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Abstract

In this article we will study the delay tolerance for stable hybrid stochastic differential equations with Lévy noise (SDEs-

LN) under global Lipschitz coefficients. Based on Razumikhin technique, we will show that when the hybrid SDEs-LN

without delay is pth moment exponentially stable (p-MES), the system with small delays is still p-MES. We will also

obtain explicit delay bounds for p-MES. Finally, an example about neural network will be provided to illustrate the

effectiveness and feasibility of theoretical results.
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1. Introduction

As a class of important mathematical models, hybrid

stochastic differential equations (SDEs, also known as s-

tochastic differential equation with Markovian switching)

have been widely used in finance, networked systems, math-

ematical biology and so on. During the long history of

hybrid SDEs research, one of the most concerned topics is

the asymptotic analysis of stability. Mao [1] studied sever-

al kinds of stabilities (e.g., stability in distribution, almost

sure stability, exponential stability, etc.) for the following

hybrid SDEs

dY (t) = f(Y (t), q(t), t)dt+ g(Y (t), q(t), t)dB(t), (1)

where the state Y (t) takes values in Rn and the mod-

e q(t) is a Markov chain taking values in a finite space

S = {1, 2, · · · ,M}, B(t) is the standard Brownian mo-

tion. This form of hybrid SDEs can be used to describe

a class of random phenomena, which have the continuous

and relatively stable features. Nevertheless, in many prac-

tical applications, the systems often reveal discontinuous

paths as well as structural changes (see, e.g., [2, 3]). For

example, in finance, affected by the market crashes and

national policies , the stock price shall have rapid and sig-

nificant change. In biology, the abrupt and unpredictable

environmental disturbances such as typhoon, floods, etc.,
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might have significant effect on population dynamics. Un-

der many real circumstances, it is natural and reasonable

to consider hybrid SDEs-LN, which can capture the fea-

tures of jump discontinuity. There are many literatures

studied the stability of hybrid SDEs-LN of the following

from different perspectives (see, e.g., [4, 5, 6, 7, 8])

dY (t) =f(Y (t), q(t))dt+ g(Y (t), q(t))dB(t)

+

∫
Rn

0

h(Y (t−), q(t−), x)Ñ(dt, dx),
(2)

where Ñ(dt, dx) is a compensated Poisson random mea-

sure. The general theory of stochastic differential equa-

tions with Poisson’s measure is presented in the book (see

[9]).

On the other hand, delay is often unavoidable for many

applications. For instance, users have to queue up be-

fore leaving from the service during the queuing networks

scenes [10]; In cellular neural networks, signal propagation

is inevitably subjected to traffic congestion caused by the

limited switching speed of the amplifiers [11], and so on.

To depict the event-driven delay phenomenon, it is imper-

ative to introduce and study hybrid stochastic functional

differential equations (SFDEs, including stochastic delay

differential equations). As we all known, the existence of

time delays may cause instability for hybrid SFDEs (see

[12]). There is also well known in literature (see, e.g.,

[13, 14]) a contrary situation: an unstable system can be

stabilized via delays. One key question is: In order to p-

reserve the stability, how much delay can a hybrid SFDEs
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bear? This also can be considered as delay tolerance for

stable hybrid SDEs. This question is a region of stirring

research. Nguyen and Yin [15] investigated that the stabil-

ity of SFDEs with regime-switching is preserved under de-

layed perturbations when the delay is small enough. Song

and Mao [16] investigated the more general hybrid SFDEs

of the form

dY (t) =f(ψ1(Yt, t), q(t), t)dt

+ g(ψ2(Yt, t), q(t), t)dB(t),
(3)

where B(t) is the standard Brownian motion. They proved

that if the corresponding SDEs (1) without delay is almost

surely exponentially stable, so is the SFDEs (3) provided

the time delays are sufficiently small. Yuan and Mao [17]

investigated the sufficient conditions for stability of hybrid

SFDEs with jumps in the sense of almost sure stability,

stability in distribution, and exponential stability in mean

square. Zhu [18] obtained the p-MES problem of stochastic

delay differential equations driven by Lévy processes.

Although a lot of outstanding works for the stability of

SDEs-LN and SFDEs have been investigated up to now,

the problem of delay tolerance for hybrid SDEs-LN has not

been considered, which is still an interesting and challeng-

ing research topic. We will address this gap in this article.

The main idea of the article is: if the hybrid SDEs-LN (2)

is p-MES (p ≥ 2), how much delay can tolerate such that

the corresponding hybrid SFDEs-LN

dY (t) =f(ψ1(Yt), q(t))dt+ g(ψ2(Yt), q(t))dB(t)

+

∫
Rn

0

h(ψ3(Yt−), q(t
−), x)Ñ(dt, dx),

(4)

remains stable, where f : Rn×S → Rn, g : Rn×S → Rn×n,

h : Rn × S × Rn
0 → Rn, Yt = {Y (t + u) : u ∈ [−τ, 0]},

ψ1, ψ2, ψ3 : D([−τ, 0],Rn) → Rn, τ is a positive number.

Due to the existence of time delays, it is tough to con-

struct appropriate Lyapunov functional method study the

delay tolerance of hybrid SDEs-LN. Meanwhile, distinc-

t from the almost surely continuous Brown process B(t),

the sample trajectories of Lévy process are right continu-

ous with left limits almost surely. Hence, we need a useful

and powerful method to overcome these issues. It should

be pointed out that the Razumikhin technique is one of

the most useful methods in the study of stability. The

Razumikhin technique is developed to handle the difficul-

ty caused by the non-differentiability and rapid shift of the

time delay. Mao firstly applied the Razumikhin method to

establish exponential stability for SFDEs [19] and neutral

SFDEs [20]. Mao et al. [21] investigated the polynomi-

al stability of hybrid stochastic systems with pantograph

delay based on Razumikhin technique. By employing the

Razumikhin technique, Li et al. [22] studied the robust

stabilization of continuous-time hybrid stochastic systems

with time-varying delay. Therefore, inspired from these

discussions, Razumikhin method is adopted to study the

delay tolerance for hybrid SDEs-LN in this paper.

The key contributions of this paper are in two aspect-

s. First, existing delay tolerance works mainly focus on

hybrid SDEs driven by Brownian motion, we incorporate

the Lévy noise into the hybrid SDEs, which extends ex-

isting models in Song and Mao [16], Zong et al. [23] and

Guo et al. [24] and allows more flexibility in modelling.

Second, we obtain the explicit delay bounds directly for

the moment exponential stability by means of Razumikhin

technique. Compared to construct traditional Lyapunov

functional method, Razumikhin technique has advantage

of easy completing. It should be emphasized that the proof

about stability for hybrid SFDEs-LN is not a straightfor-

ward generalization of that for hybrid SFDEs. The tech-

niques of analysis are remarkably different.

2. Notation and Assumption

Let | · | denote the Euclidean norm or the matric trace

norm, respectively. Rn denote the n-dimensional Euclidean

space. If A is a vector or matrix, its transpose is denot-

ed by AT . If A is a matrix, its trace norm is denoted by

|A| =
√

trace(ATA) while its operator norm is denoted by

∥A∥ = sup |Ax| : |x| = 1. If D is a set, we use ID denote

the indicator function of D.

Let (Ω,F , {Ft}t≥0,P) be a complete probability space

satisfying the usual condition on which is defined an n-

dimensional standard Ft-adapted Brownian motions. Let

{η(·)} be an Ft-adapted Lévy process with Lévy measure

ν(·). Denote by N(·, ·) the Ft-adapted Poisson random

measure defined on R+ × Rn
0 :

N(t, U) :=
∑

0<s≤t

IU (∆ηs) =
∑

0<s≤t

IU (η(s)− η(s−)),

where U is a Borel subset of Rn
0 = Rn−{0}. The compen-

sator Ñ of N is given by Ñ(dt, dx) = N(dt, dx)− ν(dx)dt

with ν ̸= 0 and ν(Rn
0 ) < ∞. Let q(t), t ≥ 0, be a

right-continuous Markov chain with finite state space S =

{1, 2, · · · ,M} on the probability space. The generator of

{q(t)}t≥0 is defined by Γ = (γil)M×M , so that for a suffi-

ciently small δ > 0,

P{q(t+ δ) = l|q(t) = i} =

{
γilδ + o(δ) if i ̸= l,

1 + γilδ + o(δ) if i = l,

where o(δ) satisfies limδ→0
o(δ)
δ = 0. Here γil is the tran-

sition rate from i to l satisfying γil > 0 if i ̸= l while

γii = −
∑

i̸=l γil. As a standing hypothesis we assume in

this paper that the Markov chain is irreducible. We also
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assume that B(·), N(·, ·) and q(·) are mutually indepen-

dent.

Denote by D([−τ, 0];Rn) the family of all càdlàg (i.e.,

right continuous with left limits) function ϑ : [−τ, 0] →
Rn endowed with the ∥ϑ∥ = sup−τ≤u≤0 |ϑ(u)|. For ϑ ∈
D([−τ, 0];Rn), define

D(ϑ) = sup
−τ≤u≤0

|ϑ(u)− ϑ(0)|.

Let Db
F0

([−τ, 0];Rn) be the family of all F0-measurable

boundedD([−τ, 0];Rn)-valued random variables ξ = {ξ(θ) :
−τ ≤ θ ≤ 0}. For t ≥ 0, denote by Lp

Ft
([−τ, 0];Rn) the

family of all Ft-measurable D([−τ, 0];Rn)-valued random

variables ϑ = {ϑ(θ) : −τ ≤ θ ≤ 0} such that sup
−τ≤θ≤0

E|ϑ(θ)|p

<∞.

In order to investigate the delay tolerance for stable

hybrid SDEs-LN, we need the following assumptions.

Assumption 2.1. Assume that f(0, i) = g(0, i) = h(0, i, x)

= 0 and there exist three nonnegative constants K1, K2

and K3 such that

|f(y, i)− f(z, i)| ≤ K1|y − z|,

|g(y, i)− g(z, i)| ≤ K2|y − z|,∫
Rn

0

|h(y, i, x)− h(z, i, x)|pν(dx) ≤ K3|y − z|p

for all y, z ∈ Rn, i ∈ S and p ≥ 2.

Assumption 2.2. Assume that for j = 1, 2, 3,

|ψj(ϑ)− ψj(ϕ)| ≤ ∥ϑ− ϕ∥ and |ψj(ϑ)− ϑ(0)| ≤ D(ϑ),

where ϑ, ϕ ∈ D([−τ, 0];Rn).

We notice that ψ1(0) = ψ2(0) = ψ3(0) = 0, for all t ≥ 0.

These assumptions imply that

|f(ψ1(ϑ), i)− f(ψ1(ϕ), i)| ≤ K1∥ϑ− ϕ∥,
|g(ψ2(ϑ), i)− g(ψ2(ϕ), i)| ≤ K2∥ϑ− ϕ∥,∫

Rn
0

|h(ψ3(ϑ), i, x)− h(ψ3(ϕ), i, x)|pν(dx) ≤ K3∥ϑ− ϕ∥p

for all ϑ, ϕ ∈ D([−τ, 0];Rn). It is well known (see, e.g.,

[25]) that under these assumptions, the hybrid SFDEs-LN

(4) has a unique solution on t ≥ −τ .
Let C2(Rn×S;R+) denote the family of all nonnegative

continuous functions V (y, i) on Rn which are twice contin-

uously differentiable in y. Define an operator L, associated

with hybrid SDEs-LN (2), acting on V ∈ C2(Rn × S;R+)

by

LV (y, i) = Vy(y, i)f(y, i)

+
1

2
trace[(g(y, i))TVyy(y, i)g(y, i)]

+

∫
Rn

0

[V (y + h(y, i, x), i)− V (y, i)

− Vy(y, i)h(y, i, x)]ν(dx) +
M∑
l=1

γilV (y, l),

(5)

where Vy(y, i) =
(

∂V (y,i)
∂y1

, ∂V (y,i)
∂y2

, . . . , ∂V (y,i)
∂yn

)
, Vyy(y, i) =(

∂2V (y,i)
∂yk∂yj

)
n×n

.

Before presenting the delay bound for the stability of

the hybrid SFDEs-LN, we present an important Lemma.

The following Lemma provides a sufficient condition

for moment stability in terms of a Lyapunov function.

Lemma 2.3. (see [8]) Let Assumption 2.1 hold. Let a1,

a2, β, p be positive numbers. There exist a function V :

Rn × S → R+ such that V (·, i) ∈ C2(Rn) for each i ∈ S

satisfying

a1|y|p ≤ V (y, i) ≤ a2|y|p,

LV (y, i) ≤ −βV (y, i)
(6)

for all (y, i) ∈ Rn × S. Then the hybrid SDEs-LN (2) is

p-MES, i.e.

E|Y (t)|p ≤ a2
a1

|Y0|pe−βt. (7)

3. Main results

In this section, we will establish the Razumikhin tech-

nique to study the p-MES for hybrid SFDEs-LN, which

plays a key role in the proof of our main results. For hy-

brid SFDEs-LN (4), let V ∈ C2(Rn × S;R+), define an

operator LV from D([−τ, 0];Rn)× S to R by

LV (ϑ, i) = Vy(ϑ(0), i)f(ψ1(ϑ), i)

+
1

2
trace[(g(ψ2(ϑ), i))

TVyy(ϑ(0), i)g(ψ2(ϑ), i)]

+

∫
Rn

0

[V (ϑ(0) + h(ψ3(ϑ), i, x), i)− V (ϑ(0), i)

− Vy(ϑ(0), i)h(ψ3(ϑ), i, x)]ν(dx) +
M∑
l=1

γilV (ϑ(0), l).

(8)
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Theorem 3.1. Let γ, p, a1, a2, be all positive numbers

and q > 1. Assume that there exist function V (y, i) ∈

C2(Rn × S;R+) such that

a1|y|p ≤ V (y, i) ≤ a2|y|p, ∀(y, i) ∈ Rn × S, (9)

and also for all t ≥ 0

E
[

max
1≤i≤M

LV (ϑ, i)
]
≤ −γE

[
max

1≤i≤M
V (ϑ(0), i)

]
(10)

provided ϑ = {ϑ(θ) : −τ ≤ θ ≤ 0} ∈ Lp
Ft
([−τ, 0];Rn)

satisfying

E
[

min
1≤i≤M

V (ϑ(θ), i)
]
< qE

[
max

1≤i≤M
V (ϑ(0), i)

]
(11)

for all θ ∈ [−τ, 0]. Then, for all ξ ∈ Db
F0

([−τ, 0];Rn)

E|Y (t; ξ)|p ≤ a2
a1

E∥ξ∥pe−λt on t ≥ 0, (12)

where λ = min{γ, log(q)/τ}.

Its proof is a generalization of Theorem 8.9 in [1]. Different

from Mao’s works, we focus on hybrid SFDEs-LN, which

the sample paths are right continuous with left limits. The

proofs can be found in Appendix.

We now apply the Razumikhin Theorem 3.1 to deal

with the delay tolerance for stable hybrid SDEs-LN.

Theorem 3.2. Let Assumption 2.1, 2.2 and the condi-

tions of Lemma 2.3 are valid. Moreover, there exist posi-

tive numbers p ≥ 2, q > 1, a3, a4 and a function V (y, i) ∈

C2(Rn × S;R+) such that

|Vy(y, i)| ≤ a3|y|p−1,

∥Vyy(y, i)∥ ≤ a4|y|p−2
(13)

for all y ∈ Rn. Assume also that

E|ψj(ϑ)|p ≤ sup
−τ≤u≤0

E|ϑ(u)|p (14)

for all t ≥ τ and those ϑ = {ϑ(θ) : −2τ ≤ θ ≤ 0} ∈

Lp
Ft
([−2τ, 0];Rn) satisfying

E
[

min
1≤i≤M

V (ϑ(θ), i)
]
< qE

[
max

1≤i≤M
V (ϑ(0), i)

]
(15)

for all θ ∈ [−2τ, 0]. If

a1β >
a2
a1

[
K1a3(Kτ )

1
p +K2

2a4(Kτ )
1
p

+ a4a52
p−4(K3Kτ )

2
p /(K3 + J)(

2
p−1)

+ a3(K3Kτ )
1
p /J ( 1

p−1) +
a4a5
2

K3Kτ

+ a32
p−2+ 1

p (K3Kτ )
1
p /(J +K3)

( 1
p−1)

]
,

(16)

where J = ν(Rn
0 ) <∞, a5 = 2p−3 ∨ 1,

Kτ =τ
[
(3τ)p−1Kp

1 + 3p−1τ
p
2−1Kp

2p0

+ (3p−1p1K3τ
p
2−1 + 3p−1p2K3)

]
,

p0 = [
pp+1

2(p− 1)p−1
]
p
2 , p2 = (

p

p− 1
)pp(p− 1)2p−3,

and

p1 = (
p

p− 1
)

p2

2 (p− 1)
p
2 (p− 2)

p
2−12

(p−3)p
2 ,

then the solution of (4) is p-MES.

Remark 3.3. The condition (14) is not empty, for exam-

ple: ψj(Yt) = Y (t− τ(t)), ψj(Yt) =
∫ 0

−τ
Y (t+ θ)dθ.

Before proving this main theorem, we first give the follow-

ing useful lemma.

Lemma 3.4. For all t ≥ τ , we have

E|D(Yt)|p ≤ Kτ sup
−2τ≤θ≤0

E|Y (t+ θ)|p. (17)

Proof : By Hölder’s inequality, Burkhölder-Davis-Gundy’s

inequality and Kunita’s estimates, we can derive from (4)

that

E|D(Yt)|p

≤(3τ)p−1Kp
1

∫ t

t−τ

E|ψ1(Ys)|pds

+ 3p−1τ
p
2−1Kp

2p0

∫ t

t−τ

E|ψ2(Ys)|pds

+ 3p−1p1E
[
(

∫ t

t−τ

∫
Rn

0

|h(ψ3(Ys−), q(s
−), x)|2ν(dx)ds)

p
2

]
+ 3p−1p2E

[ ∫ t

t−τ

∫
Rn

0

|h(ψ3(Ys−), q(s
−), x)|pν(dx)ds

]
≤(3τ)p−1Kp

1

∫ t

t−τ

E|ψ1(Ys)|pds

+ 3p−1τ
p
2−1Kp

2p0

∫ t

t−τ

E|ψ2(Ys)|pds

+ (3p−1p1K3τ
p
2−1 + 3p−1p2K3)

∫ t

t−τ

E|ψ3(Ys)|pds

≤
[
(3τ)p−1Kp

1 + 3p−1τ
p
2−1Kp

2p0 + (3p−1p1K3τ
p
2−1

+ 3p−1p2K3)
] ∫ t

t−τ

sup
−τ≤u≤0

E|Y (s+ u)|pds

≤Kτ sup
−2τ≤θ≤0

E|Y (t+ θ)|p.

Thus, the proof is complete. 2
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We can now begin to prove Theorem 3.2. The proof is

an application of the Theorem 3.1.

Proof of Theorem 3.2. Obviously,

a1|y|p ≤ V (y, i) ≤ a2|y|p.

In the next, we need to show that

E
[

max
1≤i≤M

LV (ϑ, i)
]
≤ −γE

[
max

1≤i≤M
V (ϑ(0), i)

]
(18)

for all t ≥ τ and those ϑ = {ϑ(θ) : −2τ ≤ θ ≤ 0} ∈
Lp
Ft
([−2τ, 0];Rn) satisfying

E
[

min
1≤i≤M

V (ϑ(θ), i)
]
< qE

[
max

1≤i≤M
V (ϑ(0), i)

]
(19)

for all θ ∈ [−2τ, 0].

To show (18) under (19), we compute LV (ϑ, i) as follows

LV (ϑ, i)

=Vy(ϑ(0), i)f(ψ1(ϑ), i) +

M∑
l=1

γilV (ϑ(0), l)

+
1

2
trace

[(
g(ψ2(ϑ), i)

)T
Vyy(ϑ(0), i)g(ψ2(ϑ), i)

]
+

∫
Rn

0

[
V (ϑ(0) + h(ψ3(ϑ), i, x), i)− V (ϑ(0), i)

− Vy(ϑ(0), i)h(ψ3(ϑ), i, x)
]
ν(dx).

(20)

Note that

Vy(ϑ(0), i)f(ψ1(ϑ), i) = Vy(ϑ(0), i)f(ϑ(0), i)

+ Vy(ϑ(0), i)
[
f(ψ1(ϑ), i)− f(ϑ(0), i)

]
,

(21)

and (
g(ψ2(ϑ), i)

)T
Vyy(ϑ(0), i)g(ψ2(ϑ), i)

=
(
g(ϑ(0), i)

)T
Vyy(ϑ(0), i)g(ϑ(0), i)

+
(
g(ψ2(ϑ), i)

)T
Vyy(ϑ(0), i)

×
(
g(ψ2(ϑ), i)− g(ϑ(0), i)

)
+
(
g(ψ2(ϑ), i)− g(ϑ(0), i)

)T
× Vyy(ϑ(0), i)g(ϑ(0), i).

(22)

Meanwhile, using Taylor’s formula, we can derive that

V (ϑ(0) + h(ψ3(ϑ), i, x), i)− V (ϑ(0), i)

− Vy(ϑ(0), i)h(ψ3(ϑ), i, x)

=V (ϑ(0) + h(ϑ(0), i, x), i)− V (ϑ(0), i)

− Vy(ϑ(0), i)h(ϑ(0), i, x)

+ V (ϑ(0) + h(ψ3(ϑ), i, x), i)

− V (ϑ(0) + h(ϑ(0), i, x), i)

− Vy(ϑ(0) + h(ϑ(0), i, x), i)

×
(
h(ψ3(ϑ), i, x)− h(ϑ(0), i, x)

)
+ Vy(ϑ(0), i)

(
h(ϑ(0), i, x)− h(ψ3(ϑ), i, x)

)
+ Vy(ϑ(0) + h(ϑ(0), i, x), i)

×
(
h(ψ3(ϑ), i, x)− h(ϑ(0), i, x)

)

=V (ϑ(0) + h(ϑ(0), i, x), i)− V (ϑ(0), i)

− Vy(ϑ(0), i)h(ϑ(0), i, x)

+
1

2

(
h(ψ3(ϑ), i, x)− h(ϑ(0), i, x)

)T
× Vyy(ϑ(0) + h(ϑ(0), i, x)

+ θ(h(ψ3(ϑ), i, x)− h(ϑ(0), i, x)), i)

×
(
h(ψ3(ϑ), i, x)− h(ϑ(0), i, x)

)
+ Vy(ϑ(0), i)

(
h(ϑ(0), i, x)− h(ψ3(ϑ), i, x)

)
+ Vy(ϑ(0) + h(ϑ(0), i, x), i)

×
(
h(ψ3(ϑ), i, x)− h(ϑ(0), i, x)

)
,

(23)

where 0 ≤ θ ≤ 1.

Substituting (21), (22) and (23) into (20), one yields

LV (ϑ, i)

=LV (ϑ(0), i) + Vy(ϑ(0), i)
[
f(ψ1(ϑ), i)− f(ϑ(0), i)

]
+

1

2
trace

[(
g(ψ2(ϑ), i)

)T
Vyy(ϑ(0), i)

×
(
g(ψ2(ϑ), i)− g(ϑ(0), i)

)]
+

1

2
trace

[(
g(ψ2(ϑ), i)− g(φ(0), i)

)T
× Vyy(ϑ(0), i)g(ϑ(0), i)

]
+

∫
Rn

0

[1
2

(
h(ψ3(ϑ), i, x)− h(ϑ(0), i, x)

)T
× Vyy(ϑ(0) + h(ϑ(0), i, x)

+ θ(h(ψ3(ϑ), i, x)− h(ϑ(0), i, x)), i)

×
(
h(ψ3(ϑ), i, x)− h(ϑ(0), i, x)

)
+ Vy(ϑ(0), i)

(
h(ϑ(0), i, x)− h(ψ3(ϑ), i, x)

)
+ Vy(ϑ(0) + h(ϑ(0), i, x), i)

×
(
h(ψ3(ϑ), i, x)− h(ϑ(0), i, x)

)]
ν(dx).

(24)

In view of Assumption 2.2, (13) and abp−2c ≤ 1
pε(a

p+(p−
2)bp) + 1

pεp−1 c
p, for all a, b, c, ε > 0, p ≥ 2, we have

Vy(ϑ(0), i)
[
f(ψ1(ϑ), i)− f(ϑ(0), i)

]
+

1

2
trace

[(
g(ψ2(ϑ), i)

)T
Vyy(ϑ(0), i)

×
(
g(ψ2(ϑ), i)− g(ϑ(0), i)

)]
+

1

2
trace

[(
g(ψ2(ϑ), i)− g(ϑ(0), i)

)T
× Vyy(ϑ(0), i)g(ϑ(0), i)

]
≤K1a3

(
ε1
p− 1

p
|ϑ(0)|p + 1

pεp−1
1

∣∣D(ϑ)∣∣p)
+
K2

2a4
2

(
ε2

1

p
|ψ2(ϑ)|p + ε2

p− 2

p
|ϑ(0)|p

+
1

pεp−1
2

∣∣D(ϑ)∣∣p + ε2
p− 1

p
|ϑ(0)|p

+
1

pεp−1
2

∣∣D(ϑ)∣∣p),

(25)
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and

1

2

(
h(ψ3(ϑ), i, x)− h(ϑ(0), i, x)

)T
Vyy(ϑ(0)

+ h(ϑ(0), i, x) + θ(h(ψ3(ϑ), i, x)− h(ϑ(0), i, x)), i)

×
(
h(ψ3(ϑ), i, x)− h(ϑ(0), i, x)

)
+ Vy(ϑ(0), i)

(
h(ϑ(0), i, x)− h(ψ3(ϑ), i, x)

)
+ Vy(ϑ(0) + h(ϑ(0), i, x), i)

×
(
h(ψ3(ϑ), i, x)− h(ϑ(0), i, x)

)
≤1

2
|h(ψ3(ϑ), i, x)− h(ϑ(0), i, x)|2

× ∥Vyy(ϑ(0) + h(ϑ(0), i, x)

+ θ(h(ψ3(ϑ), i, x)− h(ϑ(0), i, x)) i)∥
+ |Vy(ϑ(0), i)||h(ϑ(0), i, x) − h(ψ3(ϑ), i, x)|
+ |Vy(ϑ(0) + h(ϑ(0), i, x), i)|
× |h(ψ3(ϑ), i, x)− h(ϑ(0), i, x)|

≤a4
2
|h(ψ3(ϑ), i, x)− h(ϑ(0), i, x)|2|ϑ(0)

+ h(ϑ(0), i, x) + θ(h(ψ3(ϑ), i, x)− h(ϑ(0), i, x))|p−2

+ a3|ϑ(0)|p−1|h(ϑ(0), i, x)− h(ψ3(ϑ), i, x)|
+ a3|ϑ(0) + h(ϑ(0), i, x)|p−1

× |h(ψ3(ϑ), i, x)− h(ϑ(0), i, x)|

≤a4
2
[a5

1

pε
(p−2)/2
3

|h(ψ3(ϑ), i, x)− h(ϑ(0), i, x)|p

+ ε3
p− 2

p
a5|ϑ(0) + h(ϑ(0), i, x)|p

+ a5|h(ψ3(ϑ), i, x)− h(ϑ(0), i, x)|p]

+ a3[ε4
p− 1

p
|ϑ(0)|p

+
1

pεp−1
4

|h(ϑ(0), i, x)− h(ψ3(ϑ), i, x)|p]

+ a3[ε5
p− 1

p
|ϑ(0) + h(ϑ(0), i, x)|p

+
1

pεp−1
5

|h(ψ3(ϑ), i, x)− h(ϑ(0), i, x)|p]

≤a4
2
[a5

1

pε
(p−2)/2
3

|h(ψ3(ϑ), i, x)− h(ϑ(0), i, x)|p

+ a5ε3
p− 2

p
2p−1|ϑ(0)|p

+ a5ε3
p− 2

p
2p−1|h(ϑ(0), i, x)|p

+ a5|h(ψ3(ϑ), i, x)− h(ϑ(0), i, x)|p]

+ a3[ε4
p− 1

p
|ϑ(0)|p (26)

+
1

pεp−1
4

|h(ϑ(0), i, x)− h(ψ3(ϑ), i, x)|p]

+ a3[ε5
p− 1

p
2p−1|ϑ(0)|p

+ ε5
p− 1

p
2p−1|h(ϑ(0), i, x)|p

+
1

pεp−1
5

|h(ψ3(ϑ), i, x)− h(ϑ(0), i, x)|p],

where ε1, ε2, ε3, ε4 and ε5 are all positive numbers to be

chosen.

Then, by Assumption 2.1 we have∫
Rn

0

[1
2

(
h(ψ3(ϑ), i, x)− h(ϑ(0), i, x)

)T
Vyy(ϑ(0)

+ h(ϑ(0), i, x) + θ(h(ψ3(ϑ), i, x)− h(ϑ(0), i, x)), i)

×
(
h(ψ3(ϑ), i, x)− h(ϑ(0), i, x)

)
+ Vy(ϑ(0), i)

(
h(ϑ(0), i, x)− h(ψ3(ϑ), i, x)

)
+ Vy(ϑ(0) + h(ϑ(0), i, x), i)

×
(
h(ψ3(ϑ), i, x)− h(ϑ(0), i, x)

)]
ν(dx)

≤a4
2

[
a5K3

1

pε
(p−2)/2
3

∣∣D(ϑ)∣∣p + Ja5ε3
p− 2

p
2p−1|ϑ(0)|p

+ a5K3ε3
p− 2

p
2p−1|ϑ(0)|p + a5K3

∣∣D(ϑ)∣∣p]
+ a3

[
Jε4

p− 1

p
|ϑ(0)|p +K3

1

pεp−1
4

∣∣D(ϑ)∣∣p] (27)

+ a3
[
Jε5

p− 1

p
2p−1|ϑ(0)|p +K3ε5

p− 1

p
2p−1|ϑ(0)|p

+K3
1

pεp−1
5

∣∣D(ϑ)∣∣p].
Substituting above inequalities into (24) we obtain

LV (ϑ, i)

≤LV (ϑ(0), i) +K1a3

(
ε1
p− 1

p
|ϑ(0)|p + 1

pεp−1
1

∣∣D(ϑ)∣∣p)
+
K2

2a4
2

(
ε2

1

p
|ψ2(ϑ)|p + ε2

p− 2

p
|ϑ(0)|p + 1

pεp−1
2

∣∣D(ϑ)∣∣p
+ ε2

p− 1

p
|ϑ(0)|p + 1

pεp−1
2

∣∣D(ϑ)∣∣p)
+
a4
2

(
a5K3

1

pε
(p−2)/2
3

∣∣D(ϑ)∣∣p + Ja5ε3
p− 2

p
2p−1|ϑ(0)|p

+ a5K3ε3
p− 2

p
2p−1|ϑ(0)|p

)
+
a4
2
a5K3

∣∣D(ϑ)∣∣p
+ a3

(
Jε4

p− 1

p
|ϑ(0)|p +K3

1

pεp−1
4

∣∣D(ϑ)∣∣p)
+ a3

(
Jε5

p− 1

p
2p−1|ϑ(0)|p +K3ε5

p− 1

p
2p−1|ϑ(0)|p

+K3
1

pεp−1
5

∣∣D(ϑ)∣∣p)
:=LV (ϑ(0), i) +

5∑
j=1

Θj(ϑ, i) +
a4a5
2

K3

∣∣D(ϑ)∣∣p. (28)

Choosing ε1 = (Kτ )
1
p , ε2 = (Kτ )

1
p , ε3 = ( K3Kτ

2p(J+K3)
)

2
p ,

ε4 = (K3Kτ

J )
1
p and ε5 = ( K3Kτ

2p−1(J+K3)
)

1
p , applying Lemma

6
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3.4 and (14) yields

EΘ1(ϑ, i) ≤ K1a3
1

p

(
ε1(p− 1) +

Kτ

εp−1
1

)
sup

−2τ≤θ≤0
E|ϑ(θ)|p

= K1a3(Kτ )
1
p sup

−2τ≤θ≤0
E|ϑ(θ)|p, (29)

EΘ2(ϑ, i) ≤
K2

2a4
2

1

p

(
ε2 + ε2(p− 2) +

Kτ

εp−1
2

+ ε2(p− 1) +
Kτ

εp−1
2

)
sup

−2τ≤θ≤0
E|ϑ(θ)|p

=K2
2a4(Kτ )

1
p sup

−2τ≤θ≤0
E|ϑ(θ)|p, (30)

EΘ3(ϑ, i) ≤
a4a5
2p

[K3
Kτ

ε
(p−2)/2
3

+ Jε3(p− 2)2p−1

+K3ε3(p− 2)2p−1] sup
−2τ≤θ≤0

E|ϑ(θ)|p

=
a4a52

p−4(K3Kτ )
2
p

(K3 + J)(
2
p−1)

sup
−2τ≤θ≤0

E|ϑ(θ)|p, (31)

EΘ4(ϑ, i) ≤
a3
p
[Jε4(p− 1) +K3

Kτ

εp−1
4

] sup
−2τ≤θ≤0

E|ϑ(θ)|p

=a3(K3Kτ )
1
p /J ( 1

p−1) sup
−2τ≤θ≤0

E|ϑ(θ)|p, (32)

and

EΘ5(ϑ, i) ≤
a3
p
[Jε5(p− 1)2p−1 +K3ε5(p− 1)2p−1

+K3
Kτ

εp−1
5

] sup
−2τ≤θ≤0

E|ϑ(θ)|p

=
a32

p−2+ 1
p (K3Kτ )

1
p

(J +K3)
( 1
p−1)

sup
−2τ≤θ≤0

E|ϑ(θ)|p. (33)

In view of (19), we have

E|ϑ(θ)|p < a2q

a1
E|ϑ(0)|p, ∀θ ∈ [−2τ, 0]. (34)

Combining (29)-(34) with (28) yield

E
[

max
1≤i≤N

LV (ϑ, i)
]

≤
[
− a1β +

a2q

a1

[
K1a3(Kτ )

1
p +K2

2a4(Kτ )
1
p

+ a4a52
p−4(K3Kτ )

2
p /(K3 + J)(

2
p−1)

+ a32
p−2+ 1

p (K3Kτ )
1
p /(J +K3)

( 1
p−1)

+ a3(K3Kτ )
1
p /J ( 1

p−1) +
a4a5
2

K3Kτ

]]
E|ϑ(0)|p.

(35)

By (16), one can choose q > 1 such that

a1β >
a2q

a1

[
K1a3(Kτ )

1
p +K2

2a4(Kτ )
1
p

+ a4a52
p−4(K3Kτ )

2
p /(K3 + J)(

2
p−1)

+ a3(K3Kτ )
1
p /J ( 1

p−1) +
a4a5
2

K3Kτ

+ a32
p−2+ 1

p (K3Kτ )
1
p /(J +K3)

( 1
p−1)

]
.

(36)

Therefore, (35) implies

E
[

max
1≤i≤N

LV (ϑ, i)
]

≤− 1

a2

[
a1β − a2q

a1

[
K1a3(Kτ )

1
p +K2

2a4(Kτ )
1
p

+
a4a5
2

K3Kτ + a4a52
p−4(K3Kτ )

2
p /(K3 + J)(

2
p−1)

+ a3(K3Kτ )
1
p /J ( 1

p−1) + a32
p−2+ 1

p

× (K3Kτ )
1
p /(J +K3)

( 1
p−1)

]]
E
[

max
1≤i≤M

V (ϑ(0), i)
]

=− γE
[

max
1≤i≤M

V (ϑ(0), i)
]
,

which is the required inequality (18). Thus, the proof is

complete. 2

4. Examples

In this section, we use a neural networks example to il-

lustrate our results. Consider a two-neuron neural network

with Markovian switching and Lévy noises of the form:

dY (t) =[−F (q(t))Y (t) +G(q(t))s(Y (t))]dt

+ g(Y (t), q(t))dB(t)

+ h(Y (t−), q(t−))dÑ(t),

(37)

where s stand for the neuron activation function with s(0) =

0, B(t) is a scalar Brownian motion, Ñ(t) = N(t) − λdt,

Ñ(t) is a compensated Poisson random measure which

means that N(t) is a scalar Poisson process with inten-

sify λ, q(t) is a Markov chain on the state space S = {1, 2}
with the generator

Γ =

(
−1 1

1 −1

)
.

We set s(·) = tanh(·) as the neuron activation function

and λ = 1. The other parameters concerning the system

(37) are as follows.

F (1) =

[
0.5 0

0 0.4

]
, G(1) =

[
−1 0.1

1 −0.2

]
,

g(y, 1) =
1

4
y, h(y, 1) = −1

4
y,

F (2) =

[
1 0

0 0.7

]
, G(2) =

[
1 0

1.5 0.1

]
,

g(y, 2) = −1

2
y, h(y, 2) =

1

2
y.

Obviously, the coefficients gave by (37) satisfy Assumption

2.1 with K1 = 0.46458, K2 = 0.5 and K3 = 0.52. Let

V (y, i) = |y|2, here a1 = 1 = a2. We compute

LV (y, i) =2yT (−F (i))y + 2yTG(i)s(y) + |g(y, i)|2

+ λ
[
|y + h(y, i)|2 − |y|2 − 2yTh(y, i)

]
≤− 0.20834|y|2 = −0.20834V (y, i).

(38)
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By Lemma 2.3, we can conclude that the solution of the the

neural network (37) is mean square exponentially stable

(MSES).

In neural networks, the finite switching speed of am-

plifiers and communication time will occur time delays in

the interaction between neurons, which may lead to some

instabilities [26]. Then, the question is under what condi-

tions the following two-neuron delay neural network with

Markovian switching and Lévy noises of the form:

dY (t) =[−F (q(t))Y (t− τ(t)) +G(q(t))s(Y (t− τ(t)))]dt

+ g(Y (t− τ(t)), q(t))dB(t)

+ h(Y ((t− τ(t))−), q(t−))dÑ(t),

(39)

is still MSES.

0 5 10 15 20 25 30
t

0

0.5

1

1.5

2

2.5

3

3.5

4

E|
Y(
t)|

2

(a) without delay: τ(t) = 0

0 5 10 15 20 25 30
t

0

1

2

3

4

5

6

7

E|
Y(
t)|

2

(b) with delay: τ(t) = 1.5− 0.5 sin(t)

Figure 1: The computer simulation of the second moment of the

solution of (37) and (39) using the Euler-Maruyama method with

sample size 100, respectively.

Before applying our new theory, we consider two spe-

cial cases: τ(t) = 0 and τ(t) = 1.5−0.5 sin(t). We perform

a computer simulation with the initial values Y (0) = 0.5

and q(0) = 1. For the delay-free case, the MSES is plot-

ted in Fig 1. (a) by taking 100 samples to approximate

E|Y (t)|2. In the case of τ(t) = 1.5− 0.5 sin(t), we perform

a computer simulation for the solution of the delay neural

network (39). The second moment of the solution of (39)

is simulated in Fig 1. (b), from which we see that the delay

neural network (39) is not stable.

Through these simulation results, we can know that

when the delay is getting smaller and smaller, the delay

neural network (39) tends to be stable. Our Theorem 3.2

will be able to show a bound for the delay. Namely, the

solution of the the delay neural network (39) is MSES if

a1β >
a2
a1

[
K1a3(Kτ )

1
2 +K2

2a4(Kτ )
1
2 + a42

−2K3Kτ

+ a3(K3Kτ )
1
2λ

1
2 + a32

1
2 (K3Kτ )

1
2 (λ+K3)

1
2

+
a4
2
K3Kτ

]
,

(40)

where Kτ = τ(3τK2
1 + 12K2

2 + 12K3), a3 = 2, a4 = 2.

That is, the MSES neural network (37) can tolerate a delay

τ ≤ 0.0004455 such that the delay neural network (39) is

still MSES.

0 5 10 15 20 25 30
t

0

0.5

1

1.5

2

2.5

3

3.5

E|
Y(
t)|

2

Figure 2: The computer simulation of the second moment of the

solution of (39) using the Euler-Maruyama method with τ(t) = 2 ∗
10−4 − 2 ∗ 10−4 sin(t).

We perform a computer simulation with τ(t) = 2 ∗
10−4 − 2 ∗ 10−4 sin(t) and r(0) = 1. Similarly, taking 100

samples to approximate E|Y (t)|2 will produce Fig 2, which
depicts the MSES.

5. Conclusion

This article establishes delay tolerance for stable hybrid

SDEs-LN. Based on Razumikhin technique, we show that

if the p-MES for hybrid SDEs-LN without delay, a delay is

allowed for the hybrid SFDEs-LN to be p-MES. Another

advantage of our results is that a bound on τ is given for

p-MES.

Appendix

Proof of Theorem 3.1. Fix any initial data ξ ∈
Db

F0
([−τ, 0];Rn) and write Y (t; ξ) = Y (t). Recalling the
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facts that Y (t) is right continuous with left limit, q(t) is

right continuous and E(sup−τ≤s≤t |Y (s)|p) < ∞ for all

t ≥ 0, we see that EV (Y (t), q(t)) is right continuous with

left limit. Let ϵ ∈ (0, λ) be arbitrary and set λ̄ = λ − ϵ.

Define

L(t) = sup
−τ≤θ≤0

[
eλ̄(t+θ)EV (Y (t+θ), q(t+θ))

]
for all t ≥ 0.

Due to the right continuity of EV (Y (·), q(·)) and f(0, i) =
0, g(0, i) = 0, h(0, i, x) = 0. Similar to the proof of Theo-

rem 8.9 in [1] , we can get

D+L(t) := lim sup
δ→0+

L(t+ δ)− L(t)

δ
≤ 0 for all t ≥ 0.

This implies that

L(t) ≤ L(0) for all t ≥ 0.

By condition (9), we obtain

E|Y (t)|p ≤ a2
a1

E∥ξ∥pe−λ̄t =
a2
a1

E∥ξ∥pe−(λ−ϵ)t. (41)

Since ϵ ∈ (0, λ) is arbitrary, the required inequality (12)

must hold. Thus, the proof is complete. 2

6. Acknowledgements

The authors would like to thank the National Nat-

ural Science Foundation of China (62273003), the Roy-

al Society (WM160014, Royal Society Wolfson Research

Merit Award), the Royal Society and the Newton Fund

(NA160317, Royal Society-Newton Advanced Fellowship),

the EPSRC (EP/K503174/1), the Natural Science Foun-

dation of University of Anhui (2022AH050993) and the

CSC (202206840084) for their financial support.

References

[1] X.R. Mao, C.G. Yuan, Stochastic Differential Equations with

Markovian Switching, Imperial College Press, London, 2006.

[2] E. Platen, N. Bruti-Liberati, Numerical Solution of Stochastic

Differential Equations with Jumps in Finance, Springer-Verlag,

Berlin, 2010.

[3] J.H. Bao, C.G. Yuan, Stochastic population dynamics driven by
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