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Abstract. We consider the neural ODE and optimal control perspective of super-
vised learning, with `1-control penalties, where rather than only minimizing a final
cost (the empirical risk) for the state, we integrate this cost over the entire time
horizon. We prove that any optimal control (for this cost) vanishes beyond some
positive stopping time. When seen in the discrete-time context, this result entails
an ordered sparsity pattern for the parameters of the associated residual neural net-
work: ordered in the sense that these parameters are all 0 beyond a certain layer.
Furthermore, we provide a polynomial stability estimate for the empirical risk with
respect to the time horizon. This can be seen as a turnpike property, for nonsmooth
dynamics and functionals with `1-penalties, and without any smallness assumptions
on the data, both of which are new in the literature.
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1. Introduction

1.1. Motivation. Sparsity is a highly desirable property in many machine learning
and optimization tasks due to the inherent reduction of computational complexity.
Typically induced by `1 penalties/regularizations, it has been used extensively for
simplifying machine learning tasks by selecting, in an automatized manner, a strict
subset of the available features to be used. This is exemplified by the well-known
Lasso (least absolute shrinkage and selection operator, [40, 42]), which consists in
minimizing a least squares cost function and an `1 parameter penalty for an affine
parametric model y = wx+ b. As the `1 penalty enforces a subset of the optimizable
parameters (w, b) to become zero, the associated features may be discarded safely.

With such insights in mind, in this work we analyze supervised learning problems
viewed from the lens of optimal control and neural ODEs, and demonstrate the appear-
ance of sparsity patterns for global minimizers in the context of `1 control penalties.
Rather than typical sparsity in which, at a given time t, all but few of the components
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of a control u(t) ∈ Rdu are zero, we shall demonstrate a ordered or temporal spar-
sity: an optimal control u(t) concentrates all its amplitude within a subinterval [0, T ∗]
(wherein it may very well be additionally sparse), and vanishes beyond time t > T ∗.
(See Theorem 2.1)

We motivate our setting and main result in what follows, and refer the reader to
Section 1.6 for a roadmap of the paper.

1.2. Supervised learning. To put the above discussion into context, we recall that
supervised learning addresses the problem of predicting from labeled data, which con-
sists in approximating an unknown function f : X → Y from known samples{

x(i), y(i)
}
i∈[n]

⊂ X × Y.

Here and henceforth, [n] := {1, . . . , n} and X ⊂ Rd. Depending on the nature of the
label space Y, one distinguishes two types of supervised learning tasks: classification,
when labels take values in a finite set of m > 2 classes, e.g. Y = [m], and regression,
when the labels take continuous values in Y ⊂ Rm with m > 1. To solve a supervised
learning problem, one seeks to construct a map fapprox : X → P(Y), which, desirably,
is such that for any x ∈ X and for any Borel measurable A ⊂ Y, fapprox(x)(A) ' 1
whenever f(x) ∈ A, and fapprox(x)(A) ' 0 whenever f(x) 6∈ A; here, P(Y) denotes the
space of probability measures on Y. In other words, one looks for a map fapprox which
approximates the map x → δf(x) where δz denotes the Dirac measure centered at z.
Ultimately, this translates to simultaneously interpolating the above dataset through
fapprox, whilst ensuring generalization/extrapolation, namely reliable prediction on
points in X which are outside of said dataset ([47]).

1.3. An optimal control perspective. There are various ways in which one can
construct such an approximation fapprox, with different degrees of empirical and the-
oretical guarantees. In this paper, following a recent trend started with the works
[12, 28, 9], we shall focus on parametrizing fapprox by the flow of neural ODEs, such
as {

ẋi(t) = w(t)σ(xi(t)) + b(t) for t ∈ (0, T ),

xi(0) = x(i) ∈ Rd,
(1.1)

for i ∈ [n] and T > 0, with σ being a scalar, globally Lipschitz function defined
componentwise in (1.1). The matrix w(t) ∈ Rd×d and vector b(t) ∈ Rd play the role of
controls (called parameters in machine learning jargon), which in practice are found
by solving an empirical risk minimization problem of the form

inf
u=(w,b)∈U

xi solves (1.1)

1

n

n∑
i=1

loss
(
Pxi(T ), y(i)

)
︸ ︷︷ ︸

:=E (x(T ))

+

∫ T

0
‖u(t)‖1 dt. (1.2)

Here, U is an appropriate Banach subspace of L1(0, T ;Rdu), P : Rd → Rm is an affine
map which we suppose to be given1, and which serves to match the states xi(T ) with
the labels y(i) (typically of different dimensions), while

loss(·, ·) : Rm × Y → R+

1In practice, P is either an optimizable variable, or its coefficients may be chosen at random. While
we fix P for technical purposes, our numerical experiments indicate that the results presented in what
follows persist when P is optimized as well.
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is such that x 7→ loss(x, y) is continuous for all y ∈ Y, loss(x, y) 6= 0 whenever
µ(x) 6= δy, and loss(x, y)→ 0 when µ(x)→ δy in an appropriate sense of measures (e.g.,
for some Wasserstein distance, or for the Kullback-Leibler divergence). A prototypical
example is given by the square of the euclidean distance (least squares error). But
more tailored loss functions may be used, including positive and non-coercive ones,
such as the cross-entropy loss commonly used for classification tasks

loss
(
x, y
)

:= − log

(
exy∑m
j=1 e

xj

)
for x ∈ Rm, y ∈ [m]. (1.3)

Once a solution u = (w, b) to (1.2) is found, one may construct the approximation
fapprox by setting fapprox(x) = µ(x(T )) for x ∈ X ⊂ Rd, where x(T ) solves (1.1) with
x(0) = x and control u. The choice of µ : X → P(Y) depends on the loss function and
task at hand; for the least squares error loss for instance, one sets µ(x) := δPx, while
for the cross-entropy loss, one sets µ := softmax◦P , with softmax(z)` = ez`/

∑m
j=1 e

zj for
` ∈ [m] and z ∈ Rm, as in (1.3) (designating a smooth approximation of the argmax).

The above presentation thus leads one to note that, in the neural ODE setting,
supervised learning is a particular optimal control problem, wherein one looks to find
a single pair of controls u = (w, b), which steer n trajectories of a nonlinear ODE such
as (1.1), corresponding to n different initial data, to n different targets.

1.4. The role of T . Let us motivate our reason for considering the neural ODE
and optimal control interpretation of supervised learning. In practice, one typically
considers some discrete-time analog of (1.1), e.g. a forward Euler scheme of the formxk+1

i = xki +4t
(
wkσ

(
xki
)

+ bk
)

for k ∈ {0, . . . , nt − 1},

x0
i = x(i),

(1.4)

for i ∈ [n], where nt > 2 and 4t = T/nt. The scheme (1.4) is an example of a residual
neural network (ResNet), a popular neural network architecture introduced in [29].
As shown in [29], such neural networks provide, empirically, remarkable interpolation
and extrapolation performance when nt is large (of the orders of hundreds). Here, nt
is referred to as the depth of the network (1.4) and each time-step k is called a layer.
However, the theory supporting these empirical results is not completely mature ([47]).

We observe that when 4t > 0 is fixed, the time horizon T can be used to estimate
the depth nt. This warrants the study of the behavior of optimal control problems for
neural ODEs when T is increased. On another hand, for many problems in optimal
control, tracking the control and the trajectory over the entire time interval yields
quantitative stability estimates for both when T is large enough. This is for instance
the case in turnpike theory for linear quadratic (LQ) problems ([23]). This setup is
further motivated by empirical studies in machine learning literature, where a penalty
of the state over each layer has been seen to yield better larger margin predictors, and
thus better generalization, for specific classification tasks ([14]). Consequently, in this
work, rather than (1.2), we are led to consider

inf
u=(w,b)∈U

xi solves (1.1)

∫ T

0
E (x(t)) dt+

∫ T

0
‖u(t)‖1 dt, (1.5)
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where E is defined in (1.2), and where we set x(t) = {xi(t)}i∈[n]. Our goal in this work
is to provide a rather complete picture of the behavior of solutions to (1.5) and (1.1)
as functions of T .

1.5. Our contributions. We can illustrate our findings through numerical experi-
ments2 before proceeding with theoretical setups and proofs. In Figure 1 (see Fig-
ure 2–Figure 4 for related illustrations), we depict a solution of (1.5) for a binary
classification task (Y := {1, 2}, with the data in Figure 3), with σ ≡ tanh, using the
cross-entropy loss defined in (1.3), T = 5, 4t = 1/4 (thus 20 ResNet layers) with a
midpoint scheme, and n = 3000. We also impose the constraint ‖u(t)‖1 6 M with
M = 8, to avoid concentration near t = 0. (See Remark 1.)

0 1 2 3 4 5

tk (k is a layer)

0

1

2

3

4

5

6

7

8

‖u(t)‖1

0 1 2 3 4 5

tk (k is a layer)

0.0

0.71

E
(x

(t))

O
(

1
MT + 1

T

)

Figure 1. (Left) Optimal controls u(t) solving (1.5). (Right) The
empirical risk E (x(t)) of the optimal states {xi(t)}i∈[n]. Both vanish
beyond time T ∗ = 1.5, which corresponds to 7 layers.

• The numerics show that optimal controls uT (t) = (wT (t), bT (t)) concentrate
within a subinterval [0, T ∗], and vanish beyond time T ∗ (the ordered sparsity
pattern we had alluded to). The corresponding states {xi(t)}i∈[n] are not only
stationary for t > T ∗, but actually in the regime in which E (x(t)) is near 0,
as desired.
• In practical terms, the ordered sparsity and stability results could then be
used to discard unnecessary layers in the corresponding residual neural net-
work (ResNet), without removing relevant information. They also provide a
quantitative estimate of the number of layers needed to fit the data, whilst
keeping the controls of user-prescribed amplitude (thus possibly helping in
generalization). These estimates ensure and indicate that the time horizon
(or number of layers) ought not to be large at all for the error to reach 0
(Figure 1).
• However, the presence of a minimal time T ∗ would mean that we still need
several layers – namely a large enough T – before entering the stability regime,
from which point on the empirical risk can be ensured to be small. This
implies a trade-off in how large T should actually be. One should keep in
mind that our numerical experiments are toy examples and do not convey
possible difficulties encountered for various real-life datasets, which may be

2The PyTorch code may be found at https://github.com/borjanG/dynamical.systems.

https://github.com/borjanG/dynamical.systems
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significantly more complex. (This complexity can partially be seen through
our upper bounds in Theorem 2.1, see Remark 4.)
• All in all, in computing terms, the pointwise stability estimate further in-
dicates that a hybrid, model predictive control (MPC)-type strategy is war-
ranted for an optimal choice of the stopping time (see [26, 15] for similar
considerations). Our theoretical results provide further backbone for such
ideas, which have been used in applied scenarios ([24]).

In the subsequent section, we shall mathematically formalize these results (Theo-
rem 2.1) and provide rigorous proofs ensuring their validity in a wide array of functional
settings.

1.6. Outline. The remainder of this work is structured as follows. In Section 2, we
provide the functional setting and our main result (Theorem 2.1), which corroborates
the numerical experiment presented just above. Further numerical visualizations of
the same experiment may also be found therein. The proof of Theorem 2.1 may be
found in Section 3. We conclude with a selection of open problems in Section 4.

2. Main result

2.1. Setup. We henceforth suppose we are given a dataset{
x(i), y(i)

}
i∈[n]

⊂ X × Y (2.1)

with X ⊂ Rd and x(i) 6= x(j) for i 6= j. The label space Y may either be a finite
subset of N, or a subset of Rm. To have a more coherent presentation and simplify the
technical details, we shall stack all of the trajectories xi(t) appearing in neural ODEs
as (1.1), in order, into one single vector x(t) ∈ Rdn. Namely, we set

x(t) :=

x1(t)
...

xn(t)

 ∈ Rdx , x0 :=

x
(1)

...
x(n)

 ∈ Rdx

for i ∈ [n] and t > 0, where dx := dn, and consider stacked neural ODEs in the general
form {

ẋ(t) = f(x(t), u(t)) for t ∈ (0, T ),

x(0) = x0,
(2.2)

where u(t) := (w(t), b(t)) ∈ Rd2+d. As presented in (1.1), for the stacked system the
nonlinearity f : Rdx × Rdu → Rdx may take the form

f(x, u) =

w . . .
w

σ(x) +

b...
b

 (2.3)

for x ∈ Rdx and u = (w, b) ∈ Rdu , with du := d2 + d. Once again, σ ∈ Lip(R) is
defined componentwise, so that each component of f coincides with the neural ODE
given in (1.1). Permutations may also be considered, such as

f(x, u) = σ


w . . .

w

x +

b...
b


 , (2.4)
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as in the original paper [12]. The key assumption we shall henceforth make regarding
f is the following.

Assumption 1 (Homogeneous dynamics). We suppose that σ ∈ Lip(R). We suppose
that f is 1–homogeneous with respect to the controls u, in the sense that

f(x, αu) = α f(x, u)

for all (x, u) ∈ Rdx × Rdu and for all α > 0.

This is clearly the case for dynamics f parametrized as in (2.3), whilst for (2.4),
we shall moreover assume that σ is 1–homogeneous – a prototypical example is the
ReLU σ(x) = max{x, 0}, or more general variants such as σ(x) = max{ax, x} for
a ∈ [0, 1). (Such homogeneity assumptions are not an oddity in theoretical contexts,
see [10] for instance.) Now, as seen in (1.5), given T > 0 we shall consider the following
minimization problem

inf
u∈Uad,T

x solves (2.2)

∫ T

0
E (x(t)) dt+

∫ T

0
‖u(t)‖1 dt︸ ︷︷ ︸

:=JT (u)

, (2.5)

where E is defined in (1.2), and

Uad,T :=
{
u ∈ L1(0, T ;Rdu) : ‖u(t)‖1 6M a.e. in (0, T )

}
for a fixed thresholding constant M > 0. Note that for such controls, (2.2) admits a
unique solution x ∈ C0([0, T ];Rdx) by the Cauchy-Lipschitz theorem. We postpone
commenting the need of having an L∞ constraint in Uad,T to Remark 1. Before doing
so, we make precise the exact assumptions we shall henceforth make regarding the loss
function inducing the error E , defined in (1.2), appearing in (2.5).

Assumption 2 (The loss function). We suppose that loss(·, ·) : Rm×Y → R+ appear-
ing in (1.2) satisfies

loss(·, y) ∈ Liploc(Rm;R+) and inf
x∈Rm

loss(x, y) = 0

for all y ∈ Y.
This assumption is generic among most losses considered in practice, including all

those induced by a distance (e.g., least squares error) and the cross-entropy loss (1.3).

2.2. Main result. Throughout the paper, we will assume that the neural ODE can
interpolate the dataset defined in (2.1), either in finite or in infinite time. This is an
exact controllability assumption, as we shall suppose that there exist controls for which
the corresponding stacked trajectory x(t) makes E (x(·)) (defined in (1.2)) vanish in
finite or in infinite time respectively.

Definition 2.1 (Interpolation). We say that
(i) (2.2) interpolates the dataset (2.1) in some time T > 0 if there exists T > 0

and u ∈ L∞(0, T ;Rdu) such that the solution x ∈ C0([0, T ];Rdx) to (2.2)
satisfies

E (x(T )) = 0.



SPARSITY IN LONG-TIME CONTROL OF NEURAL ODES 7

(ii) (2.2) asymptotically interpolates the dataset (2.1) if there exist T > 0, some
function h ∈ C∞([T,+∞);R+) satisfying

ḣ < 0 and lim
t→+∞

h(t) = 0,

and some u ∈ L∞(R+;Rdu) such that the solution x ∈ C0(R+;Rdx) to (2.2)
set on R+ satisfies

E (x(t)) 6 h(t)

for t > T .

These conditions actually hold for the dynamics f and many of the errors E we
consider here – we postpone this discussion to Remark 2. We may now state our main
result.

Theorem 2.1. Suppose T > 0 and M > 0 are fixed. Let uT ∈ Uad,T be any (should it
exist3) minimizer of (2.5). Let xT ∈ C0([0, T ];Rdx) denote the corresponding solution
to (2.2). Then, there exists some time T ∗ ∈ (0, T ] such that

‖uT (t)‖1 = M for a.e. t ∈ (0, T ∗),

‖uT (t)‖1 = 0 for a.e. t ∈ (T ∗, T ). (2.6)

Moreover, T ∗ is such that

E (xT (T ∗)) 6 E (xT (t)) for t ∈ [0, T ], (2.7)

and, furthermore,
(i) If system (2.2) interpolates the dataset in some time T0 > 0 as per Defini-

tion 2.1, then there exists a constant C > 0 independent of both T and M ,
such that

T ∗ 6 C

(
1

M
+

1

M2

)
and

E (xT (T ∗)) 6
C

T

(
1

M
+ 1

)
.

(ii) If system (2.2) asymptotically interpolates the dataset as per Definition 2.1,
then there exists a constant C(M) > 0 independent of T such that

T ∗ 6
C(M)

M
h−1

(
1

T

)
+

1

M

and

E (xT (T ∗)) 6
C(M)

T
h−1

(
1

T

)
+

1

T
,

where h−1 denotes the inverse function of h.

3One can show that a minimizer exists when f is as in (2.3) by means of the direct method in
the calculus of variations. However, for f as in (2.4), it’s not clear if there is enough compactness to
convert weak convergences into pointwise ones for passing to the limit inside σ.
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Sketch of the proof. In the proof of the theorem, which may be found in Section 3,
the stopping time T ∗ > 0 is precisely defined as

T ∗ := min

{
t ∈ [0, T ] : E (xT (t)) = min

s∈[0,T ]
E (xT (s))

}
.

This implies (2.7) by definition. One then shows that the temporal sparsity in equa-
tions (2.6) holds. This is done by a contradiction argument: one supposes that either
of both conclusions doesn’t hold, and in both cases, constructs auxiliary controls which
are strict minimizers for JT defined in (2.5). This is quite transparent in the case in
which ‖uT (t)‖ 6= 0 for t > T ∗, in which case, one can simply use a zero extension of
uT (t) for t > T ∗ to conclude. On the other hand, if ‖uT (t)‖ < M for t ∈ (0, T ∗), the
construction is more delicate and technical, and makes crucial use of the scaling pro-
vided provided by the homogeneous dynamics, and the invariance of the L1(0, T ;Rdu)
by this scaling. The estimates on the stopping time T ∗ and on the error evaluated at
the stopping time can then be obtained by making use of the interpolation assump-
tions and the mentioned scaling, for constructing suboptimal controls which can be
estimated appropriately. In particular, our arguments do not rely on studying the
first-order optimality system, and is specifically tailored to the particular ODEs in
question. This allows us to avoid smallness assumptions on the data, and smoothness
assumptions on the nonlinearity.

2.3. Turnpike property. The behavior displayed in Theorem 2.1 and Figure 1 –
Figure 4 can, in some contexts, be seen as a novel manifestation of the turnpike property
in optimal control: over long time horizons, the optimal pair (uT (t),xT (t)) should be
"near" an optimal steady pair (u,x), namely a solution to the problem

inf
(u,x)∈Rdu×Rdx

f(x,u)=0

E (x) + ‖u‖1. (2.8)

(See [23].) Let us suppose that loss(x, y) = ‖x− y‖22 (but the discussion remains true
for any distance) and drop the subscript T , hence

E (x(t)) =
1

n

n∑
i=1

∥∥∥Pxi(t)− y(i)∥∥∥2
2
.

Theorem 2.1 then implies that∥∥∥Pxi(t)− y(i)∥∥∥2
2
6
C(M)

T
(2.9)

for all t > T ∗ and i ∈ [n]. Now note that f(x, 0) = 0 for any x ∈ Rdx . In particular, if
P : Rd → Rm is surjective, then taking xi ∈ P−1

(
{y(i)}

)
for i ∈ [n], we see that there

exists some x ∈ Rdx , with xi ∈ P−1
(
{y(i)}

)
such that (0,x) is the unique solution

to the steady problem (2.8). Now, on one hand, the sparsity in time result already
ensures a finite-time turnpike property for the optimal controls uT (t) to the steady
correspondent u ≡ 0. On the other hand, (2.9) can be seen as∥∥∥P(xi(t)− xi

)∥∥∥2
2
6
C(M)

T

for all t > T ∗, i ∈ [n] and for some xi ∈ P−1
(
{y(i)}

)
. This is a turnpike property for

(a projection of) the state x(t).
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Actually, one can see that the above phenomenon is not bound to machine learning,
and applies to more classical optimal control problems of the form

inf
u∈Uad,T

x solves (2.11)

∫ T

0
‖x(t)− x‖pp +

∫ T

0
‖u(t)‖1 dt, (2.10)

where p ∈ [1,+∞), x ∈ Rdx is fixed, and the underlying system is of driftless control-
affine form 

ẋ(t) =

du∑
j=1

uj(t)fj(x(t)) in (0, T ),

x(0) = x0,

(2.11)

with fj : Rdx → Rdx for j ∈ [du]. Then (u,x) = (0,x) is the optimal steady pair,
namely the unique solution to

inf
(u,x)∈Rdu×Rdx∑du

j=1 ujfj(x)=0

‖x− x‖pp + ‖u‖1,

and we have the following corollary of Theorem 2.1.

Corollary 2.1 (Turnpike property). Suppose x0,x ∈ Rdx are given, and let T > 0,
M > 0 be fixed. Suppose fj ∈ Lip(Rdx ;Rdx) for j ∈ [du]. Let uT ∈ Uad,T be any
solution to (2.10). Let xT denote the corresponding solution to (2.11). Then there
exists some time T ∗ ∈ (0, T ] and some constant C > 0 independent of both T and M
such that

‖uT (t)‖1 = M1[0,T ∗](t)

holds for a.e. t ∈ (0, T ), and

‖xT (t)− x‖pp 6
C

T

(
1

M
+ 1

)
.

holds for all t ∈ [T ∗, T ].

Theorem 2.1 and Corollary 2.1 can then be seen as a new result in the turnpike lit-
erature: they provide a finite-time, exact turnpike for any optimal control uT solving
(2.10) (new on its own, due to the L1 penalty of the controls), and a polynomial turn-
pike for the corresponding optimal state xT (t) for t ∈ [T ∗, T ], without any smallness
assumptions on the initial data x0, on the target x, or smoothness assumptions on the
dynamics f . The latter are deemed necessary for arguments which make use of the
Pontryagin Maximum Principle and linearization ([43]). A final arc near t = T doesn’t
appear as the running cost is at its minimal value for t ∈ [T ∗, T ]. Another possible
approach for proving turnpike would be through the avenue of dissipativity theory
in the sense of Willems (see the recent survey [18]), but due to its non-smooth na-
ture, showing that this problem fits in the dissipativity setting is not straightforward.
Similar results have been obtained for L2 penalties in [15, 16] (see also [19, 13, 27, 17]).

It is gripping that in Figure 2, we actually see this phenomenon for the trajectories
when E is given by the cross-entropy loss (1.3). In this case, E is not coercive: E (x(t))
approaches 0 only if the margin γ(xT (T )) defined in (2.12) goes to +∞. Namely,
every trajectory xi(T ) for i ∈ [n] ought to grow to +∞ in an appropriate direction in
Rd. Thus, in this non-coercive case, we do not interpret the graph of Figure 2 as a
turnpike property, since the turnpike would depend on (and increase with) T . Rather,
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Figure 2. For the exper-
iment of Figure 1, we see
that not only the error
E (xT (t)) decays (at least
polynomially), but the tra-
jectories xT (t) too reach
some stationary point which
ought to be near argmin E .
(See the discussion just be-
low.) 0 1 2 3 4 5

tk (k is a layer)

20.0

53

‖x
T
(t
)‖

‖PxT (t)‖

the trajectories x(t) become stationary beyond time t > T ∗ to some point x ∈ Rdx ,
which is polynomially "sliding" to +∞ (the "argmin" of E ) as T → +∞.
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Figure 3. The evolution of the states {xi(t)}i∈[n] solving (1.1), for
the experiment of Figure 1. The states are stationary in a separation
regime beyond t > T ∗, as indicated by Figure 1.
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Generalization outside training data
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1.05 Figure 4. The predictor
fapprox learned through the
neural ODE flow. It cap-
tures the shape of the
dataset given by f , ac-
curately classifies the test
data, thus ensuring satisfac-
tory generalization.

2.4. Discussion. Let us provide a structured commentary regarding the different as-
sumptions surrounding the above result, possible extensions, and novelty with respect
to past literature on both neural ODEs and optimal control.

Remark 1 (L∞ constraint). Penalizing the L1 norm in (2.5) enforces the use of sparse
controls, which without an L∞ constraint, would a priori concentrate near t = 0 as
a Dirac mass. We include the L∞ constraint in the definition of Uad,T in order to
prevent such degeneracy. One can then recover a Dirac mass centered at t = 0 when
M → +∞.

Remark 2 (Interpolation). In the case where E attains its infimum (here 0), (finite-
time) interpolation as per Definition 2.1, which can be seen as simultaneous or en-
semble controllability, has been shown to hold for the dynamics f as considered here in
several recent works [34, 15, 1, 39, 38, 3, 41]. We have stated it as an assumption in
Theorem 2.1 to make transparent the ingredients used in the proof.

On another hand, as our setting includes losses which do not attain their infimum,
one cannot expect exact interpolation to always hold. This is exemplified by the cross-
entropy defined in (1.3), which motivates the asymptotic interpolation hypothesis. Un-
der the assumption that there exists a control u ∈ L∞(0, T0;Rdu) for which the margin
γ = γ(x(T0)) defined as

γ(x(T0)) := min
i∈[n]


(
Pxi(T0)

)
y(i)
− max

j∈[m]

j 6=y(i)

(
Pxi(T0)

)
j

 (2.12)

is positive in some T0 > 0, in [21, Proposition 7.4.2] asymptotic interpolation is shown
to hold for the cross-entropy (1.3) with

h(t) = log
(

1 + (m− 1)e−γe
t
)
.

Remark 3 (The dynamics). • While there are several works in the literature
which prove sparsity in time for controls found by minimizing some functional,
even for systems with drifts (unlike ours), the theory is either done for lin-
ear systems ([48, 2, 22]), or nonlinear ones for specific regression functionals
and/or differentiable dynamics and/or infinite time horizons ([30, 31, 44]).
Similar considerations can be found in the literature on optimal control of
multi-agent/mean-field systems ([6, 20, 7]). The setting we presented herein
makes no such assumptions, and our results can then be seen as complemen-
tary to these works. Our consideration of divergences instead of distances
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in the optimization problem can be seen as a novelty in the optimal control
context.
• More complicated neural ODEs of the form{

ẋi(t) = w2(t)σ
(
w1(t)xi(t)

)
in (0, T )

xi(0) = x0
(2.13)

for i ∈ [n], where w2(t) ∈ Rd×dhid and w1(t) ∈ Rdhid×d (we omit the trans-
lation control for simplicity), tend to perform well in experiments due to the
higher number of controls. When σ is 1–homogeneous, and w2(t) = ±1 or
is an orthogonal matrix for all t, Theorem 2.1 still holds due to the fact
that Lemma 3.1 applies for such dynamics. When we remove such assump-
tions on w2(t), the technical impediment we encounter is the lack of invari-
ance of the L1(0, T ;Rdu) norm with respect to the natural scaling induced
by the equation (Lemma 3.1). Indeed, if one sets w1

1(t) := Tαw1(tT ) and
w2
1(t) := T 1−αw2(tT ) for t ∈ [0, 1] and some α ∈ (0, 1), then it can be seen

that x1
i (t) := xi(tT ) solves (2.13) on [0, 1]. Yet,∫ T

0

∥∥w1(t)
∥∥
1

dt+

∫ T

0

∥∥w2(t)
∥∥
1

dt = Tα−1
∫ 1

0

∥∥w1
1(s)

∥∥
1

ds+ T−α
∫ 1

0

∥∥w2
1(s)

∥∥
1

ds.

This is incompatible with our proof strategy. However, noting the above iden-
tity, one could investigate the applicability of our techniques to (2.13) and
parameter regularizations of the form∫ T

0

∥∥w1(t)
∥∥1/α

1
dt+

∫ T

0

∥∥w2(t)
∥∥1/1− α

1
dt,

which would be invariant by the above scaling. In such a case, the sparsity
pattern should be defined with respect to the regularization one considers. Due
to the likely nontrivial nature of the proof, we leave it open.

Remark 4 (Dependence on the data). Clearly from (2.6), we see that the amplitude
of the optimal controls is not the appropriate measure for how these controls depend on
the data (unlike the case of `2-penalties studied in [15]). Similar conclusions apply to
the corresponding optimal state, which is stationary (and in the interpolation regime,
at least numerically) when the control vanishes. The parameter which does however
strongly depend on the data is the stopping time T ∗, through the constant C. Looking
at the proof of Theorem 2.1, we see that this constant is explicit:

C := ‖uT0‖L∞(0,T0) max

{
1,

∫ T0

0
E (xT0(t)) dt

}
,

where T0 > 0 is arbitrary, and uT0 is any control ensuring controllability in the sense
of Definition 2.1. Such controls typically increase with the euclidean norm of the data
in a continuous way, and without smallness assumptions, this dependence may be
highly nonlinear. Note that this constant also depends on the ambient dimension d
(the width), and clarifying the role of d in this context is an open problem.

Remark 5 (What about (1.2)?). While we do not demonstrate any long-time pattern
for global minima of (1.2), we may provide a numerical comparison with (1.5), in the
setup of Figure 1. (See Figure 5.) The learned predictor is almost identical to that
shown in Figure 3 (albeit learned after 20 layers), so we omit the plot.
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Figure 5. (Left) Optimal controls u(t) solving (1.2). (Right) The
empirical risk E (x(t)) of the optimal states {xi(t)}i∈[n]. We do not see
any stability, and the empirical risk is small only near the final
time/layer.

2.5. Related work. The neural ODE lens has been used to great effect in practice.
Examples of such use include adaptive ODE solvers [9, 11], symplectic schemes [8],
or indirect training algorithms based on the Pontryagin Maximum Principle [33, 4].
Further applications include irregular time series modeling [37, 46], and generative
modeling through normalizing flows [25, 36]. We refer the reader to the thesis [32] for
an excellent review of various applications and state of the art numerical methods.

Typically in deep learning through neural networks, sparsity is explicitly enforced
through the structure of the weights, in the mould of using convolutions with filters
instead of matrix multiplications ([35]). We rather take the approach of considering a
somewhat universal architecture (in the spirit of universal approximation setups, [5]),
in view of obtaining a clearer picture on how different penalties affect the long-time
properties of global minima (in this regard, see [15] for an `2-penalty study).

3. Proofs

In this section we provide the proof of Theorem 2.1. We shall split the proof into
two parts. We first state and prove Proposition 3.1, which contains the first part of
Theorem 2.1, concerning the sparsity of optimal controls. The proof of the latter is
done throughout Section 3.1. We then provide the remainder of the proof in Section 3.2.

3.1. Preliminary results. The main goal of this subsection is to state and prove
Proposition 3.1. A cornerstone of our forthcoming arguments is the possibility of
rescaling any trajectory of (2.2) set in [0, T0] to obtain the same trajectory set on
[0, T ].

Lemma 3.1. Let x0 ∈ Rdx , T0 > 0, uT0 ∈ L1(0, T0;Rdu), and let xT0 be the unique
solution to (2.2) set on [0, T0], with control uT0. Let T > 0, and define

uT (t) :=
T0
T
uT0

(
t
T0
T

)
for t ∈ [0, T ],

and

xT (t) := xT0

(
t
T0
T

)
for t ∈ [0, T ].

Then xT is the unique solution to (2.2) with control uT .
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We omit the proof, which is straightforward. We also summarize the notion of
sparsity through the following definition.

Definition 3.1 (Sparse controls). Let M > 0 and 0 < T ∗ 6 T be fixed. We say that
u ∈ Uad,T is sparse in (T ∗, T ) if

‖u(t)‖1 = M a.e. t ∈ (0, T ∗), (3.1)
‖u(t)‖1 = 0 a.e. t ∈ (T ∗, T ). (3.2)

For any T ∗ > 0, we shall denote by Usp,T ∗ the set consisting of all u ∈ Uad,T which are
sparse in (T ∗, T ), namely which satisfy (3.1) – (3.2).

Proposition 3.1. Let T > 0 andM > 0 be fixed. Let uT ∈ Uad,T be a global minimizer
of JT defined in (2.5), and let xT be the corresponding unique solution to (2.2). Then
uT ∈ Usp,T ∗, where T ∗ is defined as

T ∗ := min

{
t ∈ [0, T ] : E (xT (t)) = min

s∈[0,T ]
E (xT (s))

}
. (3.3)

Note that the T ∗ is clearly well defined, as the set over which the min is taken is
clearly bounded, and is also closed as the preimage of the singleton{

min
s∈[0,T ]

E (xT (s))

}
under the continuous map t 7−→ E (x(t)). The core of the proof of Proposition 3.1 lies
in the following lemma, which ensures that if a control uT ∈ Uad,T does not saturate
the L∞–constraint before some time T ∗, then uT is not optimal for JT and can always
be "improved" through the scaling of Lemma 3.1.

Lemma 3.2. Let T > 0 and M > 0 be fixed. Let uT ∈ Uad,T be any admissible
(but not necessarily optimal) control, and let T ∗ > 0 be defined as in (3.3). Assume
that, for some θ ∈ (0, 1), there exists a finite collection of disjoint non-empty intervals
{(aj , bj)}j∈[I] with (aj , bj) ⊂ (0, T ∗) for which

‖uT (t)‖1 6 (1− θ)M for a.e. t ∈ OI, (3.4)

and
E (xT (t))− E (xT (T ∗)) > θ for all t ∈ OI (3.5)

hold, where

OI :=

I⋃
j=1

(aj , bj) .

Then there exists some u ∈ Uad,T satisfying

u(t) = 0 for a.e. t ∈ (T ∗ − τ, T ), (3.6)

and
JT (u) 6JT (uT )− θτ,

where

τ := θmeas(OI) = θ

I∑
j=1

(bj − aj).

We may now provide the proof to Proposition 3.1.
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Proof of Proposition 3.1. We argue by contradiction. Suppose that uT ∈ Uad,T is a
global minimizer of JT such that uT 6∈ Usp,T ∗ , where T ∗ > 0 is defined as in the
statement. Hence, either condition (3.1) or condition (3.2) does not hold.
Case 1: (3.2) does not hold. Let us thus suppose that

‖uT (t)‖1 > 0 a.e. t ∈ Ω (3.7)

holds for some Ω ( (T ∗, T ) of positive Lebesgue measure. Consider

u(t) =

{
uT (t) for t ∈ [0, T ∗]

0 for t ∈ (T ∗, T ].

Clearly u ∈ Uad,T . Furthermore, we have

x(t) = xT (t) for t ∈ [0, T ∗],

and since f(·, 0) ≡ 0, also

x(t) = x(T ∗) = xT (T ∗), for t ∈ [T ∗, T ].

Combining these facts with the definition (3.3) of T ∗, we are lead to∫ T

0
E (x(t)) dt =

∫ T ∗

0
E (xT (t)) dt+

∫ T

T ∗
E (xT (T ∗)) dt 6

∫ T

0
E (xT (t)) dt.

By virtue of (3.7) we also find∫ T

0
‖u(t)‖1 dt =

∫ T ∗

0
‖uT (t)‖1 dt

<

∫ T ∗

0
‖uT (t)‖1 dt+

∫ T

T ∗
‖uT (t)‖1 dt =

∫ T

0
‖uT (t)‖1 dt.

Combining the two previous inequalities, we deduce that JT (u) < JT (uT ), which
contradicts the optimality of uT .
Case 2: (3.1) does not hold. The idea is to again construct an auxiliary control

which improves uT to deduce a contradiction. We now split the proof in three steps.
Step 1. If (3.1) is not fulfilled, then there must exist some θ ∈ (0, 1) such that the

set
Aθ :=

{
t ∈ (0, T ∗) : ‖uT (t)‖1 6 (1− θ)M

}
has positive Lebesgue measure, namely meas(Aθ) > 0. Now set ω := meas(Aθ)

2 , and
using elementary set theory we find

Aθ ∩ (0, T ∗ − ω) = Aθ \
(

(0, T ∗) \ (0, T ∗ − ω)
)

= Aθ \ [T ∗ − ω, T ∗),
whence the set

Bθ := Aθ ∩ (0, T ∗ − ω)

also has positive Lebesgue measure: meas(Bθ) > 0. By classical results in Lebesgue
measure theory (see [45, Thm. 3.25]), for all ε > 0 there exists a finite collection of
disjoint nonempty intervals {(aj , bj)}j∈[n(ε)], with (aj , bj) ⊂ (0, T ∗ − ω), such that the
set

Oε :=

n(ε)⋃
j=1

(aj , bj)

satisfies
meas (Oε \Bθ) < ε and meas (Bθ \Oε) < ε. (3.8)
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In particular,
meas (Oε) > meas(Bθ)− ε. (3.9)

Step 2. Let ε ∈ (0,meas(Bθ)) be arbitrary and to be chosen later, and let {(aj , bj)}j∈[n(ε)]
be the corresponding collection of disjoint intervals satisfying (3.8), with Oε denoting
the union of these intervals as defined above. We now look to construct a control
uε ∈ Uad,T such that

‖uε(t)‖1 6 (1− θ∗)M
and

E (xε(t))− E (xε(T•)) > θ
∗

for some θ∗ > 0 and for all t ∈ Oε, where

T• := min

{
t ∈ [0, T ] : E (xε(t)) = min

s∈[0,T ]
E (xε(s))

}
should also satisfy T• > T ∗ − ω. To this end, set

uε(t) :=

{
uT (t) for t ∈ (0, T ) \ (Oε \Bθ)

0 for t ∈ Oε \Bθ.

Since uT ∈ Uad,T , it may readily be seen that

‖uε(t)‖1 6M for a.e. t ∈ (0, T ).

Hence uε ∈ Uad,T . Now let xε denote the solution to (2.2) associated to uε. By virtue
of the specific form of f , the Lipschitz continuity of σ, and the Grönwall inequality, we
may readily deduce that there exists a constant C1 = C1(T,M, σ) > 0 independent of
ε such that ∥∥xε(t)− xT (t)

∥∥
1
6 C1

∫ T

0

∥∥uε(s)− uT (s)
∥∥
1

ds (3.10)

for all t ∈ [0, T ]. On the other hand, by using (3.8), we also deduce that∫ T

0

∥∥uε(s)− uT (s)
∥∥
1

ds 6Mmeas (Oε \Bθ) < Mε. (3.11)

Combining (3.10) and (3.11) leads us to∥∥xε(t)− xT (t)
∥∥
1
< C1Mε

for t ∈ [0, T ]. Now since xT ∈ C0([0, T ];Rdx), the stacked trajectory xT (t) remains in
a compact subset of Rdx for all t ∈ [0, T ]. Due to (3.1), and since ε 6 meas(Bθ), we
also find that xε remains in a slightly larger compact subset, independent of ε. Hence,
by the locally Lipschitz character of loss

(
·, y
)
, implying that of E , the estimate∣∣∣E (xε(t))− E

(
xT (t)

)∣∣∣ 6 C2Mε, (3.12)

holds for some C2 = C2(T,M, σ,E ) > 0 independent of ε, and for all t ∈ [0, T ]. On
the other hand, using only the definition (3.3) of T ∗, we find that there exists some
λ > 0 such that

E (xT (t)) > E (xT (T ∗)) + λ (3.13)
for all t ∈ [0, T ∗ − ω]. Estimate (3.12) combined with (3.13) yields

E (xε(T ∗)) 6 E (xT (T ∗)) + C2Mε 6 E (xT (t))− λ+ C2Mε

6 E (xε(t))− λ+ 2C2Mε, (3.14)
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for all t ∈ [0, T ∗ − ω], which, by choosing ε < λ/2C2M, implies that T• > T ∗ − ω, as
desired. The computations done in (3.14) also yield

E
(
xε(t)

)
> E

(
xε(T ∗)

)
+ λ− C2Mε

> E
(
xε(T•)

)
+ λ− 2C2Mε (3.15)

for all t ∈ [0, T ∗−ω]. As we chose ε < λ/2C2M, we have that λ− 2C2Mε > 0, and may
then set

θ∗ := min {θ, λ− 2C2Mε} ,
so that θ∗ > 0. By virtue of (3.15),

E
(
xε(t)

)
− E

(
xε(T•)

)
> θ∗

holds for all t ∈ Oε. Now, observe that uε also satisfies

‖uε(t)‖1 6 (1− θ∗)M
for a.e. t ∈ Oε. Indeed, if t ∈ Oε \Bθ, then uε(t) = 0 by definition, so the inequality
clearly holds. On the other hand, if t ∈ Oε ∩Bθ, then t ∈ Aθ, and since θ∗ > θ, the
conclusion follows.

Step 3. We may now apply Lemma 3.2, which ensures the existence of some uε ∈
Uad,T for which

JT (uε) 6JT (uε)− (θ∗)2 meas (Oε) (3.16)
holds. As a consequence of (3.11) and (3.12), we have

JT (uε) 6JT (uT ) + (1 + C2T )Mε,

which, when combined with (3.16) and (3.9), yields

JT (uε) < JT (uT ) + (1 + C2T )Mε− (θ∗)2(meas(Bθ)− ε).
Looking at the above inequality, we may note that, by choosing ε > 0 even smaller
(namely taking

ε 6
(θ∗)2 meas(Bθ)

(1 + C2T )M

would do), we may ensure that

JT (uε) < JT (uT ),

which contradicts the optimality of uT . This concludes the proof. �

We conclude this section with a proof of Lemma 3.2.

Proof of Lemma 3.2. We will argue by induction over the number of intervals I > 1,
constructing appropriately the control u explicitly in each step via affine transforma-
tions of uT – the desired estimates will follow by using the time-scaling invariance of
the L1–norm of the controls.
Step 1). Initialization. Let us first assume that I = 1. Consider

u(t) :=



uT (t) for t ∈ (0, a1)

b1 − a1
c1 − a1

uT

(
(t− a1)

b1 − a1
c1 − a1

+ a1

)
for t ∈ [a1, c1)

uT (t+ b1 − c1) for t ∈ [c1, T
∗ − (b1 − c1)),

0 for t ∈ [T ∗ − (b1 − c1), T ),
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where c1 ∈ (a1, b1) is chosen so that
b1 − a1
c1 − a1

(1− θ) = 1,

which is equivalent to
b1 − c1 = θ(b1 − a1) =: τ.

Observe that as a consequence of (3.4), we clearly have u ∈ Uad,T . In addition, by
virtue of the choice of c1, and the definition of τ , u(t) also satisfies (3.6). Now, making
use of the scaling provided by Lemma 3.1, and the fact that f(·, 0) ≡ 0, one can check
that the state trajectory x(t) associated to u(t) is exactly given by

x(t) =



xT (t) for t ∈ [0, a1)

xT

(
(t− a1)

b1 − a1
c1 − a1

+ a1

)
for t ∈ [a1, c1)

xT (t+ b1 − c1) for t ∈ [c1, T
∗ − (b1 − c1)),

xT (T ∗) for t ∈ [T ∗ − (b1 − c1), T ].

Moreover, observe that since τ := b1 − c1,
E (x(t)) = E (xT (T ∗)) for t ∈ [T ∗ − τ, T ]. (3.17)

Let us now evaluate the functional JT along u. We start by computing the L1 norm
of u:

‖u‖L1(0,T ;Rdu ) =

∫ a1

0
‖uT (t)‖1 dt+

∫ T ∗−(b1−c1)

c1

‖uT (t+ b1 − c1)‖1 dt

+
b1 − a1
c1 − a1

∫ c1

a1

∥∥∥∥uT ((t− t1)
b1 − a1
c1 − a1

+ a1

)∥∥∥∥
1

dt

=

∫ b1

0
‖uT (s)‖1 ds+

∫ T ∗

T ∗−b1
‖uT (s)‖1 ds

6 ‖uT ‖L1(0,T ;Rdu ) . (3.18)

On the other hand, by virtue of (3.17), (3.5), the definition (3.3) of T ∗, and the same
changes of variable used to deduce (3.18), we find∫ T

0

(
E (x(t))− E

(
xT (T ∗)

))
dt =

∫ a1

0

(
E (xT (t))− E

(
xT (T ∗)

))
dt

+
c1 − a1
b1 − a1︸ ︷︷ ︸

1−θ

∫ b1

a1

(
E (xT (t))− E (xT (T ∗))

)
dt

+

∫ T ∗

b1

(
E (xT (t))− E (xT (T ∗))

)
dt

6
∫ T

0

(
E (xT (t))− E (xT (T ∗))

)
dt− θ2(b1 − a1).

By combining the above inequality with (3.18), it follows that

JT (u) 6JT (uT )− θ2(b1 − a1).
The statement of the Lemma thus holds for I = 1.
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Step 2). Heredity. Let us suppose that, for some n > 1, the statement of the
lemma holds whenever I = n, and let uT satisfy (3.4) and (3.5) with I = n + 1.
Assume without loss of generality that a1 > aj for all j ∈ {2, . . . ,I}. Using precisely
the same argument as in Step 1, we can construct a control u1 satisfying

u1(t) = 0 for a.e. t ∈ (T ∗ − τ1, T )

with τ1 = θ(b1 − a1), and
JT (u1) 6JT (uT )− θ2(b1 − a1),

and which is such that u1(t) = uT (t) for all t ∈ (0, t1). Now observe that, since a1 > aj
for all j > 2, and in view of (3.17), it follows that u1 satisfies (3.4) and (3.5) with
I− 1 = n number of intervals and with T ∗1 = T ∗ − τ1 instead of T ∗. By the induction
hypothesis, we conclude that there exists some control u ∈ Uad,T such that

u(t) = 0 for a.e. t ∈ (T ∗1 − τ, T )

with τ = θ
∑I

j=2(bj − aj), and

JT (u) 6JT (u1)− θ2
I∑
j=2

(bj − aj) 6JT (uT )− θ2
I∑
j=1

(bj − aj).

The statement of the Lemma thus also holds for I = n + 1. This concludes the
proof. �

3.2. Proof of Theorem 2.1.

Proof of Theorem 2.1. Properties (2.6) and (2.7) for the minimizers of JT follow di-
rectly from Proposition 3.1. Let us give the proof of the statements (i) and (ii) in
Theorem 2.1.
Proof of (i). If the interpolation property holds, then there exist T0 > 0 and some

control uT0 ∈ L∞(0, T0;Rdu) such that the associated solution xT0 ∈ C0([0, T0];Rdx)
to (2.2) satisfies E (xT0(T0)) = 0. Set

T1 :=
T0 ‖uT0‖L∞(0,T0;Rdu )

M
, (3.19)

and consider

uT1(t) :=
M

‖uT0‖L∞(0,T0;Rdu )
uT0

(
t
T0
T1

)
for t ∈ (0, T1).

Observe that uT1 ∈ Uad,T1 . Furthermore, in view of Lemma 3.1, the associated solution
xT1 to (2.2), is given by

xT1(t) = xT0

(
t
T0
T1

)
for t ∈ (0, T1),

and hence,
E (xT1(T1)) = E (xT0(T0)) = 0.

Now for any T > 0, we define

u(t) =

{
uT1(t) for t ∈ (0, T ) ∩ (0, T1)

0 for t ∈ (0, T ) \ (0, T1).
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Clearly u ∈ Uad,T . By a simple change of variable, and using (3.19), one sees that

JT (u) 6
∫ T1

0
E (xT1(t)) dt+M T1

=
‖uT0‖L∞(0,T0;Rdu )

M

∫ T0

0
E (xT0(t)) dt+ ‖uT0‖L∞(0,T0;Rdu ) T0

=
C1

M
+ C2, (3.20)

holds, where C1 > 0 and C2 > 0 are independent of both T and M . In view of (2.6),
any minimizer uT of JT satisfies uT ∈ Usp,T ∗ for some T ∗ ∈ (0, T ]. Since u ∈ Uad,T ,
using (3.20), we obtain

JT (uT ) =

∫ T

0
E (xT (t)) dt+M T ∗ 6JT (u) 6

C1

M
+ C2. (3.21)

Since E > 0, using (3.21) we deduce that

T ∗ 6
C1

M2
+
C2

M
.

Moreover, using (2.7) in (3.21), we also deduce that

TE (xT (T ∗)) 6JT (uT ) 6
C1

M
+ C2.

The last two estimates imply (i) in the statement of Theorem 2.1, as desired.
Proof of (ii). If the asymptotic interpolation property holds, then there exist

T0 > 0, a function h as in Definition 2.1, and some control u∞ ∈ L∞(R+;Rdu) such
that the corresponding solution x∞ to (2.2) set on R+ satisfies

E (x∞(t)) 6 h(t) (3.22)

for all t > T0. Combining this with the continuity of the map t 7−→ E (x∞(t)), we can
readily deduce that there exists a constant C0 > 0 depending only on T0 > 0 such that

E (x∞(t)) 6 C0 (3.23)

for all t > 0. Let us henceforth set

λ :=
M∥∥u∞∥∥
L∞(R+;Rdu )

.

For any T1 > 0, we also define

uT1(t) =

{
λu∞(λt) for t ∈ (0, T1]

0 for t > T1.

Observe that, by definition of λ, one has uT1 ∈ Uad,T for any T > 0. By virtue of
Lemma 3.1, the state associated to uT1 is precisely

xT1(t) =

{
x∞ (λt) for t ∈ (0, T1)

x∞ (λT1) for t > T1.
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Now, by virtue of the definition of uT1 , for any T > 0, we have

JT (uT1) 6
∫ T1

0
E (x∞ (λt)) dt+ max

{
0, T − T1

}
E
(
x∞ (λT1)

)
+M T1

6 (C0 +M)T1 + T E
(
x∞ (λT1)

)
. (3.24)

We now distinguish two cases. If T 6 1/h(T0), then using (3.23), the optimality of uT
as well as the fact that uT1 ∈ Uad,T , along with uT ∈ Usp,T ∗ , and the definition (3.3)
of T ∗, through (3.24) we find

TE (xT (T ∗)) +MT ∗ 6 (C0 +M)T1 +
C0

h(T0)
,

and choosing T1 = 1 leads us to the conclusion. Now suppose that T > 1/h(T0). By
Definition 2.1, the decreasing function h is a bijection from (T0,+∞) onto its range
(0, h(T0)), and so h−1 (1/T) is well defined precisely for T > 1/h(T0). We set

T1 :=
1

λ
h−1

(
1

T

)
.

Combining the optimality of uT with (3.24), and using the fact that uT ∈ Usp,T ∗ , we
find

JT (uT ) = M T ∗ +

∫ T

0
E (xT (t)) dt 6JT (uT1)

6 C(M)h−1
(

1

T

)
+ T E

(
x∞

(
h−1

(
1

T

)))
,

(3.25)

where the constant

C(M) :=
(C0 +M)

λ

is independent of T . Now since h−1 : (0, h(T0)) → (0,+∞) is non-decreasing, and
T > 1/h(T0), we have that h−1(1/T) > T0. Using this fact, along with (3.22) in (3.25),
combined with the definition (3.3) of T ∗, allows us to deduce that

TE (xT (T ∗)) +MT ∗ 6 C(M)h−1
(

1

T

)
+ 1.

The desired statement (ii) then follows also for T > 1/h(T0). This concludes the proof.
�

4. Concluding remarks

4.1. Epilogue. We have presented a manifestation of an ordered sparsity pattern and
approximation/stability properties for supervised learning problems for neural ODEs
with L1(0, T ;Rdu) penalties. Our main result ensures that any solution uT to (2.5)
is sparse in time, in the sense that uT ≡ 0 on (T ∗, T ) for some T ∗ ∈ (0, T ]. Under
appropriate controllability assumptions, we also provide estimates on the stopping
time T ∗, and on the empirical risk E (xT (t)) for t > T ∗.
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4.2. Outlook. We comment some questions that remain regarding our study.
1. The existence of minimizers for (2.5)– (2.4) remains unclear. It can be ensured

if one replaces the L1 penalty by a BV one, for which compactness of minimiz-
ing sequences holds. BV controls fit in the setting of ordered sparsity, unlike
W 1,1 ones, which are continuous. The BV norm is also invariant with respect
to the scaling of Lemma 3.1. But a complete extension of our arguments to
this case would require further work.

2. It is gripping that, when seen in the classical L2 tracking context (i.e. the loss
is the squared `2 distance) with an L1 penalty for the controls, Theorem 2.1
only provides a polynomial turnpike estimate for the state. This is different
to the L2 penalty context, presented in [15, 16], in which an exponential turn-
pike/stabilization estimate for the state is shown. There is reason to believe
that for more specific loss functions, our stability results can be sharpened.

3. As a matter of fact, since uT (t) = 0 for t > T ∗, and our numerical experiments
show that the state is stable in a regime in which the error E is 0, one could
also stipulate that a result of the mould E (xT (t)) = 0 for t > T ∗ holds.
Such an exact turnpike property for the state has been obtained in the linear
setting in [27]. However, the transfer of the techniques of the latter paper to
our setting does not appear straightforward.
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