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Abstract

We show that a Navigational Logic, i.e., a logic to express properties about graphs
and about paths in graphs is a semi-exact institution. In this way, we can use a
number of operations to structure and modularize our specifications. Moreover,
using the properties of our institution, we also show how to structure single for-
mulas, which in our formalism could be quite complex.
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1. Introduction

The extensive use of graphs in all areas of Computer Science is the reason for
the relevance of being able to express graph properties and to reason about them.
In particular, we are interested in the area of software modeling where, in the
context of graphical modeling formalisms, like the UML, graph properties may
be used to express constraints for a given model, and we are also interested in the
area of graph databases, where graph properties may be used not only to express
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database constraints, but where a graph logic may be used as a basis to define a
query language.

We may approach the problem of defining a graph logic in two different ways.
On the one hand, we may just use a standard logic, after extending it with some
graph concepts. For instance, Courcelle (e.g., [4]), studied a graph logic defined
in terms of standard first-order (or monadic second-order) logic including some
specific graph predicates. Similarly, in the area of graph databases, where foun-
dational work has concentrated mainly on studying the expressivity or the com-
plexity of classes of graph queries and other kind of related problems, they have
studied extensions of first-order logic with classes of navigational path queries
(see, e.g. [3, 1]). On the other hand, we may define a specific logic where formu-
las include graphs (and graph morphisms) as first-class citizens, like in the logic of
nested graph conditions (LNGC), introduced by Habel and Pennemann [6], which
was proven to be equivalent to the first-order logic of graphs of Courcelle. A main
advantage of LNGC is that it is generic, since it can be used for any category of
graphical structures, provided that this category enjoys certain properties. If this
is not the case we need a different encoding for each class of graphs. In addi-
tion, from a practical point of view, Pennemann [11] showed that a specialized
prover for their logic outperformed some standard provers when applied to graph
formulas using Courcelle’s logic.

A main problem of (first-order) graph logics is that it is not possible to express
relevant properties like “there is a path from node n to n’”, because they are not
first-order. As a consequence, there have been a number of proposals that try to
overcome this limitation by extending existing logics, like [7, 12, 8]. In particular,
in [8] we extended the LNGC, allowing us to state properties about paths in graphs
and to reason about them in a generic way (i.e. for arbitrary categories of graphical
structures). Since this new logic allows one to describe properties of paths in
graphical structures, we have called it a navigational logic.

Institutions were introduced in [5] to define the semantics of the Clear spec-
ification language, independently of any specification formalism. Showing that
a given formalism is an institution allows us to use a number of constructions to
structure and modularize our specifications [13]. For this reason, in this paper we
show that a given navigational logic is a semi-exact institution. Moreover, using
the properties of our institution, we also show how to structure single formulas,
which in our formalism could be quite complex. For simplicity, in this paper we
work with the specific category of labeled graphs, but the results can be general-
ized to arbitrary categories of graphical structures, following the lines of [8].



2. Navigational Logics for Graphical Structures: Introductory Examples

The idea of our logics is that basic properties state if a given pattern is present
or not in a graph. In our case, a pattern is like a graph but, in addition to normal
edges, we may have other types of edges (depicted here as double arrows) rep-
resenting paths between two given nodes. For example, let us suppose that we
want to express some properties about graphs that represent networks of airports,
like the one in Fig. 1, where each node is labeled with the name of an airport and
each edge represents a direct flight between the source and target airports and is
labeled with the name of the airline running the flight. Moreover, we assume that
paths are labeled with regular expressions over the edge labels. In this context, in
Fig. 2, we depict two patterns, where the first one represents a connection from
BCN to LAX consisting of a sequence of IB flights followed by an AA flight, and
the second one a direct flight from BCN to CDG followed by a connection from
CDG to LAX consisting of an IB flight followed by a sequence of AA flights.
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Figure 1: A graph of connected airports Figure 2: Two connection patterns

Formulas in our logics are built over patterns (and pattern morphisms) using
quantifiers and the standard logical connectives. For example, in Fig. 3 we depict
(in a pseudo-formal notation) two formulas to provide some intuition. The first
one states that there must exist an IB flight from BCN to CDG followed by a
sequence of AA flights leading to LAX, or there must exist a sequence of 1B
flights leading to JFK from BCN, followed by an AA flight to LAX. In the second
one the long arrow denotes a morphism (the obvious inclusion morphism, in this
case) between the pattern on the left (quantified universally) and the pattern on
the right (quantified existentially), meaning that the target pattern is an extension
of the source pattern. In particular, this formula states that for every connection
between any two airports, there is a backward connection between them.!

"Here x and y represent any airline, i.e. x,y = IB|[AEA|AA|. ...
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Figure 3: Properties on airports networks

3. A Navigational Logic

In this section we introduce formally our navigational logic for the case where
the given graphs are labeled graphs. However, as shown in [8], these constructions
can be generalized to arbitrary categories of graphs or graphical structures, where
paths can be labeled not only by regular expressions, but by arbitrary language
expressions. We start defining patterns:

Definition 1 (Labeled Graph Patterns and Paths). A graph pattern P is a pair
P = (Gp,=p) such that Gp is a labeled graph and =-p is a relation specifying paths
in P, i.e., a set of path expressions of the form (n, o, n’) where n,n’ € Nodesg, and
o is a regular expression over an alphabet X of edge labels, such that its associated
language £(o) is not empty. Then, a path specified by a path expression (n,o,n’),
is any triple (n,s,n’) such that s € L(at).

A pattern morphism f: P — P, is a graph morphism f: Gp, — Gp, such
that (n,a,n’) €=p, implies (f(n),o/, f(n')) € (—p, U=-p,)*, for some o/ with
L(o/) C L(at), where —p is the least relation satisfying that (n,l,n’) €—p, if

: I .
there is an edge e = n — n’ in Gp.

The class of patterns and pattern morphisms, form the category Patterns.
A graph G can be considered as a kind of pattern where the relation = exactly
specifies the paths defined by edges in G. Therefore, we can assume that the
category of graphs, Graphs, is the full subcategory of Patterns whose objects
are of the form (G, —(;).

It may be easily proved that Patterns has colimits. In particular, colimits in
Patterns can be built like colimits for a category of graphs with two kinds of
edges (normal edges and paths).

As said above, the formulas used as examples in Sect. 2 were depicted in a
pseudo-formal format. Now, we define precisely their syntax, using the nested
notation defined in [6], and their semantics in terms of morphisms.
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Definition 2 (Conditions and Satisfaction). Given a finite pattern P (i.e. Gp and
=p are finite), a condition with context P, denoted cp, is defined inductively as
follows:

® cp —=true.

e cp =3d(a: P — Q,cp) if Q is a finite pattern and ¢ is a condition with
context Q.

e cp=—cCh.
e cp =cpAchif ¢} and ¢} are conditions with context P.

Given G in Graphs, and a morphism f : P — G € Morph(Patterns), we
inductively define when f satisfies a condition cp, denoted f |= cp:

e f|=true.

» 4 0 <c e f=3(a,cq) if there exists [ : 0 — G
Q such that f'oa = f and f' = cg.

f\*G/’I—CQ o f=—cpif f}~cp.

e fl=cpAcpif fl=cpand f |=ch.

As we may see, the models in our logic are not graphs but morphisms (roughly
speaking, graphs extending the given context). In particular, we may consider that
graphs are the models of conditions over the empty pattern (the initial pattern in
the category).

The following lemma defines a construction called Shift, first introduced in
[10, 11] under different conditions, to translate conditions along morphisms.

Lemma 1 (Shift of Conditions over Morphisms [9]) Let Shift be a transfor-
mation of conditions inductively defined as follows:

e Shift(b,true) =true.

PL) Pl . / .
e Shift(b,3(a,cp)) =3(d',cq) such that (1) is a
al (1) Xa’ pushout and cy = Shift(b',cp).
/
gT i o Shift(h,—cp) = —Shift(h,cp).
‘o co e Shift(h,cpAcp)=Shift(b,cp) AShift(b,c)).



Then, for each condition cp and each morphism b : P — P, cpr = Shift(b,cp)
is a condition with context P' such that for each morphism f : P' — G we have
that f |=Shift(b,cp) < fob |=cp.

4. An Institution for our Navigational Logic

The notion of institution was introduced in [5] as a conceptual tool to study
constructions to structure and modularize specifications independently of any given
formalism [13]. Let us recall its formal definition:

An institution [5] is a tuple of the form I = (Sig,Sen,Mod, |=) where,
e Sig denotes the category of signatures of T,

e Sen: Sig — Set denotes the functor that maps every signature X into the
set of all X-sentences, and every signature morphism % : X1 — ¥, into the
mapping Sen(h) that translates X -sentences into X,-sentences;

e Mod : Sig — Cat®P denotes the functor mapping every signature X into the
category of all X-structures, and every signature morphism 4 : X1 — X5 into
its associated forgetful functor V;, = Mod(h) : Mod(X;) — Mod(Z;);

e Finally, |~ is the satisfaction relation of the institution I, consisting of a col-
lection of relations |=xC Obj(Mod(¥)) x Obj(Sen(X)) such that for every
h:Xy — X, € Sig, for every A € Mod(X;) and for every ¢ € Sen(Z;) we
have that o

A =z, Sen(h)(9) < Hod()(4) =z, @

I is a semi-exact institution if Sig has pushouts and, in addition, Mod transforms
pushouts in Sig into pullbacks in Cat°P.

Let us now show that our navigational logic is an institution, which we call
NavLog. In our setting, we can identify signatures with patterns, in the sense that
a pattern P determines the set of all sentences (conditions) of context P. Then,
obviously, P-models are morphisms P — G, where G € Graphs, and satisfaction
is defined as in Def. 2.

Proposition 1 (Institution NavLog) Given a category of patterns Patterns, to-
gether with its subcategory of graphs Graphs, we define the institution NavLog =
(Sig,Sen,Mod, =) as follows:



1. Signatures: Sig = Patterns but, to avoid confusion, given a pattern P,
we will denote the signature associated to P with Xp .

2. Sentences: Given a signature Xp, Sen(Xp) is the set of all conditions with
context P, as defined in Def. 2.
Given a signature morphism h : Xp, — Xp, and a condition cp, € Sen(Zp,),
Sen(h)(cp,) is defined as Sen(h)(cp,) = Shift(h,cp,), cf. Lemma I .

3. Models: Given a signature Xp, then Obj(Mod(Xp)) consists of all mor-
phisms m : P — G, where G € Graphs.
Given my : P — Gy1,mp : P — G, € Obj(Mod(Xp)) a morphism g : m; —
my € Morph(Mod(Xp)) is a morphism g : G| — G, € Morph(Graphs) such

that gom| = my.
1 G
A

2

m

~
G

Given a signature morphism h : Xp, — Lp, and a Lp,-model m, Vj,(m), is the
morphism mo h.
And given a morphism g : my — m)y in Mod(Zp,), with my : Py — G, and
m, : Py — G (i.e., g : Gy — G, and g omy = mly), we define V;(g) = g. This
definition is correct, since gomy = m)y implies gomyoh =m)oh.

4. Satisfaction relation: Satisfaction is defined as in Def. 2.

P

Then, NavLog = (Sig, Sen,Mod, |=) is an institution.

PROOF. Consider any & : Xp — Xp, € Sig, any m € Mod(Xp,) and any cp, €
Sen(Zp, ), then as a consequence of Lem. 1, we have that m [=y,, Shift(h,cp )<
moh |:2P1 cp, o, the satisfaction condition is directly satisfied. =

From now on, we will write Mod(cp) = {m € Mod(Xp) | m |=x, cp}. We can
now see that NavLog is semi-exact:

Proposition 2 (NavLog is semi-exact) Sig has pushouts if Patterns has pushouts.
Mod transforms pushouts in Sig into pullbacks in Cat®®.

h Vi
Z‘4P0 S Z"Pz Mod MOd(ZPO) - MOd(sz)
hll po. jgz vth pb. ]ng
Zpl T Xp MOd(Zpl) T MOd(ZP)



PROOF. Since we assume that Patterns has pushouts, we have to prove that
Mod transforms pushouts in Sig into pullbacks in Cat®P, i.e., that for every Xp
such that g : Zp, — Zp and g : Tp, — Zp with Vj, oVy =V, 0V, there exists a
unique V, : Mod(Xp) — Mod(Zp), such that V, oV, = Vg and Vg, oVy =V, . First,
since Vi, oV (m') =V, oV, (m') for every m' : P' — G € Mod(Ep'), we have that
m' o g\ ohy =m' oghohy. Then, since the above square at the left is a pushout,
we know there exists a unique m : P — G € Mod(Xp) such that mo g; =m' o g}
and mo gy =m' o gy. Thatis, Vg, (m) =V, (m') and Vg, (m) =V (m'). Therefore,
V,(m') = m satisfies the required universal pullback property. ]

5. Structured Navigational Specifications and Structured Formulas

The proof that our navigational logic is a semi-exact institution allows us to
build specifications using some standard specification building operations [13] or
just using an algebraic specification language like CASL [2]. In particular, we can
define generic models that can be instantiated to define more concrete ones. Or we
may specify larger models by combining or extending simpler ones. For instance,
if we want to model the information system of a company, on the one hand, we
could specify its accounting system, perhaps by instantiating a generic accounting
model. On the other hand, we could model the database of the employees of the
company. Then we could combine the specification for the accounting system
with the database model and extend the result with the description of the payroll.

However, in our context, structuring specifications may be not enough to make
them readable, already single formulas may be too large to manage and to under-
stand them. For instance, let us consider a condition like 3(ag : Py — P1,V(a; :
P — Py,...3(ay : P, — Piyq,true)...)) > and let us suppose that ay,...,a; are
just inclusions, which happens quite often, then patterns Py, ..., P+ would be of
increasing size and Py could be quite large.

For this reason, it is important to have operations that allow us to build large
formulas from smaller ones. In our case, we have defined an operation called Add
that given conditions cpr and cp = f(a : P — Q,cp) (where f denotes either 3 or
¥)3 and given a morphism 4 : P’ — Q, Add(h,cp,cp) would add cpr, translated
through 4, to cp:

’In general, formulas may be more complex, because at each level of nesting we may have not
just a literal, but an arbitrary formula involving several logical connectives.
3As usual, V(a: P — Q,cp) is an abbreviation for =3(a: P — Q,—cp)



Proposition 3 (Addition) Add : Morph(Sig) x Sen(Xp) x Sen(Xp/) — Sen(Zp)
is defined for any morphism h : P' — Q and conditions cp and cp = f(a: P —
Q,cq), where § denotes a quantifier 3 or v, as follows:

Add(h,cp,cpr) =f(a: P — Q,coASen(h)(cp))
Then we have that, Mod(Add(h,cp,cp’)) = Mod(cp) NM where

" {m e Mod(Xp) | I : moa=mAV,(m')EMod(cp)} iffis3
| {meMod(Ep) |V :m'oa=m:V,(m')eMod(cp)} iffisV

PROOF. First of all recall that Sen(h)(cp') = Shift(h,cp). If m: P — G such that
m |=3(a,co A Shift(h,cp)) then, by definition, this is equivalent to the existence
of a morphism m’ : Q — G such that m = m' oa and m’ |= cp A Shift(h,cp).
Similarly, if m : P — G such that m |=V(a,cg A Shift(h,cp)) then, by definition,
this is equivalent to m’ |= cg AShift(h,cp) forallm’': Q — G such thatm = m'oa.
Then, on the one hand, we have that m |= cp in both cases. On the other, recall
that Lema 1 states that m’ =x,, Shift(h,cp) if, and only if, m' oh =z, cp, and
V;(m') = m' oh. Then, we can conclude the proof in both cases. =

Let us see a simple example of the construction of a condition using Add.
Suppose that we are specifying a social network represented by a graph, whose
nodes may be labeled by names of persons or locations and having edges labeled
by friend, knows or visits, and we want to state the following property:

“For any persons 1 and 2, such that there is a path of friend edges from 1 to 2, if 1
and 2 may visit the same location then either they are the same person or 1 knows
27

Let us consider the conditions depicted in Fig, 4. The first one, Joint Loc, states
that there should exist a location that may be visited by the given two persons.
Equal states that the given two nodes are the same one, and Knows states that
the person in node 1 should know the person in 2. Now, Knows and Equal are
conditions with the same context Pr,,,, consisting of nodes 1 and 2, hence we may
define the condition Or = Knows V Equal, also with context Pry,,. Let us now
define a morphism 4 from Pr,, to the pattern on the right of condition JointLoc,
mapping nodes 1 and 2 in Py, into nodes 1 and 2 in the pattern in JointLoc. Then,
Add(h,JointLoc,Or) would specify that for two given nodes 1 and 2, if they may
visit the same location, then either 1 knows 2 or they are the same person. Notice
that the context of this condition is also Pr,,. Finally, if 4’ is the morphism from



(JointLoc) 3(@ @ —_

,true)

visits visits

€Equa) () (@) —> (12),true)
(Knows) 3(@ @ > @knows @,true)

friend*
(Any2frnds)V (& > ®'—>@,true)

Figure 4: Some basic conditions

Pry,, to the pattern on the right of Any2frnds, mapping nodes 1 and 2 in Pry,
into nodes 1 and 2 in the pattern, then Add(h',Any2 frnds,Add(h,JointLoc,Or))
would specify the property stated above.

6. Conclusion

In this paper we have shown that a navigational logic for the category of la-
beled graphs is a semi-exact institution, which allows us to structure and modular-
ize our specifications as in [13]. Moreover, using the properties of our institution,
we also show how to structure single formulas, which may be quite complex in
our formalism. Even if, for simplicity, we have restricted our results to the case of
labeled graphs, they can be directly generalized to arbitrary categories of graphical
structures, following the lines of [8].
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