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a b s t r a c t

We study nonzero-sum stochastic differential games with risk-sensitive ergodic cost criterion. Under
certain conditions, using multi parameter eigenvalue approach, we establish the existence of a
Nash equilibrium in the space of stationary Markov strategies. We achieve our results by studying
the relevant systems of coupled Hamilton–Jacobi–Bellman (HJB) equations. Exploiting the stochastic
representation of the principal eigenfunctions we completely characterize Nash equilibrium points in
the space of stationary Markov strategies. The complete characterization of Nash equilibrium points is
established under an additive structural assumption on the running cost and the drift term.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

We study non zero-sum risk-sensitive stochastic differential
ames in a multi parameter eigenvalue problem framework. In
he literature of stochastic differential games, one usually con-
iders the expectation of the integral of costs ([1–3] etc.). This
s the so called risk-neutral situation where the players (i.e., the
ecision makers or controllers) ignore the risk. If the players are
isk-sensitive (i.e., risk-averse or risk-seeking), then one of the
ost appropriate cost criteria is the expectation of the exponen-

ial of the integral of costs as it leads to certainty equivalence [4].
ince the cost criterion is the expectation of the exponential of
he integral costs, it is multiplicative as opposed to the additive
ature of the cost criterion in the expectation of the integral
osts case. Due to this, the analysis of the risk-sensitive case is
ignificantly different from its risk-neutral counterpart. To our
nowledge, the risk-sensitive criterion was first introduced by
ellman [5]; see [6] and the references therein. Though this
riterion has been studied extensively for stochastic optimal con-
rol problems [7–21], the corresponding literature in the context
f stochastic differential games is rather limited. Some excep-
ions are [22–25]. Basar [22] proves the existence of a Nash
quilibrium for finite horizon nonzero-sum risk sensitive games.

✩ This paper is dedicated to the memory of Ari Arapostathis.
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El-Karoui and Hamadene [25] study risk-sensitive control, zero-
sum and nonzero-sum game problems. They prove the existence
of an optimal control, a saddle-point and a Nash equilibrium
point for relevant cases. In [25], authors use Pontryagin’s mini-
mum principle to characterize the optimality condition and the
adjoint problem leads to some special backward stochastic dif-
ferential equations. Basu and Ghosh [23] study infinite horizon
risk-sensitive zero-sum stochastic differential games and estab-
lish the existence of saddle points which are mini–max selectors
of the associated Hamilton–Jacobi–Isaacs (HJI) equation. In a re-
cent work Biswas and Saha [24] consider risk-sensitive zero-sum
stochastic differential games for controlled diffusion process in
Rd. Under fairly general conditions on the drift and the diffusion
coefficients (e.g., the coefficients are locally Lipschitz continuous
and have some global growth condition), they study the ergodic
cost criterion. They completely characterize saddle point equi-
libria in the space of stationary Markov strategies, under the
assumption that running cost function satisfies either small cost
condition or dominated by some inf-compact function.

In the framework of reflecting diffusions Ghosh and Prad-
han [26] (in bounded domain), [27] (in orthant) have studied
similar nonzero-sum game problem for risk-sensitive ergodic cost
criterion. They studied the game problems by studying the asso-
ciated system of coupled HJB equations. In the reflecting diffusion
setup, the associated coupled systems are semi-linear elliptic
pdes with some oblique boundary conditions. The authors used
the principal eigenvalue approach to completely characterize all
possible Nash equilibria in the space of stationary Markov strate-
gies. Due to the presence of these nontrivial boundary conditions,
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n order to establish the existence of principal eigenpair to as-
ociated coupled HJB equations, the authors in [27] crucially
sed the fact that the drift term, diffusion matrix are uniformly
ounded and the running cost function satisfies certain small cost
ondition. Together with the ergodic cost criterion, in [27] the
uthors studied the game problem for discounted cost criterion
s well.
For controlled diffusion models, similar game problem under

iscounted cost criterion is studied in [28]. By studying the as-
ociated system of coupled HJB equations, which is in this case
s a coupled system of semi-linear parabolic pdes, they have
stablished the existence of Nash equilibrium points in the class
f eventually stationary Markov strategies. The uniform bound-
dness assumptions on the diffusion coefficients and the running
ost functions play important role in the analysis of this game
roblem.
In this paper, we address the existence of Nash equilibria for

tochastic differential games where the state of the system is
overned by a controlled diffusion processes in the whole space
d. We consider the risk-sensitive ergodic cost evaluation crite-
ion. We analyze this game problem by analyzing the associated
ystem of coupled HJB equation, which is a system of coupled
emi-linear elliptic pdes in Rd. Compared to [26–28], under a
elatively weaker set of assumptions on diffusion coefficients
e.g., the drift term and diffusion matrix are locally Lipschitz
ontinuous and have some global growth condition) (see Assump-
ion 1), using principal eigenvalue approach we establish the
xistence of a Nash equilibrium in the space of stationary Markov
trategies. Also, in this present study, we are allowing our running
ost function to be unbounded as well (see Assumption 2(ii)).
In order to establish the existence of principal eigenpair of

he associated coupled system of Hamilton–Jacobi–Bellman (HJB)
quation, we first study the corresponding Dirichlet eigenvalue
roblem on smooth bounded domains in Rd. Applying a version
f non-linear Krein–Rutman theorem we show that principal
igenpair exists for Dirichlet eigenvalue problem. Then increas-
ng these domains to Rd and employing Fan’s fixed point theo-
em [29], we establish the existence of principal eigenpair to the
ssociated coupled system of HJB equation in the whole space Rd,
hich lead to the existence of a Nash equilibrium. Furthermore,
xploiting the stochastic representation of the principal eigen-
unctions we completely characterize all possible Nash equilibria
n the space of stationary Markov strategies. Thus, the main
esults of this article can be roughly described as follows.

• Existence and uniqueness of solution to the coupled HJB equa-
tion: Using Principal eigenvalue approach, we establish the
existence and uniqueness of solution to the associated cou-
pled HJB equation in an appropriate function space.

• Characterization of Nash equilibrium: Using Fan’s fixed point
theorem we first establish the existence of Nash equilibrium
in the space of stationary Markov strategies. Then utilizing
the stochastic representation of the principal eigenfunctions
we completely characterize all possible Nash equilibria in
the space of stationary Markov strategies.

he rest of this paper is organized as follows. Section 2 deals with
he problem description. In Section 3 we discuss the principal
igenvalue problem for controlled diffusion operators on smooth
ounded domains. Section 4 is devoted to study the eigenvalue
roblem for controlled diffusion operator in whole space Rd. The
omplete characterization of Nash equilibrium in the space of
tationary Markov strategies is presented in Section 5.
 |

2

2. Problem description

For the sake of notational simplicity we treat two player case.
Let Ui, i = 1, 2 be compact metric spaces and Vi = P(Ui), the
space of probability measures on the compact metric space Ui
with the topology of weak convergence. Let b̄ = (b̄1, . . . , b̄d) :

d
× U1 × U2 → Rd, r̄i : Rd

× U1 × U2 → [0, ∞), i = 1, 2,
σ : Rd

→ Rd×d be given functions satisfying Assumption 1 (to be
described below).

Define b = (b1, . . . , bd) : Rd
× V1 × V2 → Rd, ri : Rd

× V1 ×

2 → [0, ∞) by

k(x, v1, v2) =

∫
U2

∫
U1

b̄k(x, u1, u2)v1(du1)v2(du2),

ri(x, v1, v2) =

∫
U2

∫
U1

r̄i(x, u1, u2)v1(du1)v2(du2), x ∈ Rd,

v1 ∈ V1, v2 ∈ V2, k = 1, . . . , d, i = 1, 2.

We consider a nonzero-sum stochastic differential game whose
state is evolving according to a controlled diffusion process given
by the solution of the following stochastic differential equation
(s.d.e.)

dX(t) = b(X(t), v1(t), v2(t))dt + σ (X(t))dW (t), (2.1)

where W (·) is an Rd-valued standard Wiener process, vi(·) is a
Vi-valued process which is a non-anticipative functional of the
state process X(·), i.e., vi(t) = fi(t, X([0, t])) where X([0, t])(s) =

X(s ∧ t) for all s ∈ [0,∞) and fi : [0,∞) × C([0,∞);Rd) → Vi.
Such a strategy is called an admissible strategy. For i = 1, 2, Ai
denotes the space of all admissible strategies of Player i. In order
to ensure the existence of a solution to Eq. (2.1) and the existence
of Nash equilibrium (to be describe in (2.6)), we impose following
conditions on the drift term b̄, and the dispersion matrix σ .

Assumption 1.

(i) Local Lipschitz continuity: The function σ =
[
σ ij

]
: Rd

→

Rd×d and b̄ : Rd
× U1 × U2 → Rd are locally Lipschitz

continuous in x (uniformly with respect to the rest), i.e., for
each R ≥ 0, there exists a constant CR > 0 depending on
R > 0, such that

|b̄(x, u1, u2) − b̄(y, u1, u2)|2 + ∥σ (x) − σ (y)∥2
≤ CR |x − y|2

for all x, y ∈ BR ( := {x ∈ Rd
: |x| < R}), i = 1, 2

and (u1, u2) ∈ U1 × U2, where ∥σ∥ :=
√
tr(σσ T) and

b̄ = (b̄1, . . . , b̄d)T . Also, we assume that b, ri are jointly
continuous in (x, u1, u2) for i = 1, 2.

(ii) Affine growth condition: b̄ and σ satisfy a global growth
condition of the form

sup
u1∈U1,u2∈U2

⟨b̄(x, u1, u2), x⟩++∥σ (x)∥2
≤ C0

(
1+|x|2

)
∀ x ∈ Rd,

for some constant C0 > 0.
(iii) Nondegeneracy: For each R > 0, it holds that

d∑
i,j=1

aij(x)zizj ≥ C−1
R |z|2 ∀ x ∈ BR,

and for all z = (z1, . . . , zd)T ∈ Rd, where a = [aij] :=
1
2σσ

T.

Also, we assume that the running cost functions r̄i :Rd
× U1 ×

2 → R+ i = 1, 2 are jointly continuous in (x, u1, u2) and locally
ipschitz continuous in x (uniformly with respect to the rest),
.e., for all R ≥ 0 and x, y ∈ BR there exists a constant CR > 0
epending on R > 0, such that

r̄ (x, u , u ) − r̄ (y, u , u )|2 ≤ C |x − y|2 for all (u , u ) ∈ U × U .
i 1 2 i 1 2 R 1 2 1 2
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It is well known that, under Assumption 1, for any (v1, v2) ∈

A1 × A2 and initial condition X(0) = x, the s.d.e. (2.1) admits
a unique weak solution which is a strong Markov process (see
[30, Theorem 2.2.11, p.42]). For the stochastic differential game,
the controlled diffusion given by (2.1) has the following inter-
pretation: The ith player controls the state dynamics, i.e., the
controlled diffusion given above, through the choice of her/his
strategy vi. The function r̄i represents the running cost function of
Player i. If the strategy vi has the form vi(t) = v̄i(t, X(t)), t ≥ 0 for
some v̄i : [0, ∞)×Rd

→ Vi, then vi or by an abuse of notation v̄i
is called a Markov strategy for Player i. Let Mi = {vi : [0, ∞)×
Rd

→ Vi | vi is measurable} be the set of all Markov strategies for
Player i. Under a pair of Markov strategies the s.d.e. (2.1) admits
a unique strong solution which is a strong Markov process (see
[30, Theorem 2.2.12, p.45]). If vi does not have explicit depen-
dence on t , i.e., v̄i(t, x) = v̄i(x), x ∈ Rd, t ≥ 0, it is said to be a
stationary Markov strategy for Player i. The set of all stationary
Markov strategies for Player i is denoted by Si, i = 1, 2. We
topologize Si, i = 1, 2, using a metrizable weak* topology on
L∞(Rd

;Ms(Ui)), where Ms(Ui) denotes the space of all signed
measures on Ui with weak* topology. Since Si is a subset of
the unit ball of L∞(Rd

;Ms(Ui)), it is compact under the above
weak* topology. One also has the following characterization of
the topology given by the following convergence criterion: For
i = 1, 2, vni → vi in Si as n → ∞ if and only if

lim
n→∞

∫
Rd

f (x)
∫
Ui

g(x, ui)vni (x)(dui)dx =

∫
Rd

f (x)
∫
Ui

g(x, ui)vi(x)(dui)dx,

(2.2)

for all f ∈ L1(Rd) ∩ L2(Rd), g ∈ Cb(Rd
× Ui); see [30, p. 57], for

details.
For vi ∈ Vi, i = 1, 2, let Lv1,v2 : C2(Rd) → C(Rd), be given by

Lv1,v2 f (x) = aij(x)
∂2f (x)
∂xi∂xj

+ bi(x, v1, v2)
∂ f (x)
∂xi

, f ∈ C2(Rd), (2.3)

where Einstein summation convention is used. Further, let

Gv21 f = inf
v1∈V1

[Lv1,v21 f + r1(x, v1, v2(x))f ], v2 ∈ S2, (2.4)

Gv12 f = inf
v2∈V2

[Lv1,v22 f + r2(x, v1(x), v2)f ], v1 ∈ S1, f ∈ C2(Rd),

where for f ∈ C2(Rd),

Lv1,v21 f (x) = Lv1,v2(x)f (x) ∀ v1 ∈ V1, v2 ∈ S2

and

Lv1,v22 f (x) = Lv1(x),v2 f (x) ∀ v1 ∈ S1 , v2 ∈ V2.

For (v1, v2) ∈ S1 × S2, it is easy to see that

Lv1(x),v21 f (x) = Lv1,v2(x)2 f (x) = Lv1(x),v2(x)f (x) = aij(x)
∂2f (x)
∂xi∂xj

+ bi(x, v1(x), v2(x))
∂ f (x)
∂xi

.

The analysis of our game problem will be based on the analysis
of the eigenvalue problems of the above defined operators.

2.1. Ergodic cost criterion

Given the running cost functions ri : Rd
× V1 × V2 → R+, i =

, 2, for any (v1, v2) ∈ A1 × A2, the associated risk-sensitive
rgodic cost of Player i is defined by

i(x, v1, v2) = lim sup
T→∞

1
T
logEv1,v2x

[
e
∫ T
0 ri(X(t),v1(t),v2(t))dt

]
, i = 1, 2.

(2.5)
 a

3

The definition of a Nash equilibrium is standard, i.e., (v∗

1, v
∗

2 ) ∈

A1 × A2 is a Nash equilibrium among the class of admissible
strategies if

ρ1(x, v∗

1, v
∗

2 ) ≤ ρ1(x, v1, v∗

2 ), for all v1 ∈ A1, (2.6)
ρ2(x, v∗

1, v
∗

2 ) ≤ ρ2(x, v∗

1, v2), for all v2 ∈ A2, for all x ∈ Rd.

We assume that our running cost functions ri, i = 1, 2 satisfy
Assumption 1(i). Now for each (v1, v2) ∈ A1 × A2, define

λ1(x, v2) = inf
v′1∈A1

ρ1(x, v′

1, v2), λ1(v2) = inf
x∈Rd

λ1(x, v2), (2.7)

Λ1(x, v2) = inf
v′1∈S1

ρ1(x, v′

1, v2), Λ1(v2) = inf
x∈Rd

Λ1(x, v2),

λ2(x, v1) = inf
v′2∈A2

ρ2(x, v1, v′

2), λ2(v1) = inf
x∈Rd

λ2(x, v1),

Λ2(x, v1) = inf
v′2∈S2

ρ2(x, v1, v′

2), Λ2(v1) = inf
x∈Rd

Λ2(x, v1).

ow we outline our program for establishing the existence of a
ash equilibrium. We analyze our game problem by analyzing
he corresponding system of coupled Hamilton–Jacobi–Bellman
HJB) equations. Suppose that one of the players, say Player 2
nnounces his strategy v2 ∈ S2 in advance, then Player 1 tries to
inimize associated cost ρ1(x, v1, v2) (see, Eq. (2.5)) over all v1 ∈

1, which is a (stochastic) optimal control problem for Player 1.
uch an optimal control problem has been studied in [7,13,14]
nd it is shown that one can characterize the optimal value and
ptimal controls by analyzing the corresponding HJB equation
iven by

1ψ1(x) = Gv21 ψ1(x) with ψ1(0) = 1 . (2.8)

t is well known that (see [7]) the principal eigenvalue of the
JB equation is the optimal value λ1(v2) and any minimizing
elector of (2.8) (which is same as the minimizing selector of
2.4)), i.e., any v∗

1 ∈ S1 which satisfies

1(v2)ψ1(x) = Gv21 ψ1(x) = L
v∗1 ,v2
1 ψ1 + r1(x, v∗

1 (x), v2(x))ψ1,

s an optimal control for Player 1. In particular, v∗

1 ∈ S1 is an
ptimal response for Player 1 corresponding to the announced
trategy v2 of Player 2. Note that v∗

1 depends on v2 and the map

2 (∈ S2) → the optimal responses of Player 1

ay be multi-valued. Analogous result holds for Player 2 if Player
announces his strategy v1 ∈ S1 in advance. From the above
iscussion, it is easy to see that for any given pair of strategies
v1, v2) ∈ S1 × S2, one can construct a set of pairs of optimal
esponses {(v∗

1, v
∗

2 ) ∈ S1 × S2} from their corresponding HJB
quations. Clearly any fixed point of this multi-valued map is a
ash equilibrium. The above discussion leads to the following
rogram for finding a pair of Nash equilibrium strategies for
rgodic cost criterion. Suppose that there exist a pair of stationary
trategies (v∗

1, v
∗

2 ) ∈ S1 × S2, a pair of scalars (λ1, λ2) and a pair
f functions (ψ1, ψ2) in an appropriate function space satisfying
he following coupled HJB equations

1ψ1 = G
v∗2
1 ψ1 = L

v∗1 ,v
∗
2

1 ψ1 + r1(x, v∗

1 (x), v
∗

2 (x))ψ1

2ψ2 = G
v∗1
2 ψ2 = L

v∗1 ,v
∗
2

2 ψ2 + r2(x, v∗

1 (x), v
∗

2 (x))ψ2 ,

hen (v∗

1, v
∗

2 ) will be a pair of Nash equilibrium. The above discus-
ion leads us to study the principal eigenvalues associated with
he above coupled equations in the subsequent sections.

. Dirichlet eigenvalue problem for controlled diffusion oper-
tors

In this section, we discuss the principal eigenvalue problem
vj
ssociated with the nonlinear operators Gi on smooth bounded
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omains D ⊂ Rd. The generalized principal eigenvalue of the
emi-linear operator G

vj
i with Dirichlet boundary condition on D

s defined by
+

i (vj,D) = inf{λ ∈ R | for some ϕ ∈ W 2,p(D) ∩ C(D̄), p > d,

ϕ > 0, G
vj
i ϕ ≤ λϕ in D}, (3.1)

for i ̸= j, i, j = 1, 2. Now we prove the existence of the principal
eigenvalues of a certain parametric family of semi-linear elliptic
pdes.

Theorem 3.1. Suppose that Assumption 1 holds. Let vj ∈ Sj and D
be a bounded smooth domain in Rd. Then there exists (unique up to
a scalar multiplication) ψD ∈ W 2,p(D)∩ C(D̄), p > d, ψD > 0 such
that

G
vj
i ψD = λ+

i (vj,D)ψD, (3.2)
ψD = 0 on ∂D , i, j = 1, 2 with i ̸= j.

Proof. We take i = 1, j = 2. Suppose r1 ≤ 0 (this will be dropped
hortly). For φ ∈ C1

0 (D)(:= C0(D̄) ∩ C1(D)), f ∈ Lp(D), let

Γ1(φ, f )(x) = − inf
v1∈V1

{bi(x, v1, v2(x))
∂φ(x)
∂xi

+r1(x, v1, v2(x))φ(x)}+f (x),

and consider

aij(x)
∂2φ̂(x)
∂xi∂xj

= Γ1(φ, f )(x) , with φ̂ = 0 on ∂D . (3.3)

Then by [31, Theorem 9.15, p.241], [31, Theorem 9.14, p.240],
there exists a unique solution φ̂ ∈ W 2,p(D) ∩ C(D̄), p > d,
satisfying

∥φ̂∥W2,p(D) ≤ κ1(∥φ̂∥∞ + ∥Γ1(φ, f )∥Lp(D)) , (3.4)

for some positive constant κ1 = κ1(p,D) which is independent of
φ̂, φ, f . From [31, Theorem 9.1, p.220], we deduce that

∥φ̂∥∞ ≤ κ2∥Γ1(φ, f )∥Ld(D),

for some constant κ2 > 0. Hence, from (3.4), we obtain

∥φ̂∥W2,p(D) ≤ κ3∥Γ1(φ, f )∥Lp(D) (3.5)

for some positive constant κ3. Now consider an operator T map-
ping φ ∈ C1

0 (D) to the corresponding solution φ̂ of (3.3), i.e.,
T(φ) = φ̂. Since the embedding W 2,p(D) ↪→ C1,α(D) for p > d
and α ∈ (0, 1 −

d
p ) is compact, the operator T is compact and

ontinuous. Now we want to show that the following space of
unctions

φ ∈ C1
0 (D) : φ = νT(φ) for some ν ∈ [0, 1]},

is bounded in C1
0 (D). Suppose that there exists a sequence (φn, νn)

with ∥φn∥C1
0 (D)

→ ∞ and νn → ν ∈ [0, 1] as n → ∞. Scaling φn

appropriately we assume that ∥φn∥C1
0 (D)

= 1. Hence, in view of
the estimate (3.5), extracting a suitable subsequence, there exists
a nontrivial φ̃ satisfying

aij(x)
∂2φ̃(x)
∂xi∂xj

= −ν inf
v1∈V1

{bi(x, v1, v2(x))
∂φ̃(x)
∂xi

+ r1(x, v1, v2(x))φ̃(x)},

with φ̃ = 0 on ∂D. This is a contradiction to the strong maximum
principle [31, Theorem 9.6, p.225]. This implies that the above
space is bounded. Hence, by the Leray–Schauder fixed point
theorem [31, Theorem 11.3, p.280], it follows that T admits a
fixed point ϕ ∈ W 2,p(D) ∩ C(D̄) , i.e., we have

Gv21 ϕ(x) = f (x), with ϕ = 0 on ∂D.

Also, by the strong maximum principle [31, Theorem 9.6] it is
clear that ϕ satisfying the equation is unique.
 F

4

Let X = C0(D) and C the cone of non-negative functions in X.
ow define an operator T̂ which maps f ∈ X to corresponding
olution ϕ ∈ W 2,p(D) ∩ C(D̄) satisfying
v2
1 ϕ(x) = −f (x), with ϕ = 0 on ∂D.

rom the above discussion it is easy to see that the opera-
or T̂ is well defined. Thus, combining [31, Theorem 9.1] and
31, Theorem 9.14], we deduce that

ϕ∥W2,p(D) ≤ κ1 sup
D

|ϕ| , (3.6)

or some positive constant κ1. From (3.6), it is clear that T̂ is
ompact and continuous. Also, from the definition one can see
hat T̂ is 1-homogeneous (i.e., T̂(λ̃f ) = λ̃T̂(f ) for all λ̃ ≥ 0).
uppose T̂(fk) = ϕk, k = 1, 2, with f1 ≤ f2. Thus, we have
v2
1 ϕ1(x) ≥ Gv21 ϕ2(x). Since Gv21 is concave, it follows that Gv21 (ϕ2 −

1)(x) ≤ 0. Hence, applying [32, Theorem 3.1] we obtain ϕ2 ≥ ϕ1
nd if f1 < f2 (i.e., f1 ≤ f2 and f1 ̸= f2) then we have ϕ2 > ϕ1
see [32, Lemma 3.1]). This implies that T̂ is order preserving. Let
˜ ∈ C be nontrivial nonnegative function with compact support,
ence from the above discussion we deduce that T̂(φ̃) > 0. Thus,
ne can choose κ2 > 0 such that κ2T̂(φ̃)− φ̃ > 0 in D. Therefore,
y Krein–Rutman theorem (see Theorem A.1), we conclude that
here exists (λ̂, ψD) ∈ R+×W 2,p(D)∩C(D̄) with ψD > 0 satisfying
v2
1 ψD = λ̂ψD in D, and ψD = 0 on ∂D . (3.7)

here ψD is unique up to scalar multiplication. Now, r1 ≥ 0
which is the case by our assumption), since r1 is bounded in
¯ replacing r1 by (r1 − ∥r1∥∞,D), following the above arguments
here exists (λD, ψD) ∈ R×W 2,p(D)∩C(D̄) with ψD > 0 satisfying
3.7).

Next, we show that

D = λ+

1 (v2,D).

learly,

D ≥ λ+

1 (v2,D). (3.8)

uppose λ+

1 (v2,D) < λD. Then for each ε > 0, there exists ε′
≤ ε

nd ϕ′
∈ W 2,p(D) ∩ C(D̄), ϕ′ > 0 such that

v2
1 ϕ

′
≤ (λ+

1 (v2,D) + ε′)ϕ′. (3.9)

hoose ε′ > 0 small enough such that λ+

1 (v2,D) + ε′ < λD. Also,
e have
v2
1 ψD − (λ+

1 (v2,D) + ε′)ψD > Gv21 ψD − λDψD = 0. (3.10)

ence by Theorem A.3, it follows that ψD = tϕ′ for some t > 0.
his gives a contradiction. Therefore we get λD = λ+

1 (v2,D). This
ompletes the proof. □

. Eigenvalue problem for controlled diffusion operators in Rd

In this section we explore the existence of principal eigenvalue
f the controlled diffusion operator G

vj
i , vj ∈ Aj in the whole space

d and establish their relations with the risk-sensitive ergodic
ptimal control problem. The generalized principal eigenvalue of
vj
i in the whole space is defined by

+

i (vj) = inf{λ ∈ R | for some ϕ ∈ W 2,p
loc (R

d) ∩ C(Rd), p > d,

ϕ > 0, G
vj
i ϕ ≤ λϕ a.e.}. (4.1)

In order to study our game problem we enforce following

oster–Lyapunov condition on the dynamics.
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ssumption 2.

(i) In bounded cost case: There exist V ∈ C2(Rd) with infRd V ≥

1, constants δ, α̃ > 0 and a compact set K̃ such that

sup
ui∈Ui,i=1,2

Lu1,u2V ≤ α̃IK̃ − δV. (4.2)

and maxi=1,2 ∥ri∥∞ < δ.
Or,

(ii) In unbounded cost case: There exist V ∈ C2(Rd) with
infRd V ≥ 1, an inf-compact positive ℓ ∈ C(Rd) (i.e., the
sublevel sets {ℓ ≤ κ} are compact, or empty, in Rd for each
κ ∈ R), a constant α̃ > 0 and a compact set K̃ such that

sup
ui∈Ui,i=1,2

Lu1,u2V ≤ α̃IK̃ − ℓV, (4.3)

and for i = 1, 2

ℓ(x) − sup
ui∈Ui,i=1,2

r̄i(x, u1, u2) is inf-compact . (4.4)

As noted in [7,9], if a and b are bounded, it might not be
ossible to find an unbounded function ℓ which satisfies (4.3).
n view of this, we are assuming (4.2).

For i ̸= j, it is easy to see that under Assumption 2(i)

sup
1∈A1

sup
v2∈A2

lim sup
T→∞

1
T
logEv1,v2x

[
e
∫ T
0 ri(X(t),v1(t),v2(t))dt

]
≤ ∥ri∥∞ < ∞.

lso, under Assumption 2(ii), applying Itô–Krylov formula, it fol-
ows that

sup
1∈A1

sup
v2∈A2

lim sup
T→∞

1
T
logEv1,v2x

[
e
∫ T
0 ℓ(X(t))dt

]
≤

α̃

minK̃ V
.

From (4.4), it is clear that supuk∈Uk,k=1,2 r̄i(·, u1, u2) ≤ κ1 + ℓ(·), for
ome positive constant κ1. Therefore, we obtain

sup
v1∈A1

sup
v2∈A2

lim sup
T→∞

1
T
logEv1,v2x

[
e
∫ T
0 ri(X(t),v1(t),v2(t))dt

]
≤ κ1 +

α̃

minK̃ V
.

(4.5)

ow we proceed to prove the existence of the principal eigenpair
o certain semi-linear elliptic pdes in the whole space Rd.

heorem 4.1. Let Assumptions 1 and 2 hold. Suppose vj ∈ Sj, then
here exists a unique ψ ∈ W 2,p

loc (R
d) ∩ C(Rd), p > d, ψ > 0 such

hat
vj
i ψ = λ+

i (vj)ψ with ψ(0) = 1. (4.6)

oreover λ+

i (vj) is simple and satisfies

+

i (vj) ≤ λi(vj) , for i ̸= j, i, j = 1, 2 . (4.7)

roof. Take i = 1, j = 2. Let D = Bn, n ≥ 1, denote the open
all centered at the origin with radius n. From Theorem 3.1, there
xists a (unique) ψn ∈ W 2,p(Bn) ∩ C(B̄n), ψn > 0 in Bn with
n(0) = 1 satisfying
v2
1 ψn = λnψn

ψn = 0 on ∂Bn, (4.8)

here λn = λ+

1 (v2, Bn). Choose v1 ∈ A1, since ψn = 0 on ∂Bn
pplying Ito–Dynkin’s formula we obtain

n(x) ≤ Ev1,v2x

[
e
∫ T
0 (r1(X(t),v1(t),v2(X(t)))−λn)dtψn(X(T ))I{T≤τ }

]
≤ ∥ψn∥∞,BnE

v1,v2
x

[
e
∫ T
0 (r1(X(t),v1(t),v2(X(t)))−λn)dt

]
for all (T , x) ∈ R+ × Bn ,
 L

5

where τ is the first exit time of the process X(t) from Bn and
∥ψn∥∞,Bn := supx∈Bn ψn(x). Thus, taking logarithm on both sides
of the inequality, dividing by T and letting T → ∞, it follows
that

λn ≤ lim sup
T→∞

1
T
logEv1,v2x

[
e
∫ T
0 r1(X(t),v1(t),v2(X(t)))dt

]
< ∞. (4.9)

ince λn is nondecreasing in n (see, (3.1)), it follows that limn λn =

exists.
Now using Harnack inequality (see [31, Corollary 8.21, p.199])

nd the interior estimates [31, Theorem 9.11, p.235], we get for
ach bounded domain D, there exists n0 such that

sup
n≥n0

∥ψn∥W2,p(D) < ∞. (4.10)

ence, by a standard diagonalization procedure and Banach–
laoglu theorem, we can extract a subsequence {ψnk} such that
or some ψ ∈ W 2,p

loc (R
d) ∩ C(Rd), p ≥ 2{

ψnk → ψ in W 2,p
loc (R

d) (weakly)
ψnk → ψ in C1,α(K ) (strongly) for all compact set K ⊂ Rd ,

(4.11)

where 0 < α < 1 −
d
p . Now multiplying both sides of (4.8) by a

est function ϕ ∈ C∞
c (Rd), integrating, and then letting n → ∞,

e deduce that ψ ∈ W 2,p
loc (R

d) ∩ C(Rd), p ≥ 2 satisfies

Gv21 ψ = λψ in Rd. (4.12)

From (4.9), it follows that

λ ≤ λ1(v2).

Since for each n ∈ N we have ψn > 0 it is clear that ψ ≥ 0 in Rd

and since ψn(0) = 1 for all n, we have ψ(0) = 1. Thus, applying
Harnack’s inequality we deduce that ψ > 0 in Rd.

Next from the definition of the generalized principal eigen-
value, it is immediate that

λ ≥ λ+

1 (v2). (4.13)

lso from the definition of the generalized principle eigenvalue
see Eq. (3.1)), it follows that

n = λ+

1 (v2, Bn) ≤ λ+

1 (v2). (4.14)

hus, combining (4.13) and (4.14) we get

= λ+

1 (v2).

ext we show that any eigenvalue of Gv21 corresponding to a
ositive eigenfunction in the class W 2,p

loc (R
d) ∩ C(Rd) is simple.

his, in particular, would impliy the simplicity of the generalized
rincipal eigenvalue λ+

1 (v2).
Let ψk ∈ W 2,p

loc (R
d)∩C(Rd), k = 1, 2 be positive eigenfunctions

orresponding to an eigenvalue λ (in particular, we are interested
n λ = λ+

1 (v2)) satisfying ψk(0) = 1. Let t0 > 0 be such that
1 − t0ψ2 ≥ 0 in B̄R.
Let v1 be a minimizing selector of Gv21 ψ1. Thus

v1,v2
1 ψ1 + r1(x, v1(x), v2(x))ψ1 = Gv21 ψ1 = λψ1
v1,v2
1 ψ2 + r1(x, v1(x), v2(x))ψ2 ≥ Gv21 ψ2 = λψ2 .

his gives us the following inequality
v1,v2
1 (ψ1 − t0ψ2)+ r1(x, v1(x), v2(x))(ψ1 − t0ψ2) ≤ λ(ψ1 − t0ψ2).

ince ψ1 − t0ψ2 ≥ 0 in B̄R, it follows that
v1,v2 (ψ − t ψ )− (r (x, v (x), v (x))−λ)−(ψ − t ψ ) ≤ 0 in B .
1 1 0 2 1 1 2 1 0 2 R
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ence using the maximum principle [31, Theorem 9.6], we have
1 − t0ψ2 = 0 in BR and since ψ1(0) = ψ2(0) = 1, we get t0 = 1
nd hence ψ1 = ψ2 in BR. Since the choice of R > 0 arbitrary

(by choosing large R > 0), it follows that ψ1 = ψ2 in Rd. This
completes the proof. □

We denote the eigenfunction corresponding to λ+

i (vj) satis-
fying ψ(0) = 1 by ψi(vj). Next theorem proves that the eigen-
function ψi(vj) corresponding to the principal eigenvalue λ+

i (vj)
dmits certain stochastic representation. This result plays crucial
ole in obtaining complete characterization of Nash equilibrium
n the space of stationary Markov strategies.

heorem 4.2. Let Assumptions 1, 2 hold. Then, for vj ∈ Sj, the
igenfunction ψi(vj) corresponding to principal eigenvalue λ+

i (vj)
atisfies

i(vj)(x) = Ev1,v2x

[
e
∫ τ̆r
0 (ri(X(t),v1(X(t)),v2(X(t)))−λ

+

i (vj))dtψi(vj)(X(τ̆r ))
]
,

r > 0 , (4.15)

here τ̆r is the hitting time of X(t) to Br and vi ∈ Si is a minimizing
elector of G

vj
i ψi(vj), for i, j = 1, 2 with i ̸= j.

roof. Take i = 1, j = 2. Let (λ̂n, ψ̂n) denote the generalized
rincipal eigenpair of the Dirichlet eigenvalue problem of Lv1,v21 +

1(x, v1(x), v2(x)) in Bn with ψ̂n(0) = 1. Using the monotonicity of
ˆn with respect to the running cost, the following representation
olds (see, [8, Lemma 2.10 (i)])

ˆ n(x) = Ev1,v2x

[
e
∫ τ̆r
0 (r1(X(t),v1(X(t)),v2(X(t)))−λ̂n)dt ψ̂n(X(τ̆r ))I{τ̆r<τn}

]
,

(4.16)

here τn = τ (Bn), the exit time from Bn. Also as in the proof
f Theorem 4.1, it follows that λ̂n ↑ λ+

1 (v1, v2), the generalized
rincipal eigenvalue of Lv1,v21 + r1(x, v1(x), v2(x)). Again using
arnack’s inequality and the standard approximation argument
as in Theorem 4.1), it follows that there exists ψ ∈ W 2,p

loc (R
d) ∩

(Rd), ψ > 0 satisfying
v1,v2
1 ψ + r1(x, v1(x), v2(x))ψ = λ+

1 (v1, v2)ψ. (4.17)

onsider

Ev1,v2x

[
e
∫ τ̆r
0 (r1(X(t),v1(X(t)),v2(X(t)))−λ̂n)dt ψ̂n(X(τ̆r ))I{τ̆r<τn}

]
≤ Ev1,v2x

[
e
∫ τ̆r
0 (r1(X(t),v1(X(t)),v2(X(t)))−λ̂n)dtψ(X(τ̆r ))I{τ̆r<∞}

]
(4.18)

+ sup
∂Br

|ψ̂n − ψ |Ev1,v2x

[
e
∫ τ̆r
0 (r1(X(t),v1(X(t)),v2(X(t)))−λ̂n)dt I{τ̆r<τn}

]
.

Using the monotone convergence theorem, the first term in the
r.h.s. of (4.18) converges to

Ev1,v2x

[
e
∫ τ̆r
0 (r1(X(t),v1(X(t)),v2(X(t)))−λ

+

1 (v1,v2))dtψ(X(τ̆r ))I{τ̆r<∞}

]
.

The second term

sup
∂Br

|ψ̂n − ψ |Ev1,v2x

[
e
∫ τ̆r
0 (r1(X(t),v1(X(t)),v2(X(t)))−λ̂n)dt I{τ̆r<τn}

]
≤

sup∂Br |ψ̂n − ψ |

inf∂Br ψ̂n
Ev1,v2x

[
e
∫ τ̆r
0 (r1(X(t),v1(X(t)),v2(X(t)))−λ̂n)dt ψ̂n(X(τ̆r ))I{τ̆r<τn}

]
=

sup∂Br |ψ̂n − ψ |

inf∂Br ψ̂n
ψ̂n(x) → 0 as n → ∞.

n the above, we have used the fact that ψ̂n − ψ → 0 uniformly
over compact sets and inf∂Br ψ̂n > 0 (by Harnack’s inequality).
Hence, we get

ψ(x) ≤ Ev1,v2
[
e
∫ τ̆r
0 (r1(X(t),v1(X(t)),v2(X(t)))−λ

+

1 (v1,v2))dtψ(X(τ̆ ))
]
.
x r

6

(4.19)

Since

Gv21 ψ̂n ≤ Lv1,v21 ψ̂n + r1(x, v1(x), v2(x))ψ̂n = λ̂nψ̂n,

t follows that
+

1 (v2, Bn) ≤ λ̂n, n ≥ 1.

herefore
+

1 (v2) ≤ λ+

1 (v1, v2).

ince v1 ∈ S1 is a minimizing selector of Gv21 ψ1(v2), we have
v1,v2
1 ψ1(v2) + r1(x, v1(x), v2(x))ψ1(v2) = λ+

1 (v2)ψ1(v2). (4.20)

sing Ito–Krylov formula, for fixed T > 0, x ∈ Bc
r ∩ Bn, r > 0 and

large enough, we have

1(v2)(x) = Ev1,v2x

[
e
∫ τ̆r∧T∧τn
0 (r1(X(t),v1(X(t)),v2(X(t)))−λ

+

1 (v2))dt

× ψ1(v2)(X(τ̆r ∧ T ∧ τn))
]
.

ettting n → ∞, and T → ∞ and using Fatou’s lemma, it follows
hat

1(v2)(x) ≥ Ev1,v2x

[
e
∫ τ̆r
0 (r1(X(t),v1(X(t)),v2(X(t)))−λ

+

1 (v2))dtψ1(v2)(X(τ̆r ))
]
(4.21)

≥ Ev1,v2x

[
e
∫ τ̆r
0 (r1(X(t),v1(X(t)),v2(X(t)))−λ

+

1 (v1,v2))dtψ1(v2)(X(τ̆r ))
]
.

ence for each t > 0,

1(v2)(x) − tψ(x) ≥ Ev1,v2x

[
e
∫ τ̆r
0 (r1(X(t),v1(X(t)),v2(X(t)))−λ

+

1 (v1,v2))dt

× (ψ1(v2)(X(τ̆r )) − tψ(X(τ̆r )))
]
. (4.22)

hus

1(v2)(x)−tψ(x) ≥ 0 in B̄r implies that ψ1(v2)(x)−tψ(x) ≥ 0 in Rd.

ow choose t > 0 such that ψ1(v2)(x) − tψ(x) ≥ 0 in B̄r and
ttains its minimum value 0 in B̄r . Hence ψ1(v2)(x)− tψ(x) ≥ 0 in
d and attains its minimum in Rd. Now using λ+

1 (v2) ≤ λ+

1 (v1, v2),
t is easy to verify that
v1,v2
1 (ψ1(v2)− tψ)− (r1(x, v1(x), v2(x))−λ+

1 (v2))
−(ψ1(v2)− tψ) ≤ 0.

ence using the strong maximum principle [31, Theorem 9.6], we
et ψ1(v2) = tψ . Since ψ1(v2)(0) = ψ(0) = 1, we have t = 1.
herefore, it follows that λ+

1 (v2) = λ+

1 (v1, v2) and ψ̂n → ψ1(v2)
n W 2,p

loc (R
d) ∩ C(Rd).

Thus we have λ̂n ↑ λ+

1 (v2) and along a subsequence ψ̂n →

1(v2) in W 2,p
loc (R

d)∩ C(Rd). Now combining (4.19) and (4.21) we
et the required representation. This completes the proof of the
heorem. □

emark 4.1. From the proof Theorem 4.2, we conclude that
+

1 (v2) = λ+

1 (v1, v2) for any minimizing selector v1 ∈ S1 of the
JB equation Gv21 ψ1(v2) = λ+

1 (v2)ψ1(v2), where λ+

1 (v1, v2) is the
eneralized principle eigenvalue of Lv1,v2+r1(x, v1(x), v2(x)). Sim-
larly, λ+

2 (v1) = λ+

2 (v1, v2) for any minimizing selector v2 ∈ S2 of
he HJB equation Gv12 ψ2(v1) = λ+

2 (v1)ψ2(v1), where λ+

2 (v1, v2) is
he generalized principle eigenvalue of Lv1,v2 + r2(x, v1(x), v2(x)).

Now we claim that λ+

1 (v2), λ
+

2 (v1) ≥ 0. If not, suppose that
+

1 (v2) < 0. Then from (4.15), we deduce that ψ1(v2)(x) ≥

inBr ψ1(v2) for all x ∈ Bc
r . Applying Itô-Krylov formula and

atou’s lemma, from (4.6) it is follows that

1(v2)(x) ≥ Ev1,v2
[
e
∫ T
0 (r1(X(t),v1(X(t)),v2(X(t)))−λ

+

1 (v2))dtψ1(v2)(X(T ))
]

≥ minψ1(v2)Ev1,v2
[
e
∫ T
0 (r1(X(t),v1(X(t)),v2(X(t)))−λ

+

1 (v2))dt
]
.

Br
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aking logarithm of both sides, dividing by T and letting T → ∞,
e get

+

1 (v2) ≥ lim sup
T→∞

1
T
logEv1,v2

[
e
∫ T
0 r1(X(t),v1(X(t)),v2(X(t)))dt

]
≥ 0 .

(4.23)

This is a contradiction. Thus, λ+

1 (v2) ≥ 0. Similarly λ+

2 (v1) ≥ 0.
Now we show that the map vj ↦→ (λ+

i (vj), ψi(vj)) is continuous
in the topology of Sj for i, j = 1, 2. This result is useful in
establishing the u.s.c. of a certain set-valued map (to be intro-
duced soon), which in turn, will ensure the existence of a Nash
equilibrium.

Theorem 4.3. Let Assumptions 1 and 2 hold. Then the map vj ↦→

(λ+

i (vj), ψi(vj)) from Sj to R × W 2,p
loc (R

d) ∩ C(Rd) is continuous for
i, j = 1, 2 with i ̸= j.

Proof. Take i = 1, j = 2. Let vn2 → v2 in the topology of
stationary Markov strategies. From the above observation and
(4.5), we get

0 ≤ λ+

1 (v
n
2) ≤ max{κ1 +

α̃

minK̃ V
, ∥r1∥∞}.

ow using Harnack inequality, see [31, Corollary 8.21, p.199], and
he interior estimates [31, Theorem 9.11, p.235], we get for each
ounded domain D, there exists n0 such that

sup
n≥n0

∥ψ1(vn2)∥W2,p(D) < ∞. (4.24)

ence, by a standard approximation procedure involving Sobolev
mbedding (as in Theorem 4.1), we obtain the existence of ψ ∈

W 2,p
loc (R

d) ∩ C(Rd), p > d, ψ > 0 and a limit point λ of λ+

1 (v
n
2)

satisfying

Gv21 ψ = λψ in Rd . (4.25)

Clearly

λ ≥ λ+

1 (v2).

Next we prove the reverse inequality. From Assumption 2, we
deduce that there exist a compact set B (⊃ K̃ ) and a constant

∈ (0, 1) such that for all large n ∈ N

• under Assumption 2(i): (supui∈Ui i=1,2 r1(x, u1, u2) − λ+

1 (v
n
2))

< θδ for all x ∈ Bc

• under Assumption 2(ii): (supui∈Ui i=1,2 r1(x, u1, u2) − λ+

1 (v
n
2))

< θℓ(x) for all x ∈ Bc .

et r0 > 0 be such that B ⊂ Br0 . Applying Itô-Krylov formula and
atou’s lemma, from (4.2) and (4.3), for any (v1, v2) ∈ A1 × A2
e deduce that

Ev1,v2x

[
eδτ̆r0V(X(τ̆r0 ))

]
≤ V(x) and

Ev1,v2x

[
e
∫ τ̆r0
0 ℓ(X(t))dtV(X(τ̆r0 ))

]
≤ V(x) ∀ x ∈ Bc

r0 .

(4.26)

hus, from Theorem 4.2, for any minimizing selector vn1 of G
vn2
1

1(vn2) = λ+

1 (v
n
2)ψ1(vn2), and x ∈ Bc

r0 , it follows that

ψ1(vn2)(x) = E
vn1 ,v

n
2

x

[
e
∫ τ̆r0
0 (r1(X(t),vn1 (X(t)),v

n
2 (X(t)))−λ

+

1 (vn2 ))dt

ψ1(vn2)(X(τ̆r0 ))
]

≤

supBr0
ψ1(vn2)

θ
E
vn1 ,v

n
2

x

[
eθ τ̆r0 δVθ (X(τ̆r0 ))

]

infBr0 V

7

≤

supBr0
ψ1(vn2)

infBr0 Vθ

(
E
vn1 ,v

n
2

x

[
eτ̆r0 δV(X(τ̆r0 ))

])θ
(by Jensen’s inequality)

≤ κ̂2Vθ (x) (by (4.26)), (4.27)

here one can choose the constant κ̂2 > 0 independent of n (by
arnack’s inequality). This implies that ψ ≤ κ̂2Vθ (in the above
alculations replacing δ by ℓ, it is easy to see that same estimate
olds true under Assumption 2(ii)). Now for any minimizing
elector v1 of (4.6), applying Itô-Krylov formula from (4.25) for
ome T > 0 we deduce that

(x) ≤ Ev1,v2x

[
e
∫ τ̆r0∧T
0 (r1(X(t),v1(X(t)),v2(X(t)))−λ)dtψ(X(τ̆r0 ∧ T ))

]
.

n view of (4.26), since ψ ≤ κ̂2Vθ , by the dominated convergence
heorem letting T → ∞, we get

(x) ≤ Ev1,v2x

[
e
∫ τ̆r0
0 (r1(X(t),v1(X(t)),v2(X(t)))−λ)dtψ(X(τ̆r0 ))

]
≤ Ev1,v2x

[
e
∫ τ̆r0
0 (r1(X(t),v1(X(t)),v2(X(t)))−λ

+

1 (v2))dtψ(X(τ̆r0 ))
]
.

(4.28)

hus, from (4.15) (for i = 1, j = 2) and (4.28), we have

ψ1(v2) − ψ)(x) ≥ Ev1,v2x

[
e
∫ τ̆r0
0 (r1(X(t),v1(X(t)),v2(X(t)))−λ

+

1 (v2))dt

× (ψ1(v2) − ψ)(X(τ̆r0 ))
]
. (4.29)

et κ̃2 = supBr0
ψ1(v2)
ψ

. Hence (4.29) implies that (ψ1(v2)− κ̃2ψ) ≥

in Rd, and for some x1 ∈ Br0 we have (ψ1(v2) − κ̃2ψ)(x1) = 0.
ince λ ≥ λ+

1 (v2), (4.20) and (4.25) give us
v1,v2
1 (ψ1(v2)−κ̃2ψ)−(r1(x, v1(x), v2(x))−λ+

1 (v2))
−(ψ1(v2)−κ̃2ψ) ≤ 0.

hus, by the strong maximum principle [31, Theorem 9.6], we
btain ψ1(v2) = κ̃2ψ . But, we have ψ1(v2)(0) = ψ(0) = 1,
his gives κ̃2 = 1. Therefore, we deduce that ψ1(v2) = ψ and
+

1 (v2) ≥ λ. This, in particular, implies that λ+

1 (v2) = λ. This
roves the continuity of the map v2 ↦→ (λ+

1 (v2), ψ1(v2)) and the
ontinuity of the other maps follows by analogous arguments. □

emark 4.2. For any v ∈ S1, by Itô-Krylov formula, from (4.6)
e deduce that

1(v2)(x) ≤ Ev,v2x

[
e
∫ τ̆r∧τn
0 (r1(X(t),v(X(t)),v2(X(t)))−λ

+

1 (v2))dt

× ψ1(v2)(X(τ̆r ∧ τn))
]

=Ev,v2x

[
e
∫ τ̆r
0 (r1(X(t),v(X(t)),v2(X(t)))−λ

+

1 (v2))dt

× ψ1(v2)(X(τ̆r ))1{τ̆r≤τn}

]
+ Ev,v2x

[
e
∫ τn
0 (r1(X(t),v(X(t)),v2(X(t)))−λ

+

1 (v2))dt

× ψ1(v2)(X(τn))1{τ̆r≥τn}

]
. (4.30)

ince ψ1(v2) ≤ κ̂2Vθ for some θ ∈ (0, 1) (see Theorem 4.3,
q. (4.27)), by mimicking the arguments as in the proof of
33, Theorem 3.2], it is easy to see that

lim
→∞

Ev,v2x

[
e
∫ τn
0 (r1(X(t),v(X(t)),v2(X(t)))−λ

+

1 (v2))dtψ1(v2)(X(τn))1{τn≤τ̆r }

]
= 0.

hus, by monotone convergence theorem letting n → ∞, from
4.30) we conclude that

1(v2)(x) ≤ Ev,v2x

[
e
∫ τ̆r
0 (r1(X(t),v(X(t)),v2(X(t)))−λ

+

1 (v2))dtψ1(v2)(X(τ̆r ))
]
.

(4.31)
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Next we show that for each vj ∈ Sj the generalized prin-
cipal eigenvalue λ+

i (vj) is the optimal ergodic cost of Player i,
i.e., λ+

i (vj) = λi(vj), for i, j = 1, 2 with i ̸= j.

Theorem 4.4. Suppose that Assumptions 1 and 2 hold. Then for
i, j = 1, 2 with i ̸= j we have

λ+

i (vj) = λi(vj).

Proof. From Theorem 4.1, we have λ+

i (vj) ≤ λi(vj). Now to prove
the reverse inequality, we approximate the running costs in the
following way:

• When the cost is bounded: let {φi,n} be a sequence of test
functions such that φi,n = 1 in Bn and φi,n = 0 in Bc

n+1.
Since ∥ri∥∞ < δ, it is possible to choose constants δ̂i > 0
small enough such that ∥ri∥∞ + δ̂i < δ. For (x, u1, u2) ∈

Rd
× U1 × U2, set

ri,n(x, u1, u2) = φi,n(x)ri(x, u1, u2) + (1 − φi,n(x))(∥ri∥∞ + δ̂i),
∀ n ∈ N.

• When the cost is unbounded: For (x, u1, u2) ∈ Rd
× U1 × U2

we define

ri,n(x, u1, u2) = ri(x, u1, u2) +
1
2
(ℓ(x) − ri(x, u1, u2))+ 1{Bcn}.

t is easy to see that for ri,n satisfies (4.4) for i = 1, 2.
Now from Theorem 4.1, for each n ∈ N, there exists

λ+

1,n(v2), ψ1,n(v2)) ∈ R × W 2,p
loc (R

d) ∩ C(Rd), 2 ≤ p < ∞, ψ1,n(v2)
0, satisfying

+

1,n(v2)ψ1,n(v2)(x) = inf
v1∈V1

[Lv1,v21 ψ1,n(v2)

+ r1,n(x, v1, v2(x))ψ1,n(v2)] , with ψ1,n(0) = 1 ,
(4.32)

and

λ+

1,n(v2) ≤ inf
x∈Rd

inf
v1∈A1

lim sup
T→∞

1
T
logEv1,v2x

[
e
∫ T
0 r1,n(X(t),v1(t),v2(X(t)))dt

]
.

(4.33)

t is clear from our construction that there exists a compact set K
ontaining K̃ such that inf(u1,u2)∈U1×U2 r1,n(x, u1, u2) − λ+

1,n(v2) ≥ 0
or all x ∈ Kc . Under Assumption 2(i) one can take K = Bn+1
nd under Assumption 2(ii) since r1,n is unbounded and it sat-
sfies (4.4) one can suitably choose K which satisfies the above
nequality. Let

˘ (K) = inf{t ≥ 0 : X(t) ∈ K}.

pplying Itô-Krylov formula and Fatou’s lemma, for any minimiz-
ng selector v̂1 of (4.32), it follows that

1,n(v2)(x) ≥ E v̂1,v2x

[
e
∫ τ̆ (K)
0 (r1,n(X(t),v̂1(X(t)),v2(X(t)))−λ

+

1,n(v2))dt

× ψ1,n(v2)(X(τ̆ (K)))
]
,

≥ inf
K
ψ1,n(v2), ∀ x ∈ Kc .

Thus, by another application of Itô-Krylov’s formula and Fatou’s
lemma, we deduce that

ψ1,n(v2)(x) ≥ E v̂1,v2x

[
e
∫ T
0 (r1,n(X(t),v̂1(X(t)),v2(X(t)))−λ

+

1,n(v2))dtψ1,n(v2)(X(T ))
]
,

≥ inf
K
ψ1,n(v2)E v̂1,v2x

[
e
∫ T
0 (r1,n(X(t),v̂1(X(t)),v2(X(t)))−λ

+

1,n(v2))dt
]
.

8

aking logarithm on both sides, dividing by T and then letting
→ ∞, we get

+

1,n(v2) ≥ lim sup
T→∞

1
T
log E v̂1,v2x

[
e
∫ T
0 r1,n(X(t),v̂1(X(t)),v2(X(t)))dt

]
,

≥ lim sup
T→∞

1
T
log E v̂1,v2x

[
e
∫ T
0 r1(X(t),v̂1(X(t)),v2(X(t)))dt

]
. (4.34)

s in Theorem 4.1, using Harnack’s inequality and Sobolev esti-
ate from (4.32), one can clearly see that ψ1,n(v2) is uniformly
ounded in W 2,p

loc (R
d), 2 ≤ p < ∞. Thus, along a suitable subse-

uence {ψ1,n(v2)} converges weakly in W 2,p
loc (R

d), 2 ≤ p < ∞, to
ome ψ1,∗(v2) ∈ W 2,p

loc (R
d), 2 ≤ p < ∞, and strongly in C1,α̂

loc (Rd),
ˆ ∈ (0, 1). It is clear from (4.33) and (4.34), that {λ+

1,n(v2)}
s a bounded sequence. Thus, along a further subsequence it
onverges to a constant λ1,∗(v2). Now as in Theorem 4.1, letting
→ ∞ in (4.32), we get (λ1,∗(v2), ψ1,∗(v2)) ∈ R × W 2,p

loc (R
d),

≤ p < ∞, satisfies

1,∗(v2)ψ1,∗(v2) = inf
v1∈V1

[
Lv1,v21 ψ1,∗(v2) + r1(x, v1, v2(x))ψ1,∗(v2)

]
ψ1,∗(v2)(0) =1. (4.35)

ollowing the argument as in Theorem 4.3 (see (4.27)), one can
how that ψ1,n(v2) ≤ κ̂2Vθ , uniformly in n for some constant κ̂2 >
and θ ∈ (0, 1). This implies that, the limit ψ1,∗(v2) ≤ κ̂2Vθ . Let

1 ∈ S1 be a minimizing selector of (4.6). Now, by the arguments
s in Remark 4.2, for each large n ∈ N, we have

1,n(v2)(x) ≤ Ev1,v2x

[
e
∫ τ̆r
0 (r1,n(X(t),v1(X(t)),v2(X(t)))−λ

+

1,n(v2))dtψ1,n(X(τ̆r ))
]
,

∀ x ∈ Bc
r , (4.36)

or some r > 0. Since ψ1,n(v2) ≤ κ̂2Vθ (uniformly in n), in view
f estimates as in (4.26), by the dominated convergence theorem
etting n → ∞ from (4.36) we deduce that

1,∗(v2)(x) ≤ Ev1,v2x

[
e
∫ τ̆r
0 (r1(X(t),v1(X(t)),v2(X(t)))−λ1,∗(v2))dtψ1,∗(X(τ c1 ))

]
,

(4.37)

or all x ∈ Bc
r .

From (4.34), it is easy to see that λ1,∗(v2) ≥ λ1(v2). To
omplete the proof, we have to show that λ+

1 (v2) ≥ λ1,∗(v2). If
ot, let λ+

1 (v2) < λ1,∗(v2). From Theorem 4.2, we have for x ∈ Bc
r

1(v2)(x) = Ev1,v2x

[
e
∫ τ̆r
0 (r1(X(t),v1(X(t)),v2(X(t)))−λ

+

1 (v2))dtψ1(v2)(X(τ̆r ))
]

≥ Ev1,v2x

[
e
∫ τ̆r
0 (r1(X(t),v1(X(t)),v2(X(t)))−λ1,∗(v2))dtψ1(v2)(X(τ̆r ))

]
.

(4.38)

rom (4.37) and (4.38), it follows that

ψ1(v2) − ψ1,∗(v2))(x) ≥ Ev1,v2x

[
e
∫ τ̆r
0 (r1(X(t),v̂1(X(t)),v̂2(X(t)))−λ1,∗(v2))dt

× (ψ1 − ψ1,∗)(X(τ̆r ))
]
.

his implies that (ψ1(v2) − ψ1,∗(v2))(x) ≥ 0 for all x ∈ Rd, if
t holds in Br . Now multiplying ψ1,∗(v2) by a suitable positive
onstant (say, k̂1 = infBr

ψ1(v2)
ψ1,∗(v2)

), we obtain that (ψ1(v2) −

˜ 1,∗(v2))(x) ≥ 0 in Br and it attains its minimum value 0 in Br ,
here ψ̃1,∗(v2) = k̂1ψ1,∗(v2). It is clear that ψ̃1,∗(v2) also satisfies
4.34). Thus, from (4.6) and (4.34) (for ψ̃1,∗), we obtain
v1,v2
1 (ψ1(v2) − ψ̃1,∗(v2)) − (r1(x, v1(x), v2(x))

− λ1,∗(v2))−(ψ1 − ψ̃1,∗)

≤ −(r1(x, v̂1(x), v̂2(x)) − λ1,∗(v2))+(ψ1(v2) − ψ̃1,∗(v2)) ≤ 0 .
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T
[

hus, by an application of the strong maximum principle as in
31, Theorem 9.6], we have ψ1(v2) = ψ̃1,∗(v2). Since ψ1(v2)(0) =

ψ1,∗(v2)(0) = 1, we obtain ψ1(v2) = ψ1,∗(v2). Hence, from (4.6)
and (4.34), we deduce that

λ1,∗(v2)ψ1,∗(v2) ≤ λ+

1 (v2)ψ1,∗(v2).

Since ψ1,∗(v2) > 0, we conclude that λ+

1 (v2) ≥ λ1,∗(v2). This
contradicts the fact that λ+

1 (v2) < λ1,∗(v2). Therefore we obtain
λ+

1 (v2) ≥ λ1,∗(v2). This completes the proof of the theorem. □

Remark 4.3. By closely following the arguments as in the proof
of Theorem 4.4, one can conclude that for any (v1, v2) ∈ S1 ×

S2 the generalized principle eigenvalue λ+

i (v1, v2) of Lv1,v2 +

ri(x, v1(x), v2(x)), satisfies λ+

i (v1, v2) = ρi(x, v1, v2) for i = 1, 2
and x ∈ Rd.

5. Existence of Nash equilibrium

In this section using Fan’s fixed point theorem, we establish
the existence of Nash equilibria in the space of stationary Markov
strategies. Also, exploiting the stochastic representation of the
principal eigenfunctions of the associated coupled HJB equation
we completely characterize all possible Nash equilibria in the
space of stationary Markov strategies.

Let (v1, v2) ∈ S1 × S2. Define

N(v1, v2) = N1(v2) × N2(v1), (5.1)

where

N1(v2) =

{
v∗

1 ∈ S1 | F1(x, v∗

1 (x), v2(x)) = inf
v1∈V1

F1(x, v1, v2(x)) a.e. x
}
,

F1(x, v1, v2(x)) = ⟨b(x, v1, v2(x)),∇ψ1(v2)⟩

+ r1(x, v1, v2(x))ψ1(v2), x ∈ Rd, v1 ∈ V1, v2 ∈ S2

and

N2(v1) =

{
v∗

2 ∈ S2 | F2(x, v1(x), v∗

2 (x)) = inf
v2∈V2

F2(x, v1(x), v2) a.e. x
}
,

where

F2(x, v1(x), v2) = ⟨b(x, v1(x), v2),∇ψ2(v1)⟩

+ r2(x, v1(x), v2)ψ1(v2), x ∈ Rd, v2 ∈ V2, v1 ∈ S1.

By a standard measurable selection theorem (see, [34]), it is
clear that N1(v2) is nonempty. Also, it is easy to see that N1(v2)
is convex. Under the topology of S1, one can show that N1(v2) is
closed in S1, hence compact. Similarly, one can show that N2(v1)
is nonempty, compact, convex subset of S2. Therefore N(v1, v2) is
nonempty, convex and compact subset of S1 × S2. To establish
the existence of a Nash equilibrium, we next prove the upper
semi-continuity (u.s.c.) of the map (v1, v2) ↦→ N(v1, v2) from
S1 × S2 → 2S1×S2 . In order to do so we impose some additive
structure on the drift of the state dynamics and the running cost
function, which is known as ADAC (additive drift and additive
cost) condition, given as follows.

Assumption 3. We assume that b̄ : Rd
× U1 × U2 → Rd and

r̄i : Rd
× U1 × U2 → R+, i = 1, 2, admit the following additive

structures given by

b̄(x, u1, u2) = b̄1(x, u1) + b̄2(x, u2)
r̄i(x, u1, u2) = r̄i,1(x, u1) + r̄1,2(x, u2)

where b̄1, b̄2, r̄i,1, r̄i,2 satisfy the conditions in Assumption 1(i)–
(ii).

Next lemma shows that our set valued map (v1, v2) ↦→

N(v , v ) is upper semi-continuous.
1 2

9

Lemma 5.1. Let Assumptions 1–3 hold. Then the map (v1, v2) ↦→

N(v1, v2) from S1 × S2 → 2S1×S2 is u.s.c.

Proof. Consider a sequence {(vn1, v
n
2)}n in S1 × S2 such that

(vn1, v
n
2) → (v1, v2) ∈ S1 × S2. Choose v̂n1 ∈ N1(vn2), n ≥ 1. Since

S1 is compact, there exists a subsequence (denoting by the same
notation without any loss of generality) {v̂n1} such that v̂n1 → v̂1
for some v̂1 ∈ S1. Then (v̂n1, v

n
2) → (v̂1, v2) in S1 × S2. In view of

Assumption 3, the continuity results as in Theorem 4.3 and the
topology of Si, i = 1, 2, we deduce that

⟨b(x, v̂n1(x), v
n
2(x)),∇ψ1(vn2)⟩ + r1(x, v̂n1(x), v

n
2(x))ψ1(vn2)

converges weakly in L2loc(R
d) to

⟨b(x, v̂1(x), v2(x)),∇ψ1(v2)⟩ + r1(x, v̂1(x), v2(x))ψ1(v2).

Thus, by Banach–Saks theorem [35], there exists a subsequence
of the former whose convex combinations converges strongly in
L2loc(R

d) to the latter. Therefore, along a suitable subsequence of
the convergent sequence of convex combinations (without any
loss of generality denoting by the same notation), it follows that

lim
n→∞

F1(x, v̂n1(x), v
n
2(x)) = F1(x, v̂1(x), v2(x)), a.e. in x. (5.2)

By analogous arguments, for any fixed ˆ̄v1 ∈ S1, we have

lim
n→∞

F1(x, ˆ̄v1(x), vn2(x)) = F1(x, ˆ̄v1(x), v2(x)), a.e. in x. (5.3)

Since v̂n1 ∈ N1(vn2), from the definition of the set N1(vn2) it is easy
to see that

F1(x, ˆ̄v1(x), vn2(x)) ≥ F1(x, v̂n1(x), v
n
2(x)), for all n ≥ 1.

Thus, from (5.2) and (5.3), we obtain

F1(x, ˆ̄v1(x), v2(x)) ≥ F1(x, v̂1(x), v2(x)), for any ˆ̄v1 ∈ S1.

This implies that v̂1 ∈ N1(v2). By similar argument, one can show
that if v̂n2 ∈ N2(vn1) and v̂n2 → v̂2 in S2 then v̂2 ∈ N2(v1). This
proves that the set valued map is u.s.c. □

In view of the u.s.c. of the above set valued map, using Fan’s
fixed point theorem, we now establish the existence of Nash
equilibrium in the space of stationary Markov strategies.

Theorem 5.1. Let Assumptions 1–3 hold. Then there exists (v∗

1, v
∗

2 )
∈ S1 × S2 such that

λ+

1 (v
∗

2 ) = λ+

1 (v
∗

1, v
∗

2 ) and λ+

2 (v
∗

1 ) = λ+

2 (v
∗

1, v
∗

2 ).

In particular, we have (v∗

1, v
∗

2 ) ∈ S1 × S2 is a Nash equilibrium.

Proof. From Lemma 5.1, we know that the set valued map
(v1, v2) ↦→ N(v1, v2) from S1 × S2 → 2S1×S2 is u.s.c. Thus, by
Fan’s fixed point theorem [29], there exists a fixed point (v∗

1, v
∗

2 ) ∈

S1 ×S2, of the map (v1, v2) ↦→ N(v1, v2), i.e., (v∗

1, v
∗

2 ) ∈ N(v∗

1, v
∗

2 ) .
Therefore, it follows that (λ+

1 (v
∗

2 ), ψ1(v∗

2 )), (λ
+

2 (v
∗

1 ), ψ2(v∗

1 )) ∈

R+ × W 2,p
loc (R

d) ∩ C(Rd), p ≥ 2, satisfy the following coupled HJB
equations

λ+

1 (v
∗

2 )ψ1(v∗

2 )(x) = G
v∗2
1 ψ1(v∗

2 )(x) = Lv
∗
1 ,v

∗
2ψ1(v∗

2 )(x)

+ r1(x, v∗

1 (x), v
∗

2 (x))ψ1(v∗

2 )(x) , (5.4)

and

λ+

2 (v
∗

1 )ψ2(v∗

1 )(x) = G
v∗1
2 ψ2(v∗

1 )(x) = Lv
∗
1 ,v

∗
2ψ2(v∗

1 )(x)

+ r2(x, v∗

1 (x), v
∗

2 (x))ψ2(v∗

1 )(x) . (5.5)

From Remark 4.1 (also see Theorem 4.2), it is easy to see that
+ ∗ + ∗ ∗ + ∗ + ∗ ∗
λ1 (v2 ) = λ1 (v1, v2 ) and λ2 (v1 ) = λ2 (v1, v2 ).
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T
t

ρ

herefore, in view of Theorem 4.4 and Remark 4.3, we conclude
hat

1(x, v∗

1, v
∗

2 ) ≤ ρ1(x, v1, v∗

2 ) and ρ2(x, v∗

1, v
∗

2 ) ≤ ρ2(x, v∗

1, v2),

for all v1 ∈ A1, v2 ∈ A2 and x ∈ Rd. This completes the proof of
the theorem. □

In the above theorem we have shown the existence of a
Nash equilibrium in the space of stationary Markov strategies.
Conversely, we now prove that if there exists a Nash equilibrium
(v̄∗

1, v̄
∗

2 ) ∈ S1 × S2, then (v̄∗

1, v̄
∗

1 ) is a pair of minimizing selectors
of the associated coupled HJB equation.

Theorem 5.2. Suppose that Assumptions 1–3 hold. Then, if (v̄∗

1, v̄
∗

2 )
∈ S1 × S2 is a Nash equilibrium, i.e.,

ρ1(x, v̄∗

1, v̄
∗

2 ) ≤ ρ1(x, v̄1, v̄∗

2 ), ∀ v̄1 ∈ A1, x ∈ Rd,

ρ2(x, v̄∗

1, v̄
∗

2 ) ≤ ρ2(x, v̄∗

1, v̄2), ∀ v̄2 ∈ A2, x ∈ Rd,

then (v̄∗

1, v̄
∗

2 ) is a pair of minimizing selector of the corresponding
coupled HJB equation

λ+

1 (v̄
∗

2 )ψ1(v̄∗

2 )(x) = G
v̄∗2
1 ψ1(v̄∗

2 )(x) . (5.6)

λ+

2 (v̄
∗

1 )ψ2(v̄∗

1 )(x) = G
v̄∗1
2 ψ2(v̄∗

1 )(x) . (5.7)

Proof. By limiting arguments as in Theorem 4.1, for the given
pair (v̄∗

1, v̄
∗

2 ) ∈ S1 ×S2, one can prove that there exists a principal
eigenpair (λ+

1 (v̄
∗

1, v̄
∗

2 ), ψ1(v̄∗

1, v̄
∗

2 )) ∈ R+ × W 2,p
loc (R

d), ∞ > p ≥ 2,
with ψ1(v̄∗

1, v̄
∗

2 ) > 0 satisfying the following

λ+

1 (v̄
∗

1, v̄
∗

2 )ψ1(v̄∗

1, v̄
∗

2 ) = Lv̄
∗
1 ,v̄

∗
2ψ1(v̄∗

1, v̄
∗

2 )
+r1(x, v̄∗

1 (x), v̄
∗

2 (x))ψ1(v̄∗

1, v̄
∗

2 )

ψ
v̄∗1 ,v̄

∗
2

1 (0) = 1. (5.8)

From Remark 4.3, we deduce that λ+

1 (v̄
∗

1, v̄
∗

2 ) = ρ1(x, v̄∗

1, v̄
∗

2 ). By
similar argument as in Theorem 4.2, we have

ψ1(v̄∗

1, v̄
∗

2 )(x) = E
v̄∗1 ,v̄

∗
2

x

[
e
∫ τ̆r
0 (r1(X(t),v̄∗1 (X(t),v̄

∗
2 (X(t)))−λ

+

1 (v̄∗1 ,v̄
∗
2 )))dt

× ψ1(v̄∗

1, v̄
∗

2 )(X(τ̆r ))
]
, (5.9)

for some r > 0. In view of Theorem 4.1, for given v̄∗

2 ∈ S2, there
exists a principal eigenpair (λ+

1 (v̄
∗

2 ), ψ1(v̄∗

2 )) ∈ R+ × W 2,p
loc (R

d),
ψ1(v̄∗

2 ) > 0, ∞ > p ≥ 2, satisfying

λ+

1 (v̄
∗

2 )ψ1(v̄∗

2 ) = G
v̄∗2
1 ψ1(v̄∗

2 ) with ψ1(v̄∗

2 )(0) = 1 . (5.10)

Remark 4.1 implies that for any minimizing selector ṽ∗

1 ∈ S1 of
(5.10), λ+

1 (v̄
∗

2 ) = ρ1(x, ṽ∗

1, v̄
∗

2 ). From (5.10), it is easy to see that

λ+

1 (v̄
∗

2 )ψ1(v̄∗

2 ) ≤ Lv̄
∗
1 ,v̄

∗
2ψ1(v̄∗

2 ) + r1(x, v̄∗

1 (x), v̄
∗

2 (x))ψ1(v̄∗

2 ) . (5.11)

By Itô-Krylov formula, as in Theorem 4.1, we obtain λ+

1 (v̄
∗

2 ) ≤

ρ1(x, v̄∗

1, v̄
∗

2 ). But we already have ρ1(x, v̄∗

1, v̄
∗

2 ) ≤ ρ1(x, v̄1, v̄∗

2 ),
∀ v̄1 ∈ A1, x ∈ Rd. Therefore we get λ+

1 (v̄
∗

2 ) = ρ1(x, ṽ∗

1, v̄
∗

2 ) =

ρ1(x, v̄∗

1, v̄
∗

2 ). Following the proof of Theorem 4.2, we get

ψ1(v̄∗

1 )(x) ≤ E
v̄∗1 ,v̄

∗
2

x

[
e
∫ τ̆r
0 (r1(X(t),v̄∗1 (X(t)),v̄

∗
1 (X(t)))−λ

+

1 (v̄∗2 ))dtψ1(v̄∗

1 )(X(τ̆r ))
]
.

Now applying the maximum principle as in Theorem 4.3, one
can deduce that ψ1(v̄∗

2 ) = ψ1(v̄∗

1, v̄
∗

2 ). Thus, from (5.6) and (5.8),
it follows that v̄∗

1 is a minimizing selector of (5.6). By similar
arguments one can show that v̄∗

2 is a minimizing selector of (5.7).

This completes the proof of the theorem. □
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Appendix

In this section we state some important results which we have
used in our proofs. First we recall a version of the nonlinear
Krein–Rutman theorem from [36].

Theorem A.1. Let C be a nonempty closed cone in an ordered
Banach space X satisfying X = C−C (where C−C := {f −g : f , g ∈

C}). Suppose that T :X → X is order-preserving, 1-homogeneous,
completely continuous map and for some nonzero f , and M > 0, we
have f ⪯ MTf . Then there exists λ > 0 and φ ̸= 0 in C such that
Tφ = λφ.

Here ⪯ denotes the partial ordering in X with respect to the
cone C, i.e., f ⪯ g if and only if g−f ∈ C. Also, we recall that a map
T : X → X is called completely continuous if it is continuous and
compact. Now we state the Aleksandrov–Bakelman–Pucci (ABP)
estimate for certain semi-linear differential operator.

Theorem A.2. Let vj ∈ Sj and r̄i(x, u1, u2) ≤ 0 for all (x, u1, u2) ∈

Rd
× U1 × U2 and i, j = 1, 2 with i ̸= j. Suppose that φ ∈

W 2,p
loc (D) ∩ C(D̄), p > d, satisfies

G
vj
i φ ≥ f (x) in {φ > 0} ∩ D , with φ = 0 on ∂D . (A.1)

Then the following inequality holds

sup
D
φ+

≤ sup
∂D
φ+

+ κ̄∥f −
∥Ld(D),

for some constant positive constant κ̄ .

Proof. Since b̄ is jointly continuous, M := supx∈D,u1∈U1,u2∈U2
|b̄(x, u1, u2)| < ∞. From (A.1), we deduce that

aij
∂2φ

∂xi∂xj
(x)+M|∇φ(x)| ≥ f (x) in {φ > 0}∩D , with φ = 0 on ∂D.

Therefore, the result follows from [37, Proposition 3.3]. □

We also need the following maximum principle for small
domains, which follows from Theorem A.2.

Lemma A.1. Let vj ∈ Sj. Then there exists ϵ0 > 0 such that if
|D| ≤ ϵ0, then any ϕ ∈ W 2,p

loc (D) ∩ C(D̄) satisfying

G
vj
i ϕ ≥ λϕ, in D,
ϕ ≤ 0 on ∂D

for some λ ∈ R, is nonpositive in D, where i ̸= j and i, j = 1, 2.
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T
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f

w

roof. Take −(∥c∥∞ + |λ|)|ϕ| = f and M = supD×U1×U2
|b(x, u1, u2)|. Since on {φ > 0}, we have f −

= (∥c∥∞ + |λ|)ϕ+.
hus, from (A.1), we get

up
D
ϕ+

≤ sup
∂D
ϕ+

+ K̂∥ϕ+
∥Ld(D),

or some constant K̂ (> 0). Now for the choice ϵ0 = (2K̂ )−d, it
follows that for |D| ≤ ϵ0,

sup
D
ϕ+

≤
1
2
sup
D
ϕ+,

hich is possible only when supD ϕ
+

= 0. Hence ϕ ≤ 0 in D. This
completes the proof. □

In view of the above lemma we have the following results.
This is useful in establishing simplicity of the generalized prin-
cipal eigenvalue of smooth bounded domains D. The proof of the
following theorem follows from [32, Theorem 4.1]

Theorem A.3. Let vj ∈ Sj and ϕ,ψ ∈ W 2,p
loc (D) ∩ C(D̄), p ≥ d

satisfies for some λ ∈ R

G
vj
i ψ ≤ λψ, ψ > 0 in D,

G
vj
i ϕ ≥ λϕ in D,
ϕ ≤ 0 on ∂D, ϕ(x0) > 0,

for some x0 ∈ D, then ψ = tϕ for some t > 0, where i ̸= j and
i, j = 1, 2.

Proof. Choose a compact C ⊂ D such that |D \ C | ≤ ϵ0,
where ϵ0 is given by Lemma A.1. Then, following the proof of
[32, Theorem 4.1] and using the small domain maximum prin-
ciple as in Lemma A.1 the result follows. □
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