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Abstract

UPGMA (Unweighted Pair Group Method with Arithmetic Mean) is a widely used cluster-
ing method. Here we show that UPGMA is a greedy heuristic for the normalized equidistant
minimum evolution (NEME) problem, that is, finding a rooted tree that minimizes the min-
imum evolution score relative to the dissimilarity matrix among all rooted trees with the
same leaf-set in which all leaves have the same distance to the root. We prove that the
NEME problem is NP-hard. In addition, we present some heuristic and approximation
algorithms for solving the NEME problem, including a polynomial time algorithm that
yields a binary, rooted tree whose NEME score is within O(log®n) of the optimum.
Keywords: UPGMA, minimum evolution, balanced minimum evolution, hierarchical
clustering

2000 MSC: 68Q17, 05C05, 05C85, 92B05

1. Introduction

Clustering (i.e. subdividing a dataset into smaller subgroups or clusters) is a funda-
mental task in data analysis, and has a wide range of applications (see, e.g. [1]). An
important family of clustering methods aim to produce a clustering of a dataset in which
the clusters form a hierarchy where the clusters nest within one another. Such hierarchies
are typically represented by leaf-labeled tree structures known as dendrograms or rooted
phylogenetic trees. Introduced in 1958 [2], average linkage analysis, usually referred to as

UPGMA (Unweighted Pair Group Method with Arithmetic Mean), is arguably the most
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popular hierarchical clustering algorithm in use to date, and remains widely cited! and
extremely popular (see, e.g. [3]). This is probably because UPGMA is conceptually easy
to understand and fast in practice, an important consideration as big data sets are becom-
ing the norm in many areas. UPGMA is commonly used in phylogenetics and taxonomy
to build evolutionary trees [4, Chapter 11] as well as in related areas such as ecology [5]
and metagenomics [6]. In addition, it is used as a general hierarchical clustering tool in
bioinformatics and other areas including data mining and pattern recognition [7, Chapter
2.

UPGMA is a text-book algorithm that belongs to the family of agglomerative clustering
methods that share the following common bottom-up scheme (cf. e.g. [4, p.162]). They
take as input a dissimilarity D on a set X, i.e. a real-valued, symmetric map on X x X
which vanishes on the diagonal, and build a collection of clusters or subsets of X which
correspond to a rooted tree with leaf-set X. To do this, at each step two clusters with the
minimum inter-cluster dissimilarity are combined to create a new cluster, starting with the
collection of clusters consisting of singleton subsets of X, and finishing when the cluster
X is obtained. Different formulations of the inter-cluster dissimilarity, which specifies the
dissimilarity of sets as a function of the dissimilarities observed on the members of the sets,
lead to different heuristic criteria of the agglomerative methods. UPGMA, as the name
average linkage analysis suggests, uses the mean dissimilarity across all pairs of elements
that are contained within the two clusters. Formally, two clusters A, B C X are selected
for merging at each iteration step of UPGMA if the average

S Dla,b)

B e
is minimized over all possible pairs of clusters. Since the arithmetic mean is used, UPGMA
is often more stable than linkage methods in which only a subset of the elements within
the clusters are used (e.g. the single-linkage method).

UPGMA is commonly thought of as a method that greedily constructs a rooted phylo-
genetic tree that is closest to the input dissimilarity matrix in the least squares sense [8].

However, it is not guaranteed to do so, although it often does quite well in practice [4,

L According to Google Scholar, the method has been cited over 17,200 times during the period between
2011 and 2015.



p.162]. In [9] it was shown that the related Neighbor-Joining [10] method for construct-
ing unrooted phylogenetic trees from dissimilarity matrices can be thought of as a greedy
heuristic that minimizes the so-called balanced minimum evolution score. Here we shall
observe that (see Section 3), in a similar way, UPGMA is a greedy heuristic for computing
a rooted phylogenetic tree that minimizes the so-called minimum evolution score [11] over
all rooted phylogenetic trees on the same fixed leaf-set in which all leaves have the same
distance in the tree to the root. We refer to this optimization problem as the normalized
equidistant minimum evolution (NEME) problem, and expect that a better understanding

of this problem will provide further insights into the behavior of the UPGMA algorithm.

Theoretical properties of discrete optimization problems arising in the construction
of evolutionary trees have been studied for many years (for some earlier work see, e.g.
(12, 13, 14]). Among these, the problems falling under the name of minimum evolution
alone form a quite diverse family (see, e.g. [15]), in which the so-called balanced minimum
evolution problem [16] is a particularly well-studied member. For this problem it was
recently shown in [17] that for general n x nm-input dissimilarity matrices there exists a
constant ¢ > 1 such that no polynomial time algorithm can achieve an approximation
factor of ¢” unless P equals NP. We note that this hardness result does not rely on the
often imposed restriction (see, e.g. [18, 13]) that the edge lengths of the constructed tree
must be integers. Moreover, in contrast to general input dissimilarity matrices, for inputs
that are metrics (i.e. matrices that also satisfy the triangle inequality) a polynomial time
algorithm with an approximation factor of 2 is presented in [17]. Interestingly, the proof of
this approximation factor uses the fact that the balanced minimum evolution score of an
unrooted tree can be interpreted as being the average length of a spanning cycle compatible
with the structure of the tree [19].

Another recent, related direction of work considers the algebraic structure of the space
of rooted phylogenetic trees induced by the UPGMA method (see, e.g. [8, 20]). This
algebraic structure is tightly linked with the property of consistency of a tree construction
method, that is, those conditions under which the method is able to reconstruct a tree that
has been used to generate the input dissimilarity matrix (see, e.g. [21]). In the context of
our work, we are particularly interested in the consistency of methods that perform a local

search of the space of all rooted phylogenetic trees on a fixed set of leaves (see, e.g. [16]).



Again, balanced minimum evolution is the variant of minimum evolution for which some

consistency results of this type are known [22, 23].

After presenting some preliminaries in the next section, in Section 3 we begin by giving
an explicit formula of the minimum evolution score of a rooted tree T as a linear combination
of the input dissimilarities. This formula allows us to interpret the minimum evolution score
of T in terms of the average length of a minimum spanning tree compatible with the set of
clusters induced by 7.

Using this observation, we explain how UPGMA can be regarded as a greedy heuristic
for the NEME problem for binary rooted trees. In addition, we show that there are rooted
phylogenetic trees with n leaves on which some input dissimilarity matrix has an optimal
least squares fit while the NEME score of that tree for the same dissimilarity matrix is worse
than the minimum NEME score by a factor in Q(n?). This highlights the fact that the
NEME problem and searching for trees with minimum least squares fit are quite distinct
problems.

Next, in Section 4, we explore solving the NEME problem by performing a local search
of the space of binary rooted phylogenetic trees using so-called rooted nearest neighbor
interchanges as the moves in the local search. We show that this approach is consistent.
More specifically, for any input dissimilarity matrix that can be perfectly represented by a
unique binary rooted phylogenetic tree with all leaves having the same distance from the
root, we prove that the local search will arrive at this tree after a finite number of moves.

In Section 5 we show that the NEME problem is NP-hard even for n x n input distance
matrices that satisfy the triangle inequality and only take on O(logn) different values. In
light of this fact, in Section 6 we consider some approximation algorithms for solving the
NEME problem. More specifically, we first show that the tree produced by UPGMA can
have a score that is worse than the minimum score by a factor in €(n). Then, for dissimi-
larity matrices that satisfy the triangle inequality, we present a polynomial time algorithm
that yields a binary rooted phylogenetic tree whose NEME score is within O(log®n) of the

optimum. We conclude in Section 7 by mentioning two possible directions for future work.



2. Preliminaries

In this section we give a formal definition of the NEME problem and introduce some of
the notation and terminology that will be used throughout this paper.

Let X be a finite non-empty set. A dissimilarity on X is a symmetric map D : X x X —
R with D(z,z) = 0 for all z € X. In this paper, a rooted phylogenetic tree on X is a rooted
tree T' = (V, E, p) with (i) root p of degree 1, (ii) leaf set X and (iii) every vertex not
in X U {p} having degree at least 3. Note that even though we require the root to have
degree 1, we do not consider it a leaf of the tree. A normalized equidistant edge weighting
(NEEW) of a rooted phylogenetic tree T = (V, E,p) on X is a map w : £ — R such that
the total weight of the edges on the path from p to x is 0 for all x € X. More generally, for
all u,v € V, we denote the total weight of the edges on the path between vertices u and
v by l(pu)(u,v). The height hir.)(v) of any vertex v € V' is defined as {1, (v, z) for any
leaf z in the subtree of T" rooted at v. The length €,(T") of T under the edge weighting w
is > .cpw(e), that is, the total weight of all edges of T'.

Note that the length of any rooted phylogenetic tree T" = (V, E, p) on X with a nor-

malized equidistant edge weighting w can also be expressed as follows:

(D)= Y (deg(v) =2) hew(v), (1)

ve(V—=(XUu{p}))
where deg(v) denotes the degree of vertex v in 7. Note that the restriction of {1, to
X x X yields a dissimilarity Dy, on X. Moreover, this dissimilarity is an ultrametric,
that is, D) (2, 2) < max{Drw)(2,y), Drw)(y,2)} holds for all z,y,2 € X, if and only
if the edge weighting w assigns a non-negative real number to each edge not adjacent to a
vertex in X U {p}. We call any such edge weighting interior positive.

Let D be a dissimilarity on X and T'= (V, E, p) a rooted phylogenetic tree on X. For
any vertex v € V' let ch(v) denote the set of children of v, that is, the set of vertices u that
are adjacent to v and for which v lies on the path from u to p. Moreover, we refer to v as
the parent of the vertices u € ch(v) and we denote by C(v) the cluster of elements in X
induced by v, that is, the set of those leaves x of T" for which the path from x to p contains

v. In [24] it is shown that, for any dissimilarity D and any rooted phylogenetic tree 7" on



X, there is a unique normalized equidistant edge weighting w = w(p 1) with

2
A(D7D(T,w)) = Z (D(l‘,y) _D(T,w)(xay))
{zyte(3)
minimum, where ()2() denotes the set of 2-element subsets of X. More precisely, using the
notation €(r.(.,.) introduced above to represent the relevant sums of edge weights, this

edge weighting w is the unique solution of the system of linear equations

e(T,w) (Ua y)

1
= D(z,2") (2)
S o IC@le@] 2= 2. P@a),
Tieme) OO 2 (2

for all v € V — (X U {p}), and {ir)(v,y) = 0, for all v € X U {p}, y € C(v). Note
that this is the analogue to Vach’s theorem for unrooted trees [25]. For later use, we put
A(D’ D(va(D,T))) = A<D> T)

Now, the normalized equidistant minimum evolution score of a rooted phylogenetic tree

T on X with respect to a dissimilarity D on X is formally defined as

oD (T) 7 éw(D,T) (T)7

that is, the length of T" under the edge weighting w(p 7). The NEME problem is to compute,
for an input dissimilarity D on X, a rooted phylogenetic tree on X with minimum NEME

score. Formally, it can be stated as below.

Problem NEME Problem
Instance: A distance matrix D on a finite set X and a number p.

Question: Does there exist a rooted phylogenetic tree T' on X such that op(7") < p holds.

3. UPGMA and the NEME problem

We begin this section by explaining how the UPGMA algorithm can be reinterpreted
as a greedy approach to solving the NEME problem for binary rooted trees. First note
that it follows directly from Equations (1) and (2) that the NEME score of a rooted

phylogenetic tree T = (V, E, p) can be written as the following linear combination of the



given dissimilarity values:

op(T) = Z af,,y - D(z,y) with (3)
{zw}e(3)
o deg(lca(z, y)) — 2 |
towk 2 2 furye(tteazny [C(W)] - |C(w))]

where lca(u,v) is the lowest common ancestor in 7' for any two vertices u,v € V. In
particular, in case T is a binary tree, that is, every vertex not in X U {p} has degree

precisely 3, we obtain, for any {x,y} € ()2() the coefficient

. 1
Mayy = -
7 2 Hchh(lca(a:,y)) |C(U)|

As an immediate consequence of (3) we obtain that the score op(T) is linear in D, that

(4)

is, when D can be written as D = A1 - Dy + A9 - Dy for non-negative real numbers \; and

dissimilarities D;, i € {1,2}, then
op(T) = Ai-op,(T) 4+ Az - op,(T) (5)

To link the Formula (3) with the UPGMA algorithm, recall that this algorithm con-
structs from a given dissimilarity D on X a binary rooted phylogenetic tree T' = (V, E, p)
on X by generating the list of clusters associated to the vertices of T'. It starts with the
singleton clusters associated to the leaves of T'. Then, in each iteration of the algorithm it
considers the partition C = {C,Cy, ..., C,,} of X into m > 2 clusters associated to those
vertices of T' generated by the algorithm so far whose parents in 7" have not been generated

yet. UPGMA then selects a pair of two distinct clusters A, B € C that minimizes

1
A 2,
generates the vertex v of T' with C'(v) = AU B and then considers in the next iteration the
partition (C — {A, B}) U{AU B}.

Next note that fixing, for every v € (V — (X U {p})), an arbitrary ordering of the two
children u; and wus of v and putting A(v) = C(uy) and B(v) = C(ug), we can rewrite

Formula (3) for the binary rooted phylogenetic tree T' generated by UPGMA as

1 1
w=3 2 \Gwrse) 2 Peb| ©)

ve(V—(XU{p})) acA(v),beB(v)



This suggests the following interpretion: In each iteration UPGMA greedily pairs two
clusters so as to minimize the contribution to the score op(7") by the vertex v generated
during that iteration.

Interestingly, the coefficients in (4) suggest the following alternative interpretation of
the NEME score of a binary rooted phylogenetic tree T = (V| E, p): Consider the complete
graph G with vertex set X. Each edge {z,y} of G is weighted with the value D(z,y). We
construct a random subgraph of G as follows. For each vertex v € V' — (X U {p}) select
a random edge that has precisely one end point in each cluster associated with the two
children of v. Let H denote the resulting subgraph of G. It is easy to see that H is always
a spanning tree of G. Thus, in case T is binary, op(7T) can be interpreted as half the
average length of a random spanning tree H of G that is compatible with the clusters of T'.
Based on (3), this interpretation can be extended to the non-binary case where, instead of
a spanning tree, a random spanning forest in G with | X| — 1 edges, some of which selected
more than once, arises.

Next we present a technical lemma summarizing some simple observations about the
NEME score that will be used later. Let Ry denote the set of all rooted phylogenetic trees
on X. In addition let BRx denote the subset of those trees in Ry that are binary.

Lemma 1. Let D be a non-negative dissimilarity on a finite set X with |X| = n > 2.

Then, for all T € Ry, we have:

(i) 1
Z O‘{Tw,y} = §(n - 1),

{oute(3)

(i)
gggrmn&ﬁgmz{%y}e;(ﬁ)}SInmdaﬂw}:ﬁay}e (f)}é

N | —

(iii)
amﬂg%mm@mTyTeRﬂ.

Proof. (i): We use induction on n. For n = 2 the equality clearly holds. Next assume

n > 3 and consider any 7' € Rx. Let u be the single child of p. Put k = deg(u) — 1 and



let vy, vs, ..., v, denote the children of u. Then we have, by induction,

k
T _ T T

> = Z > Y| T| X
{z.yre(3) =1 {ayye(9GY) {zyre(3)
- u=lca(x,y)

LAy} F-1 1
= “(ICw)| = D] + == =Z(n—1),
> 50w - 1] + 75 = 5=

as required.
ii): Consider any T € Ry. The inequality max{a? ., :{z,y} € (¥)} <1 follows im-
{zy} 2 2
mediately from the definition of the coefficients O‘;{Fr, ,y- And the inequality % < min{a{Tx’ e

{z,y} € (3)} follows from the fact that, for any integer k > 2, the function

fiRY = R:(21,20,...,2) — Z 2%

attains its maximum among all non-negative (z1, za,...,2;) € R* with Zle zi = 1 at

Hence, for any {z,y} € () with deg(lca(z,y)) — 1 = k and

21:Z2:"':Zk: 9

1
E.
|C(lca(x,y))| = m, we have a{x’y} > k£

(iii): This is an immediate consequence of (ii):

oM< Y D@y

{z}e(3)

n?2 2 n? .

=7 | 2 aDley)| < pmin{op(T): T € R}
{zyre(3)

We end this section presenting a family of dissimilarities D for which the closest rooted
equidistant tree 7' in the least squares sense (i.e. the tree with A(D,T) minimum) has an
NEME score that is worse than the minimum NEME score by a quadratic factor. This
illustrates, as mentioned in the introduction, that the NEME problem is quite different

from the problem of finding a closest rooted tree.

Lemma 2. There exist dissimilarities D on a set X with n elements for which there exists
a rooted phylogenetic tree T' on X together with a normalized equidistant edge weighting w

with D(x,y) = D1y for all z,y € X but
2
op(T) > ”z min{op(T") : T' € Ry}
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Figure 1: Examples of rooted phylogenetic trees considered in the proof of Lemma 2. For the dissimilarity
D = D7, induced by the rooted phylogenetic tree in (a) we have op(T") = 4s. For the tree 7" in (b) we

obtain op(T") = .

Proof. Assume X = {1,2,...,n} with n = 2% for some integer k¥ > 1. Define the dissimi-
larity D on X by putting D(i,i + 1) = 2s for all odd i € X, where s > 0 is a real number,
and D(x,y) = 0 for all other x,y € X. Note that in any rooted phylogenetic tree T on X
for which D = D, holds with w = w(p r) each pair {i,7 + 1}, i odd, must form a cherry
(cf. Figure 1(a)). Moreover, for any such tree 7" we have op(1) = §s. In contrast, in any
tree 7" with minimum NEME score for D the vertex lca(i,i + 1) must be the single child
of the root for all odd i € X (cf. Figure 1(b)). This implies op(1") = 2s. |

4. Searching tree space for an optimal NEME tree

In this section we shall first establish that performing a local search on the space BRx
for trees with minimum NEME score is a consistent approach, that is, if the input dissim-
ilarity D can be represented by a binary rooted phylogenetic tree with an interior positive
normalized equidistant edge weighting then this tree has minimum NEME score and, un-
der some mild technical conditions, the local search will arrive at precisely this tree after a
finite number of steps.

Note that consistency is an important property and there are general conditions known
that imply consistency for approaches that construct unrooted phylogenetic trees (see e.g.
21, 26]). We first show that for any generic ultrametric, that is, a dissimilarity D = D,
where T' = (V, E, p) € BRx and w is a normalized equidistant edge weighting for 7" with
w(e) > 0 for all edges e not incident to a vertex in X U{p}, a local search in BRx starting
from any 7" € BRyx using rooted nearest neighbor interchanges (rNNI) will terminate
in 7. For unrooted trees an analogous result is established in [22] employing, however,

a different, less local, tree rearrangement operation than we employ here. Recall that an
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T 1o T3 T, To Ty

Figure 2: A rooted nearest neighbor interchange prunes a subtree T from one child of v, suppresses the

resulting vertex of degree 2 and then grafts Ts onto the edge incident to the other child of v.

rNNI modifies a rooted phylogenetic tree locally around a vertex v as depicted in Figure 2.
In the following, for any vertex v # p of a rooted phylogenetic tree T'= (V, E, p) on X, the
subtree of T induced by v consists of the parent p of v together with all the vertices u of
T for which the path from p to u contains v. Note that such a subtree can be viewed as a
phylogenetic tree with root p on the cluster C'(v) of elements in X induced by v.

Note that for a generic ultrametric we require that the edge weighting is on a binary
tree and strictly positive on the edges not incident to a vertex in X U {p}. This is more
restrictive than an interior positive edge weighting which might also assign weight 0 to
some edges incident to a vertex in X U{p}. In the following we will use the well known fact
that, for any generic ultrametric D on X, the binary rooted phylogenetic tree T € BRx
with D = Dy for the edge weighting w = w(p ry is unique [27, Theorem 7.2.8]. We will
say that T" represents D, for short.

Lemma 3. Let D be a generic ultrametric on X and T € BRx the unique binary rooted
phylogenetic tree on X that represents D. Then, for any T' € (BRx — {T'}), there exists
an rNNI that changes T' to T" € BRx with op(T") > op(T").

Proof. We use induction on n = |X|. The statement in the lemma clearly holds for
n € {1,2} in view of the fact that |[BRx| = 1. So assume n > 3 and consider any
T" € (BRx — {T'}). The situation is depicted in Figure 3(a). Let A and B, respectively,
denote the set of leaves in the rooted subtrees T7 and T of T'. Similarly, let A" and B’,
respectively, denote the set of leaves in the rooted subtrees 7] and 77 of 7". Note that the
restriction Dy of D to any non-empty subset ¥ C X is again a generic ultrametric.

First consider the case that 7] does not represent D| 4. Then, by induction, there exists
an rNNI in 77 that results in a rooted phylogenetic tree 77 on A’ with strictly smaller
NEME score. Hence, applying the same rNNI to 7" yields a tree 7" with op(7") > op(T").

The case that T; does not represent D|ps is completely analogous.

11
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Figure 3: (a) The two trees T and T” considered in the proof of Lemma 3. (b) The detailed structure of 7"

in one of the cases considered in the proof. (c¢) The tree T” resulting from a suitable rNNT applied to T".

It remains to consider the case that 77 and 75 represent D)4 and D|g/, respectively.
Then, A = A" and B = B’ immediately implies 773 = 7| and Ty = T and, thus, 7' = T".
Otherwise, there exists at least one {z,y} € (3) with {z,y} C Aor {z,y} C Bbutz € &’
and y € B’. Thus, swapping the roles of either A and B or A’ and B’, we can assume
without loss of generality that the sets ANA’, AN B’ and BN B’ are non-empty. Moreover,
the structure of the tree 7" must be as depicted in Figure 3(b) in view of the fact that
T} and Tj represent Dys and Djps, respectively, and, therefore, the structure of 77 and T5
must be isomorphic to the smallest subtree of 7" containing the vertices in A’ U {p} and
B"U{p} (after suppresing all vertices of degree 2), respectively. Put w’ = w(p 1.

First assume that BN A" # (. Put ny = [ANA|, no = |[BNA|, n3 = |[AN B
and ny = |B N B’|. Without loss of generality we assume n; + ny > ny. We perform
an TNNI pruning and regrafting the subtree with leaf set A N B’ to obtain the tree T"”
depicted in Figure 3(c). Put w” = wp . To show op(1") > op(T") it suffices to show
hirr wy(U') + hipr oy (wh) > hepr (W) + heprry(v). To establish the latter inequality,
recall that T represents D and, therefore, we can assume that D has been scaled so that

D(a,b) =1 foralla € A, b € B. We put

dg = Z D(d',V) and 0p = Z D(d', V).
a’€(AnA") a’€(BNA")
b'e(ANB’) b'e(BNB’)

Note that all distances that contribute to 04 and dp are strictly less than 1, implying

12



04 < mninz and dg < ngny. Using this notation, we obtain

h(T/M/)(u,) + h(T’,w’) (wlz) — h(T”,w”) (U,) — h(T”@”) (U)

B 1 N1y + Nans - oy - n1 + ng
2 2(711 -+ n2>(n3 + n4) 2(n1 + Tlg) 2(Tl1 + N9 —+ 713)
1 [ 1 1 ]
- _ 04
2 (m —+ ng)(ng + 7’L4) (n1 + ng)n3
+ 1 [ 1 1 ] 5
2 [ (nm+mn2)(nz+ng)  (n1+ng+mnz)ny b
=9g(da,0p).

Note that g(d4,dp) is a linear function in §4 and dp and that the coefficient of § 4 is negative.
Moreover, the assumption ny + ny > ny implies that the coefficient of dp is negative too.

Thus, using the fact that 64 < nyns and dg < nyny, we have

g(04,0B) > g(ning,nany) = 0,

from which op(7") > op(T") follows, as required.
It remains to consider the case that B N A’ = (), that is, ny = 0. We apply the same

rNNI to 7" as in the previous case and, using similar calculations, we obtain

Ny 1 1 1
T — T"N= —————— + — — <04 >0
UD( ) OD( ) 2(%3 =~ ’fl4) + 2 nl(ng + 714) nins A ’

using again d4 < nins. |
In the following main result of this section we note that even for the non-generic case a

weak form of consistency holds.

Theorem 4. Let T = (V, E,p) € BRy and w an interior-positive normalized equidistant

edge weighting for T'. Put D = D(r.. Then we have
O'D(T) = min{aD(T’) : T/ S BRx}

If D is generic, then T is the unique tree in BRx minimizing the NEME score for D and a
local search using rooted nearest neighbor interchanges starting from any tree in BRx will

arrive at T after a finite number of steps.

13



Proof. For generic D, the theorem is an immediate consequence of Lemma 3. So, as-
sume that D is not generic and, for a contradiction, that there exists some 7" € BRyx
with op(7") < op(T). For any real number ¢ > 0, define the NEEW w. of T" by putting
we(€e) = w(e) + ¢ for all edges e of T not adjacent to a vertex in X U {p} and w.(e) = w(e)
for all other edges e of T'. Put D, = D7, and note that, by construction, [, is a generic
ultrametric that is represented by 7T'. As a consequence, op_(1T) < op_(T") must hold. But
this contradicts op(T") < op(T) in view of the fact that, as € tends to 0, op_(7T") tends to

op(T) while op_(T") tends to op(T"). n

The result in Theorem 4 immediately raises the question whether the NEME score for
any input distance matrix is minimized by some binary rooted phylogenetic tree. It is
known [28] that for unrooted phylogenetic trees the balanced minimum evolution score is
indeed always minimized for some unrooted binary phylogenetic tree. We end this section
establishing that, in contrast, the answer to the above question for the NEME score is no.
Therefore, requiring that the rooted phylogenetic tree generated by an algorithm is binary
(such as, for example, in the UPGMA algorithm) is, in general, a non-redundant constraint

in the NEME problem. The next lemma gives a family of examples that illustrate this.

Lemma 5. There exist dissimilarities D with
min{op(7) : T € Rx} < min{op(T) : T'€ BRx}.

Proof. Consider a binary rooted phylogenetic tree 7" whose structure is as depicted in
Figure 4(a). It consists of two rooted binary subtrees 77 and T3, each having m > 3
leaves. In addition, there is a single leaf adjacent to vertex u. Let w be an interior positive
normalized equidistant edge weighting for 7" such that Ay (v) = 1 and hp)(u) = s for
some s > 1. Put D = D(r,).

Next, consider the non-binary rooted phylogenetic tree 7" depicted in Figure 4(b). It
is constructed from T by contracting the edge between u and v into the vertex w. Put
w' = w(p,r. To show that op(T") > op(1”), it suffices, by Equation (1), to show that

2m? + 4ms

h(T7w) (u) —+ h(T,w)(”) =s+1> Qh(T/,w’) (w) = mZ 1+ om )
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Figure 4: The construction referred to in the proof of Lemma 5.

which can easily be checked to be the case, in view of m > 3, for any s > 1. Hence, by

Theorem 4, we have min{op(7") : 7" € Rx} < op(T) = min{op(T") : T" € BRx}. u

5. The NEME problem is NP-hard

To establish NP-hardness of the NEME problem, we use a reduction from the well-
known NP-hard graph coloring problem (see e.g. [29]). More specifically, we consider the
following variant of this problem:

INpUT: A graph G = (V, E) with |V| = 4n.

QUESTION: Can V' be partitioned into 4 subsets Vi, Vs, V3, V) with V| = |Ws] = |V5] =
|V4| = n such that no edge e € E has both endpoints in the same set V; for some i €
{1,2,3,4}7 We call any such partition a 4-coloring of G.

Note that the additional constraint that the sets in a 4-coloring are all of the same size
is merely added to simplify the description of the reduction. It preserves the NP-hardness
of the graph coloring problem in view of the fact that adding isolated vertices to any graph
G does not change the minimum number of colors that suffice to color G. We first present

a technical lemma that will be used in the construction below.

Lemma 6. Let X be a set with 2(m+k) elements, m > 1, k > 1, that is partitioned into the
sets A, B and C with |A| = |B| = m and |C| = 2k. In addition, let s > 0 be a real number
and D a dissimilarity on X with D(x,y) = s for allx € A, y € B and D(x,y) < SR
for all other x,y € X. Then any binary rooted phylogenetic tree T = (V, E, p) on X with
op(T) = min{op(T) : T € BRx} must contain two distinct vertices v,w € V with (i)

Cv)NC(w) =10, (it) |C(v)| = |C(w)] = (m+ k), (iii) AC C(v) and B C C(w).
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Proof. First consider a binary rooted phylogenetic tree T on X that contains vertices v
and w with properties (i)-(iii). Note that this implies that v and w have the same parent
u and that wu is the single child of the root p. Moreover, for all a € A, b € B, we have
O‘{Ta,b} = m and, by Lemma 1(ii), this is the smallest possible value for a rooted
phylogenetic tree with 2(m + k) leaves.

Next consider any binary rooted phylogenetic tree 77 = (V', E', p’) on X that does not
contain two vertices v and w satisfying properties (i)-(iii). Let u’ denote the single child
of p' and consider the two children v' and w’ of «’. In particular, v" and w’ must violate
at least one of the properties (i)-(iii). By construction we have C'(v') N C(w’) = (). Hence,
one of the properties (ii) or (iii) must be violated.

First consider the case that (iii) is violated. This implies, without loss of generality,
that there exist a € A and b € B with {a,b} C C(¢v'). In view of |C(v')] < 2(m + k) — 1

and Lemma 1(ii) we have

s 2 B 1
@ = 0Qm+k)—1)2  2m+k)?2—2(m+k)+1/2

Next consider the case that property (iii) is satisfied but (ii) is violated for v" and w’. Then,
for any a € A and any b € B, we have

al > : = !
@ = 9m+k+1)(m+k—1) 2(m+k)?—

Noting that 2(m + k)? =2 > 2(m + k)*> — 2(m + k) + 1/2, we calculate a lower bound
on the difference between the coefficients in 7" and T":

1 1 1
2(m+ k)2 -2 2(m+k)?2 ~ 2(m+ k)4

This implies, using Lemma 1(i) to obtain the upper bound in the second line below:

op(T)= )  af,Dy)

{z yre(3)
(m + k)
<| Y oalyDab)|+
= {a,b}
aGA beB 3(m + k>
s
<| D s
Lac A, beB ( + k)
< D s Y alyD(wy) =on(T)
acA,beB {z,y}e();)
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Hence, T" cannot be an optimal tree for D. [

Next we describe how to construct for a given graph G = (V(G), E(G)) with |V (G)| =
4n a suitable dissimilarity D = D(G). First construct a set X that is the disjoint union of
V(G@),Y and W with |Y| = 2% and |W| = (2% —4)n where k = |logy(n+ 1) +4]. Note that

1 X| = 2F(n +1) < 2PtV 4 1) = 16(n + 1)2.

Put m; = 2¥"i(n +1), 4 € {0,1,...,k}. In addition, put s; = 1 and, for i € {1,2,... k},

Sit1 = 3:'15. Moreover, put s* = %327:;;1)3 The values 51 > s9 > - -+ > s > s > 0 will

be the possible distances between elements in X.

Now, recursively partition the set Y so as to force a fully balanced binary tree as a
backbone structure. More precisely, put Ypo = Y and define, for all i € {0,1,...,k — 1}
and all j € {0,1,...,2" — 1}, sets Yii19; and Yiy12541 so that Yiyi0; N Yig1oj01 = 0,
Yit12i UYii10541 = Yij and |Yipq 05| = |Yit1,2j41] hold. Select an element y; € Y3, for each
1€{0,1,2,3}.

Next we construct the dissimilarity D = D(G) on X:

(a) For all w € W and all x € X we put D(w,z) = 0. The elements in W are just used
to fill subtrees so that we get a fully balanced backbone tree.

(b) For all y,y/ € Y, y # ¢/, we put D(y,y’) = s;11 where i is the largest index in
{0,1,...,k — 1} with {y,y'} C Y;; for some j € {0,1,...,2" — 1}. The distances
between the elements in Y force a fully balanced backbone tree by Lemma 6 (cf.

Figure 5).

(c) Forallv e V(G) and all y € (Y —{y},y5,v3,y5}) we put D(v,y) = sg41. And for all
v e V(G)and all y € {y}, y5,y5, yi} we put D(v,y) = 0. This will force that a subset

of n vertices of GG is grouped together with each y;, 1 <1 <4, in the same subtree.

(d) For all v,v" € V(G), v # v/, we put D(v,v") = s* if {v,v'} € E(G) and D(v,v") =0
otherwise. These distances capture the structure of G and are so small that they do

not interfere with forming the fully balanced backbone tree.
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Figure 5: The structure of the backbone tree for k = 3.

Lemma 7. Let G be a graph with 4n vertices and let D = D(G) be the dissimilarity on
X constructed above. Then G has a 4-coloring if and only if there exists a binary rooted

phylogenetic tree T on X with op(T) not larger than

k k-3 -
S; 2 P ) s*
ok—2 v An, -
[ 2_; F| o dn (2_; Qm%) o o |
Proof. First note that, by the construction of the distances sy, so, ..., Sx11, s* and Lemma 6,

the upper part of any optimal binary rooted phylogenetic tree 7" on X must be a fully
balanced binary tree. This upper part has k + 1 levels. Level i € {0,1,...,k} consists of 2°
subtrees, each of which containing precisely one of the sets Y; ;, j € {0,1,...,2" — 1} in its
set of leaves. In particular, the lowest level consists of 2 subtrees T, T, ..., Ty and the
leaf set of each of these subtrees consists of precisely one element from Y and n elements
from V(G) U W. Thus, in view of y; € Ys,;, [ € {0,1,2,3}, we can choose the numbering
of the subtrees so that Tjyr-2, is the subtree that contains leaf y; (cf. Figure 5).

Now consider any vertex v € V(G). First assume that v is a leaf in one of the subtrees
Tygr-241, 1 € {0,1,2,3}. Then, because the backbone tree is fully balanced, the contribution
to op(T') of the distances from v to the elements in Y is

k—3 ;
91 2k—2 -1 2k—1 -9
v (S o) + Z 4 o

=0

Next assume that v is a leaf in some subtree T, ¢ # 12872 + 1 for all [ € {0,1,2,3}. Then

one summand of the form 2‘:2;1 , 1€ {0,1,...,k — 3}, is replaced by a summand that
k—1

28kp1 _ 25k41
m? (n+1)2

contributes, by Equation (3), at least m Spa1 = . Thus, the increase in

the contribution is at least

2 1 3Sk41 k-1 * T o
R RCUEE s R (R R DI
k k {wyre(%)
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that is, using Lemma 1(i) to obtain the last inequality, it is strictly larger than the total
contribution of all distances that equal s*. Hence, the contribution of the distances s, to
the score is minimized if and only if each vertex v € V(G) is a leaf in one of the subtrees
T, 1 <1 <4, inducing a partition of V(G) into 4 subsets V;, Vo, V3,V each of size n.

Summarizing the contribution of the distances sy, ss, ..., si11 to the score of the tree,

k—3 ;
21 2k72 —4f Qkfl -9
+ Skt - 4n - [(Z 2mi-> + 2?2 + 2m?

1=0

we obtain:
k

A(n, k) = [2’“‘2 >

1=1 v

Note that this contribution does not depend on the structure of the graph G.

It remains to calculate the contribution of the distances that equal s* to the score of
the tree. Note that 16(n + 1)* is a trivial upper bound on the number of edges in G.
Thus, if the partition V;, V5, V3,V induced by the tree is a 4-coloring of GG, then the total
contribution to the score of the tree is at most

16(n + 1)%s*  16s* s*

2m§ - 22k—3 ) 22k—T"

In contrast, a single edge with both endpoints in one of the sets V;, 1 <[ < 4, contributes,

by Equation (3), at least 2((n+11)/2)25* = (nﬁ)?‘ Hence, noting that & = [log,(n + 1) + 4]
implies ﬁ > 2%%7, we obtain that GG has a 4-coloring if and only if there exists a binary

rooted phylogenetic tree 7" on X with

S*

92k—T7 '

op(T) < A(n, k) +

Note that the dissimilarity D = D(G) constructed above need not satisfy the triangle
inequality. However, putting D'(z,2') = D(x,2') + 1 for all x,2" € X, = # 2/, and
D'(xz,z) = 0 for all x € X, we obtain a dissimilarity D’ on X that satisfies the triangle
inequality. Moreover, by Lemma 1(i), for every binary rooted phylogenetic tree T on X,
we have op/(T') = op(T) + (] X| — 1), that is, a tree T is optimal for D if and only if 7" is

optimal for D’. Thus we have the main result of this section:

Theorem 8. Computing a binary rooted phylogenetic tree with minimum NEME score for
a dissimilarity D' on a set X is NP-hard even if D' satisfies the triangle inequality and D’
takes on only O(logy(|X|)) different values.
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Figure 6: Two rooted phylogenetic trees used in the proof of Lemma 9.

6. Approximating the minimum NEME score

Note that Lemma 1(iii) states that any tree in Rx approximates the minimum NEME
score over all trees in Ry up to a factor that is in O(n?), n = |X|. It is not hard to see
that this bound is asymptotically tight and in this section we explore ways to obtain better
approximation guarantees.

We first look at the approximation guarantees that can be achieved with existing algo-
rithms. We start with UPGMA and establish a lower bound of 2(n) on the approximation

guarantee achieved by it.

Lemma 9. For every non-empty finite set X with n > 3 elements there exists a dissimi-

larity D on X such that
op(T) > gmin{aD(T') :T' € Rx}
holds for the tree T produced by UPGMA.

Proof. Let X = {1,2,...,n} and consider the ultrametric D" on X defined by putting,
forall 1 < i < j <mn, D'(i,5) = D'(j,i) = 1+ % Note that the unique rooted
phylogenetic tree T on X with D7) = D' for some interior positive normalized equidistant
edge weighting w is the rooted caterpillar depicted in Figure 6(a). This is also the tree
constructed by UPGMA on input D'

From D" we construct the dissimilarity D by putting D(z,y) = D'(z,y), for all {z,y} €
((3) = {{1,n}}), and D(1,n) = D(n, 1) = s for some constant s > 2. Note that UPGMA
will still generate the tree 7" on input D and that op(T") > 757 holds.

Now consider any binary rooted phylogenetic tree 77 on X whose structure is as depicted

in Figure 6(b). More specifically, the rooted subtree 71 has | %] leaves, one of them being
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1, and T, has [§] leaves, one of them being n. Using Lemma 1(i) and the fact that

D'(z,y) <2 for all {z,y} € (}), we have

/ / 2s
! T T /
UD(T) Sa{l,n}D(Ln)_l_ Z a{x,y}.D(x7y) < nZ _1 +<n_1)7
{wyre(})
implying that Zop(7") < sy < op(T) for s > in(n + 1)(n — 1)%. But this implies
op(T) > 2 min{op(1") : T" € Rx}, as required. |

Next we briefly touch upon another potential approach from the literature for approx-
imating the minimum NEME score. To describe this approach, note that the NEME
problem is related to the problem of finding a sparsest cut, that is, given a dissimilarity D
on a finite set X compute a split A|B of X, that is, a bipartition of X into two non-empty
subsets A and B, such that

1
AT p 2. P@d

a€A,beB

is minimum. This problem is usually stated in terms of edge weighted graphs and known
to be NP-hard. Recent work on this problem mainly concentrated in finding good approx-
imations of a sparsest cut (see e.g. [30]).

Interestingly, a greedy top-down analogy of UPGMA based on recursively splitting X
by sparsest cuts has been proposed for detecting hierarchical community structure of social
networks [31]. Using again the dissimilarity D described in the proof of Lemma 2, it can
be seen, however, that this approach can yield trees whose NEME score is worse by a
quadratic factor in | X| than the minimum NEME score.

In view of the fact that the approaches we explored so far have not led to good ap-
proximation guarantees, we apply in the following a generic approach from the literature
to establish a polylogarithmic approximation guarantee for dissimilarities that satisfy the

triangle inequality, that is, metrics. This approach relies on two ingredients:

(i) The existence of a polynomial time algorithm with polylogarithmic approximation

guarantee for treelike metrics.

(ii) The fact [32] that there exists a polynomial time algorithm that computes, for any
metric D on a set X with n elements, a collection Dy, Ds, ..., Dy of treelike metrics

on X along with positive coefficients 8y, B, ..., Bk, B1 + B2 + - 4+ B = 1, such that
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(1) D(z,y) < Dj(z,y) for all : € {1,2,...,k} and all z,y € X, and

(2) there exists a constant ¢ > 0 such that

S~ BDi(.y) < ¢ logy(n) - Dl y)

i=1

for all x,y € X.

We shall first establish (i). To this end, we rely on the following fact that, phrased in
various guises, seems to be mathematical folklore. For the convenience of the reader we
provide a short proof and phrase it in terms of splits in unrooted binary phylogenetic trees,
that is, trees obtained from rooted binary phylogenetic trees by removing the root and the
edge incident with it, and then suppressing the resulting degree two vertex. Recall that
each edge e in an unrooted binary phylogenetic tree T on X induces a split S, = A.|B, of
X in which A, and B, are the leaf sets of the two connected components resulting from

removing e from 7.

Lemma 10. In every unrooted binary phylogenetic tree T on X with | X| > 2 there exists
an edge e such that the split A.|B. of X satisfies

1 2
20 < ming[Ac| |B.I} < max{|A], |Bil} < 2n. 7)

Proof. Assume that such an edge does not exist. Replace all edges e of T' by a directed edge
in such a way that this directed edge points to the larger of the two sets A, and B.. Then
every directed edge incident with a leaf of 1" is directed away from that leaf and, in view of
the fact that all other vertices of T" have degree three, one of those vertices must be such
that all three directed edges incident with this vertex v are directed towards it. But this
implies that, while all edges e incident with v must clearly satisfy min{|A.[, |B.|} < %, by
the pigeonhole principle, at least one of these edges must also satisfy min{|A.|, [B.|} > %,

contradicting our assumption. [
Note that Lemma 10 does not hold for non-binary trees. The next lemma establishes (i).

Recall that a treelike metric on X is a metric for which there exists an unrooted phylogenetic

tree 7" on X with a non-negative edge-weighting w’ with D = D7 .
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Lemma 11. Let D be a treelike metric on a set X with n elements. Then a binary rooted

phylogenetic tree T on X with
op(T) < c-logy(n) - min{op(T") : T" € BRy}
for some positive constant ¢ can be computed in time O(n?).

Proof. Let T" = (V', E’) be a binary unrooted phylogenetic tree on X and w’ a non-negative
edge weighting of 7" with D = D7 . For every edge e € £ we denote by D, the metric
that assigns 1 to a pair (z,y) € X x X if the path from x to y in T contains edge e.
Otherwise D, assigns the value 0 to (z,y). Then D =" __., w'(e) - De(x,y) and hence by
Equation (5) we have, for any rooted phylogenetic tree T on X,
oo(1) = Y W(eon, (1) = Y2 10
eck’ eck’ 2

where the last inequality follows from the fact that, for all e € E’, D, is an ultrametric
and, therefore, min{op, (1) : 7" € BRy} = 1 by Theorem 4.

Hence, it suffices to show how to construct in polynomial time a rooted phylogenetic tree
T on X with op(T) < c-logy(n)-D .cp @ for some constant ¢ > 0. This is done recursively
as follows. Using Lemma 10, we find an edge e € E’ such that the split S, = A.|B. of X
induced by e satisfies (7). We require that the resulting rooted phylogenetic tree 7' on X
will have the clusters A, and B,. Then we remove e from T”. This yields, after suppressing
the two vertices of degree 2, two unrooted phylogenetic trees 77 on A, and T on B,
which represent the restriction of D to A. and B., respectively. If |A.| > 1 (|B.| > 1) we
construct a binary rooted phylogenetic tree T4, on A, (T, on B,) recursively. Otherwise
T4, (Tg,) is the unique rooted phylogenetic tree on A, (B.). Then we glue the roots of
T4, and T, together and add a new root p to obtain a binary rooted phylogenetic tree
T = (V,E,p) on X. Note that this construction can clearly be done in time O(n?) and,
since we choose the edges for recursively partitioning 7" in such a way that Inequalities (7)
hold, it follows that every path in 7" contains O(log,(n)) vertices.

Note that the construction of 7" induces the canonical map ¢ : B/ — (V — (X U {p}))
that assigns to e € E’ the internal vertex v of 1" that was constructed as the root in a
recursive step when edge e was removed from 7" (see Fig. 7 for an example). Also note

that ¢ is, by construction, surjective. It is, however, not injective because suppressing
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Figure 7: An illustration of the canonical map ¢ used in the proof of Lemma 11: (i) An unrooted binary
phylogenetic tree 7" on X = {1,2,---,7} (for simplicity, the label ¢; of the edge incident with leaf i is
omitted). (ii) A binary rooted phylogenetic tree on X constructed from 7’ by consecutively removing the
following sets of edges {e10}, {es}, {e5,e11}, {€s,eq,€9},{€6,€7},{€1,€e2}. Then the canonical map ¢ is as
follows: ¢(e10) = u1,p(es) = uz,p(es) = ple1n) = us,p(es) = p(ea) = pleg) = ua, p(eg) = p(er) = ug,
and ¢(e1) = p(ez) = us.

degree 2 vertices leads to clusters of original edges in 7" that are removed together at a
single recursive step.

Next, for each edge e € E' let w. = wp, ) and let I'. be the set of those vertices
ve (V- (XU{p}) for which there exist x,y € X such that (i) v = lca(z,y) and (ii) e
lies on the path from x to y in T7”. By construction of T', the set I', consists precisely of
those vertices in V' — (X U {p}) that lie on the path from ¢(e) to p in T, implying that
IT.| € O(logy(n)). In addition, Equation (2) implies that D, contributes at most 1/2 to
h(rw.)(v) for all v € ', and, for all v € V —I'. we have h(r,)(v) = 0. Therefore, using

Equation (1) to obtain the second equality below, we have

on(T) = Y u(e)op.(T)

eck’
D IO D ST}
ecE’ ve(V—=(XU{p}))
— Z w’(e)( Z h(TMe)(U))
ecE’ vele
< c-logy(n) - Z w(e) (8)
> ) 9
eck’
for some constant ¢ > 0, as required. [ ]

Note that there are treelike metrics D on X for which a binary rooted phylogenetic tree
with minimum NEME score cannot be obtained by rooting the unrooted tree representing

D somewhere. That means that the structure of the unrooted tree representing D need not

24



o117 <

3 4 5 6 n—2

Figure 8: An unrooted caterpillar tree on X = {1,2,...,n}. The metric D induced by this tree on X
(all edges have weight 1) is such that a rooted phylogenetic tree on X with minimum NEME score for D

cannot by obtained by rooting the caterpillar somewhere.

reflect much the structure of the rooted trees with minimum NEME score for D. Consider,
for example, the metric D on X = {1,2,...,n}, n > 6, induced by the unrooted caterpillar
in Figure 8. All edges are assigned weight 1. Then the recursive algorithm in the proof of
Lemma 11 yields a binary rooted phylogenetic tree 7" on X with op(7T") € O(nlog,n) by
the upper bound in (8). In contrast, for any binary rooted phylogenetic tree 7" obtained by

rooting the caterpillar, there must exist, for all k € {3,4,..., [5]}, at least one vertex v in

T" with [ch(v)| = k and h¢p oy (v) > Q(k—l_l)(/ﬁ— (k—1)+-+4+3) > % where w = wp ).
This implies that op(7") > > ,ﬁg E € Q(n?). The next theorem summarizes our results on

approximating the NEME score for metrics.

Theorem 12. Let D be a metric on a finite set X with n elements. Then a rooted binary

phylogenetic tree T' on X with
op(T) < c-log?(n) - min{op(T') : T" € BRx}
for some positive constant ¢ can be computed in polynomial time.

Proof. Let Dy, Do, ..., Dy be a collection of treelike metrics for D together with coefficients
B1, B2, - .., B as described in (ii) above. In addition, let 7" be a binary rooted phyloge-
netic tree on X with minimum NEME score for D and, similarly, 77" be a binary rooted
phylogenetic tree on X with minimum NEME score for D;, 1 < ¢ < k. Assume that
op,(T}) < op,(T}) for all i € {1,2,...,k}. Finally, let 77 be the binary rooted phyloge-

netic tree on X constructed for Dy using the recursive algorithm in the proof of Lemma 11.
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Then we have, using repeatedly the linearity from Equation (5):

op(T7) < op, (1Y)

< ¢ -logy(n) - op, (1Y)

k
< -logy(n) - > B op,(T7)
=1

k
< -logy(n) - Z/Bz ~op,(T")
i=1

= ¢’ - logy(n) - Ik, Blei)(T*)

< dd" - logy(n) - op(T™),

where ¢ and ¢ are positive constants that come from the upper bound (8) and property
(2) of the collection Dy, Dy, ..., Dy, respectively. Hence op(T¢) < c-logs(n) - op(T*) for

some constant ¢ > 0 and the tree 77 can be constructed in polynomial time. ]

Interestingly, the above approach can be applied to any variant of minimum evolution
as long as the objective function is a linear combination of the input distances and the
variant is consistent (the latter trivially implies ingredient (i) above and, thus, saves a
factor of logn in the approximation guarantee). In particular, the original unrooted ME
problem [11] has these properties and can, therefore, be approximated for metrics within a
factor of O(log, n). To the best of our knowledge, this is the first non-trivial approximation

result for the unrooted ME problem.

7. Concluding remarks and open problems

In this paper, we have highlighted some properties of the UPGMA method. We now
conclude by pointing out two possible directions for future work. The first direction con-
cerns improving the approximation guarantee for the NEME problem presented in the last
section. Recall that the interpretation of the balanced minimum evolution score of an un-
rooted tree as an average over spanning cycles has been used (as one ingredient amongst
others) in [17] to design a constant-factor polynomial time approximation algorithm for the
balanced minimum evolution problem in case the given dissimilarity satisfies the triangle

inequality. We expect that the results presented in this paper can similarly serve as the
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basis for a better understanding of the approximation properties of the NEME problem.
A concrete conjecture we have in this direction is that UPGMA always generates a tree
whose NEME score is within a factor in O(n) of the minimum score.

The second direction for future work concerns the so-called safety radius of the NEME
approach for computing rooted phylogenetic trees. The safety radius concept was intro-
duced to quantify how much distortion of the input distance matrix a method can tolerate
and still return the correct tree (see e.g. [33]). For example, it is known that in the rooted-
tree setting UPGMA has a safety radius of 1 [34], and that both neighbor joining and
BME-based tree construction have a safety radius of 3 (see [33] and [35], respectively).
We conjecture that the safety radius of NEME-based tree construction tends to 0 as the
number of leaves of the trees tends to infinity. In this context, it might also be of interest
to study the stochastic safety radius of the NEME problem, a concept that was recently

introduced [36], and which aims to understand consistency within a probabilistic setting.
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