ete

>
t )(A+

1

2
S̄tC

>C)>

The Itô correction term appears with a negative sign because the SDE in-
volves a backward Wiener process

�
ηt [29, Sec. 4.2]. Taking an expectation

yields the following equation for S̄t:

d

dt
S̄t = (A+

1

2
S̄tC

>C)S̄t + S̄t(A+
1

2
S̄tC

>C)> −BR−1B>

The SDE is identical to the SDE for St. Because S̄T = ST , we have S̄t = St
for all t ∈ [0, T ]. The conclusion that Yt is Gaussian follows from the fact
that with n̄t = nt and S̄t = St, the SDE for Yt is an Ornstein-Uhlenbeck SDE
with a Gaussian terminal condition.

The proof for the rest of proposition is straightforward. By definition,

E[Xt] = E[S̄−1
t (Yt − n̄t)] = S̄−1

t (n̄t − n̄t) = 0

E[XtX
>
t ] = E[S̄−1

t (Yt − n̄t)(Yt − n̄t)>S̄−1
t ] = S̄−1

t = S−1
t = Pt

Appendix B. Error analysis

Notation: Let Sd+ ⊂ Sd ⊂ Rd×d denote the set of symmetric positive definite
matrices and symmetric matrices respectively. Let 〈Q1, Q2〉 := Tr(Q1Q

>
2 )

denote the Frobenius inner product, and || · ||F :=
√
〈Q1, Q1〉 denote the

Frobenius inner product for Q1, Q2 ∈ Rd×d.
The objective is to study the error between the empirical covariance of the

particles S
(N)
t and its mean-field limit St. To simplify the presentation, we

use the time-reversed quantitative Ω
(N)
t := S

(N)
T−t and Ωt := S̄T−t. According

to the Proposition 1, Ωt satisfies the Riccati equation

d

dt
Ωt = Ricc(Ωt) := −AΩt − ΩtA

ᵀ − ΩtC
ᵀCΩt + ΣB, (B.1)
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where ΣB := BR−1B>. The time-evolution for Ω
(N)
t is obtained by the

application of the Itô rule to its definition [60, Prop. 4.2]

dΩ
(N)
t = Ricc(Ω

(N)
t ) dt+

1√
N

dMt, (B.2)

where {Mt : t ≥ 0} is a martingale given by

dMt =
1√
N

N∑
i=1

F i
t (B dηit)

ᵀ+B dηit(F
i
t )

ᵀ, F i
T−t := X i

t−n(N)
t

with quadratic variation

d〈M〉t = Tr(ΣB)Ω
(N)
t + ΣBTr(Ω

(N)
t ) + ΣBΩ

(N)
t + Ω

(N)
t ΣB

The error analysis is based on a sensitivity analysis of the Riccati equa-
tion. Let φ(t, Q) denote the semigroup associated with the Riccati equation
such that for any positive definite matrix Q ∈ Sd+,

∂φ

∂t
(t, Q) = Ricc(φ(t, Q)), φ(0, Q) = Q.

We define the first-order and the second-order derivatives which are the linear
and bilinear operators ∂φ

∂Q
(t, Q) : Sd → Sd and ∂2φ

∂Q2 (t, Q) : Sd × Sd → Sd

respectively that satisfy

∂φ

∂Q
(t, Q)(Q1) =

d

dε

∣∣∣∣
ε=0

φ(t, Q+ εQ1)

∂2φ

∂Q2
(t, Q)(Q1, Q1) =

d2

dε2

∣∣∣∣
ε=0

φ(t, Q+ εQ1).

We also let ‖ ∂φ
∂Q

(t, Q)‖F,F and ‖ ∂2φ
∂Q2 (t, Q)‖F,F denote the induced-norm of

these operators with respect to the Frobenius norm. The following lemma
expresses the error as a stochastic integral that involves the semigroup.

Lemma 1. Consider Ωt and Ω
(N)
t defined in (B.1) and (B.2) respectively.

Then

Ω
(N)
t −Ωt =

1√
N

∫ t

0

∂φ

∂Q
(t− s,Ω(N)

s )( dMs)

+
1

2N

∫ t

0

∂2φ

∂Q2
(t− s,Ω(N)

s )( dMs, dMs)

+ φ(t,Ω
(N)
0 )− φ(t,Ω0)

(B.3)
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Proof. The proof follows by expressing the difference

Ω
(N)
t −Ωt = φ(0,Ω

(N)
t )− φ(t,Ω0)

= φ(0,Ω
(N)
t )− φ(t,Ω

(N)
0 ) + φ(t,Ω

(N)
0 )− φ(0,Ω0)

=

∫ t

0

dsφ(t− s,Ω(N)
s ) + φ(t,Ω

(N)
0 )− φ(t,Ω0),

and evaluating the differential

dsφ(t− s,Ω(N)
s ) = −∂φ

∂t
(t− s,Ω(N)

s ) ds+
∂φ

∂Q
(t− s,Ω(N)

s )( dΩ(N)
s )

+
1

2

∂2φ

∂Q2
(t− s,Ω(N)

s )( dΩ(N)
s , dΩ(N)

s ),

and using the identity ∂φ
∂t

(t, Q) = ∂φ
∂Q

(t, Q)(Ricc(Q)).

The preceding lemma can be viewed as the extension of the Alekseev-
Gröbner formula to matrix-valued stochastic differential equations [61]. The
explicit form of this expression appears in [62, Sec. 5.3].

The error bound follows from uniform bounds on the terms involved in
the integral (B.3). Such uniform bounds are available if the Riccati equation
enjoys the following stability property.

Assumption 2. Consider the semigroup corresponding to the Riccati equa-
tion (B.1). There are positive constants c1, c2, and λ such that ∀Q ∈ Sd+:

‖ ∂φ
∂Q

(t, Q)‖F,F ≤ c1e
−2λt, ‖ ∂

2φ

∂Q2
(t, Q)‖F,F ≤ c2e

−2λt.

These bounds are directly related to the exponential stability of the closed-
loop linear system under optimal feedback control [60, Sec. 2]. The expo-
nential decay holds when the linear system is controllable and observable.
However, the fact that the constants c1 and c2 are uniform among all ini-
tial matrices Q is still open. See [60, 63] for detailed analysis of the Riccati
equation where these uniform bounds are shown to hold under the additional
assumption that the matrix C is full-rank.
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Proposition 3. Let S̄t be the mean-field covariance defined in (8) and SNt
be the empirical covariance of the particles defined in (B.2). Then, under

Assumption 2, the error between S
(N)
t and S̄t satisfies the upper-bound

E[‖S(N)
t − S̄t‖F ] ≤ C1√

N
+ C2e

−2λ(T−t)E[‖S(N)
T − S̄T‖F ], (B.4)

where C1, C2 are time-independent positive constants.

Proof. Using (B.3) and the triangle inequality, the expected norm of the
difference satisfies

E[‖Ω(N)
t − Ωt‖F ] ≤ R1√

N
+
R2

2N
+R3

where

R1 = E

[∥∥∥∥∫ t

0

∂φ

∂Q
(t− s,Ωs)( dMs)

∥∥∥∥
F

]
R2 = E

[∫ t

0

∥∥∥∥ ∂2φ

∂Q2
(t− s,Ωs)( dMs, dMs)

∥∥∥∥
F

]
R3 = E

[∥∥∥φ(t,Ω
(N)
0 )− φ(t,Ω0)

∥∥∥
F

]
The first term

R1 ≤
[
E

[∥∥∥∥∫ t

0

∂φ

∂Q
(t− s,Ωs)( dMs)

∥∥∥∥2

F

]] 1
2

=

[∫ t

0

E

[∥∥∥∥ ∂φ∂Q(t− s,Ωs)( dMs)

∥∥∥∥2

F

]] 1
2

≤
[∫ t

0

E

[
‖ ∂φ
∂Q

(t− s,Ωs)‖2
F,F‖ dMs‖2

F

]] 1
2

≤
[∫ t

0

4c2
1e
−4λ(t−s)Tr(ΣB)E[Tr(Ω(N)

s )] ds

] 1
2

where we used Jensen’s inequality in the first step, Itö isometry in the second
step, and Assumption 2 in the last step. The second term,

R2 ≤ E

[∫ t

0

‖ ∂
2φ

∂Q2
(t− s,Ωs)‖F‖ dMs‖2

F

]
≤
∫ t

0

4c2e
−2λ(t−s)Tr(ΣB)E[Tr(Ω(N)

s )] ds
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where we used Assumption 2. The third term,

R3 ≤ c1e
−2λtE[‖Ω(N)

0 − Ω0‖F ]

because of the bound on the first derivative in Assumption 2. Upon using
the bound E[Tr(Ω

(N)
t )] ≤ Tr(Σt) ≤ supt≥0 Tr(Σt) =: σ2 from [60, Thm. 5.2],

we conclude

E[‖Ω(N)
t − Ωt‖F ]≤(c1+c2

√
ε)
√
ε+c1e

−2λtE[‖Ω(N)
0 − Ω0‖F ]

where ε := σ2Tr(ΣB)
λN

. Changing t to T − t concludes the proof.

Appendix C. Evolution of density in (16)

By definition, the probability density

pT (x) =
exp(−g(x))∫
exp(−g(x)) dx

, x ∈ Rd

Write vt = − log(pt)+βt where βt := log(
∫
pt(x)dx) is a time-dependent con-

stant to ensure pt is normalized. In terms of pt and βt, the HJB equation (14)
for vt is written as

− 1

pt

∂pt
∂t

+β̇t+
1

2
|c|2−1

p
aT∇p− 1

2pt
Tr(D∇2pt)−

1

2
Tr((Q−D)∇2 log(pt)) = 0

where we used ∇2 log(pt) = 1
pt
∇2pt − 1

p2t
∇pt∇p>t . Multiplying by pt yields

∂pt
∂t

= (ht + β̇t)pt −∇ · (pta) +∇ · (pt∇ ·D)− 1

2
∇2 · (ptD)

where we used

ht :=
1

2
|c|2+∇ · a− 1

2
∇2 ·D +

1

2
Tr((D −Q)∇2 log(pt))

aT∇pt = ∇ · (pta)− pt∇ · a
Tr(D∇2pt) = ∇2 · (ptD)− 2∇ · (pt∇ ·D) + pt∇2 ·D

Noting
∫

∂pt
∂t

dx = 0, we obtain

β̇ = −
∫
ht(x)pt(x) dx = −ĥt

which in turn gives the PDE (16) for pt.
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Appendix D. Proof of Prop. 2

The proof for p̄t = pt follows from showing that the evolution equation
for p̄t and pt are identical. Consider the SDE (17). The evolution equation
for the density p̄t is the Fokker-Planck equation:

∂p̄t
∂t

= −∇ · (p̄ta)−∇ · (p̄t∇ ·D)−∇ · (p̄tVt)−
1

2
∇2 · (p̄tD)

where the diffusion term 1
2
∇2 · (p̄tD) appears with a negative sign because

�
η̄t

is a backward Wiener process.
It is easily see that if the vector-field Vt(·) solves the PDE (18) then the

evolution equations for pt and p̄t are identical.

Appendix E. Algorithm for implementing nonlinear dual EnKF

The algorithm to approximate the optimal control policy for (1) is divided
into an online and offline component.

Offline algorithm. (Algorithm 1) to compute {P (N)
t : 0 ≤ t ≤ T}. It is

based on the finite-N approximation of the dual EnKF (9). For a numerical
solution of the SDE, we use the simplest Euler scheme which can be swapped
with a higher order scheme.

Online algorithm. (Algorithm 2) to compute the optimal control for a
given state Xt = x at time t. In addition to the simulator, this algorithm also
requires P

(N)
t computed from the offline algorithm. It is based on minimizing

the Hamiltonian function.
The algorithm is described for the general nonlinear case. The LQ is the

special case when f(x, u) = Ax+Bu and c(x) = Cx.
In a numerical implementation of the offline algorithm, there are two

sources of error: (i) because of finite-N approximation; and (ii) because of
time-discretization step size ∆t. The first type of error scales as O( 1√

N
) as

shown in the bound (11). For SDEs, the second type of error scales as O(∆t)
using the Euler scheme [64].

Appendix F. Details of Example 4.2

Appendix F.1. Coupled mass spring damper system
This system is taken from [58]. The matrices A and B are as follows:

A =

[
0ds×ds Ids
−T −T

]
, B =

[
0ds×ds
Ids

]
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Algorithm 1 [offline] EnKF algorithm to approximate {Pt : 0 ≤ t ≤ T}
Require: Simulation time T , simulation step-size ∆t, number of particles

N , simulator f(x, u) = a(x)+b(x)u, terminal cost gT , cost function c(x),
and control cost matrix R.

1: return {P (N)
k (·) : k = 0, 1, 2, . . . , T

∆t
− 1}

2: TF = T
∆t

3: Initialize {Y i
TF
}Ni=1

i.i.d∼ exp(−gT )

4: calculate n
(N)
TF

= N−1
∑N

i=1 Y
i
TF

5: for k = TF to 1 do
6: Calculate ĉ

(N)
k = N−1

∑N
i=1 c(Y

i
k )

7: Calculate M
(N)
k = (N − 1)−1

∑N
i=1(Y i

k − n(N)
k )(c(Y i

k )− ĉ(N)
k )>

8: for i = 1 to N do
9: ∆ηik

i.i.d∼ N (0, 1
∆t
R−1)

10: ∆Y i
k = f(Y i

k ,∆η
i
k)∆t+ 1

2
M

(N)
k (c(Y i

k ) + ĉ
(N)
k )∆t

11: Y i
k−1 = Y i

k −∆Y i
k

12: end for
13: Calculate n

(N)
k−1 = N−1

∑N
i=1 Y

i
k−1

14: Calculate S
(N)
k−1 = (N − 1)−1

∑N
i=1(Y i

k−1 − n(N)
k−1)(Y i

k−1 − n(N)
k−1)>

15: P
(N)
k−1 = (S

(N)
k−1)−1

16: end for

Algorithm 2 [online] EnKF algorithm to calculate optimal control for (1)

Require: Simulation time T , simulation step-size ∆t, number of particles
N , {P (N)

k : k = 0, 1, 2, . . . , T
∆t
} from the offline algorithm 1, Hamiltonian

function H(x, y, α) = yT (a(x) + b(x)α) + 1
2
|c(x)|2 + 1

2
α>Rα, {ei}mi=1 the

standard basis of Rm

1: return optimal control input {u(N)
k ∈ Rm : k = 0, 1, 2, . . . , T

∆t
− 1}.

2: Define TF := T
∆t

3: for k = 0 to TF − 1 do
4: Observe state of the system, denoted xk
5: Define yk = Pkxk
6: for i = 1 to m do
7: 〈u(N)

k , ei〉 = H(xk, yk, R
−1ei)−H(xk, yk, 0)− 1

2
(R−1)ii

8: end for
9: Apply control u

(N)
k to the true system

10: end for
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where ds = d
2

is the number of masses and T ∈ Rds×ds is a Toeplitz matrix
with 2 on the main diagonal and −1 on the first sub-diagonal and first super-
diagonal. Numerical values of parameters used in simulations are listed in
Table F.2.

Table F.2: Model parameters for the coupled mass spring damper system

Parameter Name Symbol Numerical value

Model Parameters

LQ parameters

C for d = 2
√

5Id
C for d > 2 Id

R Ids
PT Id

Simulation Parameters

Simulation time T 10

Step size ∆t 0.02

Appendix F.2. Comparison between EnKF and policy-gradient methods

The hyper-parameters required to implement the algorithms of [M21],
and [F18] algorithms are as follows. The simulation time horizon T = 10,
and the step-size ∆t = 0.01 is the same for all of EnKF, [F18] and [M21]. The
initial guess K0 = 0, initial distribution D0 = N (0, Id), and gradient descent
step α = 0.0001 for both [M21] and [F18]. The values of the other hyper
parameters, namely the smoothing parameter r and number of particles in
gradient calculation Ng are in Table F.3. The numerical results for d = 10
are depicted in Figure 4 and for d = 2, 4 in Figure F.6. Additionally, Figure
F.7 shows comparison for error in cost. While calculating cost, the system
is initialised with a N (0, 0.1Id) distribution to keep the simulation setup as
close to the setting of [M21] and [F18] as possible.

The simulations are implemented in Python 3 on a Intel Xeon E3-1240
V2 3.40 Ghz CPU, and the process time() function from the time module
is used to evaluate the execution time.
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Table F.3: Hyper-parameter values for policy gradient

Hyper-param. [M21] [F18]

d 2 4 10 2 4 10

r 10−1 10−1 10−3 10−1 10−1 10−1

Ng 2 4 10 2 4 10
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Appendix G. Cart-pole system

The nonlinear model is taken from [59, Chapter 3.2.1]:

θ̇ = ω

ω̇ =
−F cos(θ)−mlω2 cos(θ) sin(θ)− (m+M)g sin(θ)

l(M +m sin2(θ))

ẋ = v

v̇ =
F +m sin(θ)(lω2 + g cos(θ))

M +m sin2(θ)

For the specification of the LQ cost, we first linearize the system about
the desired inverted equilibrium (π, 0, 0, 0). The associated A and B matrices
are as follows:

A =


0 0 1 0

0 0 0 1
(M+m)g

Ml
0 0 0

mg
M

0 0 0

 , B =


0

1
Ml

0

1
M


Note these are used only to obtain the LQR solution (for comparison) but
not needed to implement the dual EnKF. The model parameters and the
simulation parameters are are listed in Table G.4.
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