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A NEW LOWER BOUND FOR THE ON-LINE COLORING OF

INTERVALS WITH BANDWIDTH

PATRYK MIKOS

Abstract. The on-line interval coloring and its variants are important com-
binatorial problems with many applications in network multiplexing, resource
allocation and job scheduling. In this paper we present a new lower bound of
4.1626 for the competitive ratio for the on-line coloring of intervals with band-
width which improves the best known lower bound of 24

7
. For the on-line coloring

of unit intervals with bandwidth we improve the lower bound of 1.831 to 2.

1. Introduction

An on-line coloring of intervals with bandwidth is a two-person game, played in
rounds by Presenter and Algorithm. In each round Presenter introduces a new
interval on the real line and its bandwidth - a real number from [0, 1]. Algorithm
assigns a color to the incoming interval in such a way that for each color γ and
any point p on the real line, the sum of bandwidths of intervals containing p and
colored γ does not exceed 1. The color of the new interval is assigned before
Presenter introduces the next interval and the assignment is irrevocable. The goal
of Algorithm is to minimize the number of different colors used during the game,
while the goal of Presenter is to maximize it.
An on-line coloring of unit intervals with bandwidth is a variant of on-line col-

oring of intervals with bandwidth game in which all introduced intervals are of
length exactly 1.
In the context of various on-line coloring games, the measure of quality of a

strategy for Algorithm is given by the competitive analysis. A coloring strategy
for Algorithm is r-competitive if it uses at most r ·c colors for any c-colorable set of
intervals. The absolute competitive ratio for a problem is the infimum of all values
r such that there exists an r-competitive strategy for Algorithm for this problem.
Let χA(I) be the number of colors used by Algorithm A on the set I of intervals
with bandwidth, and OPT (I) be the minimum number of colors required to color
intervals in the set I.
The asymptotic competitive ratio for Algorithm A, denoted by R∞

A , is defined as
follows:

R∞

A = lim inf
k→∞

{χA(I)
k

: OPT (I) = k}
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The asymptotic competitive ratio for a problem is the infimum of all values R∞

A

such that A is an Algorithm for this problem.
In this paper we give lower bounds on competitive ratios for on-line coloring of

intervals with bandwidth and for unit version of this problem. We obtain these
results by presenting explicit strategies for Presenter that force Algorithm to use
many colors while the presented set of intervals is colorable with a smaller number
of colors.

1.1. Previous work. A variant of on-line coloring of intervals with bandwidth
in which all intervals introduced by Presenter have bandwidth 1 is known as an
on-line interval coloring. The competitive ratio for this problem was established by
Kierstead and Trotter [6]. They constructed a strategy for Algorithm that uses at
most 3ω− 2 colors on ω-colorable set of intervals. They also presented a matching
lower bound – a strategy for Presenter that forces Algorithm to use at least 3ω−2
colors. The unit variant of the on-line interval coloring was studied by Epstein and
Levy [4]. They presented a strategy for Presenter that forces Algorithm to use at
least

⌊

3ω
2

⌋

colors. Moreover, they showed that a natural greedy algorithm uses at
most 2ω − 1 colors.
A variant of the on-line coloring of intervals with bandwidth in which all intervals

have the same endpoints is known as the on-line bin packing, see [3] for a survey.
On-line coloring of intervals with bandwidth was first posed in 2004. Adamy and

Erlebach [1] showed a 195-competitive algorithm for this problem. An improved
analysis by Pemmaraju et al. [8] showed that Adamy-Erlebach algorithm has com-
petitive ratio 35. Narayanaswamy [7] and Azar et al. [2] presented a 10-competitive
algorithm, while Epstein and Levy [5] showed a lower bound of 24

7
for the asymp-

totic competitive ratio in this problem. On-line coloring of unit intervals with
bandwidth was studied by Epstein and Levy [5]. They presented a lower bound
of 2 and upper bound of 7

2
for the absolute competitive ratio in this problem. For

the asymptotic competitive ratio, they showed a 3.178-competitive algorithm and
a lower bound of 1.831.

1.2. Our result. For the on-line coloring of intervals with bandwidth, we prove
that the asymptotic competitive ratio is at least 4.1626. For the on-line coloring of
unit intervals with bandwidth, we present an explicit strategy for Presenter that
forces Algorithm to use at least 2k − 1 different colors while the presented set of
intervals is k-colorable.
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2. Interval coloring

At first we recall a strategy proposed by Kierstead and Trotter for Presenter in
the on-line interval coloring game. We use this strategy as a substrategy in our
main result.

Theorem 1 (Kierstead, Trotter [6]). For every ω ∈ N+, there is a strategy for

Presenter that forces Algorithm to use at least 3ω−2 different colors in the on-line

interval coloring game played on a ω-colorable set of intervals. Moreover, Presenter

can play in such a way that every introduced interval is contained in a fixed real

interval [L,R].

Below we present a strategy for Presenter in the on-line coloring of intervals with
bandwidth. For a fixed k ∈ N+, we ensure that at any point of the game, the set
of intervals introduced by Presenter is k-colorable.

Definition 2. A pair of sequences ([j1, . . . , jn], [x1, . . . , xn]) such that xi ∈ N+, ji|k
and ∀q<i : jq < ji 6

1
3
k is called a k-schema.

Not every k-schema describes a strategy for Presenter. Later we give additional
conditions that a given k-schema has to satisfy to describe a valid strategy.
The strategy for Presenter based on a k-schema ([j1, . . . , jn], [x1, . . . , xn]) consists

of 2 phases. The first phase, called separation phase, consists of n subphases
indexed 1, . . . , n. Let M be the set of marked intervals, which initially is empty.
For each color c used by Algorithm in the separation phase, the set M contains
the first interval colored by Algorithm with c.
All intervals introduced by Presenter in the i-th subphase are contained in same

region [Li, Ri], have length si =
1
2
(Ri − Li), and bandwidth ji

k
, see Figure 1. Let

li be the rightmost right endpoint of a non-marked interval introduced in the i-th
subphase, or li = Li + si if such an interval does not exist. Let ri be the leftmost
right endpoint of a marked interval introduced in the i-th subphase, or ri = Ri if
such an interval does not exist. For the first subphase set L1 = 0, R1 = 2 and for
the i-th subphase Li = li−1 and Ri = ri−1, see Figure 1, where li−1 and ri−1 are
values of those variables after the end of the (i− 1)-subphase.
In the i-th subphase, Presenter introduces new intervals until gets exactly xi new

colors. Let pi =
1
2
(li + ri). A new interval introduced by Presenter has endpoints

I = [pi − si, pi]. If Algorithm colors I with one of already used colors, then li
changes to pi. Otherwise, ri changes to pi and interval I is marked.
Assume that Presenter constructs some coloring after each subphase. Let Γi

be the number of colors used by Presenter in that coloring on intervals in the
set M after i-th subphase, see Figure 2. In the second phase, called the final

phase, Presenter uses a strategy from Theorem 1 in the real interval [Ln+1, Rn+1]
for ω = k − Γn. Each interval introduced by Presenter in the final phase has
bandwidth 1. This completes the description of a strategy for Presenter based on
a k-schema.
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Li−1 Ri−1li−1 ri−1

(i− 1)-th subphase

*

Li Riliri

i-th subphase

*
*

Figure 1. Intervals introduced in the i-th subphase in relation to
the intervals introduced in the (i− 1)-th subphase. Marked intervals
are marked with *.
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✻
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Figure 2. Distribution of intervals in the first i−1 separation sub-
phases.

Now, we show when a given k-schema ([j1, . . . , jn], [x1, . . . , xn]) actually describes
a valid strategy for Presenter, i.e. when Presenter is able to force Algorithm to use
at least xi new colors in the i-th subphase.

During the i-th subphase, we have Li+si 6 pi 6 Ri. Thus, the distance between
rightmost right endpoint of an interval introduced in the i-th subphase and leftmost
right endpoint of interval introduced in this phase is at most si, hence all intervals
introduced by Presenter in the i-th subphase form a clique. See Figure 1.
Note that to the right of li−1 there are only marked intervals from subphases

1, . . . , i − 1. Each interval introduced in the i-th subphase intersects with every
interval previously introduced in the i-th subphase and all marked intervals from
subphases 1, . . . , i− 1. Thus, if Presenter introduces at most k

ji
(k − Γi−1) intervals

in the i-th subphase, then all intervals can be colored with k colors.
4



Intervals introduced in the i-th subphase intersect with exactly χi−1 marked
intervals from subphases 1, . . . , i− 1 and by the definition of set M each of them
has a different color. Thus, in the real interval [Li, Ri], each color marked in a

subphase 1 6 q < i has accumulated bandwidth jq
k
. We assumed that ∀q<i : jq < ji,

hence at most k
ji
− 1 intervals can be colored with a color c that was used in the

previous subphases. Thus, in the i-th subphase Algorithm can be forced to use at

least ∆i =
⌈

ji
k

(

k
ji
(k − Γi−1)− χi−1

(

k
ji
− 1

))⌉

= k − Γi−1 − χi−1 +
⌈

ji
k
χi−1

⌉

new

colors.
After i-th subphase, Presenter assigns colors to the intervals introduced in the

i-th subphase. First, to the new marked intervals using greedy algorithm. Then
to the non-marked intervals from i-th subphase using at most k colors in total.
Note that some intervals might be colored with some of already used Γi−1 colors.
Because the number of new marked intervals in the i-th subphase is exactly xi, each
of them has bandwidth ji and those intervals are colored using greedy algorithm,
then Γi is a properly defined quantity for a given k-schema and depends on jq and
xq for all q < i, but does not depend on the Algorithm’s coloring.

Definition 3. A k-schema ([j1, . . . , jn], [x1, . . . , xn]) is a k-strategy if ∀i : xi 6 ∆i.

Presenter using a k-strategy ([j1, . . . , jn], [x1, . . . , xn]) forces Algorithm to use
at least Σn

q=1xq + 3(k − Γn) − 2 colors, while the set of introduced intervals is
k-colorable.

Example 4. For a fixed k ∈ N+ and a k-strategy ([1], [k]) we have Γ1 = 1. Pre-

senter using this strategy forces Algorithm to use at least k+3(k − 1)− 2 = 4k− 5
colors, while the set of introduced intervals is k-colorable. Thus, the asymptotic

competitive ratio in the on-line coloring of intervals with bandwidth is at least 4.

ji 1 2 3 4 5 6 8 10 12 15 20 24 30
xi 120 1 1 1 1 1 2 2 2 4 5 4 8
Γi 1 2 2 2 2 2 2 2 2 3 4 4 6

Table 1. Example of a strategy S120.

Example 5. Consider the 120-strategy given by the values ji, xi and Γi from the

Table 1. Presenter using this strategy forces Algorithm to use 152+3(120− 6)−2 =
492 colors, while the set of introduced intervals is 120-colorable. Thus, the absolute

competitive ratio for the on-line coloring of intervals with bandwidth is at least 4 1
10
.

Example 5 is an example of a k-strategy for Presenter for a fixed k, and gives a
lower bound for the absolute competitive ratio. In order to give lower bounds for
the asymptotic competitive ratio, we introduce a notion of a scalable strategy.

5



Definition 6. For a k-strategy Sk = ([j1, . . . , jn], [x1, . . . , xn]), an ak-schema Sa
k =

([aj1, . . . , ajn], [ax1, . . . , axn]) for a ∈ N+ is called an a-scaled Sk schema.

Note that a-scaled k-strategy might not be an ak-strategy. For example S120 is
a 120-strategy but S3

120 is not a 360-strategy. To see this, observe that in S3
120 we

have 12 = x10 > ∆10 = 11.

Consider a zk-scaled Sk schema for z ∈ N+. We would like to introduce addi-
tional constraints on a k-strategy Sk that will ensure that Szk

k is a zk2-strategy.

In the i-th subphase of the game played using a schema Szk
k Presenter forces

Algorithm to use zkxi new colors. Each new marked interval has bandwidth
zkji
zk2

= ji
k

for some ji such that ji|k. Thus, these new intervals after i-th sub-

phase are colored by Presenter with ji
k
zkxi = zjixi colors. By induction, for the

Szk
k schema we have Γi = zΣi

q=1jqxq and χi = zkΣi
q=1xq. Presenter using this

schema in the i-th subphase can introduce k
ji
(zk2 − Γi−1) =

zk
ji

(

k2 − Σi−1
q=1jqxq

)

in-

tervals. Moreover, at most k
ji
− 1 intervals can be colored by Algorithm with an

already used color c. Thus, in the i-th subphase Algorithm is forced to use at

least ∆i =
⌈

ji
k

(

zk
ji

(

k2 − Σi−1
q=1jqxq

)

− zkΣi−1
q=1xq

(

k
ji
− 1

))⌉

new colors, which after

simplifying is ∆i = z
(

k2 + Σi−1
q=1(ji − jq − k)xq

)

. The Szk
k schema is a zk2-strategy

if ∀i : zkxi 6 ∆i. Thus, we have a condition

(1) xi 6 k +
1

k
Σi−1

q=1(ji − jq − k)xq

Definition 7. A k-strategy Sk that satisfies Equation (1) is called a scalable strat-
egy.

Note that Equation (1) does not depend on z. This leads to the following lemma.

Lemma 8. If a k-strategy Sk satisfies Equation (1), then for every z ∈ N+ a

zk-scaled Sk schema is a zk2-strategy.

Lemma 9. For every k, z ∈ N+ and a scalable k-strategy Sk the competitive ratio

guaranteed by the Szk
k strategy is not less than the competitive ratio guaranteed by

the Sk strategy.

Proof. Let Sk = ([j1, . . . , jn], [x1, . . . , xn]). Presenter using a strategy Sk forces
Algorithm to use X = Σn

i=1xi + 3(k − Γn) − 2 colors, while the set of intervals
introduced by Presenter is k-colorable. Presenter using a strategy Szk

k forces Al-
gorithm to use X̄ = Σn

i=1zkxi + 3
(

zk2 − Γ̄n

)

− 2 colors, while the set of intervals
introduced by Presenter is zk2-colorable. Observe that the number of colors re-
quired in greedy coloring of all intervals marked by Szk

k strategy is at most zk times
bigger than the number of colors required in greedy coloring of all intervals marked
by Sk strategy, i.e. Γ̄n 6 zkΓn. Thus, we have 1

zk2
X̄ > 1

k
X + 2

k
− 2

zk2
> 1

k
X .

�
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ji 1 2 3 4 5 6 8 10 12 15 20 24 30
xi 120 1 1 1 1 1 2 2 2 3 6 4 8
Γi 1 2 2 2 2 2 2 2 2 3 4 4 6

Table 2. Example of a scalable strategy S̄120

Example 10. Table 2 is a description of a scalable strategy with competitive ratio

4 1
10
. This strategy implies a lower bound of 4 1

10
+ 2

120
= 4 7

60
for the asymptotic

competitive ratio in the on-line coloring of intervals with bandwidth.

In order to obtain the best lower bound for the asymptotic competitive ratio
we can chose k to be a highly composed number. As a sequence j1, . . . , jn we
chose consecutive divisors of k and as a sequence x1, . . . , xn we greedily choose the
maximum numbers xi such that the resulting strategy is a scalable strategy.

Table 3 contains the list of lower bounds for the asymptotic competitive ratio
we got for some values of k using this method.

k ratio
60 4.0500000
120 4.1166667
360 4.1416667
840 4.1523809
2520 4.1587301
7560 4.1607142
10080 4.1611111
15120 4.1614417
25200 4.1615873
27720 4.1618326
110880 4.1621753
554400 4.1622763

k ratio
2162160 4.1624500
21621600 4.1624777
183783600 4.1625239
2327925600 4.1625617
48886437600 4.1625717
321253732800 4.1625883
4497552259200 4.1625893
97821761637600 4.1625961
866421317361600 4.1626008
4043299481020800 4.1626015
12129898443062400 4.1626018
224403121196654400 4.1626043

Table 3. A table of asymptotic competitive ratios for different val-
ues of k

Theorem 11. Asymptotic competitive ratio for the on-line coloring of intervals

with bandwidth is at least 4.1626.
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3. Unit intervals coloring

Theorem 12. For every k ∈ N+, there is a strategy for Presenter that forces

Algorithm to use at least 2k − 1 different colors in the on-line coloring of unit

intervals with bandwidth played on a k-colorable set of intervals.

Proof. For a given k ∈ N+, Presenter at first plays only the separation phase of a
k-strategy ([1], [k]). Because L1 = 0, R1 = 2 and s1 =

1
2
(R1−L1), every introduced

interval has length 1. Moreover, there is a point p1 = 1
2
(l1 + r1) such that every

marked interval has its right endpoint to the right of p1 and every non-marked
interval has its right endpoint to the left of p1.
Now, Presenter introduces k−1 intervals [p1, p1+1] of bandwidth 1 each. Every

interval introduced in this phase gets a new color. Thus, Algorithm uses |M| +
k − 1 = 2k − 1 colors in total, while the introduced set of intervals is k-colorable.

�

References

[1] Udo Adamy and Thomas Erlebach. Online coloring of intervals with bandwidth. In WAOA

2003: 1st International Workshop on Approximation and Online Algorithms, Budapest, Hun-

gary, September 2003. Proceedings, volume 2909 of Lecture Notes in Computer Science, pages
1–12, 2004.

[2] Yossi Azar, Amos Fiat, Meital Levy, and NS Narayanaswamy. An improved algorithm for on-
line coloring of intervals with bandwidth. Theoretical Computer Science, 363(1):18–27, 2006.

[3] János Csirik and Gerhard J. Woeginger. On-line packing and covering problems, pages 147–
177. Springer Berlin Heidelberg, Berlin, Heidelberg, 1998.

[4] Leah Epstein and Meital Levy. Online interval coloring and variants. In ICALP 2005: 32nd

International Colloquim on Automata, Languages and Programming, Lisbon, Portugal, July

2005. Proceedings, volume 3580 of Lecture Notes in Computer Science, pages 602–613, 2005.
[5] Leah Epstein and Meital Levy. Online interval coloring with packing constraints. In MFCS

2005: 30th International Symposium on Mathematical Foundations of Computer Science,
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