
Non-Interference and Local Correctness in Transactional Memory

Petr Kuznetsov1 and Sathya Peri2

1 Télécom ParisTech
petr.kuznetsov@telecom-paristech.fr

2 IIT Patna
sathya@iitp.ac.in

Abstract. Transactional memory promises to make concurrent programming tractable and efficient by
allowing the user to assemble sequences of actions in atomic transactions with all-or-nothing semantics.
It is believed that, by its very virtue, transactional memory must ensure that all committed transac-
tions constitute a serial execution respecting the real-time order. In contrast, aborted or incomplete
transactions should not “take effect.” But what does “not taking effect” mean exactly?

It seems natural to expect that aborted or incomplete transactions do not appear in the global serial
execution, and, thus, no committed transaction can be affected by them. We investigate another, less
obvious, feature of “not taking effect” called non-interference: aborted or incomplete transactions should
not force any other transaction to abort. In the strongest form of non-interference that we explore in
this paper, by removing a subset of aborted or incomplete transactions from the history, we should not
be able to turn an aborted transaction into a committed one without violating the correctness criterion.

We show that non-interference is, in a strict sense, not implementable with respect to the popular
criterion of opacity that requires all transactions (be they committed, aborted or incomplete) to witness
the same global serial execution. In contrast, when we only require local correctness, non-interference
is implementable. Informally, a correctness criterion is local if it only requires that every transaction
can be serialized along with (a subset of) the transactions committed before its last event (aborted
or incomplete transactions ignored). We give a few examples of local correctness properties, including
the recently proposed criterion of virtual world consistency, and present a simple though efficient
implementation that satisfies non-interference and local opacity.

1 Introduction

Transactional memory (TM) promises to make concurrent programming efficient and tractable. The pro-
grammer simply represents a sequence of instructions that should appear atomic as a speculative transaction
that may either commit or abort. It is usually expected that a TM serializes all committed transactions, i.e.,
makes them appear as in some sequential execution. An implication of this requirement is that no committed
transaction can read values written by a transaction that is aborted or might abort in the future. Intuitively,
this is a desirable property because it does not allow a write performed within a transaction to get “visible”
as long as there is a chance for the transaction to abort.

But is this all we can do if we do not want aborted or incomplete transactions to “take effect”? We
observe that there is a more subtle side of the “taking effect” phenomenon that is usually not taken into
consideration. An incomplete or aborted transaction may cause another transaction to abort. Suppose we
have an execution in which an aborted transaction T cannot be committed without violating correctness of
the execution, but if we remove some incomplete or aborted transactions, then T can be committed. This
property, originally highlighted in [14,15], is called non-interference.

Thus, ideally, a TM must “insulate” transactions that are aborted or might abort in the future from
producing any effect, either by affecting reads of other transactions or by provoking forceful aborts.

Defining non-interference. Consider non-interference as a characteristics of an implementation. A TM imple-
mentation M is non-interfering if removing an aborted or incomplete not concurrently committing transaction
from a history (a sequence of events on the TM interface) of M would still result in a history in M . We

ar
X

iv
:1

21
1.

63
15

v5
 [

cs
.D

C
]

 1
2

O
ct

 2
01

3

observe that many existing TM implementations that employ commit-time lock acquisition or version up-
date (e.g., RingSTM [16], NOrec [3]) are non-interfering in this sense. In contrast, some encounter-time
implementations, such as TinySTM [4], are not non-interfering.

This paper rather focuses on non-interference as a characteristics of a correctness criterion, which results
in a much stronger restriction on implementations. We intend to understand whether this strong notion of
non-interference is achievable and at what cost, which we believe is a challenging theoretical question. For
a given correctness criterion C, a TM implementation M is C-non-interfering if removing an aborted or
incomplete transaction from any history of M does not allow committing another aborted transaction while
still preserving C. We observe that C-non-interference produces a subset of permissive [5] with respect to C
histories. This is not difficult to see if we recall that in a permissive (with respect to C) history, no aborted
transaction can be turned into a committed one while still satisfying C.

In particular, when we focus on opaque histories [6, 7], we observe that non-interference gives a strict
subset of permissive opaque histories. Opacity requires that all transactions (be they committed, aborted,
or incomplete) constitute a consistent sequential execution in which every read returns the latest committed
written value. This is a strong requirement, because it expects every transaction (even aborted or incomplete)
to witness the same sequential execution. Indeed, there exist permissive opaque histories that do not provide
non-interference: some aborted transactions force other transactions to abort.

T2

T3
w(x, 1)

r(x, 0) w(y, 1)

r(y, 0)r(x, 1)

C

AT1

Fig. 1: An opaque-permissive opaque but not opaque-non-interfering history: T2 forces T1 to abort

For example, consider the history in Figure 1. Here the very fact that the incomplete operation T2 read
the “new” (written by T3) value in object x and the “old” (initial) value in object y prevents an updating
transaction T1 from committing. Suppose that T1 commits. Then T2 can only be serialized (put in the
global sequential order) after T3 and before T1, while T1 can only be serialized before T3. Thus, we obtain a
cycle which prevents any serialization. Therefore, the history does not provide opaque-non-interference: by
removing T2 we can commit T1 by still allowing a correct serialization T1, T3. But the history is permissive
with respect to opacity: no transaction aborts without a reason!

This example can be used to show that opaque-non-interference is, in a strict sense, non-implementable.
Every opaque permissive implementation that guarantees that every transactional operation (read , write,
tryCommit or tryAbort) completes if it runs in the absence of concurrency (note that it can complete with
an abort response), may be brought to the scenario above, where the only option for T1 in its last event is
abort.

Local correctness. But are there relaxed definitions of TM correctness that allow for non-interfering imple-
mentations? Intuitively, the problem with the history in Figure 1 is that T2 should be consistent with a
global order of all transactions. But what if we only expect every transaction T to be consistent locally,
i.e., to fit to some serialization composed of the transactions that committed before T terminates? This way
a transaction does not have to account for transactions that are aborted or incomplete at the moment it
completes and local serializations for different transactions do not have to be mutually consistent.

For example, the history in Figure 1, assuming that T1 commits, is still locally opaque: the local serial-
ization of T2 would simply be T3 · T2, while T1 (assuming it commits) and T3 would both be consistent with
the serialization T1 · T3.

2

In this paper, we introduce the notion of local correctness. A history satisfies a local correctness property
C if and only if all its “local sub-histories” satisfy C. Here a local sub-history corresponding to Ti consists of
the events from all transactions that committed before the last event of Ti (transactions that are incomplete
or aborted at that moment are ignored) and: (1) if Ti is committed then all its events; (2) if Ti is aborted
then all its read operations. We show that every implementation that is permissive with respect to a local
correctness criterion C is also C-non-interfering.

Virtual world consistency [9], that expects the history to be strictly serializable and every transaction
to be consistent with its causal past, is one example of a local correctness property. We observe, however,
that virtual world consistency may allow a transaction to proceed even if it has no chances to commit. To
avoid this useless work, we introduce a slightly stronger local criterion that we call local opacity. As the
name suggests, a history is locally opaque if each of its local sub-histories is opaque. In contrast with VWC,
a locally opaque history, a transaction may only make progress if it still has a chance to be committed.

Implementing conflict local opacity. Finally, we describe a novel TM implementation that is permissive (and,
thus, non-interfering) with respect to conflict local opacity (CLO). CLO is a restriction of local opacity that
additionally requires each local serialization to be consistent with the conflict order [8, 13].

Our implementation is interesting in its own right for the following reasons. First, it ensures non-
interference, i.e., no transaction has any effect on other transactions before committing. Second, it only
requires polynomial (in the number of concurrent transactions) local computation for each transaction.
Indeed, there are indications that, in general, building a permissive strictly serializable TM may incur non-
polynomial time [13].

The full paper is available as a technical report [11]. Future work includes focusing on an arguably more
practical notion of non-interference as an implementation property, in particular, on the inherent costs of
implementing non-interference.

Roadmap. The paper is organized as follows. We describe our system model in Section 2. In Section 3 we
formally define the notion of C-non-interference, recall the definition of permissiveness, and relate the two.
In Section 4, we introduce the notion of local correctness, show that any permissive implementation of a local
correctness criterion is also permissive, and define the criterion of conflict local opacity (CLO). In Section 5
present our CLO-non-interfering implementation. Section 6 concludes the paper with remarks on the related
work and open questions. The appendix contains omitted definitions and proofs.

2 Preliminaries

We assume a system of n processes, p1, . . . , pn that access a collection of objects via atomic transactions. The
processes are provided with four transactional operations: the write(x, v) operation that updates object x
with value v, the read(x) operation that returns a value read in x, tryC () that tries to commit the transaction
and returns commit (c for short) or abort (a for short), and tryA() that aborts the transaction and returns
A. The objects accessed by the read and write operations are called as t-objects. For the sake of presentation
simplicity, we assume that the values written by all the transactions are unique.

Operations write, read and tryC () may return a, in which case we say that the operations forcefully abort.
Otherwise, we say that the operation has successfully executed. Each operation specifies a unique transaction
identifier. A transaction Ti starts with the first operation and completes when any of its operations returns
a or c. Abort and commit operations are called terminal operations. For a transaction Tk, we denote all its
read operations as Rset(Tk) and write operations Wset(Tk). Collectively, we denote all the operations of a
transaction Ti as evts(Tk).

Histories. A history is a sequence of events, i.e., a sequence of invocation-response pairs of transactional
operations. The collection of events is denoted as evts(H). For simplicity, we only consider sequential his-
tories here: the invocation of each transactional operation is immediately followed by a matching response.
Therefore, we treat each transactional operation as one atomic event, and let <H denote the total order on
the transactional operations incurred by H. With this assumption the only relevant events of a transaction
Tk are of the types: rk(x, v), rk(x,A), wk(x, v), wk(x, v,A), tryCk(C) (or ck for short), tryCk(A), tryAk(A)
(or ak for short). We identify a history H as tuple 〈evts(H), <H〉.

3

Let H|T denote the history consisting of events of T in H, and H|pi denote the history consisting
of events of pi in H. We only consider well-formed histories here, i.e., (1) each H|T consists of a read-only
prefix (consisting of read operations only), followed by a write-only part (consisting of write operations only),
possibly completed with a tryC or tryA operationc, and (2) each H|pi consists of a sequence of transactions,
where no new transaction begins before the last transaction completes (commits or aborts).

We assume that every history has an initial committed transaction T0 that initializes all the data-objects
with 0. The set of transactions that appear in H is denoted by txns(H). The set of committed (resp., aborted)
transactions in H is denoted by committed(H) (resp., aborted(H)). The set of incomplete transactions in H
is denoted by incomplete(H) (incomplete(H) = txns(H)− committed(H)− aborted(H)).

For a history H, we construct the completion of H, denoted H, by inserting ak immediately after the
last event of every transaction Tk ∈ incomplete(H).

Transaction orders. For two transactions Tk, Tm ∈ txns(H), we say that Tk precedes Tm in the real-time
order of H, denote Tk ≺RT

H Tm, if Tk is complete in H and the last event of Tk precedes the first event of
Tm in H. If neither Tk ≺RT

H Tm nor Tm ≺RT
H Tk, then Tk and Tm overlap in H. A history H is t-sequential

if there are no overlapping transactions in H, i.e., every two transactions are related by the real-time order.

Sub-histories. A sub-history, SH of a history H denoted as the tuple 〈evts(SH), <SH〉 and is defined as:
(1) <SH⊆<H ; (2) evts(SH) ⊆ evts(H); (3) If an event of a transaction Tk ∈ txns(H) is in SH then all
the events of Tk in H should also be in SH. (Recall that <H denotes the total order of events in H.) For a
history H, let R be a subset of txns(H), the transactions in H. Then H.subhist(R) denotes the sub-history
of H that is formed from the operations in R.

Valid and legal histories. Let H be a history and rk(x, v) be a read operation in H. A successful read rk(x, v)
(i.e., v 6= A), is said to be valid if there is a transaction Tj in H that commits before rK and wj(x, v) is in
evts(Tj). Formally, 〈rk(x, v) is valid ⇒ ∃Tj : (cj <H rk(x, v))∧ (wj(x, v) ∈ evts(Tj))∧ (v 6= A)〉. The history
H is valid if all its successful read operations are valid.

We define rk(x, v)’s lastWrite to be the latest commit event ci such that ci precedes rk(x, v) in H and
x ∈ Wset(Ti) (Ti can also be T0). A successful read operation rk(x, v) (i.e., v 6= A), is said to be legal
if transaction Ti (which contains rk’s lastWrite) also writes v onto x. Formally, 〈rk(x, v) is legal ⇒ (v 6=
A) ∧ (H.lastWrite(rk(x, v)) = ci) ∧ (wi(x, v) ∈ evts(Ti))〉. The history H is legal if all its successful read
operations are legal. Thus from the definitions we get that if H is legal then it is also valid.

Strict Serializability and Opacity. We say that two histories H and H ′ are equivalent if they have the same
set of events. Now a history H is said to be opaque [6, 7] if H is valid and there exists a t-sequential legal
history S such that (1) S is equivalent to H and (2) S respects ≺RT

H , i.e., ≺RT
H ⊂≺RT

S . By requiring S being
equivalent to H, opacity treats all the incomplete transactions as aborted.

Along the same lines, a valid history H is said to be strictly serializable if H.subhist(committed(H))
is opaque. Thus, unlike opacity, strict serializability does not include aborted transactions in the global
serialization order.

3 P -Non-Interference

A correctness criterion is a set of histories. In this section, we recall the notion of permisiveness [5] and then
we formally define non-interference. First, we define a few auxiliary notions.

For a transaction Ti in H, applicable events of Ti or applicable(Ti) denotes: (1) all the events of Ti, if it
is committed; (2) if Ti is aborted then all the read operations of Ti. Thus, if Ti is an aborted transaction
ending with tryCi(A) (and not ri(x,A) for some x), then the final tryCi(A) is not included in applicable(Ti).

We denote, HTi as the shortest prefix of H containing all the events of Ti in H. Now for Ti ∈ aborted(H),
let HTi,C denote the set of histories constructed from HTi , where the last operation of Ti in H is replaced
with (1) ri(x, v) for some value non-abort value v, if the last operation is ri(x,A), (2) wi(x, v,A), if the last
operation is wi(x, v,A), (3) tryCi(C), if the last operation is tryCi(A).

c This restriction brings no loss of generality [12].

4

If R is a subset of transactions of txns(H), then H−R denotes the sub-history obtained after removing

all the events of R from H. Respectively, HTi,C
−R denotes the set of histories in HTi,C with all the events of

transaction in R removed.

Definition 1. Given a correctness criterion P , we say that a history H is P -permissive, and we write
H ∈ Perm(P) if:

(1) H ∈ P ;
(2) ∀T ∈ aborted(H), ∀H ′ ∈ HT,C : H ′ /∈ P .

From this definition we can see that a history H is permissive w.r.t. P , if no aborted transaction in H can
be turned into committed, while preserving P .

The notion of non-interference or NI (P) is defined in a similar manner as a set of histories parameterized
by a property P . For a transaction T in txns(H), IncAbort(T,H) denotes the set of transactions that have
(1) either aborted before T ’s terminal operation or (2) are incomplete when T aborted. Hence, for any T ,
IncAbort(T,H) is a subset of aborted(H) ∪ incomplete(H).

Definition 2. Given a correctness criterion P , we say that a history H is P -non-interfering, and we write
H ∈ NI(P) if:

(1) H ∈ P ;

(2) ∀T ∈ aborted(H), R ⊆ IncAbort(T,H), ∀H ′ ∈ HT,C
−R : H ′ /∈ P .

Informally, non-interference states that none of transactions that aborted prior to or are live at the moment
when T aborts caused T to abort: removing any subset of these transactions from the history does not help
t to commit. By considering the special case R = ∅ in Definition 2, we obtain Definition 1, and, thus:

Observation 1 For every correctness criterion P , NI(P) ⊆ Perm(P).

The example in Figure 1 (Section 1) shows that NI(opacity) 6= Perm(opacity) and, thus, no implementation
of opacity can satisfy non-interference. This motivated us to define a new correctness criterion, a relaxation
of opacity, which satisfies non-interference.

4 Local correctness and non-interference

Intuitively, a correctness criterion is local if is enough to ensure that, for every transaction, the corresponding
local sub-history is correct. One feature of any local property P is that any P -permissive implementation is
also P -non-interfering.

Formally, for Ti in txns(H), let subC(H,Ti) denote

HTi .subhist(committed(HTi) ∪ {applicable(Ti)}),

i.e., the sub-history of HTi consisting of the events of all committed transactions in HTi and all the applicable
events of Ti. We call it local sub-history of Ti in H. Note that here we are considering applicable events of Ti.
So if Ti is committed, all its events are considered. But if Ti is an aborted transaction ending with tryC(A)
(or ri(x,A)), then only its read operations are considered.

Definition 3. A correctness criterion P is local if for all histories H:

H ∈ P if and only if , for all Ti ∈ txns(H), subC(H,Ti) ∈ P .

As we show in this section, one example of a local property is virtual world consistency [9]. Then we will
introduce another local property that we call conflict local opacity (CLO), in the next section and describe
a simple permissive CLO implementation.

5

Theorem 2. For every local correctness property P , Perm(P) ⊆ NI(P).

Proof. We proceed by contradiction. Assume that H is in Perm(P) but not in NI(P). More precisely, let Ta

be an aborted transaction in H, R ⊆ IncAbort(Ta, H) and H̃ ∈ HTa,C
−R , such that H̃ ∈ P .

On the other hand, since H ∈ Perm(P), we have HTa,C ∩ P = ∅. Since P is local and H ∈ P , we have
∀Ti ∈ txns(P), subC(H,Ti) ∈ P . Thus, for all transactions Ti that committed before the last event of Ta, we
have subC(H,Ti) = subC(HTa , Ti) ∈ P .

Now we construct Ĥ as HTa , except that the aborted operation of Ta is replaced with the last operation
of Ta in H̃. Since H̃ is in P , and P is local, we have subC(Ĥ, Ta) = subC(H̃, Ta) ∈ P . For all transactions

Ti that committed before the last event of Ta in Ĥ, we have subC(Ĥ, Ti) = subC(HTa , Ti) ∈ P . Hence, since

P is local, we have Ĥ ∈ P . But, by construction, Ĥ ∈ HTa,C—a contradiction with the assumption that
HTa,C ∩ P = ∅. ut

As we observed earlier, for any correctness criterion P , NI(P) ⊆ Perm(P). Hence, Theorem 2 implies that
for any local correctness criterion P NI(P) = Perm(P).

4.1 Virtual world consistency

The correctness criterion of virtual world consistency (VWC) [9] relaxes opacity by allowing aborted trans-
actions to be only consistent with its local causal past. More precisely, we say that Ti causally precedes Tj

in a history H, and we write Ti ≺CP
H Tj if one of the following conditions hold (1) Ti and Tj are executed

by the same process and Ti ≺RT
H Tj , (2) Ti commits and Tj reads the value written by Ti to some object

x ∈Wset(Ti)∩Rset(Tj)(recall that we assumed for simplicity that all written values are unique), or (3) there
exists Tk, such that Ti ≺CP

H Tk and Tk ≺CP
H Tj . The set of transactions Ti such that Ti ≺CP

H Tj and Tj itself
is called the causal past of Tj , denoted CP (Tj).

Now H is in VWC if (1) H.subhist(committed) is opaque and (2) for every Ti ∈ txns(H), H.subhist(CP (Ti))
is opaque. Informally, H must be strictly serializable and the causal past of every transaction in H must
constitute an opaque history.

It is easy to see that H ∈ VWC if and only if for all subC(H,Ti) ∈ VWC . By Theorem 2, any VWC-
permissive implementation is also VWC-non-interfering.

4.2 Conflict local opacity

As shown in [9], the VWC criterion may allow a transaction to proceed if it is “doomed” to abort: as long
as the transaction’s causal past can be properly serialized, the transaction may continue if it is no more
consistent with the global serial order and, thus, will have to eventually abort. We propose below a stronger
local property that, intuitively, aborts a transaction as soon as it cannot be put in a global serialization
order.

Definition 4. A history H is said to be locally opaque or LO, if for each transaction Ti in H: subC(H,Ti)
is opaque.

It is immediate from the definition that a locally opaque history is strictly serializable: simply take Ti

above to be the last transaction to commit in H. The resulting subC(H,Ti) is going to be H.subhist(committed(H)),
the sub-history consisting of all committed transactions in H. Also, one can easily see that local opacity is
indeed a local property.

Every opaque history is also locally opaque, but not vice versa. To see this, consider the history H
in Figure 2 which is like the history in Figure 1, except that transaction T1 is now committed. Notice
that the history is not opaque anymore: T1, T2 and T3 form a cycle that prevents any legal serialization.
But it is locally opaque: each transaction witnesses a state which is consistent with some legal total order
on transactions committed so far: subC(H,T1) is equivalent to T3T1, subC(H,T2) is equivalent to T3T2,
subC(H,T3) is equivalent to T3.

6

C

T3
w(x, 1)

r(x, 0) w(y, 1)

r(y, 0)r(x, 1)

C

T1

T2

Fig. 2: A locally opaque, but not opaque history (the initial value for each object is 0)

We denote the set of locally opaque histories by LO. Finally, we propose a restriction of local opacity
that ensures that every local serialization respects the conflict order [17, Chap. 3]. For two transactions
Tk and Tm in txns(H), we say that Tk precedes Tm in conflict order, denoted Tk ≺CO

H Tm, if (w-w order)
tryCk(C) <H tryCm(C) and Wset(Tk) ∩Wset(Tm) 6= ∅, (w-r order) tryCk(C) <H rm(x, v), x ∈ Wset(Tk)
and v 6= A, or (r-w order) rk(x, v) <H tryCm(C), x ∈ Wset(Tm) and v 6= A. Thus, it can be seen that the
conflict order is defined only on operations that have successfully executed. Using conflict order, we define a
subclass of opacity, conflict opacity (co-opacity).

Definition 5. A history H is said to be conflict opaque or co-opaque if H is valid and there exists a
t-sequential legal history S such that (1) S is equivalent to H and (2) S respects ≺RT

H and ≺CO
H .

Now we define a “conflict” restriction of local opacity, conflict local opacity (CLO) by replacing opaque
with co-opaque in Definition 4. Immediately, we derive that co-opacity is a subset of opacity and CLO is a
subset of LO.

5 Implementing Local Opacity

In this section, we present our permissive implementation of CLO. By Theorem 2 it is also CLO-non-
interfering. Our implementation is based on conflict-graph construction of co-opacity, a popular technique
borrowed from databases (cf. [17, Chap. 3]). We then describe a simple garbage-collection optimization that
prevents the memory used by the algorithm from growing without bound.

5.1 Graph characterization of co-opacity

Given a history H, we construct a conflict graph, CG(H) = (V,E) as follows: (1) V = txns(H), the set of
transactions in H (2) an edge (Ti, Tj) is added to E whenever Ti ≺RT

H Tj or Ti ≺CO
H Tj , i.e., whenever Ti

precedes Tj in the real-time or conflict order.
From this characterization, we get the following theorem:

Theorem 3. A legal history H is co-opaque iff CG(H) is acyclic.

5.2 The Algorithm for Implementing CLO

Our CLO implementation is presented in Algorithms 1, 2 and 3 (we omit the trivial implementation of tryA
here). The main idea is that the system maintains a sub-history of all the committed transactions. Whenever
a live transaction Ti wishes to perform an operation oi (read, write or commit), the TM system checks to
see if oi and the transactions that committed before it, form a cycle. If so, oi is not permitted to execute
and Ti is aborted. Otherwise, the operation is allowed to execute. Similar algorithm(s) called as serialization
graph testing have been proposed for databases (cf. [17, Chap. 4]). Hence, we call it SGT algorithm.

Our SGT algorithm maintains several variables. Some of them are global to all transactions which are
prefixed with the letter ‘g’. The remaining variables are local. The variables are:

7

Algorithm 1 Read of a t-object x by a transaction Ti

1: procedure readi(x)
2: // read gComHist
3: tHisti = gComHist; // create a local copy of gComHist
4: // create v, to store a the value of x
5: v = the latest value written to x in tHisti;
6: // create lseqi, the local copy of gseqn
7: lseqi = the value of largest seq. no. of a transaction in lComHisti;
8: create the readVar ropi(x, v, lseqi);
9: // update lComHisti

10: lComHisti = merge lComHisti and tHisti; append ropi(x, v, lseqi) to lComHisti;
11: // check for consistency of the read operation
12: if (CG(lComHisti) is cyclic) then
13: replace ropi(x, v, lseqi) with (ropi(x,A, lseqi) in lComHisti);
14: return abort;
15: end if
16: // current read is consistent; hence store it in the read set and return v
17: return v;
18: end procedure

Algorithm 2 Write of a t-object x with value v by a transaction Ti

1: procedure writei(x, v)
2: if writei(x, v) is the first operation in Ti then
3: // read gComHist
4: lComHisti = gComHist;
5: lseqi = the value of largest seq. no. of a transaction in lComHisti;
6: end if
7: create the writeVar wopi(x, v, lseqi);
8: append wopi(x, v, lseqi) to lComHisti;
9: return ok;

10: end procedure

Algorithm 3 TryCommit operation by a transaction Ti

1: procedure tryCi

2: lock gLock;
3: // create the next version of gseqn for the current Ti

4: lseqi = gSeqNum + 1;
5: tHisti = gComHist; // create a local copy of gComHist
6: lComHisti = merge lComHisti and tHisti; // update lComHisti
7: // create the commit operation with lseqi
8: create the comVar copi(lseqi);
9: append copi(lseqi) to lComHisti;

10: if (CG(lComHisti) is cyclic) then
11: Replace copi(lseqi) with ai in lComHisti;
12: Release the lock on gLock;
13: return abort;
14: end if
15: gComHist = lComHisti;
16: gSeqNum = lseqi;
17: Release the lock on gLock;
18: return commit;
19: end procedure

8

– gSeqNum, initialized to 0 in the start of the system: global variable that counts the number of transactions
committed so far.

– lseqi: a transaction-specific variable that contains the number of transactions currently observed com-
mitted by Ti. When a transaction Ti commits, the current value of gSeqNum is incremented and assigned
to lseqi.

– readVar : captures a read operation ri performed by a transaction Ti. It stores the variable x, the value
v returned by ri and the sequence number s of ri, computed as the sequence number of the committed
transaction ri reads from. We use the notation ropi(x, v, s) to denote the read operation in the local or
global history.

– writeVar : captures a write operation wi(x, v) performed by a transaction Ti. It stores the variable x,
the value written by the write operation v and the sequence number s of wi, computed as the sequence
number of the previous op in Ti or the sequence number of the last committed transaction preceding Ti

if wi is the first operation in Ti. We use the notation wopi(x, v, s) to denote the writeVar operation.
– comVar : captures a commit operation of a transaction Ti. It stores the lseqi of the transaction. We use

the notation copi(s) to denote the comVar operation where s is the lseqi of the transaction.
– gComHist : captures the history of events of committed transactions. It is a list of readVar, writeVar,

comVar variables ordered by real-time execution. We assume that gComHist also contains initial values
for all t-variables (later updates of these initial values will be used for garbage collection).

– gLock : This is a global lock variable. The TM system locks this variable whenever it wishes to read and
write to any global variable.

The implementations of Ti’s operations, denoted by readi(x), writei(x, v) and tryCi() are described
below. We assume here that if any of these is the first operation performed by Ti, it is preceded with the
initialization all Ti’s local variables.

We also assume that all the t-objects accessed by the STM system are initialized with 0 (which simulates
the effect of having the initializing transaction T0).

readi(x): Every transaction Ti maintains lComHisti which is a local copy gComHist combined with events of
Ti taken place so far, put at the right places in gComHist, based on their sequence numbers. From lComHisti
the values v and lseqi are computed. If there are no committed writes operation on x preceding readi(x) in
lComHisti, then v is assumed to be the initial value 0. Then, a readVar ropi is created for the current read
operation using the latest value of x, v and the current value of gSeqNum, lseqi. Then ropi is inserted into
lComHisti. A conflict graph is constructed from the resulting lComHisti and checked for acyclicity. If the
graph is cyclic then A is inserted into ropi of lComHisti and then abort is returned. Otherwise, the value v
is returned.

writei(x, v): adds a writeVar containing x and v and lseqi is inserted to lComHisti. (If the write is the first
operation of Ti, then lComHisti and lseqi are computed based on the current state of gComHisti.)

tryCi(x): The main idea for this procedure is similar to readi, except that the TM system first obtains the
lock on gLock. Then it makes local copies of gSeqNum, gComHist which are lseqi, tHisti, and lComHisti.
The value lseqi is incremented, and the copi(lseqi) item is appended to lComHisti. Then a conflict graph is
constructed for the resulting lComHisti and checked for acyclicity. If the graph is cyclic then copi(seqi) is
replaced with ai in lComHisti, the lock is released and abort is returned. Otherwise, lseqi, lComHisti, are
copied back into gSeqNum, gComHist, the lock is released and ok is returned.

5.3 Correctness of SGT

In this section, we will prove that our implementation is permissive w.r.t. CLO. Consider the history H
generated by SGT algorithm. Recall that only read, tryC and write operation (if it is the first operation in
a transaction) access shared memory. Hence, we call such operations memory operations.

Note that H is not necessarily sequential: the transactional operations can execute in overlapping manner.
Therefore, to reason about correctness, we first order all the operations in H to get an equivalent sequential
history. We then show that this sequential history is permissive with respect to CLO.

9

We place the memory operations, say ri(x, v/A), tryCj(C/A) based on the order in which they access
the global variable gComHist, storing the history of currently committed transactions. The remaining write
operations are placed anywhere between the last preceding memory operation and its tryCi operation. We
denote the resulting history, completed by adding tryCi(A) operation for every incomplete transaction Ti, by
Hg. It can be seen that Hg represents a complete sequential history that respects the real time ordering of
memory operations in H. In the rest of this section, we show that Hg is permissive (and, thus, non-interfering)
with respect to CLO.

Since CLO is local, to show that Hg is in CLO, it is sufficient to show that, for each transaction Ti in
txns(Hg), subC(Hg, Ti) is in CLO. We denote subC(Hg, Ti) by Hig.

Consider a transaction Ti ∈ txns(Hg). Consider the last complete memory operation of Ti in H, denoted
as mi. Note that every Ti performs at least one successful memory operation (the proof for the remaining
case is trivial). We define a history Him as the local history lComHisti computed by SGT with the last
complete memory operation of Ti in H (line 10 of Algorithm 1 and line 9 of Algorithm 3).

Lemma 1. Him and Hig are equivalent.

Proof. Obviously, Him and Hig agree on the events of Ti. The SGT algorithm assigns commitSeqNum (a
sequence number) to each committed transaction Tj . Similarly it also assigns readSeqNum to each successfully
completed read operation, i.e. the read that did not return abort. Based on these sequence numbers, the
SGT algorithm constructs Him (line 10 of Algorithm 1, and line 9 of Algorithm 3) of all the events that
committed before the last successful memory operation of Ti in Hg. On the other hand, every event that
appears in Him belongs to Ti or a transaction that committed before the last successful memory operation
of Ti in Hg. Thus, Him and Hig are equivalent. ut

Even though Him and Hg are equivalent, the ordering of the events in these histories could be different.
However, the two histories agree on the real-time and conflict orders of transactions.

Lemma 2. ≺CO
Him

=≺CO
Hig

and ≺RT
Hig

=≺RT
Him

Proof. We go case by case for each possible relation in ≺CO ∪ ≺RT .
Write-write order: we want to show that (tryCp <im tryCq)⇔ (Tp.commitSeqNum < Tq.commitSeqNum)⇔
(tryCp <ig tryCq).

The result (tryCp <im tryCq)⇔ (Tp.commitSeqNum < Tq.commitSeqNum) follows from the construction
of Him. We have already shown earlier that tryC operation is atomic. When a transaction Ti successfully
commits in the SGT algorithm, it is assigned an unique commitSeqNum which is monotonically increasing.
As a result, a tryC operation which commits later gets higher commitSeqNum in Hg. Since the ordering of
events in Hg are same as Hig, we get that (Tp.commitSeqNum < Tq.commitSeqNum)⇔ (tryCp <ig tryCq).
Write-read order: For a committed transactions Tp and a successful read operation rq, we want to show that
(tryCp <im rq)⇔ (Tp.commitSeqNum ≤ rq.readSeqNum)⇔ (tryCp <ig rq).

The result (tryCp <im rq)⇔ (Tp.commitSeqNum ≤ rq.readSeqNum) follows from the construction of Him.
The SGT algorithm stores as a part of the read operation rj , readSeqNum which is same as the commitSeqNum
of the latest transaction that committed before rj , say Ti. Thus Ti.commitSeqNum = rj .readSeqNum. From
the above argument for the write-write order, we have that any transaction Tk that committed before
Ti will have lower commitSeqNum. This holds in Hg and as a result also holds in Hig. This shows that
(Tp.commitSeqNum ≤ rq.readSeqNum)⇔ (tryCp <ig rq).
Read-write order: For a committed transactions Tq and a successful read operation rp, we want to show that
(rp <im tryCq) ⇔ (rp.readSeqNum < Tq.commitSeqNum) ⇔ (rp <ig tryCq). The reasoning is similar to the
above cases.
Hence, ≺CO

Him
=≺CO

Hig
.

Real-time order: Consider two transaction Tp, Tq in Hig such that Tp ≺RT
Hig

Tq which also holds in Hg. From
the construction of Hig, we get that Tp is a committed transaction with its last event being tryCp. Indeed,
the only possibly uncommitted transaction in Hig is Ti that performs the last event in Hig and, thus, cannot
precede any transaction in ≺RT

Hig
.

10

Consider the first memory operation of Tq (by our assumption, there is one in each Tq in Hig). By the
algorithm, the sequence number associated with the memory operation is at least as high as the sequence
number of tryCp. Thus Tp ≺RT

Him
Tq The other direction is analogous.

Hence, ≺RT
Him

=≺RT
Hig

. ut

Lemmas 1 and 2 imply that Him and Hig generate the same conflict graph:

Corollary 1. CG(Hig) = CG(Him)

Now we argue about legality of Him and Hig.

Lemma 3. Hig is legal.

Proof. By the algorithm, every successful read operation on a variable x within Ti returns the argument of
the last committed write on x that appears in lComHisti (and, thus, in Him). By applying this argument to
every prefix of Him, we derive that Him is legal. By Lemmas 5 and 2, we derive that Hig is also legal. ut

Theorem 4. Let Hg be a history generated by the SGT algorithm. Then Hg is in CLO.

Proof. By the algorithm, the corresponding Him produces an acyclic conflict graph CG(Him) (cf. checks in
line 12 of Algorithm 1 and line 10 of Algorithm 3). By Corollary 1, CG(Hig) is also acyclic.

Thus, by Theorem 3 and Lemma 3, for every Ti ∈ txns(Hg), Hig is co-opaque. Since CLO is a local
property, we derive that Hg is in CLO. ut

Having proved that SGT algorithm generates CLO histories, we now show that SGT algorithm is in fact
permissive w.r.t. CLO .

Theorem 5. Let Hg be a history generated by SGT algorithm. Then Hg is in Perm(CLO).

Proof. We shall prove this by contradiction. Assume that Hg is not in Perm(CLO). From Theorem 4, we get
that Hg is in CLO. Hence, condition (2) of Definition 1 is not true. Thus, there is an aborted transaction
Ta in Hg which can be committed so that the resulting history is still in CLO. We denote the modified
transaction as TC

a and the resulting history as H ′g. There are two cases depending on the final event of Ta:

Case 1: The last event of Ta is a read operation ra(x,A). In order for TC
a to be committed in H ′g, ra(x,A) is

converted to ra(x, v) for some v. If H ′g is in CLO, then subC(H ′g, T
C
a) is co-opaque. By Corollary 2, we get

that subC(H ′g, T
C
a) is legal. Therefore, v is the value written by the transaction committing ra’s lastWrite in

H ′g (the current value on v). It can be seen that H ′g differs from Hg only in ra.
But when SGT algorithm attempts to read this value of x in line 10 of Algorithm 1, it causes the conflict

graph maintained to be cyclic. From Corollary 1 applied to H ′g, we get that the conflict graph of subC(H ′g, T
C
a)

is also cyclic. By Theorem 3, we derive that subC(H ′g, T
C
a) is not co-opaque. This implies that H ′g is not in

CLO—a contradiction.
Case 2: The last event of Ta is an abort operation tryCa(A). The argument in this case is similar to the
above case. In order for TC

a to be committed in H ′g, tryCa(A) is converted into tryCa(C). When SGT
algorithm attempts to commit Ta in line 9 of Algorithm 3, it causes the conflict graph maintained to be
cyclic. By Corollary 1 applied to H ′g, we derive that the conflict graph of subC(H ′g, T

C
a) is also cyclic. From

Theorem 3, we then get that subC(H ′g, T
C
a) is not co-opaque. This implies that H ′g is not in CLO and hence

again a contradiction.
Therefore, no transaction Ta in Hg can not be transformed into a committed transaction TC

a while still
staying in CLO. Hence, Hg is in Perm(CLO). ut

It is left to show that our algorithm is live, i.e., under certain conditions, every operation eventually completes.

Theorem 6. Assuming that no transaction fails while executing the tryC operation and gLock is starvation-
free, every operation of SGT eventually returns.

11

Proof. It can be seen that read and write functions do not involve any waiting. Therefore, tryC is the only
function which involves waiting for the gLock variable. But since the lock is starvation-free and no transaction
executing tryC obtains the lock forever, every such waiting is finite. Thus, every tryC operation eventually
grabs the lock and, after, computing the outcome, returns. ut

Theorem 7. Let Hg be a history generated by the SGT algorithm. Then Hg is in CLO.

Theorem 8. Let Hg be a history generated by SGT algorithm. Then Hg is in Perm(CLO).

Now Theorem 2 implies that our SGT implementation is CLO-non-interfering.

Theorem 9. Assuming that no transaction fails while executing the tryC operation and gLock is starvation-
free, every operation of SGT eventually returns.

5.4 Garbage Collection

Over time, the history of committed transactions maintained by our SGT algorithm in the global variable
gComHist grows without bound. We now describe a simple garbage-collection scheme that allows to keep the
size of gComHist proportional to the current contention, i.e, to the number of concurrently live transactions.
The idea is to periodically remove from gComHist the sub-histories corresponding to committed transactions
that become obsolete, i.e., the effect of them can be reduced to the updates of t-objects.

More precisely, a transaction Ti’s liveSet is the set of the transactions that were incomplete when Ti

terminated. A t-complete transaction Ti is said to be obsolete (in a history H) if all the transactions in its
liveSet have terminated (in H).

To make sure that obsolete transactions can be correctly identified based on the global history gComHist ,
we update our algorithm as follows. When a transaction performs its first operation, it grabs the lock on
gComHist and inserts the operation in it. Now when a transaction commits it takes care of all committed
transactions in gComHist which have become obsolete. All read operations preceding the last event of an
obsolete transaction are removed, In case there are multiple obsolete transactions writing to the same t-
object, only the writes of the last such obsolete transaction to commit are kept in the history. If an obsolete
transaction is not the latest to commit an update on any t-object, all events of this transactions are removed.

In other words, Him defined as the local history lComHisti computed by SGT within the last complete
memory operation of Ti in the updated algorithm (which corresponds to line 10 of Algorithm 1 and line 9
of Algorithm 3) preserves write and commit events of the latest obsolete transaction to commit a value for
every t-object. All other events of other obsolete transactions are removed. The computed history Him is
written back to gComHist in line 15 of Algorithm 1.

Let this gComHist be used by a transaction Ti in checking the correctness of the current local history
(line 12 of Algorithm 1 or line 10 of Algorithm 3). Recall that Hig denotes the corresponding local history of
Ti. Let T` be any obsolete transaction in Hig. Note that all transactions that committed before T` in Hig are
also obsolete in Hig, and let U denote the set of all these obsolete transactions, including T`. Respectively,
let obs(Hig, U) be a prefix of Hig in which all transactions in liveSet(T`) are complete. Also, let trim(Hig, U)
be the “trimmed” local history of Ti where all transactions in U are removed or replaced with committed
updates, as described above. We can show that Hig is in CLO if and only if obs(Hig, U) and trim(Hig, U)
are in CLO .

Iteratively, for each Ti, all our earlier claims on the relation between the actual local history Hig and the
locally constructed history Him hold now for the “trimmed” history trim(Hig, U) and Him. Therefore, Him

is in CLO if and only if Hig is in CLO . Hence, every history Hg generated by the updated algorithm with
garbage collection is CLO-permissive (and, thus, CLO-non-interfering).

Note that removing obsolete transactions from gComHist essentially boils down to dropping a prefix of it
that is not concurrent to any live transactions. As a result, the length of gComHist is O(M + C), where M
is the number of t-objects and C is the upper bound on the number of concurrent transactions. A complete
correctness proof for the optimized algorithm is given in [11].

12

6 Concluding remarks

In this paper, we explored the notion of non-interference in transactional memory, originally highlighted
in [14,15]. We focused on P -non-interference that grasps the intuition that no transaction aborts because of
aborted or incomplete transactions in the sense that by removing some of aborted or incomplete transactions
we cannot turn a previously aborted transaction into a committed one without violating the given correctness
criterion P . We showed that no TM implementation can provide opacity-non-interference. However, we ob-
served that any permissive implementation of a local correctness criterion is also non-interfering. Informally,
showing that a history is locally correct is equivalent to showing that every its local sub-history is correct.
We discussed two local criteria: virtual-world consistency (VWC) [9] and the (novel) local opacity (LO).
Unlike VWC, LO does not allow a transaction that is doomed to abort to waste system resources. TMS1 [?]
was recently proposed as a candidate for the “weakest reasonable” TM correctness criterion. Interestingly,
at least for the case of atomic transactional operations, LO seems to coincide with TMS1.

We then considered CLO , a restriction of LO that, in addition, requires every local serialization to respect
the conflict order [8,13] of the original sub-history. We presented a permissive, and thus non-interfering, CLO
implementation. This appears to be the only non-trivial permissive implementation known so far (the VWC
implementation in [2] is only probabilistically permissive).

Our definitions and our implementation intend to build a “proof of concept” for non-interference and
are, by intention, as simple as possible (but not simpler). Of course, interesting directions are to consider a
more realistic notion of non-interference as a characteristics of an implementation, to extend our definitions
to non-sequential histories, and to relax the strong ordering requirements in our correctness criteria. Indeed,
the use of the conflict order allowed us to efficiently relate correctness of a given history to the absence of
cycles in its graph characterization. Respecting conflict order makes a lot of sense if we aim at permissiveness,
as efficient verification of strict serializability or opacity appear elusive [13]. But it may be too strong as a
requirement for less demanding implementations.

Also, our implementation is quite simplistic in the sense that it uses one global lock to protect the history
of committed transactions and, thus, it is not disjoint-access-parallel (DAP) [1,10]. An interesting challenge
is to check if it is possible to construct a permissive DAP CLO implementation with invisible reads.

References

1. H. Attiya, E. Hillel, and A. Milani. Inherent limitations on disjoint-access parallel implementations of transac-
tional memory. In Proceedings of the twenty-first annual symposium on Parallelism in algorithms and architec-
tures, SPAA ’09, pages 69–78, New York, NY, USA, 2009. ACM.

2. T. Crain, D. Imbs, and M. Raynal. Read invisibility, virtual world consistency and probabilistic permissiveness
are compatible. In ICA3PP (1), pages 244–257, 2011.

3. L. Dalessandro, M. F. Spear, and M. L. Scott. Norec: streamlining stm by abolishing ownership records. In
PPOPP, pages 67–78, 2010.

4. P. Felber, C. Fetzer, P. Marlier, and T. Riegel. Time-based software transactional memory. IEEE Trans. Parallel
Distrib. Syst., 21(12):1793–1807, 2010.

5. R. Guerraoui, T. Henzinger, and V. Singh. Permissiveness in transactional memories. In DISC ’08: Proc. 22nd
International Symposium on Distributed Computing, pages 305–319, sep 2008. Springer-Verlag Lecture Notes in
Computer Science volume 5218.

6. R. Guerraoui and M. Kapalka. On the correctness of transactional memory. In PPoPP ’08: Proceedings of the
13th ACM SIGPLAN Symposium on Principles and practice of parallel programming, pages 175–184, New York,
NY, USA, 2008. ACM.

7. R. Guerraoui and M. Kapalka. Principles of Transactional Memory,Synthesis Lectures on Distributed Computing
Theory. Morgan and Claypool, 2010.

8. V. Hadzilacos. A theory of reliability in database systems. J. ACM, 35(1):121–145, Jan. 1988.

9. D. Imbs and M. Raynal. A versatile STM protocol with invisible read operations that satisfies the virtual
world consistency condition. In Proceedings of the 16th international conference on Structural Information and
Communication Complexity, SIROCCO’09, pages 266–280, Berlin, Heidelberg, 2010. Springer-Verlag.

13

10. A. Israeli and L. Rappoport. Disjoint-access-parallel implementations of strong shared memory primitives. In
Proceedings of the thirteenth annual ACM symposium on Principles of distributed computing, PODC ’94, pages
151–160, New York, NY, USA, 1994. ACM.

11. P. Kuznetsov and S. Peri. Non-interference and locality in transactional memory. CoRR, abs/1211.6315, 2012.
12. P. Kuznetsov and S. Ravi. On the cost of concurrency in transactional memory. In OPODIS, pages 112–127,

2011.
13. C. H. Papadimitriou. The serializability of concurrent database updates. J. ACM, 26(4):631–653, 1979.
14. S. Peri and K.Vidyasankar. Correctness of concurrent executions of closed nested transactions in transactional

memory systems. In 12th International Conference on Distributed Computing and Networking, pages 95–106,
2011.

15. S. Peri and K.Vidyasankar. An efficient scheduler for closed nested transactions that satisfies all-read-consistency
and non-interference. In 13th International Conference on Distributed Computing and Networking, 2012.

16. M. F. Spear, M. M. Michael, and C. von Praun. Ringstm: scalable transactions with a single atomic instruction.
In Proceedings of the twentieth annual symposium on Parallelism in algorithms and architectures, SPAA ’08,
pages 275–284, 2008.

17. G. Weikum and G. Vossen. Transactional Information Systems: Theory, Algorithms, and the Practice of Con-
currency Control and Recovery. Morgan Kaufmann, 2002.

A Appendix

A.1 Graph characterization of co-opacity

In the following lemmas, we show that the graph characterization indeed helps us verify the membership in
co-opacity. Note, since txns(H) = txns(H) and (≺RT

H ∪ ≺CO
H) = (≺RT

H
∪ ≺CO

H
), we have CG(H) = CG(H).

Lemma 4. Consider two histories H1 and H2 such that H1 is equivalent to H2 and H1 respects conflict
order of H2, i.e., ≺CO

H1⊆≺CO
H2 . Then, ≺CO

H1 =≺CO
H2 .

Proof. Here, we have that ≺CO
H1⊆≺CO

H2 . In order to prove ≺CO
H1 =≺CO

H2 , we have to show that ≺CO
H2⊆≺CO

H1 .
We prove this using contradiction. Consider two events p, q belonging to transaction T1, T2 respectively in
H2 such that (p, q) ∈≺CO

H2 but (p, q) /∈≺CO
H1 . Since the events of H2 and H1 are same, these events are

also in H1. This implies that the events p, q are also related by CO in H1. Thus, we have that either
(p, q) ∈≺CO

H1 or (q, p) ∈≺CO
H1 . But from our assumption, we get that the former is not possible. Hence, we get

that (q, p) ∈≺CO
H1⇒ (q, p) ∈≺CO

H2 . But we already have that (p, q) ∈≺CO
H2 . This is a contradiction. ut

Lemma 5. Let H1 and H2 be equivalent histories such that ≺CO
H1 =≺CO

H2 . Then H1 is legal iff H2 is legal.

Proof. It is enough to prove the ‘if’ case, and the ‘only if’ case will follow from symmetry of the argument.
Suppose that H1 is legal. By contradiction, assume that H2 is not legal, i.e., there is a read operation
rj(x, v) (of transaction Tj) in H2 with lastWrite as ck (of transaction Tk) and Tk writes u 6= v to x, i.e
wk(x, u) ∈ evts(Tk). Let rj(x, v)’s lastWrite in H1 be ci of Ti. Since H1 is legal, Ti writes v to x, i.e
wi(x, v) ∈ evts(Ti).

Since evts(H1) = evts(H2), we get that ci is also in H2, and ck is also in H1. As ≺CO
H1 =≺CO

H2 , we get
ci <H2 rj(x, v) and ck <H1 rj(x, v).

Since ci is the lastWrite of rj(x, v) in H1 we derive that ck <H1 ci and, thus, ck <H2 ci <H2 rj(x, v).
But this contradicts the assumption that ck is the lastWrite of rj(x, v) in H2. Hence, H2 is legal. ut

From the above lemma we get the following interesting corollary.

Corollary 2. Every co-opaque history H is legal as well.

Based on the conflict graph construction, we have the following graph characterization for co-opaque.

Theorem 10. A legal history H is co-opaque iff CG(H) is acyclic.

14

Proof. (Only if) If H is co-opaque and legal, then CG(H) is acyclic: Since H is co-opaque, there exists a
legal t-sequential history S equivalent to H and S respects ≺RT

H and ≺CO
H . Thus from the conflict graph

construction we have that CG(H)(= CG(H)) is a sub graph of CG(S). Since S is sequential, it can be
inferred that CG(S) is acyclic. Any sub graph of an acyclic graph is also acyclic. Hence CG(H) is also
acyclic.

(if) If H is legal and CG(H) is acyclic then H is co-opaque: Suppose that CG(H) = CG(H) is acyclic.
Thus we can perform a topological sort on the vertices of the graph and obtain a sequential order. Using this
order, we can obtain a sequential schedule S that is equivalent to H. Moreover, by construction, S respects
≺RT

H =≺RT
H

and ≺CO
H =≺CO

H
.

Since every two events related by the conflict relation (w-w, r-w, or w-r)in S are also related by ≺CO
H

,

we obtain ≺CO
S =≺CO

H
. Since H is legal, H is also legal. Combining this with Lemma 5, we get that S is also

legal. This satisfies all the conditions necessary for H to be co-opaque. ut

A.2 Proofs of local correctness and non-interference

Theorem 11. For every local correctness property P , Perm(P) ⊆ NI(P).

Proof. We proceed by contradiction. Assume that H is in Perm(P) but not in NI(P). More precisely, let Ta

be an aborted transaction in H, R ⊆ IncAbort(Ta, H) and H̃ ∈ HTa,C
−R , such that H̃ ∈ P .

On the other hand, since H ∈ Perm(P), we have HTa,C ∩ P = ∅. Since P is local and H ∈ P , we have
∀Ti ∈ txns(P), subC(H,Ti) ∈ P . Thus, for all transactions Ti that committed before the last event of Ta, we
have subC(H,Ti) = subC(HTa , Ti) ∈ P .

Now we construct Ĥ as HTa , except that the aborted operation of Ta is replaced with the last operation
of Ta in H̃. Since H̃ is in P , and P is local, we have subC(Ĥ, Ta) = subC(H̃, Ta) ∈ P . For all transactions

Ti that committed before the last event of Ta in Ĥ, we have subC(Ĥ, Ti) = subC(HTa , Ti) ∈ P . Hence, since

P is local, we have Ĥ ∈ P . But, by construction, Ĥ ∈ HTa,C—a contradiction with the assumption that
HTa,C ∩ P = ∅. ut

A.3 Proof for Garbage Collection

Lemma 6. Hig is in CLO if and only if obs(Hig, U) and trim(Hig, U) are in CLO.

Proof. (Only if) Suppose that Hig is in CLO . By Corollary 2, Hig is legal. Since obs(Hig, U) is a prefix of
Hig, it is also legal, and its conflict graph is a sub-graph of CG(Hig. By Theorem 3, CG(obs(Hig, U)) is
acyclic and, thus, obs(Hig, U) is in CLO .

Further, let rk(x, v) be any read operation in trim(Hig, U). Since Hig is legal, rk(x, v) is also legal. Note
that since no read operation of obsolete transactions in Hig appears in trim(Hig, U), Tk is not in U . Let
cm be rk(x, v) ’s lastWrite in Hig. If cm appears in trim(Hig, U), then cm is also rk(x, v) ’s lastWrite in
trim(Hig, U), and, thus, rk(x, v) is also legal. Now, suppose, by contradiction, that cm does not appear in
trim(Hig, U), i.e., cm is not the last (obsolete) transaction in U to commit a value on x, i.e., there exists a
transaction Ts ∈ U writing to x such that cs appears after cm in Hig. Since cm is rk(x, v) ’s lastWrite in
Hig, cs appears after rk(x, v) in Hig. But Ts is obsolete, and, thus, no read operation can appear before cs
in trim(Hig, U)—a contradiction. Thus, cm is rk(x, v) ’s lastWrite in trim(Hig, U), and, hence, trim(Hig, U)
is legal.

Since trim(Hig, U) is a legal sub-sequence of Hig, CG(trim(Hig, U)) is a sub-graph of CG(Hig) and, by
Theorem 3, CG(trim(Hig, U)) is acyclic and trim(Hig, U) is in CLO .
(If) Suppose now that obs(Hig, U) and trim(Hig, U) are in CLO . By Corollary 2, both histories are legal, and,
by Theorem 3, produce acyclic conflict graphs. Immediately, every read operation in Hig that also appears
in obs(Hig, U) is legal. By the arguments above, the lastWrite for every read operation in trim(Hig, U) is
also its lastWrite in Hig. Thus, Hig is legal.

15

Recall that Hig can be represented as trim(Hig, U) with read events of transactions in U inserted in
accordance to its prefix obs(Hig, U). Thus, CG(Hig) can be represented as CG(trim(Hig, U)) with several
additional edges directed to and from transactions in U .

Suppose, by contradiction that CG(Hig) contains a cycle C. Since CG(trim(Hig, U)) is acyclic, C must
contain an edge directed to or from a transaction in U that does not appear in CG(trim(Hig, U)).

Thus, we can represent the cycle C as Ti1 , Ti2 , . . . , Tik , where Ti1 = Tik ∈ U and for all j = 1, . . . , k − 1,
(Tij , Tij+1) ∈ CG(Hig). Since CG(obs(Hig, U)) is acyclic C must contain an edge that does not appear in
CG(obs(Hig, U)). Let Tij be the latest transaction in Ti2 , . . . , Tik such that (Tij−1

, Tij) /∈ CG(obs(Hig, U)).
Note that j 6= k. This is because Tik−1

must precede or be concurrent to Tik in Hig. Since Tik ∈ U ,
by the construction of obs(Hig, U), Tik−1

must have committed in obs(Hig, U). But then (Tij−1
, Tij) ∈

CG(obs(Hig, U))—a contradiction.
Now, since (Tij−1 , Tij) /∈ CG(obs(Hig, U)), Tij cannot be complete in obs(Hig, U). Again, by the con-

struction of obs(Hig, U), no transaction that is not complete in obs(Hig, U) can begin before Tik ∈ U
completes. Hence, Tik precedes Tij in the real-time order and, since Tij also appears in obs(Hig, U) ,
(Tik , Tij) ∈ CG(obs(Hig, U)). Thus, CG(obs(Hig, U)) contains a cycle Tik , Tij , Tij+1

. . . , Tik—a contradic-
tion.

Thus, CG(Hig) is acyclic and, by Theorem 3, Hig is in CLO . ut

16

