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Abstract

This paper is concerned with the stabilization problem for a class of nonlinear hybrid stochastic delay

systems. Different from most existing results, the system coefficients are highly nonlinear rather than satisfy

the conventional linear growth conditions; the time-varying system delays are no longer required to be

differentiable and, moreover, feedback control based on discrete-time state and mode observations, which

is more practical and costs less, is employed. By using the Lyapunov functional method, we establish the

sufficient stabilization criteria in the sense of exponential stability (both the q̄th moment stability and the

almost sure stability) as well as H∞ stability and asymptotic stability. Meanwhile, the upper bound on

the duration τ between two consecutive state and mode observations is also obtained. Finally, a couple of

practical food chain models are discussed to illustrate the theoretical results.

Keywords: highly nonlinear hybrid stochastic systems, non-differentiable delays, feedback control,

discrete-time state and mode, Lyapunov functional.

1. Introduction

As an important class of stochastic systems, stochastic differential equations (SDEs) with Markovian

switching (also known as hybrid SDEs) have provided a generalized mathematical characterization for many

practical systems in branches of science and engineering (see e.g. [1–3]). Accordingly, stochastic systems

with Markovian switching have attracted considerable attention, with subsequent emphasis being placed on

the analysis of stability and control synthesis, and a great number of remarkable results have been reported,

for instance [4–9].

Traditionally, the system coefficients are required to be linear or satisfy the linear growth condition,

namely bounded by linear functions. However, many hybrid SDE models in the real world do not satisfy

these conditions. In other words, these conditions are too strong and hence restrict the application of the

theory. That is why the study on hybrid SDEs without the linear growth condition (namely, highly nonlinear)

has recently become more and more popular. Some salient results have been carried out on stability and

stabilization of highly nonlinear hybrid stochastic systems, such as [10–13]. The aim of this paper is to

develop the stabilization theory further for highly nonlinear hybrid stochastic systems.
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As is well known, time delays exist inevitably in various dynamical systems and very often lead to

poor performance, oscillations and instability of control systems [14, 15]. In recent years, many efforts have

been devoted to the stability and stabilization problems of hybrid stochastic systems with time delays (see

e.g.[16–21]). Limited by the mathematical technique, the time delays in most existing papers have been

assumed to be, either constants or functions of time differentiable with the derivative less than 1. However,

these conditions really might not be a natural feature of stochastic delay systems in the real world and cannot

be satisfied by many important systems. For example, the piecewise constant delays and sawtooth delays

frequently arise in sampled-data control and network-based control where delays are commonly referred to

as fast varying delays (no assumptions on the delay-derivatives)(see, e.g. [22–24]). A simplest example for

the piecewise constant delays is the case when the time delay in a network is larger during business hours

than other time. Such a time delay can be described by a piecewise constant function

δt =
∞∑
k=0

(
d1I[k,k+1/3)(t) + d2I[k+1/3,k+1)(t)

)
,

where d1 > d2 are two positive numbers, the time unit is one day, [0, 1/3) and [1/3, 1) stand for the business

hours and off-business hours respectively. Obviously, such a simple delay function is not differentiable.

Therefore, it is necessary and important to avoid requiring the time delay to be a constant or a differentiable

function to enable the stability and stabilization theory more extensive scope of applications. This is exactly

a part of what we are going to tackle in this paper.

Now that we have known the stability of stochastic systems may encounter degradation or even become

unstable because of high nonlinearity, time delays, Markovian switching or some other factors. It is vital to

investigate how to make the unstable highly nonlinear hybrid stochastic delay systems return to be stable,

which is involved with the stabilization problem of systems. To realize the stabilization of a system, different

control schemes have been proposed. For example, a novel least-squares identification was proposed and

adaptive control was designed to guarantee the stability in probability of stochastic nonlinear system in

[25] and the prescribed-time mean-square stabilization problem was solved by developing a new non-scaling

backstepping design scheme in [26]. Delay feedback control for highly nonlinear hybrid stochastic delay

systems was considered in [13].

Particularly, Mao [27] initiated a feedback control based on discrete-time state observations u(x(ηt), r(t))

(where ηt = [t/τ ]τ for t ≥ 0 and τ > 0) to stabilize continuous-time hybrid stochastic systems. This controller

is obviously more practical and costs less. Since then, this new design has attracted increasing interests of

researchers [12, 28–32]. It is noted that the feedback controls in the mentioned results are based on discrete-

time observations of the state but they still depend on continuous-time observations of the mode. Of course

this is perfectly fine if the mode of the system is fully observable at no cost. However, the mode is not obvious

in many real-world situations and it costs to identify the current mode of a hybrid stochastic system. So it is

more reasonable to design a feedback control u(x(ηt), r(ηt)), which is based on the discrete-time observations

of both state and mode.

Very recently, the existence, boundedness and stability for nonlinear hybrid SDEs with non-differential

delays have been discussed in [33], but the control problem has not yet been considered. In [34], Dong and

Mao have employed a delay feedback control to study the stabilization of highly nonlinear hybrid SDEs
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with non-differentiable delays. Although the time lag between the time when the state observation is made

and the time when the corresponding control reaches the system has been considered, the control function

requires continuous-time observations of system state x(t) and system mode r(t), which is not possible in

practice and the cost is relatively high. This is why we design the developed controller u(x(ηt), r(ηt)) to

stabilize highly nonlinear hybrid SDEs with non-differential delays.

All of the points made above motivate us to investigate the stabilization for highly nonlinear hybrid

stochastic systems with non-differentiable delays by feedback control based on discrete-time observations of

both state and mode. The key contributions of this paper lie in:

(1) We relax the conditions on system coefficients and time delays. Specifically, we do not require the

coefficients to be linear growth and the time delays to be differentiable. Thus our newly established

theory would have more extensive scope of applications.

(2) The more reasonable and practical controller u(x(ηt), r(ηt)) is employed to stabilize highly nonlinear

hybrid SDEs with non-differential delays. Actually, the factors of high nonlinearity, non-differentiable

delays as well as discrete-time state and mode make this study a challenge.

(3) We establish the sufficient stabilization criteria in the sense of H∞ stability, asymptotic stability, q̄th

moment exponential stability and almost sure exponential stability.

The remainder of this paper is organised as follows. In Section 2, we present our assumptions and

preliminaries. In Section 3, the main results are established one by one. Section 4 covers two examples to

illustrate the theoretical results. Finally, this article is concluded in Section 5.

2. Notation and standing hypotheses

Let us first introduce the notation used throughout this paper. We denote by Rn the n-dimensional

Euclidean space and |x| the Euclidean norm for x ∈ Rn. Let R+ = [0,∞). Let AT denote the transpose of a

vector or matrix A. For a matrix A, we let |A| =
√
trace(ATA) be its trace norm. If A is a symmetric real-

valued matrix, denote by λmin(A) and λmax(A) its smallest and largest eigenvalue, respectively. By A ≤ 0

and A < 0, we mean A is non-positive and negative definite, respectively. Let h > 0 and C([−h, 0];Rn)

denote the family of continuous functions φ from [−h, 0] to Rn with the norm ∥φ∥ = sup−h≤θ≤0 |φ(θ)|.

Denote by C(Rn;R+) the family of continuous functions from Rn to R+. If both a, b are real numbers, then

a∨ b = max{a, b} and a∧ b = min{a, b}. If A is a set, IA stands for its indicator function; that is, IA(z) = 1

if z ∈ A and 0 otherwise.

Let (Ω,F , {Ft}t≥0,P) be a complete probability space with a filtration {Ft}t≥0 satisfying the usual

conditions (i.e. it is increasing and right continuous with F0 containing all P-null sets) and B(t) =

(B1(t), · · · , Bm(t))T be an m-dimensional Brownian motion defined on the probability space. Let r(t), t ≥ 0

represent a right-continuous Markov chain on the same probability space, which is assumed to be indepen-

dent of the Brownian motion B(·) and take values in a finite state space S = {1, 2, · · · , N} with generator
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Γ = (γij)N×N given by

P{r(t+∆) = j|r(t) = i} =

γij∆+ o(∆) if i ̸= j,

1 + γii∆+ o(∆) if i = j,

where ∆ > 0 and γij ≥ 0 is the transition rate from i to j if i ̸= j while γii = −
∑

j ̸=i γij . Denote by

Cb
F0

([−h, 0];Rn) the family of all bounded, F0-measurable C([−h, 0];Rn)-valued random variables.

The given unstable system discussed in this paper is described by the nonlinear hybrid stochastic delay

differential equation (SDDE)

dx(t) = f(x(t), x(t− δt), r(t), t)dt+ g(x(t), x(t− δt), r(t), t)dB(t) (2.1)

on t ≥ 0, with initial data  {x(t) : −h ≤ t ≤ 0} = ξ ∈ C([−h, 0];Rn),

r(0) = r0 ∈ S,
(2.2)

where h > 0 stands for the upper bound for the time-varying delay, and the coefficients f : Rn×Rn×S×R+ →

Rn, g : Rn ×Rn × S ×R+ → Rn×m are Borel measurable functions.

As mentioned in last section, one of our key features in this paper is that the time delay involved in the

underlying system is a non-differentiable function of time. Let us precisely state it as an assumption.

Assumption 2.1. The time-varying delay δt is a Borel measurable function from R+ to [h1, h] and has the

property that

h̄ := lim sup
△→0+

(
sup
s≥−h

µ(Ms,△)

△

)
< ∞, (2.3)

where h1 and h are both constants with 0 ≤ h1 < h, Ms,△ = {t ∈ R+ : t− δt ∈ [s, s+△)} and µ(·) denotes

the Lebesgue measure on R+.

It should be pointed out that the above assumption is indeed weaker than the traditional condition

that the time-varying delay δt is differentiable with its derivative being bounded by a positive number less

than 1. Moreover, many time-varying delay functions in practice satisfy Assumption 2.1. Besides, under

this assumption we always have h̄ ≥ 1 and the following useful lemma. Please see [33, 34] for more details.

Lemma 2.2. Let Assumption 2.1 hold. Let T > 0 and φ : [−h, T − h1] → R+ be a continuous function.

Then ∫ T

0

φ(t− δt)dt ≤ h̄

∫ T−h1

−h

φ(t)dt. (2.4)

Another key feature in this paper is that highly nonlinear hybrid SDDEs are considered. That is, we

maintain the local Lipschitz condition and impose the polynomial growth condition rather than the linear

growth condition on the coefficients. We therefore state the following hypothesis.

Assumption 2.3. For any positive number k, there exists a positive constant Lk such that

|f(x, y, i, t)− f(x̄, ȳ, i, t)| ∨ |g(x, y, i, t)− g(x̄, ȳ, i, t)| ≤ Lk(|x− x̄|+ |y − ȳ|) (2.5)
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for those x, y, x̄, ȳ ∈ Rn with |x| ∨ |y| ∨ |x̄| ∨ |ȳ| ≤ k and all (i, t) ∈ S × R+. Moreover, there exist constants

L > 0, q1 > 1 and qi ≥ 1 (2 ≤ i ≤ 4) such that

|f(x, y, i, t)| ≤ L(|x|+ |y|+ |x|q1 + |y|q2),

|g(x, y, i, t)| ≤ L(|x|+ |y|+ |x|q3 + |y|q4) (2.6)

for all (x, y, i, t) ∈ Rn × Rn × S × R+.

The highly nonlinear stochastic systems satisfying the polynomial growth condition exist widely in the

real world, such as the Ait-Sahalia interest rate model in finance, the food chain model in ecology and

the vibration model in mechanical engineering (see e.g. [35–37]). Specifically, let us see the physical mass-

spring-damper model in [38], which is affected by external force involving the environmental noise and abrupt

changes in parameters. It can be written as the following 2-dimensional highly nonlinear hybrid stochastic

differential delay equation:

dx(t) = f(x(t), x(t− δt), r(t), t)dt+ g(x(t), x(t− δt), r(t), t)dB(t),

where B(t) is a scalar Brownian motion, δt is the time-varying delay, r(t) is a Markov chain on the state

space S = {1, 2} with its generator Γ =

 −2 2

3 −3

 and the coefficients f, g are defined by

f(x, y, 1, t) = (x2,−1.5x1 − 2.5x2 − 0.54x2y
2
2)

T , f(x, y, 2, t) = (x2,−1.5x1 − 2.5x2 − 1.5x3
2y

2
2)

T ,

g(x, y, 1, t) = (0, 0.6y1 + 0.3y2(1 + x2))
T , g(x, y, 2, t) = (0, y1 + 0.2y2(1 + x2))

T .

It is well known that Assumption 2.3 guarantees the existence and uniqueness of the maximal local

solution for the SDDE (2.1), which may explode to infinity at a finite time (see e.g. [2]). To avoid such a

possible explosion, we introduce the following Khasminskii-type condition.

Assumption 2.4. Assume that there exist positive constants p, q, α1, α2, α3 with

q > (p+ q1 − 1) ∨ [2(q1 ∨ q2 ∨ q3 ∨ q4)], p ≥ 2(q1 ∨ q2 ∨ q3 ∨ q4)− q1 + 1 (2.7)

such that

xT f(x, y, i, t) +
q − 1

2
|g(x, y, i, t)|2 ≤ α1(|x|2 + |y|2)− α2|x|p + α3|y|p (2.8)

for all (x, y, i, t) ∈ Rn × Rn × S × R+. Moreover, we assume that α2 > α3h̄. Letting

β1 = qα2 −
α3q(q − 2)

p+ q − 2
, β2 =

α3pq

p+ q − 2
,

we have β1 > β2h̄.

From Assumptions 2.1, 2.3 and 2.4, it follows that system (2.1) has a unique global solution x(t) with

initial value (2.2) such that sup−h≤t<∞ E|x(t)|q < ∞ (see e.g. [34]). But the boundedness can not educe
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the stability. So our aim here is to design a feedback control u(x(ηt), r(ηt), t) so that the controlled hybrid

SDDE

dx(t) =
(
f(x(t), x(t− δt), r(t), t) + u(x(ηt), r(ηt), t)

)
dt+ g(x(t), x(t− δt), r(t), t)dB(t), t ≥ 0, (2.9)

will become stable in some certain sense, where u : Rn × S ×R+ → Rn is Borel measurable and ηt = [t/τ ]τ ,

in which [t/τ ] is the integer part of t/τ and hence τ > 0 means the duration between two consecutive

observations. We can observe that the feedback control u(x(ηt), r(ηt), t) is designed based on the discrete-

time state observations x(0), x(τ), x(2τ), · · · and discrete-time mode observations r(0), r(τ), r(2τ), · · · as well,

though the given unstable hybrid SDDE (2.1) is of continuous-time, which is also an important feature of

this paper. We will design the control function to satisfy the following assumption.

Assumption 2.5. There exists a positive constant κ such that

|u(x, i, t)− u(y, i, t)| ≤ κ|x− y| (2.10)

for all (x, y, i, t) ∈ Rn × Rn × S × R+. Moreover, assume that u(0, i, t) = 0 for all (i, t) ∈ S × R+.

Let us close this section by introducing a useful lemma, which will play an important role in coping

with the discrete-time Markov chain. For its explanation and proof details, we refer the reader to [39, 40].

Lemma 2.6. For any t ≥ 0, v > 0 and i ∈ S, we have

P
(
r(s) ̸= i for some s ∈ [t, t+ v]|r(t) = i

)
≤ 1− e−γ̄v,

in which

γ̄ = max
i∈S

(−γii).

3. Analysis for the controlled system

3.1. Boundedness

As pointed out in last section, the qth moment of the solution of SDDE (2.1) is bounded. The following

theorem shows that the controlled system (2.9) preserves this nice property, which will be a foundation of

this paper.

Theorem 3.1. Under Assumptions 2.1, 2.3, 2.4 and 2.5, the controlled system (2.9) with the initial data

(2.2) has a unique global solution x(t) on [−h,∞) which satisfies

sup
−h≤t<∞

E|x(t)|q < ∞. (3.1)

Proof. We divide the proof into three steps to make it more understandable.

Step1. In fact, if we define a bounded function ν : R+ → [0, τ ] by

ν(t) = t− kτ for kτ ≤ t < (k + 1)τ, k = 0, 1, 2 · · · ,
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then the controlled system (2.9) can be written as

dx(t) =
[
f(x(t), x(t− δt), r(t), t) + u(x(t− ν(t)), r(t− ν(t)), t)

]
dt+ g(x(t), x(t− δt), r(t), t)dB(t) (3.2)

on t ≥ 0 with the initial data (2.2). Let Ū(x) = |x|q, then it follows from the Itô formula that

dŪ(x(t)) =LŪ(x(t), x(t− δt), x(t− ν(t)), r(t), r(t− ν(t)), t)dt

+ q|x|q−2xT (t)g(x(t), x(t− δt), r(t), t)dB(t), (3.3)

where the operator LŪ : Rn × Rn × Rn × S × S × R+ → R is defined by

LŪ(x, y, z, i, î, t) =q|x|q−2xT [f(x, y, i, t) + u(z, î, t)] +
q

2
|x|q−2|g(x, y, i, t)|2

+
q(q − 2)

2
|x|q−4|xT g(x, y, i, t)|2

≤q|x|q−2
(
xT [f(x, y, i, t) + u(z, î, t)] +

q − 1

2
|g(x, y, i, t)|2

)
.

By Assumptions 2.4 and 2.5, we can derive that

LŪ(x, y, z, i, î, t) ≤ qκ|x|q−1|z|+ α1q|x|q + α1q|x|q−2|y|2 − α2q|x|p+q−2 + α3q|x|q−2|y|p. (3.4)

According to Assumption 2.4, we can choose a constant ε0 for

0 < ε0 < β1 − β2h̄, 2− 1

h
ln

β1 − ε0
β2h̄

> 0

and then choose another constant ε satisfying

0 < ε < min{ 2
h̄
,
2− 1

h ln β1−ε0
β2h̄

1 + β1−ε0
β2

}.

By the Young inequality, we can obtain

qκ|x|q−1|z| ≤ c|x|q + ε|z|q,

α1q|x|q−2|y|2 ≤ c|x|q + ε|y|q,

|x|q−2|y|p ≤ q − 2

p+ q − 2
|x|p+q−2 +

p

p+ q − 2
|y|p+q−2,

where, here and in the remaining part, c stands for a positive constant that may change from line to line

but its special form is of no use. Hence we have

LŪ(x, y, z, i, î, t) ≤ C − 2|x|q + ε|y|q + ε|z|q − (β1 − ε0)|x|p+q−2 + β2|y|p+q−2, (3.5)

where

C := sup
u≥0

[(2c+ 2)|u|q − ε0|u|p+q−2].

Step2. Next let us prove the existence and uniqueness of the global solution of the hybrid SDDE (2.9)

on t ≥ −h. Since the coefficients of the controlled system (2.9) are locally Lipschitz continuous, for any given

initial data (2.2), there is a unique maximal local solution x(t) on [−h, e∞), where e∞ is the explosion time

(see e.g. [2]). Let k0 > 0 be sufficiently large for k0 ≥ ∥ξ∥. For each integer k ≥ k0, define the stopping time

τk = inf{t ∈ [0, e∞) : |x(t)| ≥ k},
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where, throughout this paper, we set inf ∅ = ∞ (in which ∅ denotes the empty set as usual). Obviously, τk

is increasing as k → ∞. Set τ∞ = limk→∞ τk, whence τ∞ ≤ e∞ a.s.. If we show τ∞ = ∞ a.s., then e∞ = ∞

a.s. and the globality of the unique solution x(t) follows.

By the stopping time technique, we can derive from (3.3) and (3.5) that

E|x(t ∧ τk)|q ≤|ξ(0)|q + E
∫ t∧τk

0

[C − 2|x(s)|q + ε|x(s− δs)|q + ε|x(s− ν(s))|q

− (β1 − ε0)|x(s)|p+q−2 + β2|x(s− δs)|p+q−2]ds

≤|ξ(0)|q + Ct− 2E
∫ t∧τk

0

|x(s)|qds+ εE
∫ t∧τk

0

|x(s− δs)|qds+ εE
∫ t∧τk

0

|x(s− ν(s))|qds

− (β1 − ε0)E
∫ t∧τk

0

|x(s)|p+q−2ds+ β2E
∫ t∧τk

0

|x(s− δs)|p+q−2ds. (3.6)

By Lemma 2.2, we can show that

E
∫ t∧τk

0

|x(s− δs)|qds ≤ h̄
(
E
∫ 0

−h

|x(s)|qds+ E
∫ t∧τk

0

|x(s)|qds
)
,

E
∫ t∧τk

0

|x(s− δs)|p+q−2ds ≤ h̄
(
E
∫ 0

−h

|x(s)|p+q−2ds+ E
∫ t∧τk

0

|x(s)|p+q−2ds
)
.

Substituting these into (3.6) and recalling the choosing conditions on ε0 and ε, we have

E|x(t ∧ τk)|q ≤ C0 + Ct+ εE
∫ t∧τk

0

|x(s− ν(s))|qds

= C0 + Ct+ ε

∫ t

0

E(|x(s− ν(s))|qI[0,τk](s))ds,

where C0 = |ξ(0)|q + εhh̄∥ξ∥q + β2hh̄∥ξ∥p+q−2. From the definition of function ν(·), we observe that

0 ≤ s− ν(s) ≤ s for all s ≥ 0. Then we have

E(|x(s− ν(s))|qI[0,τk](s)) ≤ sup
0≤u≤s

E(|x(u)|qI[0,τk](s)) ≤ sup
0≤u≤s

E|x(u ∧ τk)|q.

Thus,

E|x(t ∧ τk)|q ≤ C0 + Ct+ ε

∫ t

0

sup
0≤u≤s

E|x(u ∧ τk)|qds. (3.7)

Having in mind that the right-hand side of (3.7) is increasing in t, we can further get

sup
0≤u≤t

E|x(u ∧ τk)|q ≤ C0 + Ct+ ε

∫ t

0

sup
0≤u≤s

E|x(u ∧ τk)|qds.

An application of the Gronwall inequality yields

sup
0≤u≤t

E|x(u ∧ τk)|q ≤ (C0 + Ct)eεt.

Consequently,

kqP(τk ≤ t) ≤ E|x(t ∧ τk)|q ≤ (C0 + Ct)eεt.

Letting k → ∞ yields P(τ∞ ≤ t) = 0, namely P(τ∞ > t) = 1. Since t ≥ 0 is arbitrary, we must have

P(τ∞ = ∞) = 1.
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Step3. Finally, we will show the boundedness of the qth moment of the solution. Let ε1 > 0 be the

unique root to equation

β1 − ε0 = β2h̄e
ε1h. (3.8)

By the Itô formula and (3.5), we have

eε1tE|x(t)|q ≤|ξ(0)|q + E
∫ t

0

eε1s
(
ε1|x(s)|q + C − 2|x(s)|q + ε|x(s− δs)|q + ε|x(s− ν(s))|q

− (β1 − ε0)|x(s)|p+q−2 + β2|x(s− δs)|p+q−2
)
ds

(3.9)

We can derive from Lemma 2.2 that

E
∫ t

0

eε1s|x(s− δs)|qds ≤eε1hE
∫ t

0

eε1(s−δs)|x(s− δs)|qds

≤h̄eε1h
(
E
∫ 0

−h

eε1s|x(s)|qds+ E
∫ t

0

eε1s|x(s)|qds
)

≤h̄eε1hE
∫ 0

−h

eε1s|x(s)|qds+ h̄eε1hE
∫ t

0

eε1s|x(s)|qds,

E
∫ t

0

eε1s|x(s− δs)|p+q−2ds ≤ h̄eε1hE
∫ 0

−h

eε1s|x(s)|p+q−2ds+ h̄eε1hE
∫ t

0

eε1s|x(s)|p+q−2ds.

Substituting these into (3.9) and recalling (3.8), we get

eε1tE|x(t)|q ≤ Ĉ0 +
C

ε1
eε1t + E

∫ t

0

eε1s[(ε1 + εh̄eε1h − 2)|x(s)|q + ε|x(s− ν(s))|q]ds, (3.10)

where Ĉ0 = |ξ(0)|q + εh̄eε1hE
∫ 0

−h
eε1s|x(s)|qds+ β2h̄e

ε1hE
∫ 0

−h
eε1s|x(s)|p+q−2ds. In a similar way as we did

in Step 2, we can derive that

sup
0≤u≤t

eε1uE|x(u)|q ≤ Ĉ0 +
C

ε1
eε1t +

∫ t

0

(ε1 + εh̄eε1h − 2 + ε) sup
0≤u≤s

eε1uE|x(u)|qds.

It follows from the Gronwall inequality that

sup
0≤u≤t

eε1uE|x(u)|q ≤ (Ĉ0 +
C

ε1
eε1t)e(ε1+εh̄eε1h−2+ε)t.

Therefore,

E|x(t)|q ≤ Ĉ0e
(εh̄eε1h−2+ε)t +

C

ε1
e(ε1+εh̄eε1h−2+ε)t

for all t ≥ 0. Recalling (3.8) and the definition of ε, we find

ε1 + εh̄eε1h − 2 + ε < 0.

Hence we have

sup
−h≤t<∞

E|x(t)|q < ∞.

We complete the proof.

It should be pointed out that Theorem 3.1 along with conditions (2.6) and (2.7) ensures that for any

t ≥ 0, f(x(t), x(t− δt), r(t), t) and g(x(t), x(t− δt), r(t), t) are bounded in L2 and x(t) is bounded in Lq̄ for

any q̄ ∈ (0, q], which are fundamental when we discuss the stabilization problem in the following subsections.
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3.2. Asymptotic stabilization

The asymptotic stability of the controlled system (2.9) will be discussed in this subsection. Although

we have just shown that the controlled system preserves the boundedness of the original system (2.1) as long

as the control function satisfies Assumption 2.5, such a control function may not be able to stabilize the

given system. So we need to propose some new hypotheses.

Assumption 3.2. Design the control function u : Rn × S × R+ → Rn so that we can find real numbers

ai, āi, positive numbers ci, c̄i and nonnegative numbers bi, b̄i, di, d̄i (i ∈ S) for both

xT [f(x, y, i, t) + u(x, i, t)] +
1

2
|g(x, y, i, t)|2 ≤ ai|x|2 + bi|y|2 − ci|x|p + di|y|p (3.11)

and

xT [f(x, y, i, t) + u(x, i, t)] +
q1
2
|g(x, y, i, t)|2 ≤ āi|x|2 + b̄i|y|2 − c̄i|x|p + d̄i|y|p (3.12)

to hold for all (x, y, i, t) ∈ Rn × Rn × S × R+; while both

A1 := −2diag(a1, a2, · · · , aN )− Γ and A2 := −(q1 + 1)diag(ā1, ā2, · · · , āN )− Γ (3.13)

are nonsingular M-matrices. Moreover,

λ1h̄ < 1, λ3h̄ < λ2,
λ4(q1 − 1 + 2h̄)

q1 + 1
< 1 and

λ6(q1 − 1 + ph̄)

p+ q1 − 1
< λ5, (3.14)

where

λ1 = max
i∈S

2θibi, λ2 = min
i∈S

2θici, λ3 = max
i∈S

2θidi,

λ4 = max
i∈S

(q1 + 1)θ̄ib̄i, λ5 = min
i∈S

(q1 + 1)θ̄ic̄i, λ6 = max
i∈S

(q1 + 1)θ̄id̄i,

(θ1, · · · , θN )T = A−1
1 (1, · · · , 1)T , (θ̄1, · · · , θ̄N )T = A−1

2 (1, · · · , 1)T . (3.15)

By the theory of M-matrices (see e.g. [2] for more details), we see that all θi and θ̄i defined in (3.15)

are positive due to the nonsingularity of M-matrices A1 and A2.

It is important and useful to point out that under Assumption 2.4, there is a rich class of control functions

which satisfy Assumptions 2.5 and 3.2. For example, the linear functions of the form u(x, i, t) = −Aix, where

Ai are symmetric positive-definite matrices such that λmin(A) ≥ (υ+1)α1 with υ > h̄∨(q1−1+2h̄)/(q1+1).

Clearly, Assumption 2.5 holds for such a control function. Note

xTu(x, i, t) ≤ −λmin(Ai)|x|2 ≤ −(υ + 1)α1|x|2.

This along with Assumption 2.4 implies

xT [f(x, y, i, t) + u(x, i, t)] +
1

2
|g(x, y, i, t)|2

<xT [f(x, y, i, t) + u(x, i, t)] +
q1
2
|g(x, y, i, t)|2

≤− υα1|x|2 + α1|y|2 − α2|x|p + α3|y|p.
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This means ai = āi = −υα1, bi = b̄i = α1, ci = c̄i = α2, di = d̄i = α3 for (3.11) and (3.12). Then by the

theory of M-matrices, both

A1 = 2υdiag(α1, · · · , α1)− Γ

A2 = υ(q1 + 1)diag(α1, · · · , α1)− Γ

are nonsingular M-matrices. When υ is sufficiently large, θi ≈ 1/(2υα1) and θ̄i ≈ 1/[υα1(q1+1)]. To explain

this, let us choose N = 2 as an example, namely the system mode r has two states. Let the generator matrix

Γ =

 −γ12 γ12

γ21 −γ21

 .

Then

A1 =

 2υα1 + γ12 −γ12

−γ21 2υα1 + γ21

 and A2 =

 (q1 + 1)υα1 + γ12 −γ12

−γ21 (q1 + 1)υα1 + γ21

 ,

and the inverse matrices are

A−1
1 =

1

4υ2α2
1 + 2υα1(γ12 + γ21)

 2υα1 + γ21 γ12

γ21 2υα1 + γ12



A−1
2 =

1

(q1 + 1)2υ2α2
1 + (q1 + 1)υα1(γ12 + γ21)

 (q1 + 1)υα1 + γ21 γ12

γ21 (q1 + 1)υα1 + γ12

 .

So

θi =
2υα1 + γ12 + γ21

4υ2α2
1 + 2υα1(γ12 + γ21)

,

when υ is sufficiently large,

θi ≈
1

2υα1
.

Similarly,

θ̄i =
(q1 + 1)υα1 + γ12 + γ21

(q1 + 1)2υ2α2
1 + (q1 + 1)υα1(γ12 + γ21)

,

when υ is sufficiently large,

θ̄i ≈
1

(q1 + 1)υα1
.

Therefore, in (3.15), λ1 = 2α1θi ≈ 1/υ, we have λ1h̄ < 1 as υ > h̄. The condition λ3h̄ < λ2 can be guaranteed

by α3h̄ < α2 in Assumption 2.4. Similarly, λ4 = (q1 + 1)α1θ̄i ≈ 1/υ. Since υ > (q1 − 1 + 2h̄)/(q1 + 1),

then [λ4(q1 − 1 + 2h̄)]/(q1 + 1) < 1. The condition [λ6(q1 − 1 + ph̄)]/(p + q1 − 1) < λ5 can be guaranteed

as q1 > 1, h̄ > 1 and α2 > α3h̄. Consequently, Assumption 3.2 is satisfied as long as υ is sufficiently large

and the control function has λmin(Ai) > (υ + 1)α1. Please note this is a general sufficient condition. When

the specific form of the system is known, all the information will be considered in the calculation, to obtain

a better control as needed.

Define a function U : Rn × S → R+ by

U(x, i) = θi|x|2 + θ̄i|x|q1+1 (3.16)
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and define an operator LU : Rn × Rn × S × R+ → R by

LU(x, y, i, t)

=2θi

(
xT [f(x, y, i, t) + u(x, i, t)] +

1

2
|g(x, y, i, t)|2

)
+ (q1 + 1)θ̄i

(
|x|q1−1xT [f(x, y, i, t) + u(x, i, t)] +

1

2
|x|q1−1|g(x, y, i, t)|2 + 1

2
(q1 − 1)|x|q1−3|xT g(x, y, i, t)|2

)
+

N∑
j=1

γij(θj |x|2 + θ̄j |x|q1+1). (3.17)

From (3.11), (3.12), the Young inequality and (3.15), we can derive that

LU(x, y, i, t) ≤ −|x|2 + λ1|y|2 − λ2|x|p + λ3|y|p −
(
1− λ4(q1 − 1)

q1 + 1

)
|x|q1+1 +

2λ4

q1 + 1
|y|q1+1

−
(
λ5 −

λ6(q1 − 1)

p+ q1 − 1

)
|x|p+q1−1 +

λ6p

p+ q1 − 1
|y|p+q1−1. (3.18)

This observation makes it possible to give the following assumption.

Assumption 3.3. Find eight positive constants ρj(1 ≤ j ≤ 8) with ρ4 > ρ5h̄ and ρ6 ∈ (0, 1/h̄) and a

function W ∈ C(Rn;R+) such that

LU(x, y, i, t) + ρ1
(
2θi|x|+ (q1 + 1)θ̄i|x|q1

)2
+ ρ2|f(x, y, i, t)|2 + ρ3|g(x, y, i, t)|2

≤− ρ4|x|2 + ρ5|y|2 −W (x) + ρ6W (y) (3.19)

and

ρ7|x|p+q1−1 ≤ W (x) ≤ ρ8(1 + |x|p+q1−1) (3.20)

for all (x, y, i, t) ∈ Rn × Rn × S × R+.

To realize our stabilization purpose, we will use the method of Lyapunov functional. For this purpose,

let us define two segments x̂t := {x(t + s) : −2h ≤ s ≤ 0} and r̂t := {r(t + s) : −2h ≤ s ≤ 0} for t ≥ 0.

For x̂t and r̂t to be well defined for 0 ≤ t < 2h, we set x(s) = ξ(−h) for s ∈ [−2h,−h) and r(s) = r0 for

s ∈ [−2h, 0). The Lyapunov functional used in this paper will be of the form

V (x̂t, r̂t, t) = U(x(t), r(t))+θ

∫ 0

−τ

∫ t

t+s

[
τ |f(x(v), x(v − δv), r(v), v) + u(x(ηv), r(ηv), v)|2

+|g(x(v), x(v − δv), r(v), v)|2
]
dvds (3.21)

for t ≥ 0, where U has been defined by (3.16) and θ is a positive constant to be determined later. We set

f(x, y, i, v) = f(x, y, i, 0), g(x, y, i, v) = g(x, y, i, 0), u(x, i, v) = u(x, i, 0)

for (x, y, i, v) ∈ Rn × Rn × S × [−2h, 0). By the generalized Itô formula (see e.g. [2]), we can obtain

dU(x(t), r(t)) = LU(x(t), x(t− δt), x(ηt), r(t), r(ηt), t)dt+ dM(t) (3.22)

12

Discrete-time feedback control for highly nonlinear hybrid stochastic systems with non-differentiable delays 



for t ≥ 0, whereM(t) is a continuous local martingale with M(0) = 0 and LU : Rn×Rn×Rn×S×S×R+ → R

is defined by

LU(x, y, z, i, î, t)

=2θi

(
xT [f(x, y, i, t) + u(z, î, t)] +

1

2
|g(x, y, i, t)|2

)
+ (q1 + 1)θ̄i|x|q1−1

(
xT [f(x, y, i, t) + u(z, î, t)] +

1

2
|g(x, y, i, t)|2

)
+

(q1 + 1)(q1 − 1)

2
θ̄i|x|q1−3|xT g(x, y, i, t)|2 +

N∑
j=1

γij(θj |x|2 + θ̄j |x|q1+1)

=LU(x, y, i, t)− [2θi + (q1 + 1)θ̄i|x|q1−1]xT [u(x, i, t)− u(z, î, t)]

On the other hand, the fundamental theory of calculus shows

d

(
θ

∫ 0

−τ

∫ t

t+s

[
τ |f(x(v), x(v − δv), r(v), v) + u(x(ηv), r(ηv), v)|2 + |g(x(v), x(v − δv), r(v), v)|2

]
dvds

)
=
(
θτ

[
τ |f(x(t), x(t− δt), r(t), t) + u(x(ηt), r(ηt), t)|2 + |g(x(t), x(t− δt), r(t), t)|2

]
− θ

∫ t

t−τ

[
τ |f(x(v), x(v − δv), r(v), v) + u(x(ηv), r(ηv), v)|2 + |g(x(v), x(v − δv), r(v), v)|2

]
dv

)
dt. (3.23)

Combining (3.22), (3.23) and recalling the definition of the Lyapunov functional, we can get

dV (x̂t, r̂t, t) ≤ LV (x̂t, r̂t, t)dt+ dM(t) (3.24)

where

LV (x̂t, r̂t, t)

=LU(x(t), x(t− δt), r(t), t) + ρ1
(
2θr(t)|x(t)|+ (q1 + 1)θ̄r(t)|x(t)|q1

)2
+

1

4ρ1
|u(x(t), r(t), t)− u(x(ηt), r(ηt), t)|2

+ θτ
[
τ |f(x(t), x(t− δt), r(t), t) + u(x(ηt), r(ηt), t)|2 + |g(x(t), x(t− δt), r(t), t)|2

]
− θ

∫ t

t−τ

[
τ |f(x(v), x(v − δv), r(v), v) + u(x(ηv), r(ηv), v)|2 + |g(x(v), x(v − δv), r(v), v)|2

]
dv. (3.25)

By Assumptions 2.3-2.5 and 3.3 as well as Theorem 3.1, it is straightforward to see that

E|LV (x̂t, r̂t, t)| < ∞, ∀t ≥ 0. (3.26)

We can now state our first stabilization result.

Theorem 3.4. Under Assumptions 2.1, 2.3 and 2.4, we can design a control function u to satisfy Assump-

tions 2.5, 3.2 and then find eight positive constants ρj(1 ≤ j ≤ 8) and a function W ∈ C(Rn;R+) to meet

Assumption 3.3. Set

θ =
2κ2

ρ1

(
1 + 8(1− e−γ̄/4κ)

)
. (3.27)

If τ > 0 is sufficiently small for

τ ≤
√

ρ2
2θ

∧ ρ3
θ

∧ 1

4κ
(3.28)
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and

ρ4 − ρ5h̄− 4θτ2κ2 − 4κ2

ρ1
(1− e−γ̄τ ) > 0, (3.29)

then the solution of the controlled system (2.9) with initial data (2.2) has the property that∫ ∞

0

E|x(t)|q̄dt < ∞, ∀q̄ ∈ [2, p+ q1 − 1]. (3.30)

That is, the controlled system (2.9) is H∞-stable in Lq̄ for any q̄ ∈ [2, p+ q1 − 1].

Proof. Fix the initial value ξ arbitrarily. Let k0 > 0 be sufficiently large for k0 > ∥ξ∥. For each integer

k ≥ k0, define the stopping time

ζk = inf{t ≥ 0 : |x(t)| ≥ k}.

By Theorem 3.1, we see that ζk is increasing to infinity a.s. as k → ∞. By the generalized Itô formula, it

follows from (3.24) that

EV (x̂t∧ζk , r̂t∧ζk , t ∧ ζk) ≤ V (x̂0, r̂0, 0) + E
∫ t∧ζk

0

LV (x̂s, r̂s, s)ds

for any t ≥ 0 and k ≥ k0. Recalling (3.26), we can let k → ∞ and then apply the dominated convergence

theorem as well as the Fubini theorem to obtain

0 ≤ EV (x̂t, r̂t, t) ≤ V (x̂0, r̂0, 0) +

∫ t

0

E
(
LV (x̂s, r̂s, s)

)
ds (3.31)

for any t ≥ 0. We can derive from (3.25), (3.28), Assumptions 2.5 and 3.3 that

E
(
LV (x̂t, r̂t, t)

)
≤− ρ4E|x(t)|2 + ρ5E|x(t− δt)|2 − EW (x(t)) + ρ6EW (x(t− δt)) + 2θτ2κ2E|x(ηt)|2

+
1

4ρ1
E|u(x(t), r(t), t)− u(x(ηt), r(t), t) + u(x(ηt), r(t), t)− u(x(ηt), r(ηt), t)|2

− θE
∫ t

t−τ

[
τ |f(x(v), x(v − δv), r(v), v) + u(x(ηv), r(ηv), v)|2 + |g(x(v), x(v − δv), r(v), v)|2

]
dv

≤− ρ4E|x(t)|2 + ρ5E|x(t− δt)|2 − EW (x(t)) + ρ6EW (x(t− δt))

+ 4θτ2κ2E|x(t)− x(ηt)|2 + 4θτ2κ2E|x(t)|2 + κ2

2ρ1
E|x(t)− x(ηt)|2

− θE
∫ t

t−τ

[
τ |f(x(v), x(v − δv), r(v), v) + u(x(ηv), r(ηv), v)|2 + |g(x(v), x(v − δv), r(v), v)|2

]
dv

+
1

2ρ1
E|u(x(ηt), r(t), t)− u(x(ηt), r(ηt), t)|2. (3.32)
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Moreover, by Assumption 2.5 and Lemma 2.6, we can derive that

E|u(x(ηt), r(t), t)− u(x(ηt), r(ηt), t)|2

=E
[
E|u(x(ηt), r(t), t)− u(x(ηt), r(ηt), t)|2|Fηt

]
≤E

[
4κ2|x(ηt)|2E

(
1{r(ηt)̸=r(t)}|Fηt

)]
=E

[
4κ2|x(ηt)|2E

(∑
i∈S

1{r(ηt)=i}1{r(t)̸=i}|Fηt

)]

=E

[
4κ2|x(ηt)|2

∑
i∈S

1{r(ηt)=i} × P(r(t) ̸= i|r(ηt) = i)

]

≤E
[
4κ2|x(ηt)|2(1− e−γ̄τ )

]
=4κ2(1− e−γ̄τ )E|x(ηt)|2

≤8κ2(1− e−γ̄τ )E|x(t)− x(ηt)|2 + 8κ2(1− e−γ̄τ )E|x(t)|2. (3.33)

On the other hand, considering t− ηt ≤ τ for all t ≥ 0, we can prove from equation (2.9) that

E|x(t)− x(ηt)|2

≤2E
∫ t

t−τ

[
τ |f(x(s), x(s− δs), r(s), s) + u(x(ηs), r(ηs), s)|2 + |g(x(s), x(s− δs), r(s), s)|2

]
ds. (3.34)

Substituting (3.33) and (3.34) into (3.32) and recalling (3.27) and (3.28), we can show that

EV (x̂t, r̂t, t) ≤V (x̂0, r̂0, 0)− [ρ4 − 4θτ2κ2 − 4κ2

ρ1
(1− e−γ̄τ )]E

∫ t

0

|x(s)|2ds− E
∫ t

0

W (x(s))ds

+ ρ5E
∫ t

0

|x(s− δs)|2ds+ ρ6E
∫ t

0

W (x(s− δs))ds

By Lemma 2.2, we have

E
∫ t

0

|x(s− δs)|2ds ≤ h̄E
∫ t−h1

−h

|x(s)|2ds ≤ h̄

(∫ 0

−h

|x(s)|2ds+ E
∫ t

0

|x(s)|2ds
)

and

E
∫ t

0

W (x(s− δs))ds ≤ h̄E
∫ t−h1

−h

W (x(s))ds ≤ h̄

(∫ 0

−h

W (x(s))ds+ E
∫ t

0

W (x(s))ds

)
Hence, we can further obtain

EV (x̂t, r̂t, t) ≤ C1 − [ρ4 − 4θτ2κ2 − 4κ2

ρ1
(1− e−γ̄τ )− ρ5h̄]

∫ t

0

E|x(s)|2ds− (1− ρ6h̄)

∫ t

0

EW (x(s))ds

where C1 = V (x̂0, r̂0, 0) + hh̄ sup−h≤s≤0[ρ5E|x(s)|2 + ρ6EW (x(s))] < ∞. By (3.29) and 0 < ρ6 < 1/h̄, we

have ∫ t

0

E|x(s)|2ds ≤ C1

ρ4 − 4θτ2κ2 − ρ5h̄− 4κ2

ρ1
(1− e−γ̄τ )

,

∫ t

0

EW (x(s))ds ≤ C1

1− ρ6h̄
.

Letting t → ∞ and recalling (3.20) yield∫ ∞

0

E|x(s)|2ds < ∞,

∫ ∞

0

E|x(s)|p+q1−1ds < ∞,

which implies the required assertion (3.30) as E|x(s)|q̄ ≤ E|x(s)|2 + E|x(s)|p+q1−1 for any q̄ ∈ [2, p+ q1 − 1].
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Theorem 3.5. Under the same conditions of Theorem 3.4, the solution of the controlled system (2.9) with

initial data (2.2) has the property that

lim
t→∞

E|x(t)|q̄ = 0 (3.35)

for any q̄ ∈ [2, q). That is, the controlled system (2.9) is asymptotically stable in Lq̄.

Proof. By Theorem 3.1,

C2 := sup
−h≤t<∞

E|x(t)|q < ∞.

For any 0 ≤ t1 < t2 < ∞, the Itô formula shows

E|x(t2)|2 − E|x(t1)|2

=E
∫ t2

t1

(
2xT (t)

[
|f(x(t), x(t− δt), r(t), t) + u(x(ηt), r(ηt), t)

]
+ |g(x(t), x(t− δt), r(t), t)|2

)
dt.

By conditions (2.6), (2.7) and (2.10), we have∣∣E|x(t2)|2 − E|x(t1)|2
∣∣ ≤E

∫ t2

t1

(
2L|x(t)|

(
|x(t)|+ |x(t− δt)|+ |x(t)|q1 + |x(t− δt)|q2

)
+ 2κ|x(t)| · |x(ηt)|

+ L2
(
|x(t)|+ |x(t− δt)|+ |x(t)|q3 + |x(t− δt)|q4

)2)
dt

≤
∫ t2

t1

C3 (1 + E|x(t)|q + E|x(t− δt)|q + E|x(ηt)|q) dt

≤C3(1 + 3C2)(t2 − t1),

where C3 is a constant independent of t1 and t2. Thus, E|x(t)2 is uniformly continuous in t on R+. This

together with (3.30) implies that

lim
t→∞

E|x(t)|2 = 0. (3.36)

That is, the assertion (3.35) holds when q̄ = 2. Now we fix any q̄ ∈ (2, q). For a constant 0 < ε < 1, we can

derive from the Hölder inequality that

E|x(t)|q̄ ≤
(
E|x(t)|2

)ε (E|x(t)|(q̄−2ε)/(1−ε)
)1−ε

.

Choosing ε = q−q̄
q−2 , we get

E|x(t)|q̄ ≤
(
E|x(t)|2

)(q−q̄)/(q−2)
(E|x(t)|q)(q̄−2)/(q−2) ≤ C

(q̄−2)/(q−2)
2

(
E|x(t)|2

)(q−q̄)/(q−2)
. (3.37)

Then it follows from (3.36) that

lim
t→∞

E|x(t)|q̄ = 0, ∀q̄ ∈ (2, q).

The proof is therefore complete.

Theorem 3.6. Under the same conditions of Theorem 3.4, the solution of the controlled system (2.9) is

asymptotically stable almost surely, that is,

lim
t→∞

|x(t)| = 0 a.s. (3.38)

for any initial value ξ and r0.
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Proof. The proof follows the original method developed in [41] to establish the stochastic LaSalle-type

theorem. However, comparing with the constant delay there, the non-differential time-varying delay and the

highly nonlinear coefficients here bring us new difficulties and increase the complication. To state it more

clearly, we divide the proof into three steps.

Step 1. Let us fix any initial data ξ and r0. It follows from Theorem 3.5 and the Fubini theorem that

E
∫ ∞

0

|x(t)|2dt < ∞. (3.39)

This implies ∫ ∞

0

|x(t)|2dt < ∞ a.s.

and further

lim inf
t→∞

|x(t)| = 0 a.s. (3.40)

We now claim that

lim
t→∞

|x(t)| = 0 a.s. (3.41)

If this was not true, then there exists a sufficiently small ε > 0 such that

P(Ω1) ≥ 3ε, (3.42)

where

Ω1 =
{
ω ∈ Ω : lim sup

t→∞
|x(t, ω)| > 2ε

}
.

Let us define a sequence of stopping times:

σ1 = inf{t ≥ 0 : |x(t)|2 ≥ 2ε},

σ2i = inf{t ≥ σ2i−1 : |x(t)|2 ≤ ε}, i = 1, 2, · · · ,

σ2i+1 = inf{t ≥ σ2i : |x(t)|2 ≥ 2ε}, i = 1, 2, · · · .

By (3.40) and the definition of Ω1, we see that σi(ω) < ∞ for all i ≥ 1 whenever ω ∈ Ω1.

Step 2. We choose a number l > ∥ξ∥ and define the stopping time

βl = inf{t ≥ 0 : |x(t)| ≥ l}.

Then we can derive from the Itô formula that

E|x(t ∧ βl)|2

=|ξ(0)|2 + E
∫ t∧βl

0

(
2xT (s)[f(x(s), x(s− δs), r(s), s) + u(x(ηs), r(ηs), s)] + |g(x(s), x(s− δs), r(s), s)|2

)
ds

for all t ≥ 0. It follows from Assumptions 2.3 and 2.5 as well as Theorem 3.1 that

E|x(t ∧ βl)|2 ≤ C4

and hence

l2P(βl ≤ t) ≤ C4,
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where C4 denotes a positive number whose special form is of no use. Letting t → ∞ and then choosing l

sufficiently large, we can get

P(βl < ∞) ≤ C4

l2
< ε.

This implies

P(Ω2) ≥ 1− ε, (3.43)

where

Ω2 = {ω ∈ Ω : |x(t, ω)| < l for all 0 ≤ t < ∞}.

Then by (3.42) and (3.43), we have

P(Ω1 ∩ Ω2) ≥ 2ε. (3.44)

Step 3. With the above notations, we can now derive from (3.39) that

∞ > E
∫ ∞

0

|x(t)|2dt ≥
∞∑
i=1

E
(
I{σ2i−1<∞,σ2i<∞,βl=∞}

∫ σ2i

σ2i−1

|x(t)|2dt
)

≥ ε
∞∑
i=1

E
(
I{σ2i−1<∞,βl=∞}(σ2i − σ2i−1)

)
, (3.45)

where we have noted from (3.40) that σ2i < ∞ whenever σ2i−1 < ∞. Now, to make the notations concise,

we set

F (t) = f(x(t), x(t− δt), r(t), t) + u(x(ηt), r(ηt), t) and G(t) = g(x(t), x(t− δt), r(t), t)

for t ≥ 0. In view of Assumptions 2.3 and 2.5, we see

|F (t)|2 ∨ |G(t)|2 ≤ Kl

if t ≤ βl, where Kl is a positive constant. Also, set

Ai = {βl ∧ σ2i−1 < ∞} for i ≥ 1.

From (2.7), we have q > 2q3 ∨ 2q4 ≥ 2. Recalling (2.6) and (3.1), we can deduce G ∈ M2([0, T ];R) for any

T > 0. Then according to [37],
∫ βl∧(σ2i−1+t)

βl∧σ2i−1
G(s)dB(s) is a square-integrable martingale for 0 ≤ t ≤ T . By

the Hölder inequality and the Doob martingale inequality, we can further derive that

E
(
IAi

sup
0≤t≤T

|x(βl ∧ (σ2i−1 + t))− x(βl ∧ σ2i−1)|2
)

≤2E
(
IAi sup

0≤t≤T

∣∣∣ ∫ βl∧(σ2i−1+t)

βl∧σ2i−1

F (s)ds
∣∣∣2)+ 2E

(
IAi sup

0≤t≤T

∣∣∣ ∫ βl∧(σ2i−1+t)

βl∧σ2i−1

G(s)dB(s)
∣∣∣2)

≤2TE
(
IAi

∫ βl∧(σ2i−1+T )

βl∧σ2i−1

|F (s)|2ds
)
+ 8E

(
IAi

∫ βl∧(σ2i−1+T )

βl∧σ2i−1

|G(s)|2ds
)

≤2KlT (T + 4). (3.46)

Let θ = ε/(2l). It is easy to see that

∣∣|x|2 − |y|2
∣∣ < ε whenever |x− y| < θ, |x| ∨ |y| ≤ l. (3.47)
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Choose T sufficiently small for
2KlT (T + 4)

θ2
< ε.

It then follows from (3.46) and the Chebyshev inequality that

P
(
Ai ∩ { sup

0≤t≤T
|x(βl ∧ (σ2i−1 + t))− x(βl ∧ σ2i−1)| ≥ θ}

)
≤ 2KlT (T + 4)

θ2
< ε.

Consequently,

P
(
{σ2i−1 < ∞, βl = ∞} ∩ { sup

0≤t≤T
|x(σ2i−1 + t)− x(σ2i−1)| ≥ θ}

)
=P

(
{σ2i−1 ∧ βl < ∞, βl = ∞} ∩ { sup

0≤t≤T
|x(βl ∧ (σ2i−1 + t))− x(βl ∧ σ2i−1)| ≥ θ}

)
≤P

(
Ai ∩ { sup

0≤t≤T
|x(βl ∧ (σ2i−1 + t))− x(βl ∧ σ2i−1)| ≥ θ}

)
< ε.

Using (3.44), we can further derive

P
(
{σ2i−1 < ∞, βl = ∞} ∩ { sup

0≤t≤T
|x(σ2i−1 + t)− x(σ2i−1)| < θ}

)
=P({σ2i−1 < ∞, βl = ∞})− P

(
{σ2i−1 < ∞, βl = ∞} ∩ { sup

0≤t≤T
|x(σ2i−1 + t)− x(σ2i−1)| ≥ θ}

)
≥P(Ω1 ∩ Ω2)− ε ≥ ε.

Set

Ω̄i = { sup
0≤t≤T

∣∣|x(σ2i−1 + t)|2 − |x(σ2i−1)|2
∣∣ < ε}.

According to (3.47), we have

P
(
{σ2i−1 < ∞, βl = ∞} ∩ Ω̄i

)
≥P

(
{σ2i−1 < ∞, βl = ∞} ∩ { sup

0≤t≤T
|x(σ2i−1 + t)− x(σ2i−1)| < θ}

)
≥ ε. (3.48)

Observing

σ2i(ω)− σ2i−1(ω) ≥ T if ω ∈ {σ2i−1 < ∞, βl = ∞} ∩ Ω̄i,

we can finally derive from (3.45) and (3.48) that

∞ > ε
∞∑
i=1

E
[
I{σ2i−1<∞,βl=∞}(σ2i − σ2i−1)

]
≥ ε

∞∑
i=1

E
[
I{σ2i−1<∞,βl=∞}∩Ω̄i

(σ2i − σ2i−1)
]

≥ εT
∞∑
i=1

P({σ2i−1 < ∞, βl = ∞} ∩ Ω̄i) ≥ εT
∞∑
i=1

ε = ∞,

which is a contradiction. So (3.41) must hold. The proof is complete.

3.3. Exponential stabilization

In this subsection, we will take a further step to show the discrete-time feedback control can stabilize

the given SDDE (2.1) exponentially fast.
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Theorem 3.7. Under Assumptions 2.1, 2.3 and 2.4, we can design a control function u to satisfy Assump-

tions 2.5, 3.2 and then find eight positive constants ρj(1 ≤ j ≤ 8) and a function W ∈ C(Rn;R+) to meet

Assumption 3.3. Recall that

θ =
2κ2

ρ1

(
1 + 8(1− e−γ̄/4κ)

)
. (3.49)

If τ > 0 is sufficiently small for

τ ≤
√

ρ2
2θ

∧ ρ3
θ

∧ 1

4
√
2κ

, ρ4 − ρ5h̄− 4θτ2κ2 − 4κ2

ρ1
(1− e−γ̄τ ) > 0, (3.50)

then the solution of the controlled system (2.9) satisfies

lim sup
t→∞

1

t
log(E|x(t)|q̄) < 0 (3.51)

and

lim sup
t→∞

1

t
log(|x(t)|) < 0 a.s. (3.52)

for any q̄ ∈ [2, q) and any initial value ξ.

Proof. Fix the initial value ξ arbitrarily. Let γ be a sufficiently small positive number to be determined

later. In a similar way as we did in the proof of Theorem 3.4, we can show that for t ≥ 0

eγtEV (x̂t, r̂t, t) ≤ V (x̂0, r̂0, 0) +

∫ t

0

eγsE
(
γV (x̂s, r̂s, s) + LV (x̂s, r̂s, s)

)
ds.

Recalling the structure of V , we have

η1e
γtE|x(t)|2

≤V (x̂0, r̂0, 0) +

∫ t

0

eγs
(
γη2E|x(s)|2 + γη3E|x(s)|q1+1

)
ds+ γθJ1(t) +

∫ t

0

eγsE
(
LV (x̂s, r̂s, s)

)
ds, (3.53)

where η1 = mini∈S θi, η2 = maxi∈S θi, η3 = maxi∈S θ̄i and

J1(t) = E
∫ t

0

eγs
(∫ 0

−τ

∫ s

s+u

[
τ |f(x(v), x(v − δv), r(v), v) + u(x(ηv), r(ηv), v)|2

+ |g(x(v), x(v − δv), r(v), v)|2
]
dvdu

)
ds.

As we did in the proof of Theorem 3.4, we can show that

E
(
LV (x̂s, r̂s, s)

)
≤−

(
ρ4 − 4θτ2κ2 − 4κ2

ρ1
(1− e−γ̄τ )

)
E|x(s)|2 + ρ5E|x(s− δs)|2 − EW (x(s)) + ρ6EW (x(s− δs))

−
(
θ − 2[4θτ2κ2 +

κ2

2ρ1
+

4κ2

ρ1
(1− e−γ̄τ )]

)
E
∫ s

s−τ

[
τ |f(x(v), x(v − δv), r(v), v) + u(x(ηv), r(ηv), v)|2

+ |g(x(v), x(v − δv), r(v), v)|2
]
dv (3.54)

Moreover, we obviously have

E|x(s)|q1+1 ≤ E|x(s)|2 + E|x(s)|p+q1−1 ≤ E|x(s)|2 + ρ−1
7 EW (x(s)). (3.55)
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Substituting (3.54) and (3.55) into (3.53) while noting by Lemma 2.2 that∫ t

0

eγsE|x(s− δs)|2ds ≤ h̄eγh
∫ t−h1

−h

eγsE|x(s)|2ds ≤ h̄eγh
(∫ 0

−h

eγsE|x(s)|2ds+
∫ t

0

eγsE|x(s)|2ds
)
,

∫ t

0

eγsEW (x(s− δs))ds ≤ h̄eγh
∫ t−h1

−h

eγsEW (x(s))ds ≤ h̄eγh
(∫ 0

−h

eγsEW (x(s))ds+

∫ t

0

eγsEW (x(s))ds

)
,

we can obtain

η1e
γtE|x(t)|2 ≤C5 −

(
ρ4 − 4θτ2κ2 − 4κ2

ρ1
(1− e−γ̄τ )− γη2 − γη3 − ρ5h̄e

γh

)∫ t

0

eγsE|x(s)|2ds

−
(
1− γη3ρ

−1
7 − ρ6h̄e

γh
) ∫ t

0

eγsEW (x(s))ds+ γθJ1(t)

−
(
θ − 2[4θτ2κ2 +

κ2

2ρ1
+

4κ2

ρ1
(1− e−γ̄τ )]

)
J2(t), (3.56)

where

C5 = V (x̂0, r̂0, 0) + h̄eγh
(
ρ5

∫ 0

−h

eγsE|x(s)|2ds+ ρ6

∫ 0

−h

eγsEW (x(s))ds

)
and

J2(t) = E
∫ t

0

eγs
∫ s

s−τ

[
τ |f(x(v), x(v − δv), r(v), v) + u(x(ηv), r(ηv), v)|2 + |g(x(v), x(v − δv), r(v), v)|2

]
dvds.

On the other hand, it is easy to observe that

J1(t) ≤ τJ2(t).

We can now choose γ > 0 small enough such that

γτ ≤ 1

4
, ρ4 − 4θτ2κ2 − 4κ2

ρ1
(1− e−γ̄τ )− γη2 − γη3 − ρ5h̄e

γh ≥ 0, 1− γη3ρ
−1
7 − ρ6h̄e

γh ≥ 0.

And further recalling (3.49) and τ ≤ 1
4
√
2κ
, it follows from (3.56) immediately that

E|x(t)|2 ≤ C5

η1
e−γt, ∀t ≥ 0. (3.57)

Finally, for any q̄ ∈ (2, q), it follows from (3.37) and (3.57) that

E|x(t)|q̄ ≤ C
(q̄−2)/(q−2)
2

(
C5

η1

)(q−q̄)/(q−2)

e−γt(q−q̄)/(q−2). (3.58)

Therefore, the required assertion (3.51) holds for any q̄ ∈ [2, q).

Let tk = kτ for k = 0, 1, 2, · · · . By the Hölder inequality and the Doob martingale inequality, we can

show that

E
(

sup
tk≤t≤tk+1

|x(t)|2
)
≤ 3E|x(tk)|2 + 3τE

∫ tk+1

tk

|f(x(t), x(t− δt), r(t), t) + u(x(ηt), r(ηt), t)|2dt

+ 12E
∫ tk+1

tk

|g(x(t), x(t− δt), r(t), t)|2dt.

It then follows from Assumptions 2.3 and 2.5 that

E
(

sup
tk≤t≤tk+1

|x(t)|2
)
≤ 3E|x(tk)|2 + C6

∫ tk+1

tk

E
(
|x(t)|2 + |x(t− δt)|2 + |x(ηt)|2 + |x(t)|q̄ + |x(t− δt)|q̄

)
dt,
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where q̄ = 2(q1 ∨ q2 ∨ q3 ∨ q4) and C6 is a positive constant. By Assumption 2.4, we see q̄ ∈ [2, q). We can

apply (3.57) and (3.58) to get

E
(

sup
tk≤t≤tk+1

|x(t)|2
)
≤ C7e

−ε̂tk ,

where ε̂ = ε(q − q̄)/(q − 2) and C7 is another positive constant. Then

∞∑
k=0

P
(

sup
tk≤t≤tk+1

|x(t)| > e−0.25ε̂tk
)
≤

∞∑
k=0

C7e
−0.5ε̂tk < ∞.

The Borel-Cantelli lemma (see e.g. [2]) shows that for almost all ω ∈ Ω, there exists a positive integer

k0 = k0(ω) such that

sup
tk≤t≤tk+1

|x(t)| ≤ e−0.25ε̂tk , k ≥ k0.

Therefore, for almost all ω ∈ Ω,

1

t
log(|x(t)|) ≤ − 0.25ε̂τk

τ(k + 1)
, t ∈ [tk, tk+1], k ≥ k0.

This implies

lim sup
t→∞

1

t
log(|x(t)|) ≤ −0.25ε̂ < 0 a.s.

which is the required assertion (3.52). The proof is therefore complete.

4. Examples

Now we illustrate our theoretical results with examples.

Example 4.1. Our new results can be applied to the example in [34], which is a simple version of food

chain model (see e.g. [36, 37]). Keeping the same original system, we can use the discrete-time feedback

control, instead of the delay feedback control, for system stabilization. As long as the observation interval

τ ≤ 0.00047, our results guarantee the controlled system of the form

dx(t) = (f(x(t), x(t− δt), r(t)) + u(x(ηt), r(ηt))) dt+ g(x(t), x(t− δt), r(t))dB(t)

is q̄th moment exponential stable for any q̄ ∈ [2, 6] and almost surely exponential stable. The numerical

simulation in Figure 4.1 supports our theoretical results.

Example 4.2. Consider the scalar hybrid SDDE

dx(t) = f(x(t), x(t− δt), r(t))dt+ g(x(t), x(t− δt), r(t))dB(t) (4.1)

on t ≥ 0 with x(t) = 1 + sin(t) for t ∈ [−0.2, 0]. Here B(t) is a scalar Brownian motion, r(t) is a Markov

chain on the state space S = {1, 2} with generator matrix

Γ =

 −1 1

1 −1

 ,
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Figure 4.1: Simulated path of Markov chain r(t) and state x(t), by the Euler–Maruyama method with step size

10−6, observation interval τ = 0.00045 and random initial values.

the time-varying delay

δt =
∞∑
k=0

[(
0.1 + 0.1(t− 2k)

)
I[2k,2k+1)(t) +

(
0.2− 0.1(t− 2k − 1)

)
I[2k+1,2(k+1))(t)

]
.

and the system coefficients are

f(x, y, 1) = −1.2x3 + xy, g(x, y, 1) = 0.2xy,

f(x, y, 2) = −x3 + 1.2xy, g(x, y, 2) = 0.1xy.

Figure 4.2 shows the simulated paths, and obviously the system (4.1) in the middle plot is not expo-

nentially stable in mean square. To stabilize it, we use the control function

u(x, 1) = −2(|x| ∧ 1.8)x/|x|, u(x, 2) = −2.5(|x| ∧ 2)x/|x|,

and the controlled system has the form

dx(t) =
(
f(x(t), x(t− δt), r(t)) + u(x(ηt), r(ηt))

)
dt+ g(x(t), x(t− δt), r(t))dB(t). (4.2)

Now let us check that all assumptions hold. Assumption 2.1 holds with h1 = 0.1, h = 0.2 and h̄ = 1.1111.

Assumption 2.3 holds with q1 = 3, q2 = q3 = q4 = 2. Assumption 2.4 holds with p = 4, α1 = 1, α2 = 0.6775,

α3 = 0.5125, β1 = 2.7494, β2 = 1.5944, q > 6, then we might as well choose q = 7, and β1 > β2h̄ is satisfied.

Assumption 2.5 holds with κ = 2.5. By Theorem 3.1, the controlled system (4.2) has unique global solution

which is qth moment bounded. Since

xu(x, i) ≤ 0.095x4 − (2I1(i) + 2.5I2(i))x
2,

then for (x, y, i) ∈ R× R× S, we have

x[f(x, y, i) + u(x, i)] +
1

2
|g(x, y, i)|2
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Figure 4.2: Simulated paths of the system mode and state. The upper plot shows the Markov chain r(t), the middle

and lower plots respectively show the state x(t) of the original system and the stabilized system. The

Euler–Maruyama method with step size 10−6 and random initial values have been used.

≤

 −2x2 + y2 − 0.845x4 + 0.01y4, i = 1,

−2.5x2 + 1.49y2 − 0.59x4 + 0.0025y4, i = 2,

and

x[f(x, y, i) + u(x, i)] +
q1
2
|g(x, y, i)|2

≤

 −2x2 + y2 − 0.825x4 + 0.03y4, i = 1,

−2.5x2 + 1.49y2 − 0.585x4 + 0.0075y4, i = 2.

So Assumption 3.2 holds with

a1 = −2, b1 = 1, c1 = 0.845, d1 = 0.01,

a2 = −2.5, b2 = 1.49, c2 = 0.59, d2 = 0.0025,

ā1 = −2, b̄1 = 1, c̄1 = 0.825, d̄1 = 0.03,

ā2 = −2.5, b̄2 = 1.49, c̄2 = 0.585, d̄2 = 0.0075.

Therefore,

A1 =

 5 −1

−1 6

 and A2 =

 9 −1

−1 11

 ,

which are both M-matrices. Then we have

θ1 = 0.2414, θ2 = 0.2069, θ̄1 = 0.1333, θ̄2 = 0.1111,
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and

λ1 = 0.6166, λ2 = 0.2441, λ3 = 0.0048, λ4 = 0.6622, λ5 = 0.26, λ6 = 0.0133.

That is, all conditions in Assumption 3.2 hold. To verify Assumption 3.3, we note that the Lyapunov function

defined by (3.16) has the form

U(x, i) =

 0.2414x2 + 0.1333x4, i = 1,

0.2069x2 + 0.1111x4, i = 2.

We can then derive that

LU(x, y, i) ≤− x2 + 0.6166y2 − 0.913x4 + 0.3359y4 − 0.2556x6 + 0.0089y6.

It’s easy to find that

(2θi|x|+ (q1 + 1)θ̄i|x|q1)2 ≤0.2331x2 + 0.5149x4 + 0.2844x6,

|f(x, y, i)|2 ≤1.44(x4 + y4 + 2x6),

|g(x, y, i)|2 ≤0.02(x4 + y4).

To satisfy Assumption 3.3, we might as well choose ρ1 = 0.5, ρ2 = 0.035 and ρ3 = 1, then we have

LU(x, y, i) + ρ1(2θi|x|+ (q1 + 1)θ̄i|x|q1)2 + ρ2|f(x, y, i)|2 + ρ3|g(x, y, i)|2

≤− 0.8835x2 + 0.6166y2 − 0.5851x4 + 0.4063y4 − 0.0125x6 + 0.0089y6

≤− ρ4x
2 + ρ50.6166y

2 −W (x) + ρ6W (y),

where W (x) = 0.58512x4 + 0.0125x6. Then Assumption 3.3 holds for

ρ4 = 0.8835, ρ5 = 0.6166, ρ6 = 0.75, ρ7 = 0.1254, ρ8 = 0.5977.

According to Theorems 3.4 and 3.7, we have θ = 44.0325 and τ ≤ 0.0036. Hence, we can conclude

by Theorems 3.4, 3.5 and 3.7 that the controlled system (4.2) is H∞-stable, asymptotically stable and

exponentially stable in Lq̄ for any q̄ ∈ [2, 6]. Moreover, the controlled system (4.2) is also almost surely

asymptotically stable and almost surely exponentially stable by Theorems 3.6 and 3.7. The simulation

result shown in lower plot of Figure 4.2 supports our theoretical conclusions.

5. Conclusion

This paper reports the stabilization problem of highly nonlinear hybrid stochastic systems with non-

differentiable time-varying delays, by feedback control based on discrete-time observations of system state

and mode. The theorems on existence, uniqueness and boundedness of the solution of controlled system have

been firstly established in this paper. By employing the Lyapunov functional method, we have developed

sufficient stability criteria for the controlled system, including H∞ stability in Lq̄, asymptotic stability in q̄th

moment, almost surely asymptotic stability, q̄th moment exponential stability and almost surely exponential

stability. Moreover, we also provide a sufficient upper bound on the duration τ between two consecutive

observations. A couple of examples and computer simulations have been taken to illustrate our theory. In

future research, the conditions on system coefficients, time delays and control functions would be further

relaxed.
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