
ar
X

iv
:1

41
1.

38
70

v3
 [

cs
.F

L
]

 8
 D

ec
 2

01
5

Promise problems solved by quantum and classical finite automata

Shenggen Zheng1 , Lvzhou Li1 , Daowen Qiu1,∗, Jozef Gruska2

1Department of Computer Science, Sun Yat-sen University, Guangzhou 510006, China
2Faculty of Informatics, Masaryk University, Brno 60200, Czech Republic

Abstract

The concept of promise problems was introduced and started to be systematically explored by Even,

Selman, Yacobi, Goldreich, and other scholars. It has been argued that promise problems should be seen as

partial decision problems and as such that they are more fundamental than decision problems and formal

languages that used to be considered as the basic ones for complexity theory. The main purpose of this paper

is to explore the promise problems accepted by classical, quantum and also semi-quantum finite automata.

More specifically, we first introduce two acceptance modes of promise problems, recognizability and solvability,

and explore their basic properties. Afterwards, we show several results concerning descriptional complexity

on promise problems. In particular, we prove: (1) there is a promise problem that can be recognized exactly

by measure-once one-way quantum finite automata (MO-1QFA), but no deterministic finite automata (DFA)

can recognize it; (2) there is a promise problem that can be solved with error probability ǫ ≤ 1/3 by one-way

finite automaton with quantum and classical states (1QCFA), but no one-way probability finite automaton

(PFA) can solve it with error probability ǫ ≤ 1/3; and especially, (3) there are promise problems A(p) with

prime p that can be solved with any error probability by MO-1QFA with only two quantum basis states, but

they can not be solved exactly by any MO-1QFA with two quantum basis states; in contrast, the minimal

PFA solving A(p) with any error probability (usually smaller than 1/2) has p states. Finally, we mention a

number of problems related to promise for further study.

Keywords: Promise problems, Quantum computing, Finite automata, Quantum finite automata,

Recognizability, Solvability

1. Introduction

Informally, a promise problem is the problem to decide whether an object or process has a property P1

or P2, provided it is promised (known) to have a property P3.

The concept of a promise problem was introduced explicitly in [11] and it has been argued there that

promise problems are actually more fundamental for the study of computational theory issues than decision

problems or, more formally, formal language versions/encodings of the decision problems.

Such a view on the fundamental importance of promise problems has been even more emphasized in the

survey paper [15], where also the following basic version of the promise problems has been introduced.

∗Corresponding author (D. Qiu). E-mail addresses: issqdw@mail.sysu.edu.cn (D. Qiu), zhengshenggen@gmail.com (S.
Zheng), lilvzh@mail.sysu.edu.cn(L. Li), gruska@fi.muni.cz (J. Gruska).

http://arxiv.org/abs/1411.3870v3

Definition 1. A promise problem over an alphabet Σ is a pair (Ayes, Ano) of disjoint subsets of Σ∗. The

union Ayes ∪Ano is then called the promise and Ayes as well Ano are called promise’s components.

The goal is then to decide whether x ∈ Ayes or x ∈ Ano for a given string x from the promise set. In a

special (trivial) case the promise is the the whole set Σ∗. However, in general it may be very nontrivial to

decided whether an input string is in a given promise set.

In spite of the fact that both papers [11, 15] have brought interesting problems and outcomes, the study

of promise problems did not get a proper momentum yet.

On the other side, the results concerning several promise problems in quantum information processing

have had very large impact. They demonstrated that using quantum phenomena and processes one can solve

several interesting promise problems with much less quantum queries (to quantum black boxes) than in the

case only classical tools and queries (to classical black boxes) are available. The initial development in this

area was culminated by the result of Simon [37] that the promise problem he introduced can be solved with

the polynomial number of quantum and classical queries but not with polynomial number of classical queries

only even if probabilistic tools are used. The second promise problem is the Hidden Subgroup Problem for

non-commutative groups, which took very large attention, especially its special cases, for example integer

factorization, due to Shor [36], and can be now seen as one of the most fundamental, and still open, problems.

Almost all papers so far, especially papers [11, 15], dealt with promise problems in the context of such

high level complexity classes as P, NP, BPP, SZK and so on.

In this paper we start to explore promise problems on another level, namely, using classical and quantum

or even semiquantum finite automata to attack some promise problems working in various (especially two

special) modes. The remainder of the paper is organized as follows. In Section 2, we recall the definitions

of classical and quantum finite automata that will be used in the paper, and define two acceptance modes

of promise problems, recognizability and solvability of promise problems by automata. Then, in Section 3,

we deal with the closure and ordering properties of promise problems. Afterwards, in Section 4, lower and

upper bounds are derived concerning the state complexity in a promise problem between the promise and

its two components.

In particular, we study some promise problems in terms of classical and quantum finite automata in

Section 5, and obtain the following results: that there is a promise problem that can be recognized exactly

by measure-once one-way quantum finite automata (MO-1QFA), but no deterministic finite automata (DFA)

can recognize it (Theorem 13); there is a promise problem that can be solved with any error probability

by one-way finite automaton with quantum and classical states (1QCFA), but no one-way probability finite

automaton (PFA) can solve it with error probability ǫ ≤ 1/3 (Theorem 14).

Especially, in Section 5 we prove a hierarchic result concerning QFA. More exactly, we show that there

are promise problems A(p) with size p that can be solved with any error probability by MO-1QFA with only

two quantum basis states, but they can not be solved exactly by any MO-1QFA with two quantum basis

states (Theorem 15), and in contrast, the minimal PFA solving A(p) with any error probability (usually

smaller than 1/2) has p states (Theorem 16). However, we do not know whether there is an MO-1QFA with

more than two quantum basis states being able to solve exactly this promise problems A(p).

In addition, the above result may give rise to a hierarchic problem for the classes solved by MO-1QFA

in terms of different quantum basis states. More precisely, let C(P)n denote the class of promise problems

solved exactly by an MO-1QFA with n quantum basis states. Then, whether does C(P)m ⊂ C(P)n hold for

m ≤ n? Therefore, in Section 6 we mention a number of problems related for further study.

2

2. Preliminaries

We introduce in this section some basic concepts and notations concerning classical and quantum finite

automata. For more on quantum information processing and (quantum and semi-quantum) finite automata

we refer the reader to [16, 19, 26, 27, 29–34].

2.1. Deterministic finite automata

In this subsection we recall the definition of deterministic finite automata (DFA) and give the definition

of so-called promise version deterministic finite automata (pvDFA).

Definition 2. A deterministic finite automaton (DFA) A is specified by a 5-tuple

A = (S,Σ, δ, s0, Sa), (1)

where:

• S is a finite set of classical states;

• Σ is a finite set of input symbols;

• s0 ∈ S is the initial state of the automaton;

• Sa ⊆ S is a set of accepting states;

• δ is a transition function:

δ : S × Σ → S. (2)

For any w ∈ Σ∗ and σ ∈ Σ, we define

δ̂(s, wσ) = δ̂(δ̂(s, w), σ) (3)

and if w is the empty string, then

δ̂(s, wσ) = δ(s, σ). (4)

To every DFA A = (S,Σ, δ, s0, Sa) we assign a language L(A) defined as following

L(A) = {w | δ̂(s0, w) ∈ Sa, w ∈ Σ∗}. (5)

Definition 3. A language L over an alphabet Σ is recognized by a DFA A if for every w ∈ Σ∗

• w ∈ L if and only if δ̂(s0, w) ∈ Sa.

• w 6∈ L if and only if δ̂(s0, w) 6∈ Sa.

It is well known that a language L is recognized by a DFA if and only if L is regular. To every DFA A
we assign also the (maximal) promise problem P(A) defined as follows

P(A) =
(
Pyes(A) = {w | δ̂(s0, w) ∈ Sa, w ∈ Σ∗},Pno(A) = Σ∗ \ Pyes(A)

)
. (6)

Definition 4. A promise problem A = (Ayes, Ano) is solved by a DFA A if for every w ∈ Ayes ∪Ano ⊆ Σ∗

• w ∈ Ayes implies that δ̂(s0, w) ∈ Sa.

3

• w ∈ Ano implies that δ̂(s0, w) 6∈ Sa.

Definition 5. A promise version deterministic finite automaton (pvDFA) A is specified by a 6-tuple

A = (S,Σ, δ, s0, Sa, Sr), (7)

where Sa is a set of accepting states and Sr is a set of rejecting states, respectively, and S, Σ, δ, s0 are

defined as in Definition 2.

A DFA can be see as a special pvDFA with Sa ∪ Sr = S. If a pvDFA A is such that Sa ∪ Sr = S, then

it is equivalent to a DFA. In such a case, we say that A is a DFA. To every pvDFA we assign a promise

problem P(A) defined as following

P(A) =
(
Pyes(A) = {w | δ̂(s0, w) ∈ Sa, w ∈ Σ∗},Pno(A) = {w | δ̂(s0, w) ∈ Sr, w ∈ Σ∗}

)
. (8)

Definition 6. A promise problem A = (Ayes, Ano) is recognized by a pvDFA A if for every w ∈ Σ∗

• w ∈ Ayes if and only if δ̂(s0, w) ∈ Sa.

• w ∈ Ano if and only if δ̂(s0, w) ∈ Sr.

Definition 7. A promise problem A = (Ayes, Ano) is solved by a pvDFA A if for every w ∈ Ayes ∪ Ano

• w ∈ Ayes implies that δ̂(s0, w) ∈ Sa.

• w ∈ Ano implies that δ̂(s0, w) ∈ Sr.

If a language L is recognized by a DFA , then we can find efficiently the minimal DFA A such that

L(A) = L. If a promise problem A is recognized by a pvDFA, then we can also find efficiently the minimal

pvDFA A such that P(A) = A. More about that will be in Section 3.

We will see that for pvDFA recognizability and solvability modes can be seen as much different.

2.2. Quantum and semi-quantum finite automata basic models and working modes

Quantum finite automata were introduced by Kondacs and Watrous [21] and also by Moore and Crutch-

fields [25]. It has been proved that one-way quantum finite automata (1QFA) with unitary operations and

projective measurements are less powerful than one-way classical finite automata (1FA) [2, 22]. However,

1QFA can be more succinct in recognizing languages or solving promise problems [2–8, 12, 18, 39, 43–45].

Definition 8. A measure-once quantum finite automaton (MO-1QFA) M is specified by a 5-tuple

M = (Q,Σ, {Uσ |σ ∈ Σ′}, |0〉, Qa) (9)

where:

• Q is a finite set of orthonormal quantum (basis) states, denoted as {|i〉 | 0 ≤ i < |Q|};

• Σ is a finite alphabet of input symbols and Σ′ = Σ∪{|c, $} (where |c will be used as the left end-marker

and $ as the right end-marker);

• |0〉 ∈ Q is the initial quantum state;

4

• Qa ⊆ Q denotes the set of accepting basis states;

• Uσ’s (σ ∈ Σ′) are unitary operators.

The quantum state space of this model will be the |Q|-dimensional Hilbert space denoted HQ.

Each quantum basis state |i〉 in HQ can be represented by a column vector with the (i+1)th entry being

1 and other entries being 0. With this notational convenience we can describe the above model as follows:

1. The initial state |0〉 is represented as |q0〉 = (1,

|Q|−1︷ ︸︸ ︷
0, · · · , 0)T.

2. The accepting set Qa corresponds to the projective operator Pacc =
∑

|i〉∈Qa
|i〉〈i|.

The computation of an MO-1QFA M on an input string x = σ1σ2 · · ·σn ∈ Σ∗ goes as follows: M
“reads” the input string from the left end-marker to the right end-marker, symbol by symbol, and the

unitary matrices U|c, Uσ1
, Uσ2

, · · · , Uσn
, U$ are applied, one by one, always on the current state, starting

with |0〉 as the initial state. Finally, the projective measurement {Pacc, I − Pacc} is performed on the final

state, in order to accept or reject the input. Therefore, for an input string w = σ1σ2 · · ·σn, M has the

accepting probability

Pr[M accepts w] = ‖PaccU$Uσn
· · ·Uσ2

Uσ1
U|c|0〉‖2 (10)

and the rejecting probability

Pr[M rejects w] = 1− Pr[M accepts w]. (11)

Definition 9. A promise version of a measure-once quantum finite automaton (pvMO-1QFA)M is specified

by a 6-tuple

M = (Q,Σ, {Uσ |σ ∈ Σ′}, |0〉, Qa, Qr) (12)

where: Q, Σ, Σ′, |0〉, Qa, Uσ are as defined in an MO-1QFA, Qr ⊆ Q (Qr ∩ Qa = ∅) denotes the set of

rejecting basis states. The set Qr corresponds to the projective operator Prej =
∑

|i〉∈Qr
|i〉〈i|.

For an input string w = σ1σ2 · · ·σn, M has the accepting probability

Pr[M accepts w] = ‖PaccU$Uσn
· · ·Uσ2

Uσ1
U|c|0〉‖2 (13)

and the rejecting probability

Pr[M rejects w] = ‖PrejU$Uσn
· · ·Uσ2

Uσ1
U|c|0〉‖2. (14)

Another interesting (important) model of two-way finite automata with quantum and classical states

(2QCFA)–was introduced by Ambainis and Watrous [1] and explored in [24, 39, 41–44]. If restricting the

read-head in a 2QCFA to be one-way, then it is natural to get one-way finite automata with quantum and

classical states (1QCFA). That is, 1QCFA are one-way versions of 2QCFA, studied by Zheng and Qiu et

al [43]. It is worth mentioning that more previously a different but more practical model called as one-

way quantum finite automata together with classical states (1QFAC) was proposed and studied by Qiu et

al [34]. Informally, a 1QCFA can be seen as a DFA which has an access to a quantum memory of a

constant size (dimension), upon which the automaton performs quantum transformations and projective

measurements. Given a finite set of quantum basis states Q, we denote by H(Q) the Hilbert space spanned

by Q. Let U(H(Q)) and O(H(Q)) denote the sets of unitary operators and projective measurements over

H(Q), respectively.

5

Definition 10. A one-way finite automaton with quantum and classical states (1QCFA) A is specified by

a 10-tuple

M = (Q,S,Σ,Θ,∆, δ, |q0〉, s0, Sa, Sr) (15)

where:

1. Q is a finite set of orthonormal quantum states, a basis of a Hilbert space HQ spanned by states from

Q.

2. S is a finite set of classical states.

3. Σ is a finite alphabet of input symbols and Σ′ = Σ∪{|c, $}, where |c will be used as the left end-marker

and $ as the right end-marker.

4. |q0〉 ∈ Q is the initial quantum state.

5. s0 is the initial classical state.

6. Sa ⊂ S and Sr ⊂ S, where Sa ∩ Sr = ∅, are sets of the classical accepting and rejecting states,

respectively.

7. Θ is a quantum transition function

Θ : S \ (Sa ∪ Sr)× Σ′ → U(H(Q)), (16)

assigning to each pair (s, γ) ∈ S \ (Sa ∪ Sr)× Σ′ a unitary transformation.

8. ∆ is a mapping

∆ : S × Σ′ → O(H(Q)), (17)

where each ∆(s, γ) corresponds to a projective measurement (a projective measurement will be taken

each time a unitary transformation is applied; if we do not need a measurement, we denote that

∆(s, γ) = I, and we assume the result of the measurement to be a fixed c).

9. δ is a special transition function of classical states. Let the results set of the measurement be C =

{c1, c2, . . . , cs}, then
δ : S × Σ′ × C → S, (18)

where δ(s, γ)(ci) = s′ means that if a tape symbol γ ∈ Σ′ is being scanned and the projective mea-

surement result is ci, then the state s is changed to s′.

Given an input w = σ1 · · ·σn, the word on the tape will be seen as w = |cw$ (for convenience, we denote

σ0 = |c and σn+1 = $). Now, we define the behavior of 1QCFA M on any input word w. The computation

starts in the classical state s0 and the quantum state |q0〉. After that transformations associated with

symbols in the word σ0σ1 · · · , σn+1 are applied in succession. A transformation associated with a state

s ∈ S and a symbol σ ∈ Σ′ consists of three steps:

1. The unitary transformation Θ(s, σ) is applied to the current quantum state |φ〉, yielding the new state

|φ′〉 = Θ(s, σ)|φ〉.
2. The observable ∆(s, σ) = O is measured on |φ′〉. The set of possible results is C = {c1, · · · , cs}.

According to quantum mechanics principles, such a measurement yields the classical outcome ck with

probability pk = ||P (ck)|φ′〉||2, and the quantum state of M collapses to P (ck)|φ′〉/√pk.

3. The current classical state s is changed to δ(s, σ)(ck) = s′.

6

An input word w is assumed to be accepted (rejected) if and only if the automaton enters at the end an

accepting (rejecting) state. It is assumed that δ is well defined so that 1QCFA M always accepts or rejects

at the end of the computation.

Definition 11. An MO-1QFA, 1QCFAM recognizes a language L with bounded error ε if for every w ∈ Σ∗

• w ∈ L if and only if Pr[M accepts w] ≥ 1− ε.

• w /∈ L if and only if Pr[M rejects w] ≥ 1− ε.

Definition 12. A pvMO-1QFA M recognizes a promise problem A = (Ayes, Ano) with an error probability

ε if for every w ∈ Σ∗

• w ∈ Ayes if and only if Pr[M accepts w] ≥ 1− ε.

• w ∈ Ano if and only if Pr[M rejects w] ≥ 1− ε.

Definition 13. A promise problem A = (Ayes, Ano) is solved by a pvMO-1QFAM with an error probability

ε if for every w ∈ Ayes ∪ Ano

• w ∈ Ayes implies that Pr[M accepts w] ≥ 1− ε, and

• w ∈ Ano implies that Pr[M rejects w] ≥ 1− ε.

If ε = 0, we say that the automaton M solves (recognizes) the promise problem A exactly.

3. Properties of pvDFA

We will now study closure properties of promise problems recognized or solved by pvDFA.

Theorem 1. A promise problem A = (Ayes, Ano) can be recognized by a pvDFA A iff both Ayes and Ano

are regular.

Proof. (⇒) Suppose that a promise problem A can be recognized by a pvDFA A = (S,Σ, δ, s0, Sa, Sr). In

such a case, for all w ∈ Σ∗, w ∈ Ayes if and only if δ̂(s0, w) ∈ Sa. Let DFA Ay = (S,Σ, δ, s0, Sa). Obviously,

Ayes is recognized by Ay and therefore Ayes is regular. Using similar argument, one can show that Ano is

regular.

(⇐) Let us assume that the set Ayes can be recognized by a DFA A1 = (S1,Σ, δ1, s10, S
1
a) and Ano can be

recognized by a DFA A2 = (S2,Σ, δ2, s20, S
2
a). We now consider the following pvDFA A = (S,Σ, δ, s0, Sa, Sr)

where

• S = (S1 × S2) \ (S1
a × S2

a);

• s0 = 〈s10, s20〉;

• δ(〈s1, s2〉, σ) = 〈δ1(s1, σ), δ2(s2, σ)〉;

• Sa = S1
a × (S2 \ S2

a) and Sr = (S1 \ S1
a)× S2

a.

7

For any w ∈ Σ∗, we prove first that s = δ̂(s0, w) 6∈ S1
a × S2

a. Let us assume that s = 〈s1, s2〉 ∈ S1
a × S2

a.

We have δ̂(s0, w) = 〈δ̂1(s10, w), δ̂2(s20, w)〉 = 〈s1, s2〉. Therefore, δ̂1(s10, w) = s1 ∈ S1
a and δ̂2(s20, w) = s2 ∈ S2

a.

This implies that w ∈ Ayes and w ∈ Ano, which is a contradiction.

If w ∈ Ayes, then s1 = δ̂1(s10, w) ∈ S1
a and s2 = δ̂2(s20, w) 6∈ S2

a. Therefore, δ̂(s0, w) = 〈δ̂1(s10, w), δ̂2(s20, w)〉 =
〈s1, s2〉 ∈ S1

a × (S2 \ S2
a) = Sa.

If w ∈ Σ∗ is such that δ̂(s0, w) ∈ Sa, then δ̂(s0, w) = 〈δ̂1(s10, w), δ̂2(s20, w)〉 = 〈s1, s2〉 ∈ S1
a × (S2 \ S2

a).

We have therefore δ̂1(s10, w) ∈ S1
a and w ∈ Ayes.

With a similar argument as above, we can show that for any w ∈ Σ∗, w ∈ Ano if and only if δ̂(s0, w) ∈ Sr.

Therefore the promise problem A = (Ayes, Ano) can be recognized by the pvDFA A.

Remark 1. If a promise problem A is recognized by a pvDFA A, then A is solved by the same pvDFA

A. However, if a promise problem A is solved by a pvDFA A, it does not necessarily mean that A can

be recognized by a pvDFA. For example, let us consider the promise problems Bl = (Bl
yes, B

l
no) with

Bl
yes = {aibi | i ≥ 0} and Bl

no = {aibi+l | i ≥ 0}, where l is a fix positive integer. The promise problem

Bl can be solved by a DFA [18]. Therefore it can be solved by a pvDFA. However, both Bl
yes and Bl

no are

nonregular languages. Therefore Bl cannot be recognized by a pvDFA.

3.1. Pumping Lemmas

The pumping lemma for pvDFA concerning recognition is similar to the classical one [19].

Lemma 1 (Pumping Lemma I). Let a promise problem A = (Ayes, Ano) can be recognized by a pvDFA

A. Then there exists an integer p ≥ 1, depending only on A, such that every string w in Ayes (Ano), of

length at least p, can be written as w = xyz (i.e., w can be divided into three substrings), satisfying the

following conditions:

• |y| ≥ 1;

• |xy| ≤ p;

• xytz ∈ Ayes (Ano) for all integers t ≥ 0.

The pumping lemma for pvDFA concerning solvability has quite a different form than the above Pumping

Lemma.

Lemma 2 (Pumping Lemma II). Let a promise problem A = (Ayes, Ano) can be solved by a pvDFA A.

Then there exists an integer p ≥ 1, depending only on A, such that every string w in Ayes (Ano), of length

at least p, can be written as w = xyz (i.e., w can be divided into three substrings), satisfying the following

conditions:

• |y| ≥ 1;

• |xy| ≤ p;

• xytz /∈ Ano (Ayes) for all integers t ≥ 0.

Proof. Let pvDFA A = (S,Σ, δ, s0, Sa, Sr) and p = |S| be the number of the of states of A. For a word

w = σ1 . . . σn ∈ Ayes (Ano), we denote the computation of A on w by the following sequence of transitions:

s0
σ1−→ s1

σ2−→ · · · σn−−→ sn, (19)

8

where sn ∈ Sa (Sr).

If n ≥ p, then there exist i < j such that si = sj . Let x = σ1 . . . σi, y = σi+1 . . . σj and z = σj+1 . . . σn.

We have, δ̂(s0, x) = si, δ̂(si, y) = sj and δ̂(sj , z) = sn ∈ Sa. Therefore δ̂(si, y
∗) = si.

If there exists an integer t ≥ 0 such that w = xytz ∈ Ano (Ayes), then δ̂(s0, w) = δ̂(s0, xy
tz) =

δ̂(si, y
tz) = δ̂(si, z) = sn ∈ Sa (Sr), which is a contradiction. Therefore, we have xytz /∈ Ano (Ayes) for all

t ≥ 0.

In the following example it will be shown how Pumping Lemma II can be used to prove that a promise

problem can not be solved by pvDFA.

Example 1. Let us consider the promise problem C = (Cyes, Cno) with Cyes = {anbn} and Cno =

{anbm |n 6= m}. Assume that C can be solved by a pvDFA A and p is the constant for the pumping

lemma. Choose w = apbp ∈ Ayes. Clearly, |w| > p. By the Pumping Lemma II, w = xyz for some

x, y, z ∈ Σ∗ such that (1) |xy| ≤ p, (2) |y| ≥ 1, and (3) xytz 6∈ Ano for all t ≥ 0. By (1) and (2), we have

y = ak, 1 ≤ k ≤ p. However, xy2z = ap+kbp ∈ Ano. Therefore, (3) does not hold. The promise problem C

therefore does not satisfy the pumping property of the Pumping Lemma II. Hence, the promise problem C

can not be solved by any pvDFA.

3.2. Closure properties

Let us have promise problems A = (Ayes, Ano) and B = (Byes, Bno) over the same alphabet1. The

complement, intersection and union operations on such promise problems will be defined as follows.

• Complement: A = (Ayes, Ano), where Ayes = Ano and Ano = Ayes.

• Intersection: C = A ∩B = (Cyes, Cno), where Cyes = Ayes ∩Byes and Cno = Ano ∩Bno.

• Union: if (Ayes ∪Byes)∩ (Ano ∪Bno) 6= ∅, then the union of A and B will be undefined; otherwise the

union C = A ∪B = (Cyes, Cno), where Cyes = Ayes ∪Byes and Cno = Ano ∪Bno.

There seems to be several other ways one could try to define intersection and union of A and B. We will

now try to argue that our definitions are reasonable. Let us assume that Alice has two subsets Ayes and

Ano over Σ∗. If Alice would be asked for an x ∈ Ayes ∪ Ano whether x ∈ Ayes or x ∈ Ano, then she should

be able to answer “yes” or “no” (by checking whether x ∈ Ayes or x ∈ Ano). Let us assume also that Bob

has two subsets Byes and Bno over Σ∗. If Bob would be asked for an x ∈ Byes ∪ Bno whether x ∈ Byes or

x ∈ Bno, then he should be able to give correct answer. The intersection of two promise problems should

be therefore such that for a given input, both Alice and Bob are able to tell whether a given input is in the

yes–set or no–set.

The union of two promise problems should be therefore such that for a given input, at least one of Alice

and Bob are able to tell whether it is in the yes–set or no–set, that is why union was defined in the way it

was.

Let us now give several results concerning how promise problems are closed on some operations in the

case of recognizability and solvability modes.

1When we take the union or intersection of two promise problems, they might have different alphabets. However, if

P = (Pyes, Pno) is a promise problem over alphabet Σ, then we can also think of P over any finite alphabet that is a superset

of Σ. See [19] for more details.

9

Theorem 2. If a promise problems A can be recognized (solved) by a pvDFA, then A can be recognized

(solved) by a pvDFA.

Proof. Suppose that a promise problem A can be recognized (solved) by a pvDFA A = (S,Σ, δ, s0, Sa, Sr).

Exchanging the sets of accepting states and rejecting states of the pvDFA A, we get a new pvDFA A′ =

(S,Σ, δ, s0, Sr, Sa). It is easy to see that A is recognized (solved) by the pvDFA A′.

Theorem 3. If promise problems A and B can be recognized by pvDFA, then their intersection can be also

recognized by a pvDFA.

Proof. Suppose that a promise problem A can be recognized by a pvDFA A1 = (S1,Σ, δ1, s10, S
1
a, S

2
r) and

a promise problem B can be recognized by a pvDFA A2 = (S2,Σ, δ2, s20, S
2
a, S

2
r). We consider a pvDFA

A = (S,Σ, δ, s0, Sa, Sr), where

• S = S1 × S2;

• s0 = 〈s10, s20〉;

• δ(〈s1, s2〉, σ) = 〈δ1(s1, σ), δ2(s2, σ)〉;

• Sa = S1
a × S2

a and Sr = S1
r × S2

r .

Let the promise problem C = (Cyes, Cno) be the intersection of the promise problems A = (Ayes, Ano)

and B = (Byes, Bno).

If w ∈ Cyes, then w ∈ Ayes ∩ Byes. We have δ̂1(s10, w) ∈ S1
a and δ̂2(s20, w) ∈ S2

a. Therefore, we have

δ̂(s0, w) = δ̂(〈s10, s20〉, w) = 〈δ̂1(s10, w), δ̂2(s20, w)〉 ∈ S1
a × S2

a = Sa.

If w ∈ Σ∗ is such that δ̂(s0, w) ∈ Sa, we have δ̂(s0, w) = δ̂(〈s10, s20〉, w) = 〈δ̂1(s10, w), δ̂2(s20, w)〉 ∈ Sa =

S1
a×S2

a. Therefore, δ̂
1(s10, w) ∈ S1

a and δ̂2(s20, w) ∈ S2
a, i.e. w ∈ Ayes and w ∈ Byes. Hence, w ∈ Ayes∩Byes =

Cyes.

Therefore, we have w ∈ Cyes if and only if δ̂(s0, w) ∈ Sa. By a similar argument, we can show that

w ∈ Cno if and only if δ̂(s0, w) ∈ Sr. Hence, the promise problem C = A ∩ B can be recognized by the

pvDFA A.

Theorem 4. If promise problems A and B can be solved by pvDFA, then their intersection can be solved

also by a pvDFA.

Proof. Let a promise problem C = (Cyes, Cno) be the intersection of the two promise problems A =

(Ayes, Ano) and B = (Byes, Bno). Suppose that the promise problem A = (Ayes, Ano) can be solved by

a pvDFA A. Since Cyes = Ayes ∩Byes ⊂ Ayes and Cno = Ano ∩Bno ⊂ Ano, the promise problem C can be

solved by A.

Theorem 5. Let promise problems A and B over an alphabet Σ can be recognized by pvDFA and their union

C exists, then C can be recognized also by a pvDFA.

Proof. Suppose that the promise problem A with the alphabet Σ can be recognized by a pvDFA A1 =

(S1,Σ, δ1, s10, S
1
a, S

2
r) and the promise problem B with alphabet Σ can be recognized by a pvDFA A2 =

(S2,Σ, δ2, s20, S
2
a, S

2
r).

We consider the pvDFA A = (S,Σ, δ, s0, Sa, Sr), where

10

• S = (S1 × S2) \ ((S1
a × S2

r) ∪ (S1
r × S2

a));

• s0 = 〈s10, s20〉;

• δ(〈s1, s2〉, σ) = 〈δ1(s1, σ), δ2(s2, σ)〉;

• Sa = {〈s1, s2〉 | s1 ∈ S1
a or s2 ∈ S2

a} and Sr = {〈s1, s2〉 | s1 ∈ S1
r or s2 ∈ S2

r}.

Let the promise problem C = (Cyes, Cno) be the union of promise problems A = (Ayes, Ano) and

B = (Byes, Bno). Since the union C = A ∪B exists, we have (Ayes ∪Byes) ∩ (Ano ∪Bno) = ∅.
We prove now for any w ∈ Σ∗ that s = δ̂(s0, w) 6∈ S1

a × S2
r . Let us assume that s = 〈s1, s2〉 ∈ S1

a × S2
r .

We have δ̂(s0, w) = 〈δ̂1(s10, w), δ̂2(s20, w)〉 = 〈s1, s2〉. Therefore, δ̂1(s10, w) = s1 ∈ S1
a and δ̂2(s20, w) = s2 ∈ S2

r .

From that it follows that w ∈ Ayes and w ∈ Bno. Therefore, w ∈ (Ayes ∪Byes) ∩ (Ano ∪Bno) = ∅, which is

a contradiction. By a similar argument we can prove that δ̂(s0, w) 6∈ S1
r × S2

a. Hence Sa ∩ Sr = ∅.
If w ∈ Cyes, then w ∈ Ayes ∪ Byes. We have δ̂1(s10, w) ∈ S1

a or δ̂2(s20, w) ∈ S2
a. Therefore, δ̂(s0, w) =

δ̂(〈s10, s20〉, w) = 〈δ̂1(s10, w), δ̂2(s20, w)〉 ∈ Sa.

If w ∈ Σ∗ is such that δ̂(s0, w) ∈ Sa, we have δ̂(s0, w) = δ̂(〈s10, s20〉, w) = 〈δ̂1(s10, w), δ̂2(s20, w)〉 ∈ Sa.

Therefore, δ̂1(s10, w) ∈ S1
a and δ̂2(s20, w) ∈ S2

a, i.e. w ∈ Ayes or w ∈ Byes. Hence, w ∈ Ayes ∪Byes = Cyes.

Therefore, w ∈ Cyes if and only if δ̂(s0, w) ∈ Sa. By a similar argument, we can show that w ∈ Cno if

and only if δ̂(s0, w) ∈ Sr. Hence, the promise problem C = A ∪B can be recognized by the pvDFA A.

Remark 2. If promise problems A and B can be solved by pvDFA and their union C exists, then C may not

be solved by a pvDFA. Indeed, let A = (Ayes, Ano), where Ayes = {anbn |n is odd} and Ano = {anbm |m 6=
n and at least one of m,n is even}. If w ∈ Ayes, then #a(w) and #b(w) are odd. If w ∈ Ano, at least one

of #a(w) and #b(w) is even. Obviously, we can design a pvDFA to solve the promise problem A. Let B =

(Byes, Bno), where Byes = {anbn |n is even} and Bno = {anbm |m 6= n and at least one of m,n is odd}.
Similarly, we can design another pvDFA to solve the promise problem B. Now we consider their union

C = A ∪ B = (Cyes, Cno), where Cyes = Ayes ∪ Byes = {anbn} and Cno = Ano ∪ Bno = {anbm |n 6= m}.
According to Example 1, C can not be solved by any pvDFA.

3.3. Ordering

Let us start with some basic definitions concerning ordering of promise problems. Let A = (Ayes, Ano)

and B = (Byes, Bno) be two promise problems over an alphabet Σ. We say that A is a subproblem of B,

denoted by A ≤ B, if Ayes ⊆ Byes and Ano ⊆ Bno.

We say also that a pvDFA A is equivalent to a pvDFA B (denoted by A=B) if P(A) = P(B). We say

that a pvDFA B is more powerful than or equivalent to a pvDFA A (denoted by B ≥ A or A ≤ B) if

P(A) ≤ P(B). It is clear that the set of all pvDFA is a partially ordered set with the partial order ‘≤’. We

say that a pvDFA B is more powerful than a pvDFA A (denoted by B > A or A < B) if P(A) ≤ P(B) and
P(A) 6= P(B).

The first outcome concering the impact of ordering on solvability of promise problems follows in a

straightforward way from basic definitions.

Theorem 6. If a promise problem A can be solved by a pvDFA A and A ≤ B, then the promise problem A

can be solved by the pvDFA B.

We say a pvDFA A is maximally powerful if there does not exist a pvDFA B such that A < B.

11

Theorem 7. A pvDFA A is maximally powerful if and only if it is (essentially) a DFA.

Proof. If A is a DFA, then Pyes(A) = Σ∗ \ Pno(A). Therefore, there does not exist a promise problem B

such that P(A) < B. Therefore, there does exist a pvDFA B such that A < B, i.e. A is maximally powerful.

Assume that a pvDFA A is maximally powerful and A is not a DFA. Suppose that the pvDFA A =

(S,Σ, δ, s0, Sa, Sr) and it is state minimal. We have that Sa ∪ Sr 6= S and Sr is a proper subset of S \ Sa.

Let us now consider a new pvDFA B = (S,Σ, δ, s0, Sa, S \Sa). Suppose that P(B) = (Byes, Bno). Therefore,

there must exist some w ∈ Bno such that δ̂(s0, w) ∈ S \Sa and δ̂(s0, w) 6∈ Sr. Therefore, Pno(A) is a proper

subset of Bno. Since Pyes(A) = Byes. We have P(A) < P(B), which is a contradiction. Hence, A must be

a DFA.

We say that two pvDFA A and B are comparable if A = B or A < B or A > B. Two DFA are either

equivalent or not comparable. If a pvDFA A is a DFA, then there does not exist a pvDFA B such that

A < B. Equivalence of two DFA can be seen as a special case of the equivalence of two pvDFA.

If pvDFA A = B, then A is a potential substitute for B in recognizing promise problems (languages). If

pvDFA A ≥ B, then A is a potential substitute for B in solving promise problems. Therefore, it is important

to determine the order of pvDFA.

In order to study determination of equivalence and ordering of two given pvDFA, we now introduce the

concept of a bilinear machine (BLM).

By [23], a BLM over an alphabet Σ is a four-tuple A = (S, π, {M(σ)}σ∈Σ, η), where S is a finite set of

states with |S| = n, π ∈ C1×n, η ∈ Cn×1 and M(σ) ∈ Cn×n for σ ∈ Σ. The word function fA : Σ∗ → C

associated to A is then defined as follows:

fA(x) = πM(x1) . . .M(xn)η, (20)

where x = x1 . . . xn ∈ Σ∗. Two BLMs A1 and A2 are said to be equivalent if fA1
(x) = fA2

(x) for all x ∈ Σ∗.

For this problem, we recall a result from [23].

Lemma 3. There exists a polynomial-time algorithm (running in time O((n1 +n2)
4)) that takes two BLMs

A1 and A2 as inputs and determines whether A1 and A2 are equivalent, where n1 and n2 are the numbers

of states of A1 and A2, respectively.

Using this lemma we will obtain the following result.

Theorem 8. It is decidable whether two pvDFA are comparable.

Proof. Given two pvDFA A and B, it is sufficient to prove that it is decidable whether A = B, and whether

A < B.
At first we prove that it is decidable whetherA = B. Indeed, suppose that a pvDFA C = (S,Σ, δ, s0, Sa, Sr)

recognizes a promise problem C = (Cyes, Cno). We construct now a BLM: C′ = (S, π, {M(σ)}σ∈Σ, η), where

π is an |S|-dimensional row vector with π[s0] = 1 and π[s] = 1 for s 6= s0, M(σ) is an |S| × |S| matrix with

M(σ)[s, t] = 1 if δ(s, σ) = t and 0 otherwise, and η is an |S|-dimensional column vector such that

η[s] =





1, if s ∈ Sa;

2, if s ∈ Sr;

0, otherwise.

12

To such a BLM C′ we can associate a function fC′ : Σ∗ → {0, 1, 2} defined as follows: fC′(x) = 1 iff x ∈ Cyes,

fC′(x) = 2 iff x ∈ Cno, and fC′(x) = 0 iff x ∈ Σ∗ \ (Cyes ∪ Cno).

Therefore, two pvDFA A and B are equivalent iff their associated BLMs A′ and B′ are equivalent, i.e.,

fA′(x) = fB′(x) for all x ∈ Σ∗. The latter problem is decidable by Lemma 3.

As the next we show that it is decidable whether A < B. Suppose that a pvDFA C = (S,Σ, δ, s0, Sa, Sr)

is such that P(C) = (Cyes, Cno). Let us now consider DFA Cy = (S,Σ, δ, s0, Sa) and Cn = (S,Σ, δ, s0, Sr).

Clearly L(Cy) = Cyes and L(Cn) = Cno. These observations can now be used as follows. Given two pvDFA

A and B, we have A < B iff L(Ay) ⊆ L(By) and L(An) ⊆ L(Bn).

It is clear that L(A) ⊆ L(B) is equivalent to L(A) ∩ L(B) = L(A). The later problem is decidable,

since it is easy to construct a DFA C recognizing L(A) ∩ L(B) and the equivalence between DFA C and A
is decidable. Therefore, given two DFA A and B, it is decidable whether L(A) ⊆ L(B).

Remark 3. Note that for any given pvDFA, there exist algorithms to find an equivalent pvDFA which

has the smallest number of states among all pvDFA equivalent to the given one, since a pvDFA can be

considered as a special Moore automaton whose minimization problem is known to be solvable, see [9] for

more details.

Remark 4. If one of the following cases A = B, A < B or A > B holds, then we know that two pvDFA are

comparable. Otherwise, they are not comparable. Suppose that pvDFA A has n1 states and pvDFA B has

n2 states, it takes polynomial time (O((n1 + n2)
4)) to determine whether A = B. Given two DFA C and

DFA D, it takes also polynomial time to find out L(C) ∩ L(D). According to the above theorem, therefore,

it takes polynomial time to determine whether two pvDFA are comparable or not.

4. State complexity

Consideration of state complexity is another way to get a deepen insight in to the power of various types

of automata [40]. In this section we will deal with the state complexity of pvDFA for promise problems with

respect to recognizability and solvability.

For a regular language L, we denote by s(L) the number of states of the minimal DFA to recognize the

language L. For a promise problem A = (Ayes, Ano) that can be recognized by a pvDFA, we denote by

sr(A) the number of states of the minimal pvDFA recognizing A. For a promise problem A = (Ayes, Ano)

that can be solved by a pvDFA, we denote by ss(A) the number of states of the minimal pvDFA solving A.

In a DFA A = (S,Σ, δ, s0, Sa), a state s is said to be distinguishable from a state t if there is w ∈ Σ∗

such that one of the states δ̂(s, w) and δ̂(t, w) is accepting, and the other is not. If every two states in DFA

A are distinguishable from each other, then A is minimal [19].

Theorem 9. If a promise problem A = (Ayes, Ano) with Ayes 6= ∅ and Ano 6= ∅ can be recognized by a

pvDFA, then

max{s(Ayes), s(Ano)} ≤ sr(A) ≤ s(Ayes)s(Ano)− 1. (21)

Proof. Since A can be recognized by a pvDFA, according to Theorem 1, Ayes and Ano are regular languages.

Suppose that A is recognized by a minimal pvDFA A = (S,Σ, δ, s0, Sa, Sr), we have that the regular

language Ayes can be recognized by the DFA Ay = (S,Σ, δ, s0, Sa) and the regular language Ano can

be recognized by the DFA An = (S,Σ, δ, s0, Sr). Therefore, |S| ≥ s(Ayes) and |S| ≥ s(Ano). Hence

sr(A) = |S| ≥ max{s(Ayes), s(Ano)}.

13

Let us assume that Ayes is recognized by a minimal DFA A1 = (S1,Σ, δ1, s10, S
1
a) and Ano is recognized by

a minimal DFA A2 = (S2,Σ, δ2, s20, S
2
a). According to Theorem 1, the promise problem can be recognized

by the pvDFA A = (S,Σ, δ, s0, Sa, Sr) where S = (S1 × S2) \ (S1
a × S2

a), s0 = 〈s10, s20〉, δ(〈s1, s2〉, σ) =

〈δ1(s1, σ), δ2(s2, σ)〉, Sa = S1
a×(S2\S2

a) and Sr = (S1\S1
a)×S2

a . Therefore, we have sr(A) ≤ |S|−|S1
a×S2

a| ≤
S1 × S2 − 1 = s(Ayes)s(Ano)− 1.

A natural problem is whether Inequalities (21) are tight. Next we try to answer them partially. First,

we consider the left side.

Theorem 10. The left side of Inequalities (21) is tight.

Proof. We prove that sr(A) = max{s(Ayes), s(Ano)} in some cases. Let us consider the promise problem

AN, l = (AN, l
yes , A

N, l
no) with AN, l

yes = {aiN | i ≥ 0} and AN, l
no = {aiN+l | i ≥ 0}, where N is a fix prime and

l is a fix positive integer such that 0 < l < N . It is easy to see that s(AN, l
yes) = N and s(AN, l

no) = N . Let

us consider now an N -state pvDFA B = (S, {a}, δ, s0, Sa, Sr), where S = {s0, s1, . . . , sN−1}, Sa = {s0},
Sr = {sl} and δ(si, a) = s(i+1) mod N . It is easy to check that the promise problem AN, l can be recognized

by the pvDFA B.
Let us assume now that the promise problem AN, l can be recognized by an M -state pvDFA B′ =

(S′, {a}, δ′, s′0, S′
a, S

′
r) and M < N . It is easy to see that the DFA B′

1 = (S′, {a}, δ′, s′0, S′
a) can solve the

promise problem AN, l. Therefore, the minimal DFA to solve the promise problem AN, l has less than N

states, contradicting the fact that the minimal DFA to solve AN, l has N states [18].

Therefore, sr(AN, l) = max{s(AN, l
yes), s(A

N, l
no)} = N .

For the right side, we only know the following relation.

Theorem 11. There is a promise problem A satisfying sr(A) = 1
2s(Ayes)s(Ano).

Proof. In the interest of readability, we put the proof in Appendix.

Theorem 12. If a promise problem A = (Ayes, Ano) can be recognized by a pvDFA, then ss(A) ≤ min{s(Ayes),

s(Ano)}.

Proof. According to Theorem 1, Ayes and Ano are regular languages. Suppose Ayes can be recognized

by a minimal DFA A1 = (S1,Σ1, δ1, s10, S
1
a). This implies that the promise problem A can be solved by

the DFA A1 and therefore ss(A) ≤ s(Ayes). Suppose Ano can be recognized by a minimal DFA A2 =

(S2,Σ2, δ2, s20, S
2
a). We get that the promise problem A can be solved by the DFA A2 and therefore ss(A) ≤

s(Ano). Hence ss(A) ≤ min{s(Ayes), s(Ano)}.
We prove that ss(A) = min{s(Ayes), s(Ano)} in same cases. Let us consider the promise problem

AN, l = (AN, l
yes , A

N, l
no) with AN, l

yes = {aiN | i ≥ 0} and AN, l
no = {aiN+l | i ≥ 0}, where N is a fix prime and l

is a positive integer such that 0 < l < N . It is easy to see that s(AN, l
yes) = N and s(AN, l

no) = N . It has been

proved in [18] that ss(AN, l) = N . Therefore ss(AN, l) = min{s(AN, l
yes), s(A

N, l
no)} = N .

Remark 5. ss(A) can be very small with respect to s(Ayes) and s(Ano). For example, let us consider the

promise problem AN, l = (AN, l
yes , A

N, l
no) with AN, l

yes = {aiN | i ≥ 0} and AN, l
no = {aiN+l | i ≥ 0}, where N

is a fix even integer and l is fix odd integer such that 0 < l < N . Obviously, we have s(AN, l
yes) = N and

14

s(AN, l
no) = N . However ss(AN, l) = 2, since the length of the input |w| is even if w ∈ AN, l

yes and the length of

the input |w| is odd if w ∈ AN, l
no .

5. One-way quantum finite automata for promise problems

It has been proved that two-way quantum finite automata (2QFA) [21] and also 2QCFAs [1] are more

powerful than two-way probabilistic finite automata (2PFA) in recognizing languages. 2QCFA are also more

powerful than 2PFA in solving promise problems [35]. In the case of one-wayness, it has been proved that

one-way quantum finite automata (1QFA) are not more powerful than one-way classical finite automata

(1FA) [2, 20, 22] in recognizing languages. However, we will prove that 1QFA can be more powerful than

their classical counterparts when recognizing promise problems.

We prove now that the exact 1QFA have advantages in recognizing promise problems comparing to their

classical counterparts (DFA). Some of the proof techniques can be found in [18].

Let us consider a family of promise problems Al = (Al
yes, A

l
no) with Al

yes = {w ∈ {a, b}∗ | #a(w) =

#b(w)} and Al
no = {w ∈ {a, b}∗ | #a(w)+ l = #b(w)}, where l is a fix positive integer such that (2πi+ π

2) ≤√
2l ≤ (2πi + 3π

2) for some integer i.

Theorem 13. The promise problems Al can be recognized exactly by a pvMO-1QFA and can not be recognized

by any pvDFA.

Proof. Let

θ =
√
2π, p = cos lθ, α =

√ −p

1− p
=

√
− cos lθ

1− cos lθ
and β =

√
1

1− p
=

√
1

1− cos lθ
. (22)

We will now construct a pvMO-1QFA Ml = (Q, {a, b}, {Uσ |σ ∈ {|c, a, b, $}}, |0〉, Qa, Qr) to recognize Al

exactly, where

• Q = {|0〉, |1〉, |2〉}, Qa = {|0〉}, Qr = {|1〉, |2〉}.

• Uσ are defined as follows:

U|c =




α −β 0

β α 0

0 0 1


 , Ua =




1 0 0

0 cos θ sin θ

0 − sin θ cos θ


 , Ub =




1 0 0

0 cos θ − sin θ

0 sin θ cos θ


 , U$ = U−1

|c .

(23)

See [18] for more intuitions why we choose U|c and U$ in the way as above. Since UaUb = UbUa = I, for

w = σ1 . . . σ|w| ∈ {a, b}∗, we have

Uw = Uσ|w|
. . . Uσ1

= U#a(w)
a U

#b(w)
b . (24)

Let #a(w) = n and #b(w) = m. If w ∈ Al
yes, then the quantum state before the measurement is

|q〉 = U$UwU|c|0〉 = U$(Ua)
n(Ub)

mU|c|0〉 = U$(Ua)
n(Ub)

nU|c|0〉 = |0〉 (25)

and if the input w ∈ Al
no, then the quantum state before the measurement is

|q〉 = U$UwU|c|0〉 = U$(Ua)
n(Ub)

mU|c|0〉 = U$(Ua)
n(Ub)

n+lU|c|0〉 = U$(Ub)
lU|c|0〉 = γ1|1〉+ γ2|2〉, (26)

where γ1 and γ2 are amplitudes that we do not need to specify more exactly.

Since the amplitude at |0〉 in the above quantum state |q〉 is 0, we get the exact result after the mea-

surement of γ1|1〉+ γ2|2〉 in the standard basis {|0〉, |1〉, |2〉}. Therefore, we have

15

• if w ∈ Al
yes, then Pr[Ml accepts w] = 1;

• if w ∈ Al
no, then Pr[Ml rejects w] = 1.

We now give the proof for the other direction. Namely, we show that Pr[Ml accepts w] = 1 implies that

w ∈ Al
yes.

Assume that w 6∈ Al
yes, that is #a(w) 6= #b(w). The quantum state before the measurement is

|q〉 = U$UwU|c|0〉 = U$(Ua)
n(Ub)

mU|c|0〉 = U$(Ub)
m−nU|c|0〉 (27)

=




α β 0

−β α 0

0 0 1







1 0 0

0 cos(m− n)θ − sin(m− n)θ

0 sin(m− n)θ cos(m− n)θ







α −β 0

β α 0

0 0 1







1

0

0


 (28)

=




α2 + β2 cos(m− n)θ

−αβ + αβ cos(m− n)θ

β sin(m− n)θ


 . (29)

Since θ =
√
2π, there are no integers m 6= n such that cos(m− n)θ = 1. Therefore α2 + β2 cos(m− n)θ 6= 1

and Pr[Ml accepts w] 6= 1.

We now prove the following: If Pr[Ml rejects w] = 1, then the input w ∈ Al
no.

Assume that w 6∈ Al
no, that is #a(w) 6= #b(w) + l. The quantum state before the measurement is

|q〉 = U$UwU|c|0〉 = U$(Ua)
n(Ub)

mU|c|0〉 = U$(Ub)
m−nU|c|0〉 =




α2 + β2 cos(m− n)θ

−αβ + αβ cos(m− n)θ

β sin(m− n)θ


 . (30)

Let m− n = l′. Since θ =
√
2π and m 6= n+ l, we have

α2 + β2 cos(m− n)θ = α2 + β2 cos l′θ =
− cos lθ

1− cos lθ
+

1

1− cos lθ
cos l′θ =

cos l′θ − cos lθ

1− cos lθ
6= 0. (31)

Therefore, Pr[Ml accepts w] 6= 1.

Hence, we have proved that the promise problem Al can be recognized exactly by the pvMO-1QFA Ml.

Obviously, Al
yes and Al

no are not regular languages. According to Theorem 1, the promise problem Al cannot

be recognized by any pvDFA.

Remark 6. From Theorem 13 it implies that there are three subsets (non-regular languages) that can be

distinguished precisely by a pvMO-1QFA, but any pvDFA cannot do it, and this result further shows a

stronger aspect of 1QFA than DFA.

We will now consider solvability mode. Geffert and Yakaryılmaz [14] proved that the promise problem

ExpEQ(c)2 can be solved by a one-way probability finite automaton (PFA) A(c), but there is no DFA

solving ExpEQ(c). Rashid and Yakaryılmaz [35] proved that a promise problem can be solved by a Las

Vegas realtime rtQCFA or by an exact rational restarting rtQCFA in linear expected time, where there is

2 ExpEQ(c) =

{

ExpEQ
yes

(c) = {(ambn)3(2c
2)m+n·⌈ln c⌉ | m,n ∈ N+, m = n}

ExpEQ
no

(c) = {(ambn)3(2c
2)m+n·⌈ln c⌉ | m,n ∈ N+,m 6= n}

, where c ≥ 3 is an integer.

16

no bounded-error PFA that solves the promise problem. In order to prove that 1QCFA have advantages in

solving promise problems comparing to their classical counterparts (PFA), we define a new promise problem

PloyEQ =

{
PloyEQyes = {(anbm#)t | n = m and t ≥ T },
PloyEQno = {(anbm#)t | n 6= m and t ≥ T }, (32)

where T is a polynomial of l = max{n,m} which will be specified later.

Theorem 14. For any ε ≤ 1
3 , the promise problem PloyEQ can be solved by a 1QCFA with the error

probability ε, but there is no PFA solving PloyEQ with the error probability ε.

Proof. Let θ =
√
2π. We design a 1QCFAM = (Q,S,Σ,Θ,∆, δ, |q0〉, s0, Sa, Sr) to solve the promise problem

PloyEQ, where Q = {|0〉, |1〉}. The automaton M proceeds as shown in Figure 1, where

U|c = U$ = I, Ua =

(
cos θ sin θ

− sin θ cos θ

)
, Ub =

(
cos θ − sin θ

sin θ cos θ

)
. (33)

1. Read the left end-marker |c, perform U|c = I on the initial quantum state |0〉, do
not change its classical state, and move the tape head one cell to the right.

2. Until the currently scanned symbol σ is the right end-marker $, do the following:

2.1 If σ 6= #, apply Θ(s0, σ) = Uσ to the current quantum state, do not change

its classical state, and move the tape head one cell to the right.

2.2 Otherwise, measure the current quantum state with M = {|0〉〈0|, |1〉〈1|}.
If the outcome is |1〉, reject the input and halt. Otherwise, move the tape

head one cell to the right.

3. Accept the input and halt.

Figure 1: The 1QCFA solving the promise problem PloyEQ.

Let us choose T = ⌈2l2 loge 1
ε
⌉. If the input w ∈ PloyEQyes, then the quantum state before the measure-

ment in the Step 2.2 is always |0〉. Therefore, the input will be accepted with certainty.

If the input w ∈ PloyEQno, the quantum state before the i-th measurement in the Step 2.2 is

|q〉 = Un
a U

m
b =

(
cos θ sin θ

− sin θ cos θ

)n(
cos θ − sin θ

sin θ cos θ

)m

(34)

=

(
cos(m− n)θ − sin(m− n)θ

sin(m− n)θ cos(m− n)θ

)
. (35)

According to [1, 41], the rejecting probability after the i-th measurement is

Pir >
1

2(m− n)2 + 1
>

1

2l2
. (36)

and the overall probability that M rejects the input w is

Pr[M rejects w] =

t∑

i≥1

(
Pir

i−1∏

i=1

(1− Pr(i−1))

)
>

t∑

i≥1

(
1

2l2

i−1∏

i=1

(1 − 1

2l2
)

)
(37)

=
t∑

i≥1

1

2l2
(1− 1

2l2
)i−1 =

1

2l2
1− (1− 1

2l2)
t

1
2l2

= 1− (1− 1

2l2
)t. (38)

17

Since 1− x ≤ e−x, we have

Pr[M rejects w] > 1− (1− 1

2l2
)t > 1− e−

1

2l2
t ≥ 1− e−

1

2l2
2l2 log

e

1
ε = 1− e− log

e

1
ε = 1− ε. (39)

Therefore, the promise problem PloyEQ can be solved by a 1QCFA M with the error probability ε.

Assume now that there is a PFA A solving PloyEQ with the error probability ε. Let us consider a 2PFA

M running as follows:

1. M reads the input w from the left to the right – symbol by symbol;

2. After reading each σ ∈ {a, b,#}, M simulates the transformation of the PFA A reading σ;

3. When M reaches the right-end marker, M moves its tape head to the left most symbol of the input

w and reads the input w again.

If M reads the input w T times, then we have, according to the above assumption,

Pr[M accepts anbn#] = Pr[A accepts anbn#] ≥ 1− ǫ (40)

and

Pr[M accepts anbm#] = Pr[A accepts anbm#] ≤ 1− Pr[A rejects anbm#] ≤ ǫ (41)

where n 6= m.

Therefore, for any integers n and d > 0, it holds

∣∣Pr[M accepts anbn#]− Pr[M accepts anbn+d#]
∣∣ ≥ 1− 2ǫ ≥ ǫ. (42)

Since T is a polynomial of the length of the input w, the following lemma holds (as in [10, 13]):

Lemma 4. Let ε ≤ 1
3 . Suppose that M is a two-way probabilistic finite automaton (2PFA) with exp(o(|w|))

expected running time, where |w| is the length of the input. Then there exists, for all sufficiently large n, an

integer d such that ∣∣Pr[M accepts anbn#]− Pr[M accepts anbn+d#]
∣∣ < ǫ. (43)

Obviously, Equality (42) contradicts Equality(43). Therefore, there is no PFA solving PloyEQ with the

error probability ε.

We now study state complexity. We consider the following promise problem

A(p) =

{
Ayes(p) = {aip+l1 | 0 ≤ l1 < p, cos2 l1θ ≥ 2/3, i ≥ 0},
Ano(p) = {aip+l2 | 0 ≤ l2 < p, cos2 l2θ ≤ 1/3, i ≥ 0}, (44)

where θ = π/p.

Theorem 15. For integer p ≥ 6, the promise problems A(p) can be solved with error probability ǫ ≤ 1/3

by an MO-1QFA with two quantum basis states, but can not be solved exactly by any MO-1QFA with two

quantum basis states.

Proof. We will now construct an MO-1QFA M(p) = (Q, {a}, {Uσ |σ ∈ {|c, a, $}}, |0〉, Qa) to solve A(p),

where

• Q = {|0〉, |1〉}, Qa = {|0〉}.

18

• Uσ are defined as follows:

U|c = U$ = I, Ua =

(
cos θ − sin θ

sin θ cos θ

)
. (45)

If input w ∈ Ayes(p), then the quantum state before the measurement is

|q〉 = U$UwU|c|0〉 = U$(Ua)
ip+l1U|c|0〉 = (Ua)

l1 |0〉 = cos l1θ|0〉+ sin l1θ|1〉. (46)

The automaton M has the accepting probability

Pr[M accepts w] = cos2 l1θ ≥ 2/3. (47)

If input w ∈ Ano(p), then the quantum state before the measurement is

|q〉 = U$UwU|c|0〉 = U$(Ua)
ip+l2U|c|0〉 = (Ua)

l2 |0〉 = cos l2θ|0〉+ sin l2θ|1〉. (48)

The automaton M has the rejecting probability

Pr[M rejects w] = 1− Pr[M accepts w] = 1− cos2 l2θ ≥ 1− 1/3 = 2/3. (49)

Therefore, A(p) can be solved by the automaton M with error probability 1/3.

Suppose that the promise problems A(p) can be solved exactly by an MO-1QFAM′ with two basis states.

Without loss of generality, we assume that M′ = (Q, {a}, {Uσ |σ ∈ {|c, a, $}}, |0〉, Qa), where Q = {|0〉, |1〉}
and Qa = {|0〉}.

Since p ≥ 6, we have ap ∈ Ayes(p) and ap+1 ∈ Ayes(p). Since the probability that M′ accepts ap is 1,

we have

U$(Ua)
pU|c|0〉 = α|0〉, (50)

where α ∈ C and |α| = 1. Therefore, (Ua)
pU|c|0〉 = αU †

$ |0〉, where U † is conjugate and transpose of U . Since

the probability that M′ accepts ap+1 is also 1, we have also

U$(Ua)
p+1U|c|0〉 = α′|0〉, (51)

where α′ ∈ C and |α′| = 1. Therefore, we have

U$Ua(Ua)
pU|c|0〉 = U$Ua · αU †

$ |0〉 = α′|0〉, (52)

⇒ U$UaU
†
$ |0〉 =

α′

α
|0〉. (53)

It is easy to find out that

U$UaU
†
$ =

(
β1 0

0 β2

)
= Λ, (54)

where β1 = α′

α
and β2 ∈ C with |β2| = 1. It is easy to see that |β1| = 1. Therefore, we have Ua = U †

$ΛU$.

Now for any integer k ≥ 0, we have

U$(Ua)
p+kU|c|0〉 = U$(Ua)

k(Ua)
pU|c|0〉 = U$(U

†
$ΛU$)

k · αU †
$ |0〉 = αΛk|0〉 = αβk

1 |0〉. (55)

Obviously, |αβk
1 | = 1. Therefore, for any k ≥ 0, the automaton accepts the input ap+k with probability

1. If k = ⌈p/2⌉, it is easy to check that cos2 kθ ≤ 1/3 and ap+k ∈ Ano(p). Thus, we get a contradiction.

Therefore, the promise problems A(p) can not be solved exactly by any MO-1QFA with two quantum basis

states.

19

Remark 7. In the previous theorem, the error probability ε = 1/3. For p ≥ π

arccos
√
1−ε

, using the same

method as the previous theorem, we can prove that the following promise problem

A(p, ε) =

{
Ayes(p, ε) = {aip+l1 | 0 ≤ l1 < p, cos2 l1θ ≥ 1− ε, i ≥ 0},
Ano(p, ε) = {aip+l2 | 0 ≤ l2 < p, cos2 l2θ ≤ ε, i ≥ 0}, (56)

where θ = p/π, can be solved with error probability ε by an MO-1QFA with two quantum basis states, but

can not be solved exactly by any MO-1QFA with two quantum basis states.

We consider now the minimal PFA to solve the promise problem A(p) with p is prime.

Theorem 16. For any prime p > 6, the minimal PFA solving the promise problem A(p) with error proba-

bility (smaller than 1/2) has p states.

Proof. We consider now a p-state DFA A = (S, {a}, δ, s0, Sa), with the set of states S = {s0, s1, . . . , sp−1},
the set of accepting states Sa = {sl1 | 0 ≤ l1 < p, cos2 l1θ ≥ 2/3}, and the transition function δ(si, a) =

s(i+1) mod p. Obviously, the promise problem A(p) can be solved by the automaton A. A DFA is also a

PFA. Therefore, there is a PFA with p states solving the promise problem A(p). The minimal PFA that

solving the promise problem A(p) has not more than p states.

Since p > 6, there must be fix integers r1, r2 such that cos2 r1θ ≥ 2/3 and cos2 r2θ ≤ 1/3. We consider

the following promise problem [18]. Namely, AN,r1,r2 = (AN,r1
yes , AN,r2

no) with AN,r1
yes = {an | n ≡ r1 mod N}

and AN,r2
no = {an | n ≡ r2 mod N}, where N , r1 and r2 are fixed positive integers such that r1 6≡ r2 mod N .

Let N = p and l = (r2 − r1) mod p. According to Subsection 3.3, we have Ap,r1,r2 ≤ A(p). Any PFA

that solving the promise problem A(p) can also solve the promise problem Ap,r1,r2 . According to [8] (see

Theorem 4), the minimal PFA solving the promise Ap,r1,r2 with error probability has d states, where d is the

smallest positive integer such that d | p and d ∤ l. Since p is prime, we have d = p. Therefore, the minimal

PFA that solving the promise problem A(p) has at least p states. Thus, the theorem has been proved.

6. Conclusions and problems

In order to make clear the difference between recognizability and solvability of quantum and classical

finite automata, we have introduced several promise versions finite automata and discussed their properties.

We have explored some basic properties of promise problems recognized and solved by pvDFA, and we have

showed the state complexity for several promise problems concerning recognizability and solvability. In

particular, we have proved that one-way quantum finite automata can be more powerful than their classical

counterparts when recognizing and solving some promise problems. More specifically, we have proved:

• There is a promise problem that can be recognized exactly by measure-once one-way quantum finite

automata (MO-1QFA), but no deterministic finite automata (DFA) can recognize it. Indeed, this result

implies that there are three subsets (non-regular languages) that can be distinguished precisely by a

pvMO-1QFA, but any pvDFA cannot do it.

• There is a promise problem that can be solved with error probability ǫ ≤ 1/3 by one-way finite

automaton with quantum and classical states (1QCFA), but no one-way probability finite automaton

(PFA) can solve it with error probability ǫ ≤ 1/3.

20

• Especially, there are promise problems A(p) with size p that can be solved with any error probability by

MO-1QFA with only two quantum basis states, but they can not be solved exactly by any MO-1QFA

with two quantum basis states; in contrast, the minimal one-way probability finite automaton (PFA)

solving A(p) with any error probability (usually smaller than 1/2) has p states.

However, there are still some problems to be considered for future research, and we list them in the

following.

1. First we concern a problem related to recognizability: Suppose that a promise problem A can be

recognized by a quantum (or probabilistic) finite automaton with error probability ǫ < 1/2. Then,

for any ǫ′ < ǫ, whether is there a quantum (or probabilistic) finite automaton recognizing A with

error probability ǫ′? For solvability, this problem can be verified positively by using the idea of the

languages accepted by PFA with bounded error (e.g., [28]).

2. Second is a hierarchic problem for the classes solved by quantum finite automata mentioned in Section

1. Namely, let C(P)n denote the class of promise problems solved exactly by an MO-1QFA with n

quantum basis states. Then, whether does C(P)m ⊂ C(P)n hold for m ≤ n?

3. For any given regular language L, there is, according to the Myhill-Nerode theorem, a method to find

out a minimal DFA A to recognize L [40] . For some specific promise problems, it is possible to find

out minimal DFA (pvDFA) to solve the promise problems [4, 8, 14, 18]. However it is not clear yet

whether there is a general way to find out a minimal pvDFA to solve a given promise problem that

can be solved by a pvDFA?

4. We have proved that for any ε ≤ 1
3 , the promise problem PloyEQ can be solved by a 1QCFA with

the error probability ε, but there is no PFA solving PloyEQ with the error probability ε (Theorem

14). However, whether is there no PFA solving PloyEQ with the error probability 1/3 < ε < 1/2?

Another challenge is to find out some simpler promise problems to demonstrate the advantage of 1QFA

in solving promise problems, since the promise problem PloyEQ is quite complex?

5. We have proved that the left side in Inequality (21) is tight. Nevertheless, can we prove that the right

side is tight?

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (Nos. 61272058,

61472452, 61572532).

Appendix. The proof of Theorem 11

Proof. Let Ayes = {(ap)∗} and Ano = {(aq)∗a}, where p, q > 2 are integers such that gcd(p, q) = 2. We first

prove that Ayes∩Ano = ∅. Since gcd(p, q) = 2, there exist integers k1 and k2 such that p = 2k1 and q = 2k2.

Assume that Ayes ∩ Ano 6= ∅. There must exist integers i and j such that (ap)i = (aq)ja, i.e. ip = jq + 1.

We have 1 = ip− jq = i2k1 − j2k2 = 2(ik1 − jk2), which is a contradiction. Therefore, Ayes ∩ Ano = ∅.
Let us consider now the promise problem A = (Ayes, Ano). Since Ayes and Ano are regular lan-

guages, the promise problem A can be recognized by a pvDFA. Let us consider the following pvDFA

A = (S, {a}, δ, s0, Sa, Sr), where

• S = {〈s1k mod p, s
2
k mod q〉 | k ≥ 0};

21

• s0 = 〈s10, s20〉;

• δ(〈s1i , s2j〉, a) = 〈s1i+1 mod p, s
2
j+1 mod q〉;

• Sa = {〈s1k mod p, s
2
k mod q〉 | k ≡ 0 mod p} and Sr = {〈s1k mod p, s

2
k mod q〉 | k ≡ 1 mod q}.

At first, we prove that |S| = 1
2pq. Let us assume that there exist 0 ≤ k1 < k2 < 1

2pq − 1 such that

〈s1k1 mod p, s
2
k1 mod q〉 = 〈s1k2 mod p, s

2
k2 mod q〉. This implies k1 ≡ k2 mod p and k1 ≡ k2 mod q. Therefore,

p|(k2 − k1) and q|(k2 − k1). Since gcd(p, q) = 2, we have 1
2pq|(k2 − k1), which is a contradiction. Hence,

|S| ≥ 1
2pq. For any h ≥ 1

2pq, let h = i × 1
2pq + k where 0 ≤ k < 1

2pq. Since p| 12pq and q| 12pq, we have

〈s1h mod p, s
2
h mod q〉 = 〈s1k mod p, s

2
k mod q〉. Therefore |S| = 1

2pq.

Secondly, we prove that Sa ∩Sr = ∅. Since gcd(p, q) = 2, we have 2|p and 2|q. Assume that Sa ∩Sr 6= ∅.
In such a case, there must exist integers i and j such that k = ip and k = jq + 1. Therefore, we have

ip = jq + 1 and 2|(ip− jq) = 1, which is a contradiction.

Moreover, it is easy to see that the promise problem A can be recognized by the pvDFA A. Therefore,

sr(A) ≤ |S| = 1
2pq.

Finally, we prove that the pvDFA A = (S, {a}, δ, s0, Sa, Sr) is minimal. Let us consider DFA A′ =

(S, {a}, δ, s0, Sa ∪ Sr). Obviously, the DFA A′ recognizes the language Ayes ∪ Ano. We prove now that the

DFA A′ is minimal. Let F = Sa ∪ Sr and n = 1
2pq. For any 0 ≤ i < j < n, we prove that the states

si = 〈s1i mod p, s
2
i mod q〉 and sj = 〈s1j mod p, s

2
j mod q〉 are distinguishable. Since si 6= sj , at most one of

the following two conditions (1) j − i ≡ 0 mod p and (2) j − i ≡ 0 mod q holds. We have therefore the

following three cases to consider:

1. The condition (1) holds and (2) does not hold. In such a case we have δ̂(si, a
n−i+1) = 〈s1n+1 mod p,

s2n+1 mod q〉 = 〈s11, s21〉 ∈ F and δ̂(sj , a
n−i+1) = 〈s1j+n−i+1 mod p, s

2
j+n−i+1 mod q〉 = 〈s11, s2j−i+1 mod q〉.

Since j − i 6≡ 0 mod q, we have j − i + 1 6≡ 1 mod q. Therefore, δ̂(sj , a
n−i+1) 6∈ F . Hence si and sj

are distinguishable.

2. The condition (2) holds and (1) does not hold. The proof is similar to the one in the case 1.

3. Neither the condition (1) nor (2) holds. In such a case we have δ̂(si, a
n−i) = 〈s1n mod p, s

2
n mod q〉 =

〈s10, s20〉 ∈ F and δ̂(sj , a
n−i) = 〈s1n+j−i mod p, s

2
n+j−i mod q〉 = 〈s1j−i mod p, s

2
j−i mod q〉. If δ̂(sj , a

n−i) 6∈
F , then si and sj are distinguishable. Otherwise, we have j − i ≡ 1 mod q since j − i 6≡ 0 mod p.

There are now two subcases to consider.

(a) j−i ≡ 1 mod p. We have p|(j−i−1) and q|(j−i−1). Since gcd(p, q) = 2 and 0 ≤ i < j < n = 1
2pq,

we have j − i − 1 = 0 that is j = i + 1. Therefore, δ̂(si, a
n−i+1) = 〈s1n+1 mod p, s

2
n+1 mod q〉 =

〈s11, s21〉 ∈ F and δ̂(sj , a
n−i+1) = δ̂(si+1, a

n−i+1) = 〈s1n+2 mod p, s
2
n+2 mod q〉 = 〈s12, s22〉 6∈ F .

Hence, si and sj are distinguishable.

(b) j − i 6≡ 1 mod p. We have δ̂(sj , a
n−j+1) = 〈s1n+1 mod p, s

2
n+1 mod q〉 = 〈s11, s21〉 ∈ F and

δ̂(si, a
n−j+1) = 〈s1n−j+1+i mod p, s

2
n−j+1+i mod q〉 = 〈s1−j+1+i mod p, s

2
−j+1+i mod q〉. Since j− i 6≡

1 mod p, we have −j + 1 + i 6≡ 0 mod p. Since i 6≡ j mod q, we have (−j + 1 + i) 6≡ 1 mod q.

Therefore, δ̂(si, a
n−j+1) 6∈ F . We have again that si and sj are distinguishable.

We have therefore shown that the DFA A′ is minimal and has 1
2pq states. Let us assume that there is a

pvDFA B with less than 1
2pq states recognizing the promise problem A. We can then get a DFA with less

than 1
2pq states recognizing the language Ayes ∪ Ano. This would implies that the DFA A′ is not minimal.

A contradiction.

Obviously, s(Ayes) = p and s(Ano) = q. Therefore, we have proved that sr(A) = 1
2pq = 1

2s(Ayes)s(Ano).

22

References

[1] A. Ambainis, J. Watrous, Two-way finite automata with quantum and classical states, Theoretical Computer Science

287 (2002) 299–311.

[2] A. Ambainis, R. Freivalds, One-way quantum finite automata: strengths, weaknesses and generalizations, in Proceed-

ings of the 39th FOCS (1998) 332–341.

[3] A. Ambainis, N. Nahimovs, Improved constructions of quantum automata, Theoretical Computer Science 410 (2009)

1916–1922.

[4] A. Ambainis, A. Yakaryılmaz, Superiority of exact quantum automata for promise problems, Information Processing

Letters 112 (2012) 289–291.

[5] A. Bertoni, C. Mereghetti and B. Palano, Golomb rulers and difference sets for succinct quantum automata, Interna-

tional Journal of Foundations of Computer Science 14 (2003) 871–888.

[6] A. Bertoni, C. Mereghetti and B. Palano, Small size quantum automata recognizing some regular languages, Theo-

retical Computer Science 340 (2005) 394–407.

[7] A. Bertoni, C. Mereghetti and B. Palano, Some formal tools for analyzing quantum automata, Theoretical Computer

Science 356 (2006) 14–25.

[8] M.P. Bianchi, C. Mereghetti and B. Palano, Complexity of Promise Problems on Classical and Quantum Automata,

Gruska Festschrift, LNCS 8808 (2014) 161–175.

[9] F. Bonchi, M.M. Bonsangue, H.H. Hansen, P. Panangaden, J.J.M.M. Rutten, A. Silva, Algebra-coalgebra duality in

Brzozowski’s minimization algorithm, ACM Transactions on Computational Logic 15 (2014), Article No. 3.

[10] C. Dwork, L. Stockmeyer, Finite state verifiers I: The power of interaction, J. ACM 39 (4) (1992) 800–828.

[11] S. Even, A.L. Selman and Y. Yacobi, The Complexity of Promise Problems with Applications to Public-Key Cryp-

tography, Information and Control 61 (1984) 159–173.

[12] R. Freivalds, M. Ozols and L. Mancinska, Improved constructions of mixed state quantum automata, Theoretical

Computer Science 410 (2009) 1923–1931.

[13] A.G. Greenberg, A. Weiss, A lower bound for probabilistic algorithms for finite state machines, Journal of Computer

and System Sciences 33 (1986) 88–105.

[14] V. Geffert, A. Yakaryılmaz, Classical automata on promise problems, In DCFS’14, LNCS 8614 (2014) 126–137. Also

arXiv:1405.6671.

[15] O. Goldreich, On promise problems: A survey, Shimon Even Festschrift, LNCS 3895 (2006) 254–290.

[16] J. Gruska, Quantum Computing, McGraw-Hill, London (1999).

[17] J. Gruska, D.W. Qiu, S.G. Zheng, Generalizations of the distributed Deutsch-Jozsa promise problem, Mathemat-

ical Structures in Computer Science, DOI:http://dx.doi.org/10.1017/S0960129515000158, 21 pages (2015). Also

arXiv:1402.7254.

[18] J. Gruska, D.W. Qiu, S.G. Zheng, Potential of quantum finite automata with exact acceptance, International Journal

of Foundation of Computer Science 26 (2015) 381–398. Also arXiv:1404.1689.

[19] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addision-Wesley, New

York (1979).

[20] M. Hirvensalo, Quantum automata with open time evolution, Int. J. Nat. Comput. Res. 1 (2010) 70–85.

[21] A. Kondacs, J. Watrous, On the power of quantum finite state automata, in Proceedings of the 38th FOCS (1997)

66–75.

[22] L.Z. Li, D.W. Qiu, X.F. Zou, L.J. Li, L.H. Wu and P. Mateus, Characterizations of one-way general quantum finite

automata, Theoretical Computer Science 419 (2012) 73–91.

[23] L. Z. Li, D. W. Qiu, Determining the equivalence for one-way quantum finite automata, Theoretical Computer Science

403 (2008) 42-51.

[24] L.Z. Li, Y. Feng, On hybrid models of quantum finite automata, Journal of Computer and System Science 81 (2015)

1144–1158. Also arXiv:1206.2131.

[25] C. Moore, J.P. Crutchfield, Quantum automata and quantum grammars, Theoretical Computer Science 237 (2000)

275–306.

[26] M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cam-

bridge (2000).

[27] P. Mateus, D.W. Qiu, L.Z. Li, On the complexity of minimizing probabilistic and quantum automata,Information

and Computation 218 (2012) 36-53.

[28] A. Paz, Introduction to Probabilistic Automata, Academic Press, New York (1971).

23

http://arxiv.org/abs/1405.6671
http://dx.doi.org/10.1017/S0960129515000158
http://arxiv.org/abs/1402.7254
http://arxiv.org/abs/1404.1689
http://arxiv.org/abs/1206.2131

[29] D.W. Qiu, Characterization of quantum sequential machines, International Journal of Theoretical Physics 41 (5)

(2002) 811-822.

[30] D.W. Qiu, M.S. Ying, Characterizations of Quantum Automata, Theoretical Computer Science 312 (2-3) (2004)

479-489.

[31] D.W. Qiu, S. Yu, Hierarchy and equivalence of multi-letter quantum finite automata, Theoretical Computer Science

410 (30-32) (2009) 3006-3017.

[32] D.W. Qiu, L.Z. Li, X. Zou, P. Mateus, J. Gruska, Multi-letter quantum finite automata: decidability of the equivalence

and minimization of states, Acta Informatica 48 (2011) 271-290.

[33] D.W. Qiu, L.Z. Li, P. Mateus, J. Gruska, Quantum finite automata, in: Finite State Based Models and Applications

(Edited by Jiacun Wang), CRC Handbook, 2012, pp. 113-144.

[34] D.W. Qiu, L. Li, P. Mateus, A. Sernadas, Exponentially more concise quantum recognition of non-RMM languages,

Journal of Computer and System Sciences 81 (2) (2015) 359-375.

[35] J. Rashid, A. Yakaryılmaz, Implications of quantum automata for contextuality, In CIAA’14, LNCS 8587 (2014)

318–331. Also arXiv:1404.2761.

[36] P.W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM

Journal on Computing 26 (1997) 1484–1509. Earlier version in FOCS’94.

[37] D. Simon , On the power of quantum computation, SIAM Journal on Computing, 26 (1997) 1474–1483. Earlier version

in FOCS’94.

[38] J. Watrous, Quantum computational complexity, R.A. Meyers, Editor, Encyclopedia of Complexity and Systems

Science, Springer, 2009, pp. 7174–7201.

[39] A. Yakaryılmaz, A.C. Cem Say, Succinctness of two-way probabilistic and quantum finite automata, Discrete Math-

ematics and Theoretical Computer Science 12 (2010) 19–40.

[40] S. Yu, Regular Languages, In: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Springer-Verlag,

Berlin, 1998, pp. 41–110.

[41] S.G. Zheng, D.W. Qiu, J. Gruska, L.Z. Li and P. Mateus, State succinctness of two-way finite automata with quantum

and classical states, Theoretical Computer Science 499 (2013) 98–112.

[42] S.G. Zheng, D.W. Qiu, J. Gruska, Power of the interactive proof systems with verifiers modeled by semi-quantum

two-way finite automata, Information and Computation, 241 (2015) 197-214.

[43] S.G. Zheng, D.W. Qiu, L.Z. Li and J. Gruska, One-way finite automata with quantum and classical states, Dassow

Festschrift, LNCS 7300 (2012) 273–290.

[44] S.G. Zheng, J. Gruska and D.W. Qiu, On the state complexity of semi-quantum finite automata, RAIRO-Theoretical

Informatics and Applications 48 (2014) 187–207. Earlier version in LATA’14.

[45] S.G. Zheng, D.W. Qiu, From quantum query complexity to state complexity, Gruska Festschrift, LNCS 8808 (2014)

231–245. Also arXiv:1407.7342.

24

http://arxiv.org/abs/1404.2761
http://arxiv.org/abs/1407.7342

	1 Introduction
	2 Preliminaries
	2.1 Deterministic finite automata
	2.2 Quantum and semi-quantum finite automata basic models and working modes

	3 Properties of pvDFA
	3.1 Pumping Lemmas
	3.2 Closure properties
	3.3 Ordering

	4 State complexity
	5 One-way quantum finite automata for promise problems
	6 Conclusions and problems

