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On recognizing words that are
squares for the shuffle product
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¢ Computer Science Department, University of Verona, Verona, Italy
b Université Paris-Est, LIGM (UMR 8049), CNRS, UPEM, ESIEE Paris, ENPC, F-77}54,
Marne-la-Vallée, France

Abstract

The shuffle of two words u and v of A* is the language u LU v consisting of all
words u1v1uUsvs . . . UV, where kK > 0 and the u; and the v; are words of A*
such that u = wyus ... ur and v = vyvs ... vg. In other words, u L v is the finite
set of all words obtainable from merging the words u and v from left to right,
but choosing the next symbol arbitrarily from u or v. A word u € A* is a square
for the shuffle product if it is the shuffle of two identical words (i.e., u € v W v
for some v € A*).

Whereas it can be decided in polynomial-time whether or not u € vy W vy
for given words u, v; and v [J.-C. Spehner. Le Calcul Rapide des Mélanges de
Deuzx Mots, Theoretical Computer Science, 1986], we show in this paper that
it is NP-complete to determine whether or not a word u is a square for the
shuffle product. The novelty in our approach lies in representing words as linear
graphs, in which deciding whether or not a given word is a square for the shuffle
product reduces to computing some inclusion-free perfect matching. Finally, we
prove that it is NP-complete to determine whether or not an input word is in
the shuffle of a word with its reverse.

Keywords: Combinatorics on words; Shuffle operator; Complexity.

1. Introduction

Let A be an alphabet. The shuffle ullv of words v and v over A is the finite
set of all words obtainable from merging the words v and v from left to right,
but choosing the next symbol arbitrarily from u or v [14]. The iterated shuffle
of u is the language eUuU (u W u) U (v W uldu)U. .. These definitions naturally
extend to languages. It is known that the shuffle product is a commutative
and associative operation, which is also distributive over union. The operations
of shuffle and iterated shuffle have been used by many researchers to describe
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sequential computation histories of concurrent programs [12]. Interestingly, it
was observed in [11] that some aspects of the shuffle product bear strong simi-
larities with genetic recombinations (a non-tree-like event that produces a child
sequence by crossing two parent sequences).

For the iterated shuffle, there are basically two kinds of questions that can
be addressed depending on whether or not the shuffled element is given as a part
of the input. This distinction basically reduces to the two following problems:

e “Given u,v € A*, is u in the iterated shuffle of v?”, and
e “Given u € A*, is u in the iterated shuffle of some v € A*?”.

If we focus on only one application of the shuffle product, we are left with the
two following problems:

e “Given u,v € A*, isu € vwv?”, and
o “Given u € A*, does there exist v € A* such that u € vV ?”.

As we shall see soon, these two problems dramatically differ in complexity.

We briefly review the key results that arise in our context. Given words
u, vy and vg, it can be tested in O (|ul?/log(|ul)) time whether or not u €
vy Wy [21]. (To the best of our knowledge, the first O(|u|?) time algorithm
appeared in [16]. This algorithm can easily be extended to check in polynomial-
time whether or not a word is the shuffle of any fixed number of given words.)

The shuffle u W v of words u and v can be computed in O <(|u| + [v]) (‘“IHUI))

Jul

time [19]. An improvement and generalization has been proposed in [1], where

it is proved that, given words w1, ug, . . ., ug, the shuffle Ll_lleui can be computed
in O ('“IH‘“?H'“H"’“') time.
‘ul‘a|u2|7"'7|uk‘
Given words u,v1,vs,...,v; € A*, it is however NP-complete to decide

whether or not u € WY_,v; [16, 24], and recently the problem has been proven
to be WJ[2]-hard parameterized by k [20]. This remains true even if the alpha-
bet has size 3 [24]. Of particular interest, it is shown in [24] that this problem
remains NP-complete even if all words vy, vs, ..., v, are identical, thereby prov-
ing that, for two words u and v, it is NP-complete to decide whether or not u
is in the iterated shuffle of v. Again, this remains true even if the alphabet has
size 3.

Strongly related is the problem of shuffling a word with its reverse. Let
u € A*. It is easily seen that if there exists v € A* such that v € v w vf,
then w is an Abelian square (i.e., u = vv’, where v/ is a permutation of v).
Of particular interest, it is shown in [17] that if u is a binary Abelian square,
then there exists v € A* such that u € v LW v®, thereby proving that it is
polynomial-time solvable to decide whether or not a binary word is the shuffle
of another word with its reverse. The equivalence is, however, no longer true for
larger alphabets. For example, abcabc is a ternary Abelian square that cannot
be written as an element of v LU v for any word v € A* [17].



In this paper, our approach lies in the use of linear graphs (i.e, those graphs
with sets of vertices equipped with some total order), in which deciding whether
or not a given word is in the shuffle of another word with itself (or its reverse)
reduces to computing some constrained perfect matching. We show that, given
u € A*, it is NP-complete to decide whether or not w is the shuffle of some
word v € A* with itself (i.e., does there exist some v € A* such that u €
v W ?). Notice that this result was first claimed by K. Iwama [9], but it turns
out that the proof has a serious flaw [3]. Buss and Soltys [5] have also, very
recently, independently solved this problem (as an answer to Erickson [8] on the
Stack Exchange discussion board) using a similar constrained perfect matching
approach. The two proofs use, however, different reductions, and it is worth
noticing that Buss and Soltys managed to obtain the stronger result that the
question remains hard for a size-9 alphabet. Furthermore, we complete the
positive result of [17] by proving that, given u € A*, it is NP-complete to
decide whether or not u is the shuffle of some word v € A* with its reverse (i.e.,
does there exist some v € A* such that u € v W v??).

2. Definitions

We follow standard terminology on words [6]. Let A be an alphabet. The
empty word is denoted €. A word v = ajas...a, € A" with a; € A is a
subsequence of u € A* if there exist n 4 1, not necessarily distinct and possibly

empty, words uy,uUg,...,Upt1 € A* such that uyayugas ... upapUnt1 = u,
and we write v < u to denote this fact. The reverse of v = ajas ... a, with
a; € A is the word v® =a,, ... aza;.

The shuffle (also sometimes referred to as the ordinary shuffle in the lit-
erature) of two words u and v, denoted w W v, is the language of all words
w such that w = uy v1 us v ... Uy, v,, where u;,v; € A*, uyus ... up = u, and
v1 Vg ... VU, = v. It may be defined inductively on words by ulle = u, ellu = u,
and wallvb = (ulwvb)aU(ualllv)b. A word u € A* is said to be a square for the
shuffle product if it is the shuffle of two identical words (i.e., u € v W v for some
v € A*). The iterated shuffle of u is the language e UuU (ulluw)U (ulbullu)U. ..

For two words u = a1 as ... a, and v = by by ... b,, a;,b; € A, of the same
length, we denote their perfect shuffle! u Wy, v =aibiazbs ... apb,. Note that
u LW, v needs not equal to v L, u. Moreover, (u LL, ) =l Ly, u®. Abusing
notation, it will be useful to allow |u| = |v| + 1, where w = aj ag ... a1 and
v =>b1by ... by, in which case we define u L, v =a1b1a2bs ... ay by ani1.

For a graph G, we denote V(G) as the set of vertices and E(G) as the set
of edges. Let u = uyug ... up, € A™ be a word on some alphabet A. The
graph associated to u, denoted G, is defined by V(G,) = {1,2,...,n} and
E(G,) = {{i,4} : i # 7 AN u; = u;}. (We write (¢,7) for an edge of E(G,)

I Note that some authors - see for example [17] - use L1l to denote the perfect shuffle operator
and LU (larger symbol) to denote the ordinary shuffle operator. To avoid confusion, we prefer
to use Ly, for the perfect shuffle operator.



if it is clear from the context that ¢ < j, and {i,j} otherwise.) Clearly, G,, is
the disjoint union of cliques, one clique for each distinct letter. Recall that two
edges of a graph are independent if they do not share a common vertex, and that
a matching M in G is a set of pairwise independent edges. A matching is perfect
if it covers all the vertices of the graph. In case the set of vertices is equipped
with a total order, a matching M is said to be inclusion-free if there do not exist
(independent) edges (i,7) and (k,€) in M such that ¢ < k < ¢ < j. Similarly,
a matching M is said to be precedence-free (resp. crossing-free) if there do not
exist (independent) edges (i,7) and (k,¢) in M such that i < j < k < £ (resp.
i < k < j <¥{). Finally, a perfect matching M is said to be a tower if it is both
precedence-free and crossing-free.

3. Being a square for the shuffle product

This section is devoted to proving hardness of recognizing those words that
are squares for the shuffle product. Notice that, as observed in [8], the special
case where each letter occurs at most 4 times easily reduces to 2-SAT. This
approach generalizes to general strings but does not give a polynomial-time
decision procedure as clauses may contain up to max{|u|, : @ € £} — 1 literals.

At the heart of our approach for proving hardness is the following property.
(See Fig. 1 for an illustration.)

Lemma 1. Letu € A* for some alphabet A, and G, be the corresponding linear
graph. Then, u is a square for the shuffle product if and only if there exists an
inclusion-free perfect matching in G,,.

PrOOF. Indeed, suppose first that there exists v € A* such that u € v LW v.
Let 2n = |u|. Fix the occurrences in u of the two copies of v and write I' =
{it,id, ... iL}, i1 <43 < ... < il for the positions in u of the first copy of
vand I? = {i2,i3,...,i2}, i3 < i < ... < i2, for the positions in u of the
second copy of v. It is easily seen that M = {{zjl,zf 1< j<n}isa
subset of E(G,,). Furthermore, M is a perfect matching since I' N I? = (), and
I*UI? ={1,2,...2n}. It is also inclusion-free. Indeed, if it were not the case
then there would exist two edges e = {z},z?} and € = {i},i2}, j < k, in M
such that zjl <ip <iz < z? This is a contradiction since i3 > z? if k> j.
Conversely, let M C E(G,) be an inclusion-free perfect matching of G,.
Let I' = {j : 3k > j with (j,k) € M} and I? = {k : 3j < k with (j,k) €
M}, Then |I'| = |I?]. Write I' = {il,i},...,il} and I' = {i%,43,...,i2}
with 41 < i3 < ... < i and if < i3 < ... < ip. Let v = wjpugy ..U
and v/ = ugpugz ... uz. We claim that v = v’. Indeed, suppose, aiming at a
contradiction, that v # v’. Let j — 1 be the length of the largest common prefix
of v and v'. Then it follows that there exist i}, and i? such that zjl < 1,16 < Z? < i%

with {i},i7} € M and {i},i?} € M, and hence M is not inclusion-free. This is

the sought contradiction. O
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Figure 1: The linear graph G, of u = ababbbaa together with an inclusion-free perfect
matching M. The perfect matching M denotes u € v W v for v = abba and reads as
a b b

u = - 5 a 9 with the first copy of v on top and the second on bot-

tom.

The following easy result is used in upcoming Proposition 4. Two points
are worth noting First, Proposition 2 is most probably folklore, but we do not
know any reference. Second, requiring equal length input words in the proof
of Proposition 4 is actually not a crucial property but it greatly simplifies the
exposition by avoiding introducing length specific gadgets.

Proposition 2. The LONGEST COMMON SUBSEQUENCE problem is NP-complete
even if the input consists of binary words that are all of the same length.

PrROOF. We reduce from the LONGEST COMMON SUBSEQUENCE problem for
binary words which is known to be NP-complete [15]. Let U = {uy,ua, ..., Um},
u; € {0,1}* for 1 < ¢ < m, be our input collection of words, and k be a positive
integer. Write |u;| = n; for 1 <7 < m and assume ny < ng < ... < n,,. Define
a new collection of words V' = {v1,va,...,0m}, u; € {0,1}* for 1 < i < m, as
follows:

Vi = Uj Qrm—k+L  nm—ni,

It is easily seen that V is composed of words that are all of the same length
2n,, — k + 1. Define &' =n,,, + 1.

We claim that there exists a subsequence of length k& common to all words
of U if and only if there exists a common subsequence of length k' common to
all words of V.



Suppose first that there exists a subsequence w of length k common to
all words of U. It is immediate to check that w 0™ ~*+! is a word of length
k' = n,, +1 common to all words of V.

Conversely, suppose that there exists a subsequence w of length k& = n,, +1
common to all words of V. We first observe that v, = i, 0%mF+1 ag 17m—nm
reduces to the empty word. Hence, since ¥ > n,, = |uy]| it follows that w
terminates with a sequence of 0’s. Therefore we may safely assume that w =
w’ 0" ~F+1 and that the 0"~ —**+1 suffix of w occurs in the (7m—k+1 17m ="
suffix of every v;, 1 < i < m. Then it follows that w’ is a word of length
k" — (nm — k + 1) = k that occurs as a subsequence in every u;, 1 <i<m. O

The next easy lemma turns out to be extremely useful for Proposition 4.

Lemma 3. Any word u € {0,1}%7 with |u|o = p and |u|y = ¢ is a subsequence
of (0P1)207.

We are now in position to prove our main result.

Proposition 4. It is NP-complete to determine whether or not a word is a
square for the shuffle product.

PROOF. The problem is certainly in NP. To prove hardness, we propose a
polynomial-time reduction from the NP-complete LONGEST COMMON SUBSE-
QUENCE problem for binary words (01-LCS for short) which is defined as follows:
Given a collection of words U = {uy,ua,...,um}, u; € {0,1}* for 1 < i < m,
and positive integers p and ¢, decide whether there exists a subsequence of size
p+ g with p letters 0 and ¢ letters 1 common to all sequences of U [15]. Accord-
ing to Lemma 2, we may assume that |u;| = |u;| for 1 <14 < j < m. According
to Lemma 2, we may assume that |u;| = |u;| for 1 < ¢ < j < m. We write
(U, p, q) for such an instance of 01-LCS.

Let (U,p,q), U = {u1,u2,...,um}, u; € {0,1}* for 1 < i < m and |u;| =
luj| = nforl <i< j<m,bean arbitrary instance of 01-LCS. Let us construct
from this instance a word w over the (3m+6)-size alphabet A defined as follows:

A={0,1} U {s, s} U {t,t'} U{wi,yi,2i: 1 <i <m}.
The word target w is defined by
w:Wg W1 W2 Wth,

where Wy, Wy, Wy, ..., W, and W; are words in A* (we refer to these words
as our gadget words).

Let us now describe the various gadget words. The source and sink gadget
words, denoted Wy and W, respectively, are defined as follows

W, =35 05" s (07 1)707 s
Wy =1t (0P 1)207¢¢ 0P9 ¢,



where s, s’, t and ' are four letters that do not occur in any other gadget
word. To shorten the exposition, we shall speak about the (0P 1)? 0P-factor of
W, (resp. W:) to designate the factor of Wy (resp. W;) that occurs between
the two occurrences of the letter s (resp. t), and about the 0P?-factor of W
(resp. Wt) to designate the factor of Wy (resp. W) that occurs between the two
occurrences of the letter s’ (resp. t'). For each input word w; = w; 1 ui2 - .. Ujn,
the associated gadget word W; is defined by

Wi = x; Wi x5 yi W i,
where

!
WZ- = U4,1 Rj Uiy % - - - Uin—1 24 Uin-

In other words, W/ = u; Wy, z;™. (Notice that letters x;, y; and z; only occur in
the gadget word W;.)

With the corresponding linear graph G, in mind, for any letter a € A
occurring only twice in w, we shall write (a,a)-edge to designate (without any
ambiguity) the unique edge connecting the two occurrences of letter a in G, .

A schematic description of the reduction is depicted in Figure 2 and a full
example involving 3 binary words in given in Appendix (subsections Describing
the 01-LCS instance and Full example for shuffled square words).

We now claim that there exists a common subsequence with p letters 0
and ¢ letters 1 common to all sequences of U if and only if w is a square for
the shuffle product. It will be convenient to see the reduction as a flow-like
procedure, where some piece of information (the common subsequence) emitted
from gadget W (the source) propagates lossless to gadget W; (the sink) going
through all gadgets W;, 1 < i < m (every such gadget being associated to an
input word of our input instance of 01-LCS).

For the forward direction, suppose that there exists a common subsequence
v of the words uy,us, ..., u, with p occurrences of the letter 0 and ¢ occurrence
of the letter 1. Write k = p+q and v = v1vy...vg. According to Lemma 1, it is
enough to show that G, has an inclusion-free perfect matching. Now, observe
that v is a subsequence of both the (07 1)? 0P-factor of Wy and the (07 1)? 0P-
factor of Wy (see Lemma 3). Furthermore, by hypothesis (and construction),
v also occurs in each gadget word W/, 1 < i < m. Fix any occurrence of v
as a subsequence in (i) the (0P 1)? 0P-factor of Wj, (ii) the (0P 1)? 0P-factor
of Wi, and (iii) in every W/ gadget word, 1 < ¢ < m (if W] contains several
occurrences of v as a subsequence, we fix any but the same occurrence in the
two W/ gadget words.) We can now turn to defining an inclusion-free perfect
matching M of G,,. This perfect matching contains both intra-gadget edges
(i.e., edges connecting two identical letters that occur in the same gadget word),
and inter-gadget edges (i.e., edges connecting two identical letters that occur in
distinct - but consecutive - gadget words).

Intra-gadget edges:
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e M contains (i) the (s, s)-edge, (ii) the (s’, s’)-edge, and (iii) pg pairwise
crossing edges that connect the leftmost pq letters 0 of W to the pq letters
0 of the (0P 1)? 0P-factor of Wy that do not correspond to the chosen
occurrence of the common subsequence v in the (0P 1)? 0P-factor of Wj.

e For every 1 < i < m, M contains (i) the (z;,z;)-edge,, (ii) the (vi,y;)-
edge, (iii) n — 1 pairwise crossing edges connecting the n — 1 occurrences
of letter z; in the leftmost W/ gadget word to the n — 1 occurrences of
letter z; in the rightmost W/ gadget word, and (iv) n — p — ¢ pairwise
crossing edges connecting the n — p — ¢ letters of the leftmost W/ gadget
word that do not correspond to the chosen occurrence of v in W) to the
n —p — q letters of the rightmost W gadget word that do not correspond
to the occurrence of v in W7.

e M contains (i) the (t,t)-edge, (ii) the (¢',t')-edge, and (iii) pq pairwise
crossing edges connecting the pq letters 0 of the (07 1)? 0P-factor of W
that do not correspond to the chosen occurrence of the common subse-
quence v in the (0P 1)9 0P-factor of W to the last pqg letters 0 of Wy.

Inter-gadget edges:

e M contains p+ ¢ pairwise crossing edges connecting the p+ ¢ letters of the
(0P 1) 0P-factor of W, that correspond to the chosen occurrence of the
common subsequence v in the (0P 1)9 0P-factor of W to the p + ¢ letters
of the leftmost W/ gadget word that correspond to the chosen occurrence
of the common subsequence v in Wy.

e For every 1 < i < m, M contains p+ q pairwise crossing edges connecting
the p + ¢ letters of the rightmost W gadget word that correspond to the
chosen occurrence of v in Wy to the p + ¢ letters of the leftmost W, ;
gadget word that correspond to the chosen occurrence of v in Wy, ;.

e M contains pq pairwise crossing edges connecting the p 4 ¢ letters of the
rightmost W/ gadget word that correspond to the chosen occurrence of
the common subsequence v in W/ to the p+q letters of (07 1)? 0P-factor of
W; that correspond to the chosen occurrence of the common subsequence
.

It can be easily verified that M is a perfect inclusion-free matching. Indeed,
all inter-gadget edges in M are pairwise crossing (and inter-gadget edges in
M connect consecutive gadgets words), and no two intra-gadget edges are in
inclusion.

For the reverse direction, suppose that w is a square for the shuffle prod-
uct. Once again, according to Lemma 1, this amount to saying that G, has
an inclusion-free perfect matching M. We begin with a sequence of easy ob-
servations. First, observe that the letters s, s, ¢, ¢/, z; (1 < i < m), and y;
(1 <i < m) occur exactly twice in w, and hence the 2m + 4 edges connecting
these vertices two by two have to be in M since it is perfect. In other words, M



contains the (s, s)-edge, the (s’, s')-edge, the (t,t)-edge, the (¢',t')-edge, and the
(24, x;)-edge and the (y;, y;)-edge for 1 < i < m. Let us now focus on the source
W, gadget word. Since both the (s, s)-edge and the (s', s’)-edge are in M, then
it follows that (i) no edge in M can connect two identical letters occurring in
the (0P 1)¢ 0P-factor of W, and (ii) no edge in M can connect two identical
letters occurring in the 0P9-factor of Ws. Then it follows that M contains pg
pairwise crossing edges connecting all letters from the 0P¢-factor of Wy to pg
letters 0 occurring in the (0P 1)? 0P-factor of Wy (otherwise M would not be
inclusion-free). Similar considerations apply to W; yielding (i) no edge in M
can connect two identical letters occurring in the (0P 1)? 0P-factor of W;, and
(ii) no edge in M can connect two identical letters occurring in the 0P9-factor of
W;. Then it follows that M contains pq pairwise crossing edges connecting pq
letters 0 occurring in the (0P 1)? 0P-factor of W; to all letters from the 0P2-factor
of W; (otherwise M would not be inclusion-free). We now turn to the W; gad-
get words. For every 1 < ¢ < m, M has to contain both the (z;,z;)-edge and
(yi, yi)-edge, and hence M contains n — 1 pairwise crossing edges connecting
the n — 1 letters z; of the leftmost W/ gadget word to the n — 1 letters z; of the
rightmost W/ gadget word (otherwise one edge connecting two letters z; would
be included in the (x;, x;)-edge or in the (y;, y;)-edge).

According to the above, p+ g letters of W have to be involved in some inter-
gadget edges of M. But M contains the (z1,z1)-edge, an hence these p + ¢
inter-gadget edges are pairwise crossing and each connect a letter occurring
in the (0P 1)¢ OP-factor of Wy to a letter in the leftmost W] gadget word.
Now, since the 2(n — 1) occurrences of letter z; are involved in n — 1 pairwise
crossing edges, then it follows that M contains n — p — g pairwise crossing edges
connecting the n —p— ¢ letters u; ; of the leftmost W] gadget word that are not
involved in the leftmost p 4 ¢ inter-gadget edges to n — p — ¢ letters u; ; of the
rightmost W/ gadget word. Of particular importance, these n —p—q edges have
to be position preserving, i.e., each edge connect a letter u; ; of the leftmost
W1 gadget word to a letter uy ; of the rightmost W, gadget word for a same
position j. At this point, p 4 ¢ letters of the rightmost W/ gadget are yet to be
involved in M. Since M contains both the (y1,y1)-edge and the (z2, z2)-edge,
the only solution is that M contains p 4 ¢ pairwise crossing edges connecting
letters from the rightmost W{ gadget word to the leftmost W; gadget word.
The same process continues until p + ¢ pairwise crossing edges connecting the
rightmost W/, gadget word to the W; sink gadget word.

It follows from the examination of M that the p + g pairwise crossing edges
connecting p + ¢ letters of the (0P 1)? 0P-factor of Wy to p + ¢ letters of the
leftmost W/ gadget word define a word with p letters 0 and ¢ letters 1 that
occurs as a subsequence in each input word u;. O

It is worth noticing that S.C. Li and M. Li [13] proved that computing the
largest inclusion-free matching in a linear graph is NP-complete. However, their
quite complicated proof involves general linear graphs and not linear graphs that
are unions of cliques, and hence cannot be used in the context of shuffling words
(the above proposition may, however, be seen as a much simpler proof of Li and
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Li’s result).

We also notice that in the proof of Proposition 4, some letters occur exactly
twice in the constructed word w. Clearly, in this case, w cannot be the shuffle of
k > 3 identical copies of some word v € A*. We have thus proved the following.

Proposition 5. It is NP-complete to decide whether or not a word u € A* is
in the iterated shuffle of some word v € A* with u # v.

Another easy easy corollary of Proposition 4 is worth mentioning.

Proposition 6. For a palindromic word u € A*, it is NP-complete to deter-
mine whether or not there exists v € A* such that uw € vWwv. This remains true
even if one restricts v to be palindromic as well.

PrOOF. Let u € A* and let a be any letter not in A. Consider the palindromic
word w = uaau®. We claim that u is a square for the shuffle product if and
only if w is a square for the shuffle product.

Suppose first that u is a square for the shuffle product. Then, there exists
v € A* such that v € v v. We check at once that w € wau’ W vau’, and
hence w is a square for the shuffle product.

Conversely, suppose that w is a square for the shuffle product. Since a ¢ A,
then w € zay W zay for some words x,y € A*. Therefore, u € z LWz (and
uf® € y W y), and hence u is a square for the shuffle product. O

Anticipating Section 4, we observe that Proposition 7 can be rephrased as
follows.

Proposition 7. For a palindromic word u € A*, it is NP-complete to deter-
mine whether or not there exists v € A* such that u € v W v®. This remains
true even if one restricts v to be palindromic as well.

The case of binary alphabets (in a slightly altered question) is considered
in [4]. For a word u, let f(u) be the largest integer m such that there ex-
ist a word v of length m such that u contains a subsequence in v L v. Let
f(n, A) = min{ f(u) : u is of length n, over alphabet A}. It is shown in [4] that
2f(n,{0,1}) = n — o(n) using the regularity lemma for words. In other words,
any binary word of length n can be split into two identical subsequences and,
perhaps, a remaining subsequence of length o(n). A similar result is proven for
k identical subsequences of a word over an alphabet with at most k letters. An
additional outcome of Lemma 1 is worth mentioning in this context.

Proposition 8. Letu € A*. There is a polynomial-time approzimation scheme
(PTAS) for computing the longest subsequence of w that is a square for the
shuffie product.

PROOF. Jiang gave a polynomial-time approximation scheme for computing the
largest inclusion-free matching in a linear graph [10]. The result now follows
from Lemma 1. U
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4. Being the shuffle of a word with its reverse

As we mentioned in Section 1, for a given w over some binary alphabet A,
it is polynomial-time solvable to determine whether or not there exists v € A*
such that v € v W v®. Indeed, if there exists v € A* such that u € v LW V%,
then u is an Abelian square (i.e., u = vv', where v’ is a permutation of v).
Furthermore, if u is a binary Abelian square, then there exists v € A* such that
u € v’ [17]. The equivalence is, however, no longer true for larger alphabets
(the words abcabe is an example of a ternary Abelian square that cannot be
written as an element of v L v for any word v). As a complementary result
to [17], we use again linear graphs to show that the problem is NP-complete
for large alphabets. We need the following equivalence which can be seen as
the analogous of Lemma 1 (see Fig. 3 for an illustration.); the lemma corrects
a mistake in the former version of the paper [18].

MRed

0006@0

MBlue

Figure 3: The linear graph G, of u = abbbbbab together with and a precedence-free perfect
matching M’ that can be partitioned into two towers. The perfect matching M’ denotes
a b b

u € vw ol for v = abba and reads as u = b 5

with the first copy

of v on top and the second on bottom.
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Lemma 9. Let u € A?" for some alphabet A, and G, be the corresponding
linear graph. Then, there exists v € A™ such that u € vWv® if and only if there
exists a precedence-free perfect matching in G, that can be partitioned into two
towers.

PROOF. Suppose that there exists v = vivy...v, € A™ such that wu is in the
shuffle of v with its reverse. Then the first half of © must contain some prefix
of v, say v1vs ... vk, and the second half of u must contain the remaining suffix
of v, say Vg4+1Vg42 - .. v,. Then it follows that the second half of « must contain
(in the remaining positions) some prefix of v, reversed. But a straightforward
counting argument shows that that this prefix must be vvs ... v;. Therefore,
the first half of u must contain the remaining symbols of v, reversed. This shows
that the first half of u is just vvs ... v shuffled with (viy1ve42...v,)%, and
the second half of u is just vgvg11 ... v, shuffled with (vivs...v;)%. Construct
a perfect matching M of G,, as follows: Join every letter of vivs...v; in the
first half of u to the corresponding letter of (vivs .. .vk)R in the second half of
u (call this set Mpeq), and every letter of (vpy1vVkyo...v,)" in the first half of
u to the corresponding letter of vg41vVg42 ... vy in the second half of u (call this
set Mpiye). Clearly, M is precedence-free (every edge connect a letter in the
first half of u to a letter in the second half of u) and can partitioned into two
towers (Mpgeq and Mpiye)

Conversely, suppose that there exists a precedence-free perfect matching
M in G, that can be partitioned into two towers, say Mpgoq and Mgy with
M = Mpeqa U Mgige. Since M is precedence-free, every edge of M connects a
letter in the first half of u to a letter in the second half of w. Let us say that
a letter of u is Red (resp. Blue) if is part of an edge in Mpeq (resp. Magiye) SO
that we may define ugeq (resp. upiue) to be the subsequence of u made of all
Red (resp. Blue) letters. Let uf.y (resp. ui.y) be the subsequences of u made
of all Red letters in the first (resp. second) half of u, and u}, . (resp. u2,..)
be the subsequences of u made of all Blue letters in the first (resp. second)
haft of u. We claim that ui y u2,,. = (Up,0 Uzeq)T, thereby proving the lemma
as U € (Upeg Usrye) L (Uppye Useq) is immediate by construction. Indeed, since
MReq and Mpjye are towers, we have ul; = (u2.4)® and u;,. = (u2).)%, and

hence uéed uglue = (uged)R (uélue)R = (uélue u%ed)R' U

We now turn to proving hardness. Whereas the general idea of the reduction
is the same as in the proof of Proposition 4, the proof turns out to be a little
bit more complex.

Proposition 10. For a word u € A*, it is NP-complete to determine whether
or not there exists v € A* such that u € v L v,

PROOF. The problem is certainly in NP. Again, to prove hardness, we pro-
pose a polynomial-time reduction from the NP-complete LONGEST COMMON
SUBSEQUENCE problem for binary words (01-LCS): Given a collection of words
U = {up,uz,...,un}, u; € {0,1}* for 1 < i < m, and positive integers p and
q, decide whether there exists a subsequence of size p + ¢ with p letters 0 and
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q letters 1 common to all sequences of U [15]. According to Lemma 2, we may
assume that |u;| = |u;| for 1 < i < j < m. We write (U,p,q) for such an
instance of 01-LCS.

Let (U,p,q), U = {u1,ua,...,un}, u; € {0,1}* for 1 < i < m and |u;| =
luj| =n for 1 <i < j < m, be an arbitrary instance of 01-LCS. Let Z = {z; ; :
1<i<m A 1<j<n} bean alphabet of m(n+ 1) new letters, and, for every
1 <7 < m, define the word z; = z;1 2, ... 2; nt1 of length n.

Let us construct from this instance a word w over the (mn(n + 3) 4 7)-size
alphabet A defined as follows:

A={0,1} U
{r,b1,b2,t1,t2} U
{zi,y; : 1 <i<m}U
{zi; :1<i<m AN 1<j<n+1}

The word w is defined by
w:Vt Vm Vm—l V1VS W5W1 W2 Wm Wt

where Vi, Wy, Vi, Wy, Wy, Wa, ... . Wy, Vi, Vo, ..., V,, are words in A* (we refer
to these words as our gadget words).

Let us now describe the various gadget words. The two source gadget words,
denoted V, and W, are defined as follows:

Vg =T b1 Opq bg
WS =T bg (Op 1)q Op X1 b1
where r, by and by are three letters that do not occur in any other gadget word

(21 will appear soon in gadget word V7). The two sink gadget words, denoted
Vi and Wy, are defined as follows:

Vi =t1 ta (0P 1)9 0P

Wt =1 Ym 0Pe to
where t; and ty are two letters that do not occur in any other gadget word (y,,
will appear soon in gadget word V,,,). For each input word w; = u; 1 u;2 ... Ujn,

the two associated gadget word, denoted V; and W;, are defined by:

Vi =i yi (2 Wy u;)®

W, = 21 Wp ug %fiZI
T Yi—1 (ZZ Ly Uz) ifn>1

Notice that letters x;, y; and 2; 5, 1 < j < n+1, only occur in the gadget words

14



V; and W;. By construction we have
Vsl =pg+3
(Wil =pg+p+q+4
Vil =pg+p+q+2

[Wi| =pg +3
Vil=2n4+3 (1<i<m)
|W1|:27’L+1

[Wil=2n+3 (2<i<m),
and hence |w| = 4pg + 2(p + q) + 2m(2n + 3) + 10. Furthermore,

Vi Vin Vi1 oo ViV = [W o Wy Wy L W, Wi
=pg+p+qg+m@2n+3)+5
|w]
2

(i€, Vi Vip Vi1 ... V4 V5 is the first half of w and W, Wy Wy ... W,,, W, is
the second half of w).

As in the proof of Proposition 4, with the corresponding linear graph G,
in mind, for any letter a € A occurring only twice in w, we shall write (a,a)-
edge to designate (without any ambiguity) the unique edge connecting the two
occurrences of letter a in G,,.

A schematic description of the reduction is depicted in Figure 4 and a full
example involving 3 binary words in given in Appendix (subsections Describing
the 01-LCS instance and Full example for shuffled square words with reverse).

We now claim that there exists a common subsequence with p letters 0 and ¢
letters 1 common to all sequences of U if and only if there exists v € {0,1}* such
that w € vwov®. Albeit less obvious than in Proposition 4, it will be nevertheless
convenient to see the reduction as a flow-like procedure, where some piece of
information (the common subsequence) emitted from the source (the Vi and
W, word gadgets), propagates ”lossless” to the target (the V; and W, gadgets)
going through all gadgets V; and W;, 1 < ¢ < m (every such pair of gadgets
being associated to an input word of our input instance of 01-LCS). Note that
7lossless” has here to be understood in the broadest sense of the term since, as
we shall see soon, dealing with precedence-free perfect matchings that can be
partitioned into two towers challenge us to consider in the constructed word w
both a input string and its reverse, and hence both the common subsequence
(viewed as some data) and its complement with respect to each input words.

For the forward direction, suppose that there exists a common subsequence
v of the words uq, ug, . .., u, with p occurrences of the letter 0 and ¢ occurrence
of the letter 1. Write k = p+ ¢ and v = v1vy...vg. According to Lemma 9, it
is enough to show that G,, has a precedence-free perfect matching in G, that
can be partitioned into two towers. Now, observe that v is a subsequence of
both the (0P 1)? 0P-factor of Wy and the (0P 1)? 0P-factor of V;. Furthermore,
by hypothesis (and construction),

15
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v occurs in each gadget word V;, 1 < i < m,

v occurs in each gadget word W;, 1 <¢ < m.

Fix any occurrence of v as a subsequence in (i) the (0P 1)? 0P-factor of Wi,
(ii) the (0P 1)9 OP-factor of W, and (iii) in every W; gadget word, 1 < i < m.
Furthermore, fix any occurrence of v't as a subsequence in every V; gadget word,
1 < ¢ <m. We can now turn to defining a precedence-free perfect matching M
in G,, that can be partitioned into two towers. For the sake of presentation,
let us use the colours Red and Blue. The matching M is precisely defined as
follows:

M contains the (r,r)-edge. These two edges are coloured Red.

M contains the (b, b1)-edge and the (bg, by)-edge. These two edges are
coloured Blue.

M contains pq edges that connect the pq letters 0 of V; to the pq letters
0 of the (0P 1)? 0P-factor of Wy that do not correspond to the chosen
occurrence of the common subsequence v in the (07 1)? 0P-factor of Wi.
These pg edges form a tower and are coloured Blue.

M contains the (z;,x;)-edge for 1 < i < m. These m edges form a tower
(by construction) and are coloured Red.

M contains the (y;,y;)-edge for 1 < i < m. These m edges form a tower
(by construction) and are coloured Blue.

M contains the p+ ¢ edges that connect the p letters 0 and ¢ letters 1 that
correspond to the chosen occurrence of the common subsequence v in the
(0P 1)2 0P-factor of Wy to the p letters 0 and ¢ letters 1 that correspond
to the chosen occurrence of the common subsequence v in V;. These m
edges form a tower (by construction) and are coloured Red.

M contains the p + g edges that connect the p letters 0 and ¢ letters 1
that correspond to the chosen occurrence of the common subsequence v in
the (0P 1)? 0P-factor of W;, 1 <i < m — 1 to the p letters 0 and ¢ letters
1 that correspond to the chosen occurrence of the common subsequence
v in Vi;1. These p + q edges form a tower (by construction) and are
coloured Red.

For every 1 <1i < m, M contains the n + 1 (z; ;, z; ;)-edges together with
n—p—q edges that connect that connect the p letters 0 and q letters 1 that
do not correspond to the chosen occurrence of the common subsequence
v in V; to the p letters 0 and ¢ letters 1 that do not correspond to the
chosen occurrence of the common subsequence v in W;. These 2n—p—qg+1
edges form a tower (by construction) and are coloured Blue.
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M contains the p+ ¢ edges that connect the p letters 0 and ¢ letters 1 that
correspond to the chosen occurrence of the common subsequence v in the
(0P 1)4 0P-factor of W, to the p letters 0 and ¢ letters 1 that correspond
to the chosen occurrence of the common subsequence vt in the (0P 1)7 0P-
factor of W;. These p + ¢ edges form a tower (by construction) and are
coloured Red.

e M contains the pg letters 0 that do not correspond to the chosen occur-
rence of the common subsequence v® in the (0P 1) 0P-factor of Wy to the
pq letters 0 if V;. These pq edges form a tower (by construction) and are
coloured Blue.

e M contains the (¢1,¢;)-edge. This edge is coloured Red.
e M contains the (to, t2)-edge. This edge is coloured Blue.

It is a tedious simple matter to check that M is a precedence-free perfect match-
ing in G, that can be partitioned into two towers (Red and Blue above).

For the reverse direction, suppose that there exists v such that w € v W
v, Once again, according to Lemma 9, this amount to saying that G,, has a
precedence-free perfect matching M that can be decomposed into two towers.
Let us colour the edges of first tower with the colour Red and the edges of
the second tower with the colour Blue. We begin with a sequence of easy
observations. First, observe that M being precedence-free, every edge in M
has to join a letter in the first half of w to a letter in the second half of w (the
first half of w terminates at the first occurrence of the letter bo in V). We
now observe that the letters r, by and by occur exactly twice in w, and hence
the 3 edges connecting these vertices two by two have to be in M since it is
perfect. In other words, M contains the (r,r)-edge, the (b1, b1)-edge, and the

(ba, by )-edge. But these three edges induce the subgraph @ as w contains

the subsequence r by by r by by. Then it follows that the the (b1, b;)-edge and the
(b, bz)-edge are part of the same tower in M and hence are coloured with the
same colour, say Blue, and that the (r,r)-edge is part of the other tower in M,
and hence is coloured with the other colour, say Red. Let us now focus on Vj
in its entirety. Recall that V; = r by 072 by and that bs is the last letter of the
first half of w. Therefore, since M is a precedence-free matching no two letters
0 of Vi are connected by an edge in M. We show that every letter 0 of Vi is
connected to a letter 0 of W in M. Indeed, any edge of M involving a letter 0
of Vi is crossing with the (r,7)-edge of M and hence the pq letters 0 of V, are
involved in pg Blue pairwise stacking edges in M. But the (by, b;)-edge is also
coloured Blue, and hence every letter 0 of V; is connected to a letter 0 of Wi
in M (b; is indeed the last letter of Wy). Turning now to Wy, p letters 0 and
q letters 1 of the 0P(107)9-factor are not involved in the above-mentioned Blue
pairwise stacking edges of M. But W; is in the second half of w and hence
neither two letters 0 of W nor two letters 1 of W are connected by an edge in
M. Furthermore, any edge of M involving any of these p + ¢ letters is crossing
with the (b1, b1)-edge that is coloured Blue, and hence has to be coloured Red.
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Now, thanks to the (z1,21)-edge (the letter x; occurs exactly twice in w, and
hence the (x1,z1)-edge has to be in M since it is perfect), we see that these
p+ q letters of Wy are connected in M to letters of V3. We now turn to V3. By
construction the n + 1 letters z; ; have to be involved in n + 1 pairwise stacking
edges with the n + 1 letters z; ; in W;. But these n + 1 edges together with
the (y1,y1)-edge are all crossing with the (z1,z1)-edge that is coloured Red,
and hence have to coloured Blue. Now, thanks to the Blue (y1,y;)-edge, the
remaining n — p — q letters 0 or 1 of V; are also involved in this Blue stacking
with letters in W;. Furthermore, thanks to the z; ; letters, these edges match
position at position. The same process continues until p + ¢ pairwise nested
edges connecting the rightmost V; gadget word to the W, sink gadget word.

It follows from the examination of M that the p + ¢ pairwise nested edges
connecting p + ¢ letters of the (0P 1)? 0P-factor of Wy to p + ¢ letters of the
V1 gadget word define a word with p letters 0 and ¢ letters 1 that occurs as a
subsequence in each input word ;. O

It is worth mentioning that if we drop the partition into 2 towers constraint
in Lemma 9, we are left with a polynomial-time solvable problem as finding a
maximum size precedence-free matching in a linear graph is polynomial-time
solvable [7, 22, 23] (this problem is nothing but Abelian square recognition).

5. Conclusion and Open problems

In this paper we have used a (union of cliques) linear graph framework to
show that it is NP-complete to recognize those words that squares for the shuffle
product. Using the same framework, we have proved that recognizing those
words that are the shuffle of another word with its reverse is also NP-complete.

There are a number of further directions of investigation in this general sub-
ject. We mention one open problem that is, in our opinion, the most interesting.
How hard is the problem of detecting squares for the shuffle product for bounded
alphabet words? It is proved in [5] that the problem is NP-complete for an al-
phabet with 9 symbols (it is claimed that this can be improved to 7 letters).
Notice that it is claimed without proof in [2] (Fact 2 Subsection 2.2) that de-
tecting squares for the shuffle product is NP-complete for binary words. This
result — that would be an important improvement over [5] and Proposition 4 —
is yet to be confirmed.
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Appendix

This appendix is devoted to illustrating the proofs of Proposition 4 and
Proposition 10. In the subsection Describing the 01-LCS instance we describe
a specific instance of the 01-LCS problem. In the subsection Full example for
shuffled square words (resp. Full example for shuffled square words with reverse)
we fully construct exhibit the construction as described in Proposition 4 (resp.
Proposition 10). Notice that we do use the same specific 01-L.CS instance i, the
two example constructions.

Describing the 01-LCS instance

Recall that the LONGEST COMMON SUBSEQUENCE for binary words (writ-
ten 01-LCS for short) is defined as follows: Given a collection of words U =
{ur,uz, ..., um}, u; € {0,1}* for 1 < i < m, and a positive integer k, decide
whether there exists a subsequence of size k common to all sequences of U [15].
Without loss of generality, we may assume that |u;| = |u;| for 1 < i< j <m,
and that that we are looking for a common subsequence with p letters 0 and
q letters 1, k = p + q. We write (U,p,q) for such an instance of the 01-LCS
problem.

In what follows, we consider the specific instance of the 01-LCS problem
U = {u1,ua,us}, where u; = 0001011, us = 0010100 and w3 = 1010101. For
p = 3 (i.e., number of letters 0 is the sought solution) and ¢ = 2 (i.e., number
of letters 1 is the sought solution), a solution is given by w = 00101. Aiming at
better illustrating the reductions used in Proposition 4 and Proposition 10, we
fix an arbitrary occurrence of the solution w = 00101 in each input word ui, us
and ug as follows:

w=(© o (@ ()
w=(0) (© ()
us 1 (o) 1 (o)
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Figure 5: The intra-gadget edges in gadget W for the solution 00101. Double arrows designate
free letters (i.e. letters that are not involved in these intra-gadget edges).

Full example for shuffled square words

We present the solution for the reduction used in Proposition 4 for the
specific instance of the 01-LCS problem U = {u1, ug, us}, where u; = 0001011,
ug = 0010100 and ug = 1010101, with p = 3 and ¢ = 2. The occurrence of the
solution in each input string wq, us and ug is assumed to be the one given in
Subsection Describing the 01-LCS instance.

We have decomposed the whole construction into a sequence of five figures
describing the various parts:

Figure 5: the intra-gadget edges in gadget word Wi,

Figure 6: the inter-gadget edges for gadget words Wy and W; (gadget
word Wy is not fully represented) together with the intra-gadget edges in
gadget word W7,

Figure 7: the inter-gadget edges for gadget words W; and Ws (gadget
word Wi is not fully represented) together with the intra-gadget edges in
gadget word Wa,

Figure 8: the inter-gadget edges for gadget words Ws and W3 (gadget
word W is not fully represented) together with the intra-gadget edges in
gadget word W3, and

Figure 9: the inter-gadget edges for gadget words Wy and W; (gadget
word W3 is not fully represented) together with the intra-gadget edges in
gadget word W.
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Figure 10: The edges connecting gadget words Vs and Ws. Double arrows designate free letters
in gadget word Wy (i.e. those letters of Wy that are not involved in these edges connecting
gadget words Vs and W).

Full example for shuffled square words with reverse

We present the solution for the reduction used in Proposition 10 for the
specific instance of the 01-LCS problem U = {uy, us,us}, where u; = 0001011,
ug = 0010100 and uz = 1010101, with p = 3 and ¢ = 2. The occurrence of the
solution in each input string w;, us and ug is assumed to be the one given in
Subsection Describing the 01-L.CS instance.

We have decomposed the whole construction into a sequence of five figures
describing the various parts:

e Figure 10: the edges connecting gadget words V; and Wi,

e Figure 11: the edges connecting gadget words W, and V; and the edges
connecting gadget words V7 and W,

e Figure 12: the edges connecting gadget words W7 and V5 and the edges
connecting gadget words Vo and W,

e Figure 13: the edges connecting gadget words W5 and V3 and the edges
connecting gadget words V3 and W3, and

e Figure 14: the edges connecting gadget words W3 and V; and the edges
connecting gadget words V; and W;.
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