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Pushing the Frontier of Minimality

Guillaume Escamocher∗, Barry O’Sullivan∗

Insight Centre for Data Analytics, University College Cork, Ireland

Abstract

The Minimal Constraint Satisfaction Problem, or Minimal CSP for short, arises in a number
of real-world applications, most notably in constraint-based product configuration. It is
composed of the set of CSP problems where every allowed tuple can be extended to a
solution. Despite the very restrictive structure, computing a solution to a Minimal CSP
instance is NP-hard in the general case. In this paper, we look at three independent ways to
add further restrictions to the problem. First, we bound the size of the domains. Second, we
define the arity as a function on the number of variables. Finally we study the complexity
of computing a solution to a Minimal CSP instance when not just every allowed tuple, but
every partial solution smaller than a given size, can be extended to a solution. In all three
cases, we show that finding a solution remains NP-hard. All these results reveal that the
hardness of minimality is very robust.

Keywords: constraint satisfaction, minimal CSP, NP-hardness result

1. Introduction

An instance of the Minimal Constraint Satisfaction Problem, or Minimal CSP for short,
is a CSP instance where each tuple allowed in a constraint relation is part of at least one
solution [9]. Since all Minimal CSP instances are satisfiable, solving such an instance does
not refer to the decision problem of determining whether it has a solution, but to the
exemplification of a solution.

Minimal CSP is often found ‘naturally’ in configuration problems [8]. A seller might want
to offer its customers a large degree of customization. If, for example, the product sold is a
car, some possible options might be the color of the vehicle and whether it is automatic or
manual. If after choosing “automatic”, “red” remains a valid option for the color parameter,
then it is preferable that at least one red automatic car can be configured. The Minimal CSP
can answer a number of queries relevant to product configuration in polynomial time [6], such
as whether a solution exists that satisfies a given unary constraint, or whether an assignment
to k variables is consistent in a Minimal CSP where all constraints are defined over k-tuples
of the variables. These queries can be answered simply by inspecting the constraints of the
problem instance. However, answering queries over arbitrary assignments to the variables
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remains hard, which has given rise to many studies of the use of automata and decision
diagrams to reason about the solution sets of complex configuration problems [2].

The notion of minimality is related to that of robustness [1, 7]. Robust CSP is the
problem of determining whether every partial solution of a given size can be extended to a
full solution, in effect checking the minimality of an instance. On the other hand, Minimal
CSP already assumes that this condition is fulfilled and instead requires to find a solution.

The restrictions defining minimality can be viewed as extreme forms of consistency. The
concept of minimality is that all values not belonging to a solution have been pruned, all
constraints allowing values that cannot possibly appear in a same solution have been ad-
justed. Yet, even though minimality offers an abundance of data about the CSP instances
it applies to, it turns out that algorithms cannot use this information to significantly distin-
guish Minimal CSP instances from general CSP ones. Indeed, we prove that when bounding
the size of the domains by a constant d and the arity of the constraints by a constant k, the
Minimal CSP and the general CSP are NP-hard for the exact same values of d and k.

We also expand the concept of minimality, to study if hardness is conserved. We present
the different directions that we considered. Our main result is the one revolving around
what seems like the most natural expansion. In our new class of Minimal CSP instances,
we significantly increase the number of sets of compatible values that can be extended to
a solution. While one may think this leads to triviality, or at least tractability, we show
that again no algorithm can exploit this new information in a useful way, unless P=NP. The
long-term objective of this work is to identify the frontier of intractability for Minimal CSP.

Each of the three next sections of the paper presents a particular way to further restrict
the Minimal CSP. In Section 2, we start by formally defining both the general CSP and the
Minimal CSP, then proceed to study the complexity of the Minimal CSP when bounding the
arity of the constraints and the size of the domains. In particular, we present a complexity
classification over these two parameters that extends Gottlob’s complexity result [6] to
instances with very small domain sizes. The contents of this section have been previously
published [5]. In Section 3 we provide a look into the behavior of the Minimal CSP with
global constraints. Section 4 focuses on generalizing the core notion of extendable tuple
in the definition of Minimality to extendable partial solution. We begin in Section 4.1 by
formalizing and illustrating the new concepts that we introduce. Then in Section 4.2 we
present the main result of the paper, showing that the inherent hardness of minimality is
conserved even with considerable additional restrictions. Finally, we conclude in Section 5
by summarizing our contributions and outlining some future work in this area.

2. Bounding the Size of the Domains and the Arity

The first of our three generalizations of minimality deals with the arity and size parame-
ters. Before presenting our complexity proofs, we start by formally defining the core notions
of the Constraint Satisfaction Problem. In particular, we highlight the fact that we do not
view the constraints of a CSP instance as a list of forbidden tuples, as is standard in the
constraint literature, but instead as the complete specification of the value of every tuple of
size smaller or equal than the arity, where the value here means either allowed or forbidden.
Our main reason for doing so is to emphasize the role of allowed tuples, which are central
to the notion of minimality but mostly ignored by the conventional CSP definition.
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2.1. Definitions

We recall the definition of the Constraint Satisfaction Problem, or CSP.

Definition 1 (CSP). A CSP instance I comprises:

1. A set V = {v1, . . . , vn} of n variables.

2. A set A = {Av1 , . . . , Avn} of n domains. For all i ∈ [1, n], Avi = {a1, . . . , adi
} contains

the di possible values for the variable vi.

3. An integer k and a set C = {C1, . . . , Cm} of m constraints. To each constraint Ci is
associated a different scope Wi = {w1, . . . , wki

} ⊆ V ,with 2 ≤ ki ≤ k, and a set Ui of
ki-tuples from Aw1

×Aw2
× · · · ×Awki

. We say that these tuples are allowed, that the
tuples from Aw1

×Aw2
×· · ·×Awki

that are not in Ui are forbidden and that ki is the
arity of the constraint Ci.
For each set V ′ ⊆ V containing k′ variables with 2 ≤ k′ ≤ k, there is exactly one
constraint in C whose scope is exactly V ′ (so m =

∑k
k′=2

(
n
k′
)
). We say that k is the

arity of the instance.

Note that since the scopes of the constraints cover all possible sets of variables of size
between 2 and the arity of the instance, defining the constraints for a given k-ary CSP
instance I is equivalent to specifying whether each tuple of k′ values, with 2 ≤ k′ ≤ k, is
allowed or forbidden.
Throughout the paper, and as long as the context is clear, we will associate a tuple of
assignments with the corresponding set of values. For example, we will associate the 3-tuple
composed of the value a1 assigned to the variable v1, the value a2 assigned to the variable
v2 and the value a3 assigned to the variable v3 with the set B = {a1, a2, a3}, as long as it
is clear that the value ai ∈ B is the same as the value ai ∈ Avi , for i = 1, 2, 3.
A compatible tuple B, or partial solution, is a set of assignments to variables of I such
that no subset of B is a forbidden tuple. Similarly, an incompatible tuple B is a set of
assignments to variables of I such that there is a subset of B which is a forbidden tuple.
We also say that values in a compatible (respectively incompatible) tuple are compatible
(respectively incompatible) with each other. In particular, any value in a forbidden tuple B
is incompatible with the other values in B.
A solution, or full solution, to I is a partial solution on V . We now formally define the
Minimal Constraint Satisfaction Problem, or Minimal CSP.

Definition 2 (Minimal CSP). A CSP instance I = {V,A,C} is a Minimal CSP instance
if and only if: ∀Ci ∈ C, ∀u such that u is an allowed tuple on the scope of Ci, there is at
least one solution S to I such that S contains u.

In this paper, we only consider Minimal CSP instances with non-empty domains and such
that each value in each domain belongs to at least one allowed tuple.

2.2. Complexity Results

Not only are Minimal CSP instances always satisfiable, but they typically contain many
solutions. A Minimal CSP instance will contain as least as many solutions as there are
allowed k-tuples in its least constrained constraint. For this reason, Minimal CSP instances
will often be very trivial to solve. Yet, computing a solution to a Minimal CSP instance is

3



NP-hard [6].1 The proof given by Gottlob [6] is a reduction from 3-SAT to a set of CSP
instances M9 such that for each instance I ∈ M9:

• I is either a Minimal CSP instance or unsatisfiable.

• I contains at most 9 values in each domain.

This is stronger than just NP-hardness, the actual result is that computing a solution to a
Minimal CSP instance is NP-hard, even when bounding the size of the domains by a fixed
integer d ≥ 9. We now further generalize this result to any d ≥ 3:

Theorem 1. Computing a solution to a Minimal CSP instance is NP-hard, even when
bounding the size of the domains by a fixed integer d ≥ 3.

Proof. The proof uses the same idea as the standard NP-Completeness proof for 3SAT
which transforms a clause C = l1 ∨ l2 ∨ l3 ∨ l4 into two smaller clauses C1 = l1 ∨ l2 ∨ x and
C2 = x ∨ l3 ∨ l4.

Suppose that we have a k-ary Minimal CSP instance I. Let v be a variable in I such
that the domain of v is of size dv > 3. We replace v by two new variables v1 and v2 to obtain
a new k-ary instance I ′. In the following definition, the first point defines the domains of I ′,
while points 2. to 5. specify which k′-tuples are allowed and which are forbidden, for each
k′ such that 2 ≤ k′ ≤ k (therefore defining the constraints of I ′). As mentioned before, we
will use a set notation to represent tuples in this proof and some others, since the context
is clear and the order of assignments within a tuple does not matter.

1. With {a1, a2, . . . , adv
} being the domain of v, we set the domain of v1 to {a1, a2, x}

and the domain of v2 to {x, a3, . . . , adv
}. The domains of the other variables remain

unchanged.

2. Let B = {b1, b2, b3, . . . , bk′} be a k′-tuple such that b1 is in the domain of v1 and b2 is
in the domain of v2. Then B is allowed if and only if: b1 = x, b2 �= x and there exists
some value b′ such that the k′-tuple B′ = {b′, b2, b3, . . . , bk′} is allowed in I; or b1 �= x,
b2 = x and there exists some value b′ such that the k′-tuple B′ = {b1, b′, b3, . . . , bk′} is
allowed in I.

3. Let b be a value not in the domain of v1 or v2. Let B = {b, b′, b3, . . . , bk′} be a k′-tuple
such that b′ is in the domain of v1 and B does not contain any value from the domain
of v2. If b′ = ai for 1 ≤ i ≤ 2, then B is allowed in I ′ if and only if B was allowed in
I. If b′ = x, let Bi = {b, ai, b3, . . . , bk′} for 3 ≤ i ≤ dv. B is allowed in I ′ if and only
if one of the Bi was allowed in I.

4. Let b be a value not in the domain of v1 or v2. Let B = {b, b′, b3, . . . , bk′} be a k′-tuple
such that b′ is in the domain of v2 and B does not contain any value from the domain
of v1. If b

′ = ai for 3 ≤ i ≤ dv, then B is allowed in I ′ if and only if B was allowed in
I. If b′ = x, let Bi = {b, ai, b3, . . . , bk′} for 1 ≤ i ≤ 2. B is allowed in I ′ if and only if
one of the Bi was allowed in I.

1We are aware that finding a solution to a Minimal CSP is both a search problem (find a solution) and
a promise problem (the input CSP is satisfiable because it is minimal), rather that a decision problem.
However, we use this terminology in the same manner as Gottlob [6], where a thorough discussion of the
matter can be found.
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Figure 1: Transforming a variable v into two variables v1 and v2 with smaller domains.

5. All other k′-tuples in I ′ remain as they were in I.

Figure 1 illustrates an example of the transformation for k = 2 and dv = 4. Av, Av1 and
Av2 denote the domains of v, v1 and v2 respectively. The continuous lines represent allowed
pairs, while the dashed lines represent forbidden pairs.

When reducing I to I ′, we remove one variable and add two. So the number of variables
in I ′ is n+ 1, with n being the number of variables in I. We also add two new values, x in
the domain of v1 and x in the domain of v2. So the number of values in I ′ is dt + 2, with
dt being the total number of values in I. The arity of I ′ is the same as the arity of I. So
the number of tuples in the constraints of I ′ is polynomial in the number of tuples in the
constraints of I. Furthermore, specifying whether each tuple of I ′ is allowed or forbidden
only requires us to check some corresponding tuples from I. Therefore, reducing I to I ′ is
done in polynomial time in the size of I. So in order to obtain the desired result, it only
remains to prove that I ′ is a Minimal CSP instance and that finding a solution for I ′ allows
us to find in polynomial time a solution for I.

1. I ′ is a Minimal CSP instance:
We have to prove that each allowed k′-tuple in I ′ is in a solution for I ′, for each
k′ such that 2 ≤ k′ ≤ k. Let k′ be an integer such that 2 ≤ k′ ≤ k and let B =
{b1, b2, b3, . . . , bk′} be an allowed k′-tuple in I ′ such that:

• Either b1 is in the domain Av1 of v1, or B does not contain any value from Av1 .

• Either b2 is in the domain Av2 of v2, or B does not contain any value from Av2 .

We necessarily have one of the following seven cases:
(a) b1 = x and b2 = ai for some i ∈ [3, . . . , dv]: from the second point in the definition

of I ′, we know that there is some allowed k′-tuple B′ = {b′, ai, b3, . . . , bk′} in I.
Since I is minimal, there is some solution S for I such that B′ belongs to S. Let
S′ = S ∪ {x}. By construction, S′ is a solution for I ′ containing B.

(b) b1 = ai for some i ∈ [1, 2] and b2 = x: same argument as for (a).
(c) b1 = x and b2 /∈ Av2 : from the third point in the definition of I ′, we know that

there is some allowed k′-tuple Bi = {ai, b2, b3, . . . , bk′} in I, with i ∈ [3, . . . , dv].
Since I is minimal, there is some solution S for I such that Bi belongs to S. Let
S′ = S ∪ {x}. By construction, S′ is a solution for I ′ containing B.
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(d) b1 /∈ Av1 and b2 = x: same argument as for (c), using the fourth point in the
definition of I ′ instead of the third.

(e) b1 ∈ Av1 , b1 �= x and b2 /∈ Av2 : from the third point in the definition of I ′, we
know that B is allowed in I too. Since I is a Minimal CSP instance, there is some
solution S for I such that B belongs to S. Let S′ = S ∪ {x}. By construction,
S′ is a solution for I ′ containing B.

(f) b1 /∈ Av1 , b2 ∈ Av2 and b2 �= x: same argument as for (e), using the fourth point
in the definition of I ′ instead of the third.

(g) b1 /∈ Av1 and b2 /∈ Av2 : from the fifth point in the definition of I ′, we know that
B is allowed in I too. Since I is a Minimal CSP instance, there is some solution
S for I such that B belongs to S. Let a be the point of S in Av. If a = a1 or
a = a2, then let S′ = S ∪ {x}. Otherwise, let S′ = S ∪ {x}. By construction, S′

is a solution for I ′ containing B.

So if B is an allowed k′-tuple of I ′, then B is in a solution for I ′.
2. Finding a solution for I from a solution for I ′:

Suppose that we have a solution S′ for I ′. From the second point in the definition of I ′,
we know that there is no allowed k-tuple containing both x and x. Therefore, S′ must
contain one of the ai. Let S = S′\{x} (or S = S′\{x} if x ∈ S′). By construction, S
is a solution for I.

The domain size of v1 is 3 < dv, and the domain size of v2 is dv − 1 < dv. Therefore, if
we have a variable with a domain of size strictly greater than 3, then we can replace it by
two variables with strictly smaller domain size. By iteratively applying this operation until
all domains have a size of 3 or less, we can reduce I to a Minimal CSP instance where the
size of all domains is bounded by 3. Since computing a solution to a Minimal CSP instance
is NP-hard [6], we have the result.

In the case of Boolean domains, we also have NP-hardness if the arity of the instances
is k ≥ 3.

Theorem 2. For all k > 2, computing a solution to a k-ary Minimal CSP instance is
NP-hard, even when bounding the size of the domains by 2.

Proof. The proof is based on the transformation from a domain A = {a1, a2, a3} of size 3
to three domains A1 = {a1, a1}, A2 = {a2, a2}, A3 = {a3, a3}, each of size 2.

Let k > 2. From Theorem 1, we know that computing a solution to a k-ary Minimal
CSP instance is NP-hard, even when bounding the size of the domains by 3. Therefore, we
just need to reduce the k-ary Minimal CSP with domain size bounded by 3 to the k-ary
Minimal CSP with domain size bounded by 2. Let I be a k-ary Minimal CSP instance such
that the size of each domain in I is bounded by 3. Let v be a variable in I such that the
domain of v is of size 3. We replace v by three new variables v1, v2 and v3 to obtain a new
k-ary instance I ′. In the following definition, the first point defines the domains of I ′, while
points 2. to 7. specify which k′-tuples are allowed and which are forbidden, for each k′ such
that 2 ≤ k′ ≤ k (therefore defining the constraints of I ′).

1. With {a1, a2, a3} being the domain of v, we set the domain of vi to be Avi = {ai, ai}
for 1 ≤ i ≤ 3. The domains of the other variables remain unchanged.

2. All k′-tuples in I ′ containing both ai and aj for some 1 ≤ i �= j ≤ 3 are forbidden.
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3. Let B = {ai, aj , b1, b2, . . . , bk′−2} be a k′-tuple for some 1 ≤ i �= j ≤ 3. Let h be the
integer between 1 and 3 such that h �= i and h �= j. B is allowed if and only if there is
some allowed k′-tuple in I containing ah and all the bg for 1 ≤ g ≤ k′ − 2. Note that
this covers the particular cases when ah is one of the bg (in which case B is allowed if
and only if there is an allowed k′-tuple in I containing all the bg) and when ah is one
of the bg (in which case B is forbidden because ah does not appear in I).

4. Let B = {ai, b1, b2, . . . , bk′−1} be a k′-tuple such that 1 ≤ i ≤ 3 and no bj is in the
domain of v1, v2 or v3. B is allowed in I ′ if and only if B is allowed in I.

5. Let B = {ai, b1, b2, . . . , bk′−1} be a k′-tuple such that 1 ≤ i ≤ 3 and no bj is in the
domain of v1, v2 or v3. B is allowed if and only if there is some j �= i, with 1 ≤ j ≤ 3,
such that {aj , b1, b2, . . . , bk′−1} is allowed in I.

6. Let B = {ai, aj , b1, b2, . . . , bk′−2} be a k′-tuple such that 1 ≤ i �= j ≤ 3 and no bh is in
the domain of v1, v2, or v3. B is allowed if and only if there is some bk′−1 such that
{ai, bk′−1, b1, b2, . . . , bk′−2} is allowed in I.

7. All other k′-tuples in I ′ remain as they were in I.

When reducing I to I ′, we remove one variable and add three. So the number of variables
in I ′ is n + 2, with n being the number of variables in I. We also add three new values,
a1, a2 and a3 in the domains of v1, v2 and v3 respectively. So the number of values in I ′

is dt + 3, with dt being the total number of values in I. The arity of I ′ is the same as the
arity of I. So the number of tuples in the constraints of I ′ is polynomial in the number of
tuples in the constraints of I. Furthermore, specifying whether each tuple of I ′ is allowed or
forbidden only requires us to check some corresponding tuples from I. Therefore, reducing
I to I ′ is done in polynomial time in the size of I. So in order to obtain the desired result,
it only remains to prove that I ′ is a Minimal CSP instance and that finding a solution for
I ′ allows us to find in polynomial time a solution for I.

1. I ′ is a Minimal CSP instance:
We have to prove that each allowed k′-tuple in I ′ is in a solution for I ′, for each k′

such that 2 ≤ k′ ≤ k. Let k′ be an integer such that 2 ≤ k′ ≤ k and let B be an
allowed k′-tuple in I ′. We necesarily have one of the six following cases:
(a) B = {ai, b1, b2, . . . , bk′−1} with 1 ≤ i ≤ 3 and neither bj in the domain of v1,

v2 or v3. Without loss of generality, we assume that i = 1. From the fourth
point in the definition of I ′, we know that B is also allowed in I. Since I is a
Minimal CSP instance, there is some solution S for I such that B belongs to S.
Let S′ = S ∪ {a2, a3}. By construction, S′ is a solution for I ′ containing B.

(b) B = {ai, aj , b1, b2, . . . , bk′−2} with 1 ≤ i �= j ≤ 3 and no bh in the domain of v1,
v2 or v3. Without loss of generality, we assume that i = 1. From the sixth point
in the definition of I ′, we know that there is an allowed k′-tuple in I containing
a1 and all bh for 1 ≤ h ≤ k′ − 1. Since I is a Minimal CSP instance, there
is some solution S for I such that both a1 and all the bh belong to S. Let
S′ = S ∪ {a2, a3}. By construction, S′ is a solution for I ′ containing B.

(c) B = {ai, aj , ah, b1, b2, . . . , bk′−3} with 1 ≤ i, j, h ≤ 3 and i, j, h all distinct. With-
out loss of generality, we assume that i = 1. From the third point in the definition
of I ′, we know that there is an allowed k′-tuple in I containing a1 and all the bg
for 1 ≤ g ≤ k − 3. Since I is a Minimal CSP instance, there is a solution S for I
such that ai and all the bg belong to S. Let S′ = S ∪ {a2, a3}. By construction,
S′ is a solution for I ′ containing B.
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(d) B = {ai, b1, b2, . . . , bk′−1} with 1 ≤ i ≤ 3 and no bj in the domain of v1, v2 or
v3. Without loss of generality, we assume that i = 1. From the fifth point in the
definition of I ′, either {a2, b1, b2, . . . , bk′−1} or {a3, b1, b2, . . . , bk′−1} is allowed in
I. Without loss of generality, we assume the former. Since I is a Minimal CSP
instance, there is some solution S for I such that {a2, b1, b2, dots, bk′−1} belongs
to S. Let S′ = S ∪ {a1, a3}. By construction, S′ is a solution for I ′ containing
B.

(e) B = {ai, aj , b1, b2, . . . , bk′−2} with 1 ≤ i �= j ≤ 3 and no bh not in the domain of
v1, v2 or v3. Without loss of generality, we assume that i = 1 and j = 2. From the
third point in the definition of I ′, there is an allowed k′-tuple in I containing a3
and all the bh for 1 ≤ h ≤ k−2. Since I is a Minimal CSP instance, there is some
solution S for I such that a3 and all the bh belong to S. Let S′ = S ∪ {a1, a2}.
By construction, S′ is a solution for I ′ containing B.

(f) B = {b1, b2, . . . , bk′} with no bi being in the domain of vj , for any 1 ≤ i, j ≤ 3.
From the seventh point in the definition of I ′, we know that B is allowed in I
too. Since I is a Minimal CSP instance, there is some solution S for I such that
B belongs to S. Let ai be the point of S in the domain of v. Without loss of
generality, we assume that i = 1. Let S′ = S ∪ {a2, a3}. By construction, S′ is a
solution for I ′ containing B.

So if B is an allowed k′-tuple of I ′, then B is in a solution for I ′.
2. Finding a solution for I from a solution for I ′:

Suppose that we have a solution S′ for I ′. From the second and third points in the
definition of I ′, we know that S′ must contain ai, aj and ah, for some distinct i,
j and h between 1 and 3. Without loss of generality, we assume that i = 1. Let
S = S′\{a2, a3}. By construction, S is a solution for I.

Therefore, if we have a variable with a domain of size 3, then we can replace it by three
variables with domains of size 2. By iteratively applying this operation until all domains
have a size of 2 or less, we can reduce I to a Minimal CSP instance where the size of all
domains is bounded by 2. So we have the result.

The binary Boolean Minimal CSP is polynomial, since the more general binary Boolean
CSP can be trivially reduced to 2-SAT, which is polynomial [12]. Combined with Theorems 1
and 2, and with the triviality of CSP instances consisting entirely of single-valued variables,
we can complete the classification:

Theorem 3. Computing a solution to a k-ary Minimal CSP instance when the size of the
domains is bounded by d is NP-hard if and only if (d ≥ 3 or (d = 2 and k ≥ 3)).

The result is summarized in Table 1.

Corollary 1. When bounding the size of the domains by a constant d and the arity of the
constraints by a constant k, Minimal CSP and the general CSP are NP-hard for the exact
same values of d and k.
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3. Relativistic Arity

We have considered scenarios in which we consider CSPs involving constraints of constant
arity. However, a powerful aspect of constraint programming [11] is due to the use of global
constraints [13]. Informally, a global constraint defines a relation between a set of variables
of non-fixed arity. The classic example is the alldifferent(x1, . . . , xk) constraint [10],
which states the variables x1, . . . , xk must take all different values. While this is equivalent
to stating that these variables must be pairwise different, a relation that can be specified
as a clique of binary inequality constraints, we can take advantage of the more global view
that the alldifferent constraint gives us. Specifically, we are interested in pruning from
the domains of each xi any value that does not participate in at least one solution of the
alldifferent. When the domains of the variables contain only values that participate
in a solution to the constraint, we say that we have achieved generalised arc consistency
(GAC) [4]. For many global constraints GAC can be achieved in polynomial time, while for
other constraints it is NP-hard.

We now turn our focus on minimality involving constraints for which the arity is not
fixed, but rather is a result of a function applied to the number of variables in the instance.

Definition 3 (α-arity). Let α be a function from N to N. Let I be a CSP instance with
n variables. We say that I is an α-ary CSP instance if the arity of I is (α(n)).

Definition 4 (α-ary Minimal CSP). Let α be a function from N to N. Let I be an α-
ary CSP instance with n variables. We say that I belongs to the α-ary Minimal Constraint
Satisfaction Problem (or α-ary Minimal CSP for short) if every allowed set of α(n) values
of I can be extended to a solution for I.

After having formally defined this new form of minimality, we now present a complexity
result for such a class of Minimal CSP instances. Note that this class neither contains nor
is contained in any class that we previously studied.

Theorem 4. Let p > 0 be an integer. Let α : N → �p√N
 be a function from N to N.
Then computing a solution to an α-ary Minimal CSP instance is NP-hard. Furthermore,
the result holds even when bounding the size of the domains by d = 3.

Proof. We first prove the result for p = 2. We are going to reduce the binary Minimal CSP
on domains of size 3 to the α-ary Minimal CSP on domains of size 3.

Let I be a binary Minimal CSP instance with n variables v1, . . . , vn, and with domains
of size d = 3. Assume without loss of generality that the three values in each domain are
0,1 and 2.

Table 1: Complexity of the k-ary Minimal CSP with domains of size bounded by d.

�����d
k

2 ≥ 3

1 tractable tractable
2 tractable NP-hard

≥ 3 NP-hard NP-hard
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Let n′ = n2. We then build a (2n)-ary CSP instance I ′ on n′ variables v′1, . . . , v
′
n′ . We set

each domain in I ′ to be composed of the three values 0,1 and 2. Let A = {a1, a2, . . . , a2n}
be a (2n)-tuple in I ′. Let i and j be such that for each 1 ≤ q ≤ n, aq is in the domain
of the variable v′(i−1)n+q and an+q is in the domain of the variable v′(j−1)n+q. Let a =

(a1 + a2 + · · ·+ an) mod 3 be the sum modulo 3 of the values of A that are in the domains
of the variables v′(i−1)n+1, . . . , v

′
in and let b = (an+1 + an+2+, . . . , a2n) mod 3 be the sum

modulo 3 of the values of A that are in the domains of the variables v′(j−1)n+1, . . . , v
′
jn. Then

we set A to be allowed in I ′ if and only if the value a from the domain of vi is compatible
with the value b from the domain of vj in I. All other (2n)-tuples in I ′ are set to be allowed.

The intuitive idea behind the construction of I ′ is that for each variable vi in I, there are
n corresponding variables v(i−1)n+1, . . . , vin in I ′, and that the sum modulo 3 of the values
assigned to these n variables in I ′ corresponds to the value assigned to vi in I.

We are now going to prove that I has a solution if and only if I ′ has a solution. Suppose
first that we have a solution S = {a1, . . . , an} for I. Without loss of generality, assume that
ai is in the domain of vi for each 1 ≤ i ≤ n. Let S′ = {a′1, . . . , a′n′} be a set of n′ values of
I ′ such that:

• For each 1 ≤ i ≤ n′, a′i is in the domain of v′i.

• For each 1 ≤ i ≤ n, a′in = ai.

• For each 1 ≤ i ≤ n, the values a′(i−1)n+1, a
′
(i−1)n+2, . . . , a

′
(i−1)n+n−1 are all equal to 0.

If there is a forbidden tuple A in S′, then from the definition of I ′ there are some i and
j such that A = {a′(i−1)n+1, a

′
(i−1)n+2, . . . , a

′
in} ∪ {a′(j−1)n+1, a

′
(j−1)n+2, . . . , a

′
jn} and the

values (a′(i−1)n+1 + a′(i−1)n+2 + · · · + a′(i−1)n+n−1 + a′in) mod 3 in the domain of vi and

(a′(j−1)n+1+a′(j−1)n+2+· · ·+a′(j−1)n+n−1+a′jn) mod 3 in the domain of vj are incompatible

in I. So the values (0+0+ · · ·+0+ai) mod 3 in the domain of vi and (0+0+ · · ·+0+aj)
mod 3 in the domain of aj are incompatible in I. So ai and aj are incompatible in I, which
is in contradiction with the assumption that S is a solution for I. Therefore, there is no
forbidden tuple in S′. Therefore, S′ is a solution for I ′. So if we have a solution for I, then
we have a solution for I ′.

Suppose now that we have a solution S′ = {a′1, . . . , a′n′} for I ′. Without loss of generality,
assume that a′i is in the domain of v′i for each 1 ≤ i ≤ n′. Let S = {a1, . . . , an} be a set of
n values of I such that:

• For all 1 ≤ i ≤ n, ai is in the domain of vi.

• For all 1 ≤ i ≤ n, ai is equal to the sum modulo 3 of the n values a′(i−1)n+1, . . . , a
′
in.

If two values ai and aj from S are incompatible, then from the definition of I ′ the tuple
{a′(i−1)n+1, a

′
(i−1)n+2, . . . , a

′
in} ∪ {a′(j−1)n+1, a

′
(j−1)n+2, . . . , a

′
jn} is forbidden and we have a

contradiction. So there is no forbidden tuple within S. So S is a solution for I. So if we
have a solution for I ′, then we have a solution for I. So we have shown that I has a solution
if and only if I ′ has a solution.

We are now going to prove that I ′ is an α-ary CSP instance. Since the arity of I ′ is 2n
and n′ = n2, I ′ is an α-ary CSP instance. So in order to prove that I ′ is an α-ary CSP

10



instance, we just have to prove that every allowed set of α(n′) values of I ′ can be extended
to a solution.

We now define several useful tools. For each 1 ≤ i ≤ n, let Vi = {v′(i−1)n+1, . . . , v
′
in}.

We say that the scope of a set A of values of I ′ is the set W of variables of I ′ such that the
domain of each variable of W contains at least one value of A and each value of A is in the
domain of a variable of W . For each set A of n values of I ′ such that Vi is the scope of A
for some i, let f(A) be the sum modulo 3 of all the values in A.

Lemma 1. Let A be a set of q values of I ′ such that q < n and let W be the scope of A.
Suppose that there is some i such that W ⊂ Vi. Let a be a value in the domain of vi. Then
there is a set A′ such that A ⊂ A′, the scope of A′ is Vi and f(A′) = a.

Proof. Let A = {a1, a2, . . . , aq} be a set of a values of I ′ such that q < n. Let W be the
scope of A. Suppose that there is some i such that W ⊂ Vi. Without loss of generality,
assume that W = {v′(i−1)n+1, v(i−1)n+2, dots, v

′
(i−1)n+q} and that aq′ is in the domain of

v′(i−1)n+q′ for each 1 ≤ q′ ≤ q. Let a0 = (a1 + a2 + · · ·+ aq) mod 3 be the sum modulo 3 of
all values in A if A is not empty and let a0 = 0 otherwise. Let a be a value in the domain
of vi.
Let A′ = {a′1, a′2, . . . , a′n} be the set of n values of I ′ such that :

1. For each 1 ≤ r ≤ n, a′r is in the domain of v′(i−1)n+r.

2. For each 1 ≤ r ≤ q, a′r = ar.

3. For each q < r < n, a′r is equal to 0.

4. a′n is equal to (a− a0) mod 3.

From 2., we know that A ⊂ A′. From 1., we know that the scope of A′ is Vi. From 3. and
4., we know that f(A′) = a0 + ((a− a0) mod 3) = a. Therefore, we have constructed a set
A′ that satisfies the conditions of the lemma.

Suppose that we have a compatible (2n)-tuple A = {a′1, a′2, . . . , a′2n} in I ′. Let W be the
scope of A. Since there are only 2n values in A, only two sets among V1, V2, . . . , Vn can be
fully contained in W . Therefore, there are three possibilities for the composition of W :

1. There are some i and j such that W = Vi ∪ Vj . Let Ai be the restriction of A to Vi

and let Aj be the restriction of A to Vj . Let ai = f(Ai) and let aj = f(Aj). Since
A is compatible, the value a in the domain of vi is compatible with the value b in
the domain of vj in I. Since I is minimal, this allowed tuple can be extended to a
solution S = {a1, a2, . . . , an} for I, such that each aq is in the domain of vq. Let
B = {b1, b2, . . . , bn′} be the set of n′ values of I ′ such that:

(a) For each q such that 1 ≤ q ≤ n′, bq is in the domain of v′q.
(b) For each q such that (i− 1)n+ 1 ≤ q ≤ in or (j − 1)n+ 1 ≤ q ≤ jn, bq is equal

to the value of A in the domain of v′q.
(c) For each a such that 1 ≤ q ≤ n, q �= i and q �= j, bqn is equal to aq.
(d) For each q such that the value of bq has not been specified in (b) or (c), the value

of bq is equal to 0.

From (a) and (b), B is an extension of A to the whole instance I ′. From (c), (d)
and the definition of I ′, B does not contain any forbidden tuple. Therefore, we have
extended A to a solution for I ′.
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2. There is some i such that W = W1 ∪ W2 ∪ · · · ∪ Wi−1 ∪ Vi ∪ Wi+1 ∪ · · · ∪ Wn, with
each Wj being a (possibly empty) strict subset of Vj . Let Ai be the restriction of A
to Vi and for each 1 ≤ j ≤ n such that j �= i let Aj be the restriction of A to Wj . Let
ai = f(Ai). Since I is Minimal, there is a solution S = {a1, a2, . . . , an} for I, such
that each aj is in the domain of vj . From Lemma 1, we know that we can extend A
to a set A′ of n′ values of I ′ such that for each 1 ≤ j ≤ n we have f(A′

j) = aj , with
A′

j being the restriction of A′ to Vj . From the definition of I ′, A′ is a solution for I ′.
3. There is no i such that Vi ⊂ W . So W = W1 ∪W2 ∪ · · · ∪Wn, with each Wi being a

(possibly empty) strict subset of Vi. For each 1 ≤ i ≤ n, let Ai be the restriction of A
to Wi. Let S = {a1, a2, . . . , an} be a solution for I, such that each ai is in the domain
of vi. From Lemma 1, we know that we can extend A to a set A′ of n′ values of I ′

such that for each 1 ≤ i ≤ n we have f(A′
i) = ai, with A′

i being the restriction of A′

to Vi. From the definition of I ′, A′ is a solution for I ′.

In all cases, A can be extended to a solution for I ′, which proves that I ′ belongs to the
α-ary Minimal CSP. So we have reduced the binary Minimal CSP with a bound of 3 on the
size of the domains to the α-ary CSP with a bound of 3 on the size of the domains.

Both the number of variables in I ′ (n2) and the size of the domains of I ′ (3) are poly-

nomial in the size of I, but the number of (2n)-tuples in I ′ is equal to
(
n2

2n

)× 22n, which is
exponential in the size of I. Therefore, it is not trivial whether the reduction is done in time
polynomial in the size of I. However, at no point in the reduction do we need to individually
check all tuples of I ′. We only need to express the constraints of I ′ in the form of a function
which answers in time polynomial in the size of n whether a given partial assignment for I ′

is compatible.
Suppose that we have a partial assignment A for I ′. If there is a forbidden (2n)-tuple A′

within A, then from the definition of I ′ there are some i and j such that the scope of A′

is Vi ∪ Vj . There are only n(n − 1)/2 such pairs (i, j), so we only need to check the at
most n(n − 1)/2 subsets of A that fit the description. If we have i, j and A′, where A′

is a subset of A and the scope of A′ is Vi ∪ Vj , then checking whether A′ is allowed can
be done in polynomial time in the size of I by just summing the values of A′ modulo 3
and comparing the results with the constraints of I. Therefore, the size of I ′, including the
variables, the domains and an exact representation of the constraints, is polynomial in the
size of I. Therefore the reduction is done in time polynomial in the size of I.

From Theorem 3, the binary Minimal CSP is NP-hard even with a bound of 3 on the
size of the domains. Therefore we have the result for p = 2.

For p = 1, the proof is the same with the addition of 3n2 variables in I ′ that are
compatible with everything in I ′. The number of variables in I ′ is now n′ = 4n2, and the
arity of I ′ becomes 2n =

√
n′ = α(n).

For p > 2, the proof is also the same with the only difference being that the instance I
at the start of the reduction is now a p-ary Minimal instance.

4. Relativistic Minimality

In this section we look at the complexity of the Minimal CSP when we alter the compo-
sition of the set of objects that can be extended to a solution. Specifically, we now require
that all partial solutions smaller than some particular size can be extended to a full solution.
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The upper bound on the size of the partial solutions will be given by a function α, where the
argument taken by α is the number n of variables in an instance. Each different function α
defines a different class of Minimal CSP instances.

It is natural to wonder how high α(n) can be while still maintaining the complexity of
computing a solution to be NP-hard. For example, we know from Theorem 3 that it is NP-
hard to find a solution to a binary CSP instance even when requiring that all compatible pairs
of values can be extended to a solution. What happens if in addition to that all compatible
tuples of size 3, 4 and 5 (case α(n) = 5) can also be extended to a solution? This new class
is much more restrictive, so it is not obvious whether NP-hardness is conserved. If it is,
how many further similar restrictions can we add to the class before it becomes tractable?
What if α(n) is equal to log4(n), or to

3
√
n, or to n/2?

We will prove in Section 4.2 that α(n) can be as high as ε
√
n for any real number ε > 2

and computing a solution will still be NP-hard. Such functions include the previously
mentioned cases of α(n) = 5, α(n) = log4(n) and α(n) = 3

√
n. However, the complexity for

the functions α(n) = n/p is still open.
The notion of large partial solutions that can be extended to a full solution has been

studied before in the context of robustness [1]. Their paper looked at the class of CSP
instances where every compatible tuple of size smaller than some r can be extended to a
full solution. However, while their bound r is allowed to be greater than the arity of the
instance, it is still a constant. On the other hand, our upper bound α is actually a function
on the number of variables in the instance.

4.1. Definitions

Definition 5 (p Minimality). Let p > 0 be an integer. We say that a k-ary CSP instance
I on n variables is p Minimal if k ≤ p ≤ n and every compatible p-tuple of I can be extended
to a solution for I.

Definition 6 (p− Minimality). Let p > 0 be an integer. We say that a k-ary CSP in-
stance I on n variables is p− Minimal if k ≤ p ≤ n and I is a′ Minimal for every integer q
such that k ≤ q ≤ p.

Lemma 2. Let I be k-ary CSP instance. Let p1 and p2 be two integers such that k ≤ p1 ≤
p2. Then:

I is p−1 Minimal ⇐ I is p−2 Minimal

Proof. Suppose that I is p−2 Minimal. From Definition 6, I is p Minimal for each p such
that k ≤ p ≤ p2. Since p1 ≤ p2, I is p Minimal for each p such that k ≤ p ≤ p1. So from
Definition 6, I is p−1 Minimal and we have the result.

Definition 7 (α− Minimality). Let I be a k-ary CSP instance on n variables. Let α be
a function from N to R such that k ≤ α(n) ≤ n. We say that I is α− Minimal if it is α(n)−

Minimal.

Definition 8 (α− Minimal CSP). Let α be a function from N to R. The α− Minimal
Constraint Satisfaction Problem (or α− Minimal CSP for short) is the problem of computing
a solution to α− Minimal CSP instances.
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To give a simple concrete example illustrating these new notions, suppose that we want
to color a map composed of the six New England states, such that at most four colors are
used and two adjacent states never share the same color. Figure 2 represents the associated
coloring instance. There is one variable for each state, each domain contains the four colors
{1, 2, 3, 4} and there is a diff constraint, represented by a dashed line, between two states
if they are adjacent.

The 4-Coloring problem is always satisfiable for planar graphs [3] so this instance is
satisfiable. Furthermore, any compatible assignment on two variables, that is either an as-
signment to two non-adjacent states or an assignment of two different colors to two adjacent
states, can be extended to a full solution. Therefore, the instance is Minimal. Since all the
constraints are binary, from Definition 5 the instance is 2 Minimal.

Going even further, any assignment of colors to three different states that does not
violate any diff constraint can be extended to a solution for all six states. For example,
the assignment of the color 1 to Massachusetts, the color 2 to Vermont and the color 3 to
Maine forms a compatible 3-tuple that can be completed to a solution for the full instance
by assigning the color 2 to Connecticut, the color 3 to Rhode Island and the color 4 to New
Hampshire. Therefore, from Definition 5 the instance is 3 Minimal. Since the instance is
also 2 Minimal and binary, from Definition 6 the instance is 3− Minimal. However, there
exist compatible 4-tuples that cannot be extended to a solution. For example, if we assign
the color 1 to Connecticut, the color 2 to Rhode Island, the color 3 to Vermont and the
color 4 to New Hampshire, then there is no assignment to Massachusetts that is compatible
with all four values already picked. So from Definition 5 the instance is not 4 Minimal, and
therefore from Definition 6 it is not 4− Minimal either.

Let α1 be the function from N to R such that α1(n) = n/2 for each integer n. Let α2

be the function from N to R such that α2(n) = 2n/3 for each integer n. Since there are
six variables in the instance and the instance is 3− Minimal, from Definition 7 the instance
is α−

1 Minimal. Since there are six variables in the instance and the instance is not 4−

Minimal, from Definition 7 the instance is not α−
2 Minimal.

4.2. Complexity Results

Our main theorem states that if α is a function and ε > 2 some real number such that
α(n) ≤ ε

√
(n) for all n, then the α− Minimal CSP is NP-hard, even when the constraints

are binary. We first prove the result for the special case ε = 3.

Proposition 1. Let γ be the function from N to R such that ∀N ∈ N, γ(N) = 3
√
N . Then

the γ− binary Minimal Constraint Satisfaction Problem is NP-hard.

Proof. Let Pd≤3 be the binary Minimal Constraint Satisfaction Problem restricted to the

instances with at most 3 values in each domain, and let Pn≥12
d≤3 be Pd≤3 restricted to the

instances with at least 12 variables. From Theorem 3, we know that Pd≤3 is NP-hard. Since

the number of instances in Pd≤3\Pn≥12
d≤3 is finite, Pn≥12

d≤3 is also NP-hard. We are going to

reduce Pn≥12
d≤3 to the γ− binary Minimal CSP. Let I be a binary Minimal CSP instance with

n variables v1, . . . , vn, such that n ≥ 12 and there are at most three values in the domain of
vi for each 1 ≤ i ≤ n. Since adding values that are incompatible with the rest of the instance
does not add allowed tuples nor remove solutions, we can add values in the domains that
have strictly less than three values without losing minimality. Without loss of generality,
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Figure 2: Adjacencies within the New England states.
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assume that the domain of each variable in I is composed of the three values 0, 1 and 2.
From now on, we will refer to a value from one of these domains, that is a value being equal
to one of the three integers 0, 1 and 2, as a “trilean” value.

Let α = n3, and let β = 2α + 1. Note that β is always odd. We are going to reduce
I to a binary α− Minimal CSP instance I ′. The following nine bullet points describe the
construction of I ′. At the start of each bullet point, we give between parenthesis a few
keywords describing the notion covered by this specific bullet point, so that the reader can
more easily find what he/she wants when going back to the definition of I ′ in the future.
While each bullet point is necessary for the correctness of the proof, the second bullet point
is of particular importance, as it describes the main idea behind the proof.

1. (root variables) For each variable vi in I, we create α variables vi,1, . . . , vi,α in I ′, such
that the domain of vi,j is the same as the domain of vi for every 1 ≤ j ≤ α. From
now on, we will refer to these variables as “root variables”.

2. (permutation variables and permutation metaconstraints) For all 1 ≤ i < j ≤ n, we
create β∗(β−1) variables ci,j,1,1, . . . , ci,j,1,β , ci,j,2,1, . . . , ci,j,2,β , ci,j,3,1, . . . , ci,j,β−1,β in
I ′ such that the domain of each ci,j,l,col is {0, 1, 2, . . . , 3β − 1} for every 1 ≤ l ≤ β − 1
and every 1 ≤ col ≤ β. From now on, we will refer to these variables as “permutation
variables”, and more specifically as the permutation variables “of the permutation
metaconstraint between i and j”. Informally, the permutation metaconstraint between
i and j is a representation in I ′ of the constraint between the variables vi and vj in I.
For each 1 ≤ l ≤ β − 1, we will also refer to the β variables ci,j,l,1, . . . , ci,j,l,β as the
“lth line of the permutation metaconstraint between i and j”.
Each permutation variable carries two pieces of information: a trilean value to carry
to the next line of the permutation metaconstraint, and to which variable of the next
line to carry it. The former will be equal to the value assigned to the permutation
variable modulo 3. The latter will be determined by dividing the value assigned to
the permutation variable by 3, rounding down and adding 1. For example, if the value
assigned to ci,j,l,6 is 8, then the trilean value 2 will be carried over to ci,j,l+1,3 and
we therefore know that the value assigned to ci,j,l+1,3 will be congruent to 2 modulo
3. One of the permutations will be different from the others: the permutation in the
middle of the permutation metaconstraint, from the line β−1

2 to the line β−1
2 + 1.

This permutation will instead represent the transition from the representation of the
variable vi from the original instance I, to the representation of the variable vj from
the original instance I. This particular permutation will be described in the sixth
bullet point.

3. (guaranteeing bijections) For all 1 ≤ i < j ≤ n, for each 1 ≤ l ≤ β − 1, for all
1 ≤ col < col′ ≤ β, we introduce the binary constraint � ci,j,l,col

3 
 �= � ci,j,l,col′
3 
. This is

to ensure that in any permutation metaconstraint, the carrying of trilean values from
line l to line l + 1 follows a bijection.

4. (first line in a permutation metaconstraint) For all 1 ≤ i < j ≤ n, for each 1 ≤ col ≤ β,
we set the value 0 in the domain of the root variable vi,col to be incompatible with all
values in the domain of the permutation variable ci,j,1,col that are not congruent to 0
modulo 3, we set the value 1 in the domain of vi,col to be incompatible with all values
in the domain of ci,j,1,col that are not congruent to 1 modulo 3, and we set the value
2 in the domain of vi,col to be incompatible with all values in the domain of ci,j,1,col
that are not congruent to 2 modulo 3.
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This is to ensure that ci,j,1,col is the permutation variable in the first line of the
permutation metaconstraint between i and j that will carry the trilean value assigned
to vi,j to the second line of the permutation metaconstraint between i and j. For
example, if the value of ci,j,1,col is 13, it means that the trilean value assigned to vi, col
is 1, and that ci,j,2,5 is the permutation variable in the second line of the permutation
metaconstraint between i and j that will carry the trilean value assigned to vi,col to
the third line of the permutation metaconstraint between i and j.

5. (successive lines in a permutation metaconstraint) For all 1 ≤ i < j ≤ n, for each
1 ≤ l ≤ β − 1 such that l �= β−1

2 and l �= β − 1, for each 1 ≤ col ≤ β, for each value
a in the domain of ci,j,l,col, a will be incompatible with all values in the domain of
ci,j,l+1,�a/3�+1 that are not congruent to a modulo 3.

6. (transition from one original variable to another in the middle of a permutation meta-
constraint) For all 1 ≤ i < j ≤ n, for each 1 ≤ col ≤ β, for each value a in the
domain of ci,j, β−1

2 ,col, a will be incompatible with every value b in the domain of

ci,j, β−1
2 +1,�a/3�+1 such that (a mod 3) in the domain of vi is incompatible with (b

mod 3) in the domain of vj in I.

7. (last line in a permutation metaconstraint) For all 1 ≤ i < j ≤ n, for all 1 ≤ col, col′ ≤
β, we set the value 0 in the domain of the root variable vj,col′ to be incompatible with
the values 3(col′− 1)+1 and 3(col′−1)+2 in the domain of the permutation variable
ci,j,β−1,col, we set the value 1 in the domain of vj,col′ to be incompatible with the
values 3(col′−1) and 3(col′−1)+2 in the domain of ci,j,β−1,col, and we set the value 2
in the domain of vj,col′ to be incompatible with the values 3(col′−1) and 3(col′−1)+1
in the domain of ci,j,β−1,col.

8. (preventing contradictions around the root variables) The permutation variables on
the first (respectively last) line in a permutation metaconstraint determine the value of
the root variables on the previous (respectively following) line, so we need to add the
following constraints in order to make sure we do not have a compatible assignment
on two permutation variables that implies a contradiction on one of the root variables.

8.1 For each 1 ≤ i ≤ n, for all 1 ≤ j1, j2 ≤ n such that j1 �= j2, i < j1 and i < j2, for
each 1 ≤ col ≤ β, each value a in the domain of ci,j1,1,col is incompatible with
the values in the domain of ci,j2,1,col that are not congruent to a modulo 3.

8.2 For each 1 ≤ i ≤ n, for all 1 ≤ j1, j2 ≤ n such that j1 �= j2, j1 < i and j2 < i,
for all 1 ≤ col, col1, col2 ≤ β, the value 3(col − 1) in the domain of cj1,i,β−1,col1

is incompatible with the values 3(col − 1) + 1 and 3(col − 1) + 2 in the domain
of cj2,i,β−1,col2 , and the value 3(col − 1) + 1 in the domain of cj1,i,β−1,col1 is
incompatible with the value 3(col − 1) + 2 in the domain of cj2,i,β−1,col2 .

8.3 For all 1 ≤ j1 < i < j2 ≤ n, for all 1 ≤ col, col1 ≤ β, the value 3(col − 1) in the
domain of cj1,i,β−1,col1 is incompatible with the values in the domain of ci,j2,1,col
that are not congruent to 0 modulo 3, the value 3(col − 1) + 1 in the domain
of cj1,i,β−1,col1 is incompatible with the values in the domain of ci,j2,1,col that
are not congruent to 1 modulo 3, and the value 3(col − 1) + 2 in the domain of
cj1,i,β−1,col1 is incompatible with the values in the domain of ci,j2,1,col that are
not congruent to 2 modulo 3.

9. (the rest) All pairs of values in I ′ that have not had their compatibility specified yet
are set to be allowed.
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To illustrate part of the reduction, suppose that we have two variables vi and vj in I
such that the binary constraint between vi and vj is vj = (vi−1) mod 3. Suppose too that
α = 4, and therefore β = 2α+ 1 = 9. By construction, α cannot be equal to 4, but here we
are just choosing a value for α that is small enough to allow an example of reasonable size.
Figure 3 represents the permutation metaconstraint between i and j in I ′. It is an example
of a possible assignment to the 90 variables composing the permutation metaconstraint.
The values given to the permutation variables are represented by a couple (a, b), with a
being the value to carry to the next line, and b being the variable of the next line to carry
to. The dashed arrows represent the transition from vi to vj . Note that in this gadget, any
compatible assignment on α = 4 variables can be extended to a partial solution on all 90
variables.

Let n′ be the number of variables in I ′. There are nβ root variables in I ′. There is one
permutation metaconstraint in I ′ for each of the n(n− 1)/2 constraints in I and there are
β(β−1) permutation variables in each permutation metaconstraint of I ′. Therefore we have:

n′ = nβ + n(n− 1)/2× β(β − 1)
= n(2α+ 1) + n(n− 1)/2× 2α(2α+ 1) (because β = 2α+ 1)
= 2nα+ n+ 2n(n− 1)α2 + n(n− 1)α
= 2n(n− 1)α2 + n(n+ 1)α+ n
= 2n2α2 − 2nα2 + n2α+ nα+ n
= 2n8 − 2n7 + n5 + n4 + n (because α = n3)
≤ 2n8 + n5 + n4 + n
≤ 2n8 + n8 + n8 + n8

= 5n8

≤ n9 (because n ≥ 12)

So the construction of the new instance I ′ from the original instance I can be done in
polynomial time. Furthermore, we have α = n3 ≥ 3

√
n′. So from Lemma 2, if I ′ is α−

Minimal then it is γ(n′)− Minimal. Therefore, we only have to prove that:

1. if we have a solution for I, then we have a solution for I ′.
2. if we have a solution for I ′, then we have a solution for I.
3. I ′ is α− Minimal.

1. if we have a solution for I, then we have a solution for I ′:
Let S be a solution for I. For each 1 ≤ i ≤ n, let si be the trilean value in the domain
of vi belonging to S. Let S′ be the following n′-tuple in I ′:
(a) (root variables) For each 1 ≤ i ≤ n, for each 1 ≤ col ≤ β, the value si in the

domain of the root variable vi,col belongs to S′.
(b) (bottom half of the permutation metaconstraints) For all 1 ≤ i < j ≤ n, for each

1 ≤ l ≤ α, for each 1 ≤ col ≤ β, the value 3(col − 1) + si in the domain of the
permutation variable ci,j,l,col belongs to S′.

(c) (top half of the permutation metaconstraints) For all 1 ≤ i < j ≤ n, for each
α + 1 ≤ l ≤ 2α, for each 1 ≤ col ≤ β, the value 3(col − 1) + sj in the domain of
the permutation variable ci,j,l,col belongs to S′.

We are now going to prove that S′ is a solution for I ′. In order to do so, we have
to show that S′ satisfies all the constraints in I ′, which are explicited through bullet
points 3 to 8 in the definition of I ′.
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1 0 1 1 0 0 2 0 0

1,4 0,2 1,5 1,9 0,6 0,3 2,1 0,8 0,7

2,1 0,8 0,9 1,4 1,7 0,6 0,3 0,5 1,2

2,6 1,7 0,2 1,1 0,3 0,9 1,8 0,5 0,4

1,1 0,7 0,6 0,3 0,2 2,8 1,5 1,4 0,9

0,7 2,8 2,1 0,3 0,9 2,5 2,2 1,4 2,6

2,7 2,4 0,6 1,3 2,1 2,5 0,9 2,8 0,2

2,4 0,9 1,3 2,5 2,1 0,7 2,2 2,8 0,6

2,4 2,5 1,6 2,1 2,2 0,8 0,9 2,7 0,3

2 2 0 2 2 1 2 0 0

vi,1 vi,2 vi,3 vi,4 vi,5 vi,6 vi,7 vi,8 vi,9

vj,1 vj,2 vj,3 vj,4 vj,5 vj,6 vj,7 vj,8 vj,9

Figure 3: The permutation metaconstraint between i and j.
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3. (guaranteeing bijections) Let i and j such that 1 ≤ i < j ≤ n, let l such that
1 ≤ l ≤ β − 1 and let col and col′ such that 1 ≤ col < col′ ≤ β. We know from
(b) and (c) that the value of S′ in the domain of ci,j,l,col is 3(col − 1) + a and
that the value of S′ in the domain of ci,j,l,col′ is 3(col

′ − 1)+ b, with 0 ≤ a, b ≤ 2.

So � 3(col−1)+a
3 
 = col − 1 �= col′ − 1 = � 3(col′−1)+b

3 
, and the constraints given in
the third bullet point in the definition of I ′ are satisfied.

4. (first line in a permutation metaconstraint) Let i and j such that 1 ≤ i < j ≤ n
and let col such that 1 ≤ col ≤ β. We know from (a) and (b) that the value of
S′ in the domain of vi,col is si and that the value of S′ in the domain of ci,j,1,col
is 3(col − 1) + si. Therefore the value of S′ in the domain of vi,col is congruent
to the value of S′ in the domain of ci,j,1,col modulo 3. Therefore the constraints
given in the fourth bullet point in the definition of I ′ are satisfied.

5. (successive lines in a permutation metaconstraint) Let i and j such that 1 ≤ i <
j ≤ n, let l such that 1 ≤ l < β−1

2 and let col such that 1 ≤ col ≤ β. Let a be the
value of S′ in the domain of ci,j,l,col. From (b), we know that a = 3(col− 1)+ si,
and that the value of S′ in the domain of ci,j,l+1,�a/3�+1 is also 3(col − 1) + si.
Therefore the value of S′ in the domain of ci,j,l,col is congruent to the value of S′

in the domain of ci,j,l+1,�a/3�+1 modulo 3.

Similarly, let i and j such that 1 ≤ i < j ≤ n, let l such that β−1
2 < l < β−1 and

let col such that 1 ≤ col ≤ β. Let b be the value of S′ in the domain of ci,j,l,col.
From (b), we know that b = 3(col−1)+si, and that the value of S′ in the domain
of ci,j,l+1,�b/3�+1 is also 3(col − 1) + si. Therefore the value of S′ in the domain
of ci,j,l,col is congruent to the value of S′ in the domain of ci,j,l+1,�b/3�+1 modulo
3. So the constraints given in the fifth bullet point in the definition of I ′ are
satisfied.

6. (transition from one original variable to another in the middle of a permutation
metaconstraint) Let i and j such that 1 ≤ i < j ≤ n and let col such that
1 ≤ col ≤ β. Let a be the value of S′ in the domain of ci,j,α,col and let b be the
value of S′ in the domain of ci,j,α,�a/3�+1. From (b) we know that (amod3) = si
and from (c) we know that (bmod3) = sj . Since si in the domain of vi and sj
in the domain of vj are compatible in I, the constraints given in the sixth bullet
point in the definition of I ′ are satisfied.

7. (last line in a permutation metaconstraint) Let i and j such that 1 ≤ i < j ≤ n
and let col such that 1 ≤ col ≤ β. Let a be the value of S′ in the domain of
ci,j,β−1,col and let b be the value of S′ in the domain of vj,col. From (c) we know
that a = 3(col − 1) + sj and from (a) we know that b = sj , so the constraints
given in the seventh bullet point in the definition of I ′ are satisfied.

8. (preventing contradictions around the root variables)

8.1 Let i, j1 and j2 such that 1 ≤ i < j1, j2 ≤ n and j1 �= j2. Let col such
that 1 ≤ col ≤ β. Let a1 be the value of S′ in the domain of ci,j1,1,col
and let a2 be the value of S′ in the domain of ci,j2,1,col. From (b) we know
that a1 = a2 = 3(col − 1) + si. So a1 is congruent to a2 modulo 3. So the
constraints given in bullet point 8.1 in the definition of I ′ are satisfied.

8.2 Let i, j1 and j2 such that 1 ≤ j1, j2 < i ≤ n and j1 �= j2. Let col1 and
col2 such that 1 ≤ col1, col2 ≤ β. Let a1 be the value of S′ in the domain
of cj1,i,β−1,col1 and let a2 be the value of S′ in the domain of cj2,i,β−1,col2 .
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From (c) we know that a1 = 3(col1 − 1)+ si and a2 = 3(col2 − 1)+ si. So a1
is congruent to a2 modulo 3. So the constraints given in bullet point 8.2 in
the definition of I ′ are satisfied.

8.3 Let i, j1 and j2 such that 1 ≤ j1 < i < j2 ≤ n and let col and col1 such that
1 ≤ col, col1 ≤ n. Let a1 be the value of S′ in the domain of cj1,i,β−1,col1 and
let a2 be the value of S′ in the domain of ci,j2,1,col. From (c) we know that
a1 = 3(col1 − 1) + si and from b we know that a2 = 3(col − 1) + si. So a1
is congruent to a2 modulo 3. So the constraints given in bullet point 8.3 in
the definition of I ′ are satisfied.

We have shown that S′ satisfies all the constraints in I ′. Therefore S′ is a solution for
I ′. So if we have a solution for I, then we have a solution for I ′.

2. if we have a solution for I ′, then we have a solution for I:
Let S′ be a solution for I ′. For each 1 ≤ i ≤ n, for each 1 ≤ col ≤ β let s′i,col be the
trilean value in the domain of vi,col belonging to S′. For each 1 ≤ i ≤ n, let s′i be
the trilean value occuring the most within {s′i,1, . . . , s′i,β}. Suppose also that for each
1 ≤ i ≤ n, s′i occurs at least α+ 1 times within {s′i,1, . . . , s′i,β}.
This last assumption is not trivial, and in order to make it true in the general case,
we need to add a gadget, that we call a “majority metaconstraint” to each set of
root variables {vi,1, . . . , vi,β}. Majority metaconstraints are built in a similar way as
permutation metaconstraints, so in order to not clutter the proof, we present their
construction in Appendix B.
Let S be the n-tuple in I, such that for each 1 ≤ i ≤ n, the trilean value s′i in the
domain of vi belongs to S. We are going to prove that S is a solution for I. In order
to do so, we need to show that for all 1 ≤ i < j ≤ n, s′i in the domain of vi and s′j in
the domain of vj are compatible in S.
Let i and j such that 1 ≤ i < j ≤ n. We have assumed that there are at least α + 1
variables within {vi,1, . . . , vi,β} that have been assigned the value s′i by S′. Therefore,
from bullet point 4 in the definition of I ′, we know that there are at least α+1 variables
on the first line of the permutation metaconstraint between i and j that have been
assigned a value congruent to s′i by S′. From bullet points 3 and 5 in the definition
of I ′, we know that from line 1 to line α in the permutation metaconstraint between i
and j, the number of variables in each line that have been assigned a value congruent
to s′i modulo 3 by S′ is constant. So by induction we know that there are at least
α + 1 variables within the (β−1

2 )th line of the permutation metaconstraint between i
and j that have been assigned a value congruent to s′i modulo 3 by S′. (i)
Similarly, we have assumed that there are at least α+1 variables within {vj,1, . . . , vj,β}
that have been assigned the value s′j by S′. Therefore, from bullet points 3 and 7 in

the definition of I ′, we know that there are at least α + 1 variables on the (β − 1)th

of the permutation metaconstraint between i and j that have been assigned a value
congruent to s′j by S′. From bullet points 3 and 5 in the definition of I ′, we know
that from line α + 1 to line β − 1 in the permutation metaconstraint between i and
j, the number of variables in each line that have been assigned a value congruent to
s′j modulo 3 by S′ is constant. So by induction we know that there are at least α+ 1

variables within the (β−1
2 +1)th line of the permutation metaconstraint between i and

j that have been assigned a value congruent to s′j modulo 3 by S′. (ii)
From (i), (ii) and bullet point 3 in the definition of I ′, we know that there is at least
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one 1 ≤ col ≤ β such that, with a being the value in the domain of ci,j,α,col belonging
to S′ and b being the value in the domain of ci,j,α+1,�a/3�+1 belonging to S′, we have
both a congruent to s′i modulo 3 and b congruent to s′j modulo 3. So from bullet point
6 in the definition of I ′, we know that s′i in the domain of vi and s′j in the domain of
vj are compatible.
We have shown that S satisfies all the constraints in I. Therefore S is a solution for
I. So if we have a solution for I ′, then we have a solution for I.

3. I ′ is α− Minimal:
We need to prove that any partial solution on α or less variables of I ′ can be extended
to a full solution for I ′. This part of the proof is extremely long and technical. The
complete draft was close to 40 pages. To make it more readable, we only give here the
informal idea. Appendix A contains the more detailed version.
The main trick is to notice how all constraints in I ′ are either between two variables
from a same line, or between two variables in two consecutive lines in some metacon-
straint. We thus say that two variables are connected if they are on the same line or
on two consecutive lines in the same metaconstraint. We then partition any partial
solution A on α or less variables into k smaller partial solutions A1, A2, . . . , Ak such
that:

• if v and v′ are in the same part Ai, then there are some variables v1, v2, . . . , vp in
Ai such that v is connected with v1, each vj is connected with vj+1 for 1 ≤ j < p
and vp is connected with v′.

• if two variables from A are connected, then they are in the same part Ai.

We show (Lemma 8 in Appendix A) that no two variables from a same part Ai are on
the same line. We then extend each part Ai into a partial solution Bi that encompasses
exactly one variable on each line. To prove that this is always possible we show that
at most two variables of I are represented in each part Ai (Lemma 10 in Appendix A)
and use the fact that any pair of two compatible assignments for I can be extended
to a full solution for I (because I is minimal).
Each line of I ′ contains β variables, so to create a full solution for I ′ it only remains
to extend in a similar manner β − k empty sets into β − k partial solutions that each
encompasses exactly one variable on every line. Lemma 14 in Appendix A proves that
these partial solutions are compatible with each other and together form the desired
full solution.

We now generalize the result to any ε > 2.

Theorem 5. Let ε > 2 be a real number. Let γ be a function from N to R such that
∀N ∈ N, γ(N) ≤ ε

√
N . Then the γ− binary Minimal Constraint Satisfaction Problem is

NP-hard.

Proof. If ε ≥ 3, then from Proposition 1 and Lemma 2, we have the result. If not, then
there is some integer p > 1 such that ε ≥ 2+ 1/p. The proof is then almost the same as the
proof of Proposition 1, the only difference being that α is now equal to n3p. The relation
between α and β remains the same, with β being equal to 2α+ 1.
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Let n′ be the number of variables in I ′. Let n′
root be the number of root variables

in I ′, let n′
perm be the number of permutation variables in I ′, let n′

orig be the number
of origin variables in I ′ and let n′

majo be the number of majority variables in I ′. We
have n′ = n′

root + n′
perm + n′

orig + n′
majo. There are nβ root variables in I ′, there are

n(n− 1)/2 permutation metaconstraints in I ′, there are β(β − 1) permutation variables in
each permutation metaconstraint of I ′, there are n majority metaconstraints in I ′ and there
are β origin variables and (α + 1)β majority variables in each majority metaconstraint of
I ′. Therefore we have:

n′ = n′
root + n′

perm + n′
orig + n′

majo

= nβ + n(n− 1)/2× β(β − 1) + nβ + n(α+ 1)β
= n(2α+ 1) + n(n− 1)/2× (2α+ 1)2α+ n(2α+ 1) + n(α+ 1)(2α+ 1)

(because β = 2α+ 1)
= 2nα+ n+ n(n− 1)(2α2 + α) + 2nα+ n+ n(2α2 + 3α+ 1)
= 2nα+ n+ n(n− 1)(2α2 + α) + 2nα+ n+ n(2α2 + α) + n(2α+ 1)
= 2nα+ n+ n2(2α2 + α) + 2nα+ n+ 2nα+ n
= 2n2α2 + n2α+ 6nα+ 3n
= 2n2+6p + n2+3p + 6n1+3p + 3n (because α = n3p)
≤ 2n6p+2 + n6p+2 + 6n6p+2 + 3n6p+2

= 12n6p+2

≤ n6p+3 (because n ≥ 12)
= n3p(2+1/p)

= α2+1/p

So α ≥ ε
√
n′ ≥ γ(n′). So if I ′ is α− Minimal, then from Lemma 2 I ′ is α′− Minimal for

each α′ such that 2 ≤ α′ ≤ γ(n′). By choosing a high enough value for p, we have the result
for all ε > 2.

5. Conclusion

While Gottlob has proved that the Minimal CSP is NP-hard [6], nothing has been done
to determine the limits of its inherent hardness. We presented in this paper three different
kinds of expansion for the problem. The first one concerns the size of the domain and the
arity constraints. The complexity classification that we established was published [5]. The
second one explores the application of minimality to some classes of global constraints. We
showed that the hardness of minimality was conserved in this case. The third one, the main
result of this paper, generalizes the completability property from compatibilities to a larger
set of partial solutions. Again, we proved that no algorithm can exploit in a significant way
the additional provided information, unless P=NP.

The work we have done can be extended in a number of different ways. In particular, one
could go further down the road of α Minimality, and find out at exactly which point do the
classes of instances defined by the α functions transition from NP-hardness to tractability.
Because of the close relationship between minimality and consistency, any new discovery
about the Minimal CSP might be of considerable help in the study of consistency-based al-
gorithms. Alternatively, one could try and apply the core concept of minimality to problems
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outside constraint satisfaction, and see whether the properties of minimality are conserved
beyond this environment.
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Appendix A. Proof of Proposition 1: α− Minimality of I′

To prove that I ′ is α− minimal, we need to show that any compatible tuple of at most
α values of I ′ can be extended to a full solution for I ′. The proof is very technical. It
requires a large number of specific concepts that we will spend the next few pages defining.
The construction of the solution itself is described on Page 30, followed by the necessary
lemmas.

Definition 9. We say that two values a and b in I ′ are strongly connected if at least one
of the following is true:

1. There are some i, j and col such that a is in the domain of the root variable vi,col, b is
in the domain of the permutation variable ci,j,1,col and b is congruent to a modulo 3.

2. There are some i, j, l, col and col′, with 1 ≤ l < β − 1 and l �= α, such that a is in
the domain of the permutation variable ci,j,l,col, b is in the domain of the permutation
variable ci,j,l+1,col′ , �a/3
+ 1 = col′ and b is congruent to a modulo 3.

3. There are some i, j, col and col′ such that a is in the domain of the permutation
variable ci,j,α,col, b is in the domain of the permutation variable ci,j,α+1,col′ , �a/3
+1 =
col′ and b modulo 3 in the domain of vj is compatible in I with a modulo 3 in the
domain of vi.

4. There are some i, j, col and col′, such that a is in the domain of the permutation
variable ci,j,β−1,col, b is in the domain of the root variable vj,col′ , �a/3
+1 = col′ and
b is congruent to a modulo 3.

5. (ea) There are some i, j1, j2 and col, with j1 �= j2, such that a is in the domain of
the permutation variable ci,j1,1,col, b is in the domain of the permutation variable
ci,j2,1,col and b is congruent to a modulo 3.

(eb) There are some i, j1, j2, col, col1 and col2, with j1 �= j2, such that a is in
the domain of the permutation variable cj1,i,β−1,col1 , b is in the domain of the
permutation variable cj2,i,β−1,col2 , �a/3
+1 = �b/3
+1 = col and b is congruent
to a modulo 3.

(ec) There are some i, j1, j2, col and col1 such that a is in the domain of the per-
mutation variable cj1,i,β−1,col1 , b is in the domain of the permutation variable
ci,j2,1,col, �a/3
+ 1 = col and b is congruent to a modulo 3.

Informally, two values a and b are strongly connected if a determines the trilean value
carried by b.

Definition 10. We say that two values a and b in I are weakly connected , or simply
connected , if at least one of the following is true:

1. a = b.

2. a and b are strongly connected.

3. There is a value c in A such that a and c are connected, and b and c are connected.

Definition 11. We say that a set A containing values of I ′ is a connected set if all values
in A are connected with each other.

Definition 12. Let v be a variable in I. We say that a variable v′ in I ′ is associated with
v if at least one of the following is true:
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1. There are some i and col such that v′ is the root variable vi,col and v is the variable
vi.

2. There are some i, j, l and col, with 1 ≤ l ≤ α, such that v′ is the permutation variable
vi,j,l,col and v is the variable vi.

3. There are some i, j, l and col, with α+1 ≤ l ≤ β− 1, such that v′ is the permutation
variable vi,j,l,col and v is the variable vi.

We also say that a value a in the domain of a variable v′ in I ′ is associated with a variable
v in I if v′ is associated with v, and that a set A containing values of I ′ is associated with
a variable v in I if at least one value a ∈ A is associated with v.

Definition 13. We say that a set V containing β variables of I ′ is a line of variables if
at least one of the following is true:

1. There is some i such that V is composed of the β root variables vi,1, . . . , vi,β .

2. There are some i, j and l such that V is the lth line of the permutation metaconstraint
between i and j.

For each 1 ≤ i ≤ n, for each 1 ≤ j ≤ n such that j > i and for each 1 ≤ l ≤ β − 1, we
adopt the following conventions:

• Li is the line of variables composed of the β root variables vi,1, . . . , vi,β .

• Li,j,l is the lth line in the permutation metaconstraint between i and j.

Definition 14. We say that two lines of variables L and L′ are consecutive if at least one
of the following is true:

1. There are some i and j such that L = Li and L′ = Li,j,1.

2. There are some i, j and l, with 1 ≤ l ≤ β − 2, such that L = Li,j,l and L′ = Li,j,l+1.

3. There are some i and j such that L = Li, j, β − 1 and L′ = Lj .

4. (da) There are some i, j1 and j2, with j1 �= j2, such that L = Li,j1,1 and L′ = Li,j2,1.
(db) There are some i, j1 and j2, with j1 �= j2, such that L = Lj1,i,β−1 and L′ =

Lj2,i,β−1.
(dc) There are some i, j1 and j2 such that L = Lj1,i,β−1 and L′ = Li,j2,1.

Note that any non trivial constraint of I ′ is either between two variables of a same
line of variables (bullet point 3 in the definition of I ′) or between two variables from two
consecutive lines of variables (bullet points 4 to 9 in the definition of I ′). Note also that if
two values a and b of I ′ are strongly connected, then they are from two consecutive lines of
variables.
There are n lines of variables in I ′ that are composed of root variables, there are β− 1 lines
of permutation variables in each permutation metaconstraint of I ′ and there are n(n− 1)/2
permutation metaconstraints in I ′. Therefore there are n + n(n − 1)/2 × (β − 1) = n(1 +
(n− 1)/2× 2α) = n(nα− α+ 1) lines of variables in I ′.

Definition 15. We say that a set V � of n(nα−α+1) variables of I ′ is a pseudo-instance
of I ′ if V � contains exactly one variable from each of the n(nα − α + 1) lines of variables
in I ′.
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Definition 16. Let V � be a pseudo-instance of I ′. We say that a set A� of n(nα− α+ 1)
values of I ′ is a pseudo-assignment over V � if all of the following conditions are satisfied:

• For each v ∈ V �, exactly one value in the domain of v belongs to A�.

• For each v ∈ V �, for each v′ ∈ V � such that v and v′ are on consecutive lines of
variables, the value of A� in the domain of v and the value of A� in the domain of v′

are strongly connected.

Definition 17. Let V � be a pseudo-instance of I ′. We say that a set of values A� is a
pseudo-solution of V � if A� is a compatible pseudo-assignment over V �.

Definition 18. Let a be a value of I ′, and let v be a variable of I ′. We say that v is a
destination variable of a if at least one of the following is true:

1. There are some i, j, and col such that a is in the domain of the root variable vi,col
and v is the permutation variable ci,j,1,col.

2. There are some i, j, j′ and col with j �= j′ such that a is in the domain of the
permutation variable ci,j,1,col and v is the permutation variable ci,j′,1,col.

3. There are some i, j, l and col with 1 ≤ l < β − 1 such that a is in the domain of the
permutation variable ci,j,l,col and v is the permutation variable ci,j,l+1,�a/3�+1.

4. There are some i, j and col such that a is in the domain of the permutation variable
ci,j,β−1,col and v is the root variable vj,�a/3�+1.

5. There are some i1, i2, i3 and col such that a is in the domain of the permutation
variable ci1,i2,β−1,col and v is the permutation variable ci2,i3,1,�a/3�+1.

6. There are some i, j and col such that a is in the domain of the permutation variable
ci,j,1,col and v is the root variable vi,col.

Informally, a variable v is a destination variable of a value a if a determines the trilean
value carried by v.

Definition 19. Let A be a set of values of I ′, and let v be a variable of I ′. We say that v
is a destination variable of A if there is some value a ∈ A such that v is a destination
variable of A.

Definition 20. Let A = {a1, a2, . . . , ap} be a set of p values of I ′. Let V = {v1, v2, . . . , vp}
be a set of p variables of I ′. We say that V is the supporting set of A if for each i such
that 1 ≤ i ≤ p, ai is in the domain of vi.

Definition 21. Let v be a variable of I ′. We say that the integer col is the column of v
if one the following conditions is fulfilled:

• There is some i such that v is the root variable vi,col.

• There are some i, j and l such that v is the permutation variable ci,j,l,col.

Definition 22. Let a be a value of I ′. We say that the integer col is the column of a if
there is some variable v in I ′ such that a is in the domain of v and col is the column of v.
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Definition 23. Let A be a compatible set of values of I ′, and let p be such that 1 ≤ p ≤ β.
We say that the p sets A1, A2, . . . , Ap form a connected partition of A if all of the following
conditions are satisfied:

1. Each value in A appears in exactly one set Ai.

2. If a value a appears in a set Ai, then a ∈ A.

3. For each i with 1 ≤ i ≤ p, Ai is a connected set.

4. For all i and j with 1 ≤ i < j ≤ p, at least one of the following is true:

• Ai = ∅.
• Aj = ∅.
• Ai ∪Aj is not a connected set.

Definition 24. Let A = {a1, a2, . . . , ap} be a set of p values from I ′. We say that A is
projectable if all of the following conditions are satisfied:

1. For all 1 ≤ i < j ≤ p, ai and aj are not from the same line of variables.

2. For all 1 ≤ i < j ≤ p, if ai and aj are associated with the same variable v in I, then
ai is congruent to aj modulo 3.

Definition 25. Let A be a projectable set. Let A′ = {a′1, a′2, . . . , a′q} be a set of q values
from I. We say that A′ is the projection of A over I if all of the following conditions are
satisfied:

1. For all 1 ≤ i < j ≤ q, a′i and a′j are not from the same domain.

2. For each 1 ≤ i ≤ q, there is a value a in A and a variable v in I such that a is
associated with v and a′i is in the domain of v.

3. For each value a in A, there is a value a′ in A′ and a variable v in I such that a′ is in
the domain of v, a is associated with v and a is congruent to a′ modulo 3.

Definition 26. Let S = {s1, s2, . . . , sn} be a set of n values of I such that si is in the
domain of vi for each 1 ≤ i ≤ n. Let V � be a pseudo-instance of I ′. For each 1 ≤ i ≤ n,
let v�i be the variable of V � in Li. For all 1 ≤ i < j ≤ n, for each 1 ≤ l ≤ β − 1, let v�i,j,l
be the variable of V � in Li,j,l. Let A� be a set of values of I ′ such that each value in A�

is in the domain of exactly one variable from V �, and each variable in V � has exactly one
value from A� in its domain. We say that A� is the projection of S over V � if all of the
following conditions are satisfied:

1. For each i such that 1 ≤ i ≤ n, si is the value of A� in the domain of v�i .

2. For all i, j and l such that 1 ≤ i < j ≤ n and 1 ≤ l ≤ α, let col be the column of
v�i,j,l+1. Then 3(col − 1) + si is the value of A� in the domain of v�i,j,l.

3. For all i, j and l such that 1 ≤ i < j ≤ n and α+1 ≤ l ≤ β − 2, let col be the column
of v�i,j,l+1. Then 3(col − 1) + sj is the value of A� in the domain of v�i,j,l.

4. For all i and j such that 1 ≤ i < j ≤ n, let col be the column of v�j . Then 3(col−1)+sj
is the value of A� in the domain of v�i,j,β−1.

Now that we have the definitions that we need, we explain how to extend a compatible
tuple of I ′ containing at most α values to a solution for I ′. All the lemmas needed to
prove the correctness of the construction will be stated after. This way, the reader will have
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already seen the big picture of the proof, and will understand more clearly the purpose of
each lemma.

Let A be a compatible α-tuple of I ′ such that there are at most α values in A. Let
A1, A2, . . . , Aβ be a connected partition ofA. From Lemma 3, we know that such a connected
partition always exists. From Definition 23(c) and Lemma 5, we know that no two values a �=
a′ in a same set Ai are from the same line of variables. Furthermore, from Definition 23(a)
and (b), no value a from I ′ appears in two sets Ai and Aj with i �= j.
Let V1, V2, . . . , Vβ be the β sets of variables such that for each i, Vi is the supporting set of
Ai. Since no two values a �= a′ in a same set Ai are from the same line of variables, no two
variables v �= v′ in a same set Vi are from the same line of variables. Furthermore, from
Definition 23(a) and (b), no variable v appears in two sets Vi and Vj with i �= j.
Let V +

1 , V +
2 , . . . , V +

β be the β sets of variables such that for each 1 ≤ i ≤ β, V +
i is the union

of Vi and of all the variables in I ′ that are destination variables of Ai. From Lemma 8, we
know that no two variables v �= v′ in a same set V +

i are from the same line of variables.
From Definition 23 and Lemma 9, we know that no variable v appears in two sets V +

i and
V +
j with i �= j.

Then for each 1 ≤ i ≤ β and for each line of variables L of I ′ that does not contain any
variable of V +

i , we pick a variable v in L such that ∀j, v /∈ V +
j , and add v to V +

i . For each
1 ≤ i ≤ β, we call V �

i the set obtained at the end, when every line of variables of I ′ contains
exactly one variable of V �

i . From Definition 15, for each i such that 1 ≤ i ≤ β, V �
i is a

pseudo-instance of I ′. Furthermore, since we made sure that no variable of I ′ was added
to two sets V �

i and V �
j with i �= j, the β sets V �

1 , V
�
2 , . . . , V

�
β form a partition of the set of

variables of I ′.
For each i such that 1 ≤ i ≤ β, we know from Lemma 10.1 that Ai is projectable. For each
i such that 1 ≤ i ≤ β, let A′

i be the projection of A over I. For each i such that 1 ≤ i ≤ β,
we know from Lemma 10.2 that A′

i is contains of at most two values. Since I is a Minimal
CSP instance, A′

i can be extended to a solution for I for each i such that 1 ≤ i ≤ β. For
each i such that 1 ≤ i ≤ β, let Si be a solution for I containing A′

i.
For each i such that 1 ≤ i ≤ β, let A�

i be the projection of Si over V
�
i . Let S

′ = A�
1 ∪A�

2 ∪
· · · ∪ A�

n. Let a and b be two values of S. If there is some i such that both a and b are
in A�

i , then from Lemma 11 a and b are compatible. Otherwise, let i and j be such that
a ∈ A�

i and b ∈ A�
j . From Lemma 12, we know that both A�

i and A�
j are pseudo-assignments.

Furthermore, we have already shown that no variable of I ′ appears in both V �
i and V �

j . So
from Lemma 14, a and b are compatible. So S′ is a solution for I ′.
From Lemma 15, S′ contains A. So A can be extended to a solution for I ′. So any compatible
tuple of I ′ containing at most α values can be extended to a solution for I ′. So I ′ is α−

Minimal.

Lemma 3. Let A be a compatible set of at most α values of I ′, and let p be such that
p ≥ |A|. Then there exists a connected partition {A1, A2, . . . , Aq} of A.

Proof. Let A = {a1, a2, . . . , aq} be a compatible set of q ≤ α values of I ′. For each i such
that 1 ≤ i ≤ q, let Ai be the set of values in A that are connected to ai. If two or more sets
are equal, we set all but one of them to be equal to the empty set. If q < p, we add p − q
empty sets. We need to verify that the final p sets satisfy the conditions from Definition 23:

1. Each value ai ∈ A appears in at least the initial set Ai. If Ai is later set to the empty
set, it means that there is another set Aj = Ai containing ai that remains. So each
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value in A appears in at least one set Ai. Suppose now that some value a ∈ A appears
in two sets Ai = Aj . Without loss of generality, assume that there is a value b ∈ A
such that b ∈ Ai and b /∈ Aj . Since both a and b are in Ai, a and b are connected.
Since a is in Aj , a is connected with aj . Since connectivity is a transitive property, b
is also connected with aj . So b should be in Aj and we have a contradiction. So each
value in A appears in at most one set Ai.

2. All the values in the initial sets are values from A. Then no new value is added, the
only other operations are removing values and adding empty sets. So for each i such
that 1 ≤ i ≤ p, for each a ∈ Ai, a belongs to A.

3. Let i be such that 1 ≤ i ≤ p. Either Ai is one of the initial sets, and therefore there is
a value aj ∈ Ai such that all values of Ai are connected to aj , or Ai is an empty set.
In either case, Ai is a connected set.

4. Suppose that we have two non-empty sets Ai �= Aj such that Ai ∪ Aj is a connected
set. Without loss of generality, assume that there is a value b ∈ A such that b ∈ Ai

and b /∈ Aj . Since b ∈ Ai ∪Aj and Ai ∪Aj is a connected set, b is connected with all
values in Ai ∪Aj . In particular, b is connected with Aj . So b should be in Aj and we
have a contradiction. So the union of two non-empty sets Ai and Aj with i �= j is not
a connected set.

We are now going to map the lines of variables of I ′, using the “consecutive” relation
from Definition 14. In order to do this we introduce G, a graph defined by the following:

• The lines of variables of I ′ are the vertices of G.

• Two lines of variables of I ′ are connected in G if they are consecutive.

From Definition 14(a), (c) and (d), for each i such that 1 ≤ i ≤ n, the n lines of variables
L1,i,β−1, L2,i,β−1, . . . , Li−1,i,β−1, Li, Li,i+1,1, . . . , Li,n,1 form a clique Ci in G. There are n
such cliques, one for each variable in I. From Definition 14(b), the rest of the edges in G is
composed of the paths Pi,j of the β − 3 lines of variables Li,j,2, Li,j,3, . . . , Li,j,β−2 between
each pair of cliques (Ci, Cj) with i < j.

The graph G, as well as its cliques Ci and paths Pi,j , will be used in the proofs of several
lemmas below.

Lemma 4. Let P = {e1, e2, . . . , ep} be a path of p distinct lines of variables in G. Let i be
such that both e1 and ep are in Ci. Then for each q, eq is in Ci.

Proof. Suppose that at least one line of variables in P is not in Ci. Let eq be the first
line of variables to leave Ci, that is eq′ is in Ci for each 1 ≤ q′ < q. So eq is part of a
path Pj,i (respectively Pi,j). So eq = Lj,i,β−2 (respectively eq = Li,j,2) and eq−1 = Lj,i,β−1

(respectively eq−1 = Li,j,1). Since there are at most α line of variables in P and there
are β − 3 > α lines of variables in Pj,i (respectively Pi,j), P cannot reach the clique Cj .
So if eq+1 = Lj,i,β−3 (respectively eq+1 = Li,j,3), then P would have to pass a second
time through Lj,i,β−2 (respectively Li,j,2) to go back to Ci, which is not possible because
we assumed that all lines of variables in P are distinct. From Definition 14, the only line
of variables other than Li,j,3 (respectively other than Lj,i,β−3) that is consecutive with
Li,j,2 (respectively with Lj,i,β−2) is Li,j,1 (respectively Lj,i,β−1). But if eq+1 = Lj,i,β−1
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(respectively if eq+1 = Li,j,1), then eq−1 = eq+1, which contradicts the conditions of the
lemma. Therefore, there is no eq ∈ P such that eq /∈ Ci and we have the desired result.

Lemma 5. Let A be a compatible connected set with at most α values. Let a and b be two
values from A. If a �= b, then a and b are not from the same line of variables.

Proof. Let P = {e1, e2, . . . , ep} be a path of p lines of variables in G, such that 2 ≤ p ≤ α,
e1, e2, . . . , ep−1 are all different and e1 = ep. There are two possibilities for e1:

• e1 is part of a clique Ci. Suppose that there is a line of variables of P that is not part
of the clique Ci. Let eq be the first line of variables of P that is not in Ci, by that
we mean that eq′ is in Ci for each q′ < q. So eq is part of a path Pj,i (respectively
Pi,j). So eq = Lj,i,β−2 (respectively eq = Li,j,2) and eq−1 = Lj,i,β−1 (respectively
eq−1 = Li,j,1). Since there are at most α line of variables in P , there are β − 3 > α
lines of variables in Pj,i (respectively Pi,j) and all lines of variables in P are different
with the exception of e1 = ep, P cannot reach the clique Cj . So if eq+1 = Lj,i,β−3

(respectively eq+1 = Li,j,3), then P would have to pass a second time through Lj,i,β−2

(respectively Li,j,2) to go back to Ci, which is not possible because we assumed that
the only repeated line of variables in P is in Ci. So eq+1 = Lj,i,β−1 (respectively
eq+1 = Li,j,1) and P only contains the three lines of variables {e1 = Lj,i,β−1, e2 =
Lj,i,β−2, e3 = Lj,i,β−1} (respectively {e1 = Li,j,1, e2 = Li,j,2, e3 = Li,j,1}). So if e1 is
in a clique Ci, then the only three possibilities are:

– There is some j such that P = {Lj,i,β−1, Lj,i,β−2, Lj,i,β−1}.
– There is some j such that P = {Li,j,1, Li,j,2, Li,j,1}.
– All of the lines of variables in P are in Ci.

• e1 is part of a path Pi,j . So there is l with 2 ≤ l ≤ β− 2 such that e1 = ep = Li,j,l. So
e2 = Li,j,l−1 (respectively e2 = Li, j, l + 1). From there, e3 can be equal to Li,j,l−2, to
Li if l = 2, or to Li,j,l (respectively Li,j,l+2, Lj if l = β− 2 and Li,j,l). In the first two
cases, P cannot pass through Li,j,l−1 (respectively Li,j,l+1) again because we assumed
that Li,j,l is the only repeated line of variables in P . So P has to go to the clique Ci

(respectively Cj) through the lines of variables Li,j,l−1, Li,j,l−2, . . . , Li,j,3, Li,j,2 (re-
spectively Li,j,l−1, Li,j,l−2, . . . , Li,j,3, Li,j,2), then it has to go to the clique Cj (re-
spectively Ci) without passing through Pi,j , then it has to go through the lines of
variables Li,j,β−2, Li,j,β−3, . . . , Li,j,l+2, Li,j,l+1 (respectively Li,j,2, Li,j,3, . . . , Li,j,l−2,
Li,j,l−1) in order to go back to Li,j,l. Since there are at most α lines of variables in
P and the length of each path is β − 3, this is not possible. So if e1 is in a path Pi,j ,
then the only two possibilities are:

– There is some l such that P = {Li,j,l, Li,j,l−1, Li,j,l}.
– There is some l such that P = {Li,j,l, Li,j,l+1, Li,j,l}.

Let a0 and b be two values of A, such that a0 �= b and a0 and b are from the same
line of variables. From the definition of strongly connected, we know that two values can
only be strongly connected if they are from two consecutive (and therefore distinct) lines of
variables. So a and b are not strongly connected. So a and b are weakly connected. So there
are p values a1, a2, . . . , ap in A, with 1 ≤ p ≤ α − 2, such that for all 0 ≤ i < j ≤ α − 2,
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ai �= aj , ∀0 ≤ i < p, ai is strongly connected to ai+1, and ap is strongly connected to b. If
two values ai and aj with 0 ≤ i < j ≤ p are from the same line of variables, we set a0 to be
equal to ai, b to be equal to aj , p to be equal to j − i− 1, and each aq with 1 ≤ q ≤ p to be
equal to (the former) ai+q. We repeat this operation until all values within {a0, a1, . . . , ap}
are from different lines of variables. We can only do this operation a finite number of times,
because the value of p strictly decreases every time we do the operation. Furthermore, p is
always greater or equal to 1, because two strongly connected values cannot be on the same
line of variables. Therefore, we have a path P = {a0, a1, . . . , ap, b} of p+ 2 different values
such that ai and ai+1 are from consecutive lines of variables for each 0 ≤ i < p, ap and b
are from consecutive lines of variables, a0 and b are from the same line of variables and all
values within {a0, a1, . . . , ap} are from different lines of variables. As we have previously
shown, there are only five possibilities in regard to the supporting set of P .

• P = {a0, a1, b} and there are some i, j, col1, col2 and col3 such that a0 is in the domain
of the permutation variable cj,i,β−1,col1 , a1 is in the domain of the permutation variable
cj,i,β−2,col2 and b is in the domain of the permutation variable cj,i,β−1,col3 . The only
bullet point in the definition of strongly connected (Definition 9) that applies to the last
two lines of constraints in a permutation metaconstraint is (b). From Definition 9(b),
col1 = col3 = �a1/3
+1. So a0 and b are from the same domain, and therefore cannot
be part of the compatible set A.

• P = {a0, a1, b} and there are some i, j, col1, col2 and col3 such that a0 is in the domain
of the permutation variable cj,i,1,col1 , a1 is in the domain of the permutation variable
cj,i,2,col2 and b is in the domain of the permutation variable cj,i,1,col3 . The only bullet
point in the definition of strongly connected (Definition 9) that applies to the last
two lines of constraints in a permutation metaconstraint is (b). From Definition 9(b),
�a0/3
+1 = �b/3
+1 = col2. So from the third bullet point in the definition of I ′, a0
and b are either in the same domain or incompatible. In either case, this contradicts
the conditions of the lemma.

• There is some i such that all the values in P are from the lines of variables of the
clique Ci. The only bullet points in the definition of strongly connected (Definition 9)
that apply to two lines of variables in a same clique Ci are (a), (d) and (e). For each
a in P , either there is some j such that a is from the line of variables Lj,i,β−1 or there
are some j and col such that a is in the domain of the root variable vi,col or a is in
the domain of the permutation variable ci,j,1,col. Let f(a) be equal to �a/3
 + 1 in
the former case and let f(a) be equal to col in the latter case. Let a and a′ be two
strongly connected values in P . From Definition 9, in particular the bullet points (a),
(d) and (e), f(a) = f(a′). Therefore, there is some col such that f(a) = col for each a
in P . Therefore, f(a0) = f(b). So if a0 and b are both from the line of variables Li, or
if there is some j such that a0 and b are both from the line of variables Li,j,1, then a0
and b are from the same domain, and therefore cannot be part of the compatible set
A. So there is some j such that a0 and b are both from the line of variables Lj,i,β−1,
and �a0/3
 + 1 = �b/3
 + 1 = col. So from the third bullet point in the definition
of I ′, a0 and b are either in the same domain or incompatible. In either case, this
contradicts the conditions of the lemma.

• P = {a0, a1, b} and there are some i, j, 2 ≤ l ≤ β − 2, col1, col2 and col3 such that
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a0 is in the domain of the permutation variable ci,j,l,col1 , a1 is in the domain of the
permutation variable ci,j,l−1,col2 and b is in the domain of the permutation variable
ci,j,l,col3 . The only bullet points in the definition of strongly connected (Definition 9)
that apply to two successive lines of permutation constraints in a permutation meta-
constraint are (b) and (c). From Definition 9(b) and (c), col1 = col3 = �a1/3
+1. So
a0 and b are from the same domain, and therefore cannot be part of the compatible
set A.

• P = {a0, a1, b} and there are some i, j, 2 ≤ l ≤ β − 2, col1, col2 and col3 such that
a0 is in the domain of the permutation variable ci,j,l,col1 , a1 is in the domain of the
permutation variable ci,j,l+1,col2 and b is in the domain of the permutation variable
ci,j,l,col3 . The only bullet points in the definition of strongly connected (Definition 9)
that apply to two successive lines of permutation constraints in a permutation meta-
constraint are (b) and (c). From Definition 9(b) and (c), �a0/3
+1 = �b/3
+1 = col2.
So from the third bullet point in the definition of I ′, a0 and b are either in the same
domain or incompatible. In either case, this contradicts the conditions of the lemma.

Lemma 6. Let A be a connected set with at most α values. Let a and a′ be two values of
A. Let i be such that both a and a′ are from the clique Ci. For each value b ∈ A from Ci, let
f(b) be equal to �b/3
+1 if there is some j such that b is from the line of variables Lj,i,β−1

and f(b) be equal to the column of b otherwise. Then f(a) = f(a′).

Proof. From Definition 10(b) and (c), we know that there is a path P = {a, a1, a2, . . . , ap,
a′} of p + 2 values in A, with 0 ≤ p ≤ α − 2, such that a is strongly connected to a1, aq
is strongly connected to aq+1 for each 1 ≤ q ≤ p and ap is strongly connected to a′. From
Lemma 5, we know that all the values in P are from different lines of variables. So from
Lemma 4, we know that all the values in P are from Ci. Let b and b′ be two strongly
connected values in P . From Definition 9, in particular the bullet points (a), (d) and (e),
f(b) = f(b′). Therefore, there is some col such that f(b) = col for each b ∈ P , which
completes the proof.

Lemma 7. Let A be a connected set containing at most α values. Let a and a′ be two values
of A, such that a and a′ are from consecutive lines. Then a and a′ are strongly connected.

Proof. Let a and a′ be two values of A, such that a is from the line of variables L, a′ is
from the line of variables L′ and L and L′ are consecutive. So the relation between L and
L′ follows one of the conditions from Definition 14.

1. The relation between L and L′ follows Definition 14(a). So there are some i and j
such that L = Li and L′ = Li,j,1. From Definition 10(b) and (c) there is a path
P = {a, a1, a2, . . . , ap, a′} between a and a′, with 0 ≤ p ≤ α − 2, such that a is
strongly connected to a1, ai is strongly connected to ai+1 for each 1 ≤ i < p and ap is
strongly connected to a′. If p = 0 we have the result, so we can assume without loss
of generality that p > 0. From Lemma 4, we know that all the values in P are from
Ci. Therefore from Definition 9, in particular the bullet points (a), (d) and (e), all
the values in P are congruent to each other modulo 3. In particular, a is congruent
to a′ modulo 3. Furthermore, from Lemma 6, there is some col such that a is in the
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domain of the root variable vi,col and a′ is in the domain of the root variable ci,j,1,col.
So from Definition 9(a), a and a′ are strongly connected.

2. The relation between L and L′ follows Definition 14(b). So there are some i, j and l
with 1 ≤ l ≤ β − 2 such that L = Li,j,l and L′ = Li,j,l+1. From Definition 10(b) and
(c) there is a path P = {a, a1, a2, . . . , ap, a′} between a and a′, with 0 ≤ p ≤ α−2, such
that a is strongly connected to a1, ai is strongly connected to ai+1 for each 1 ≤ i < p
and ap is strongly connected to a′. Suppose that p > 0. Since 1 ≤ l ≤ β − 2, we
know that either l ≥ 2 or l ≤ β − 3. Suppose that l ≥ 2 (respectively suppose that
l ≤ β − 3). Then a1 is either from Li,j,l−1 or from Li,j,l+1 (respectively ap is either
from Li,j,l+2 or from Li,j,l). Suppose first that a1 (respectively ap) is from Li,j,l−1

(respectively Li,j,l+2). Since a is from Li,j,l (respectively a′ is from Li,j,l+1, from
Lemma 4 no value from {a2, a3, . . . , ap, a′} (respectively {a, a1, a2, . . . , ap−2, ap−1})
can be from Li,j,l (respectively Li,j,l+1). So in order to go to Li,j,l+1 (respectively
Li,j,l) from a1 (respectively ap), P has to go to Ci (respectively Cj), then to Cj

(respectively Ci) without passing by the path Pi,j , then through the lines of variables
Li,j,β−2, Li,j,β−3, . . . , Li,j,l+1 (respectively Li,j,2, Li,j,3, . . . , Li,j,l). Since there are at
most α values in P , this is not possible. So a1 (respectively ap) is not from Li,j,l−1

(respectively Li,j,l+2). So a1 (respectively ap) is from Li,j,l+1 (respectively Li,j,l). So
a1 (respectively ap) is from the same line of variables as a′ (respectively a). From
Lemma 5, this is not possible. So p = 0 and we have the result.

3. The relation between L and L′ follows Definition 14(c). So there are some i and j
such that L = Li,j,β−1 and L′ = Lj . From Definition 10(b) and (c) there is a path
P = {a, a1, a2, . . . , ap, a′} between a and a′, with 0 ≤ p ≤ α − 2, such that a is
strongly connected to a1, ai is strongly connected to ai+1 for each 1 ≤ i < p and ap is
strongly connected to a′. If p = 0 we have the result, so we can assume without loss
of generality that p > 0. From Lemma 4, we know that all the values in P are from
Ci. Therefore from Definition 9, in particular the bullet points (a), (d) and (e), all the
values in P are congruent to each other modulo 3. In particular, a is congruent to a′

modulo 3. Furthermore, from Lemma 6, there is some col such that �a/3
 + 1 = col
and a′ is in the domain of the root variable vj,col. So from Definition 9(d), a and a′

are strongly connected.

4. (da) The relation between L and L′ follows Definition 14(da). So there are some i, j1
and j2 with j1 �= j2 such that L = Li,j1,1 and L′ = Li,j2,1. From Definition 10(b)
and (c) there is a path P = {a, a1, a2, . . . , ap, a′} between a and a′, with 0 ≤
p ≤ α − 2, such that a is strongly connected to a1, ai is strongly connected to
ai+1 for each 1 ≤ i < p and ap is strongly connected to a′. If p = 0 we have the
result, so we can assume without loss of generality that p > 0. From Lemma 4,
we know that all the values in P are from Ci. Therefore from Definition 9, in
particular the bullet points (a), (d) and (e), all the values in P are congruent to
each other modulo 3. In particular, a is congruent to a′ modulo 3. Furthermore,
from Lemma 6, there is some col such that a is in the domain of the permutation
variable ci,j1,1,col and a′ is in the domain of the permutation variable ci,j2,1,col.
So from Definition 9(ea), a and a′ are strongly connected.

(db) The relation between L and L′ follows Definition 14(db). So there are some
i, j1 and j2 with j1 �= j2 such that L = Lj1,i,β−1 and L′ = Lj2,i,β−1. From
Definition 10(b) and (c) there is a path P = {a, a1, a2, . . . , ap, a′} between a
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and a′, with 0 ≤ p ≤ α − 2, such that a is strongly connected to a1, ai is
strongly connected to ai+1 for each 1 ≤ i < p and ap is strongly connected to
a′. If p = 0 we have the result, so we can assume without loss of generality
that p > 0. From Lemma 4, we know that all the values in P are from Ci.
Therefore from Definition 9, in particular the bullet points (a), (d) and (e),
all the values in P are congruent to each other modulo 3. In particular, a is
congruent to a′ modulo 3. Furthermore, from Lemma 6, there is some col such
that �a/3
+1 = �a′/3
+1 = col. So from Definition 9(eb), a and a′ are strongly
connected.

(dc) The relation between L and L′ follows Definition 14(dc). So there are some i, j1
and j2 such that L = Lj1,i,β−1 and L′ = Li,j2,1. From Definition 10(b) and (c)
there is a path P = {a, a1, a2, . . . , ap, a′} between a and a′, with 0 ≤ p ≤ α − 2,
such that a is strongly connected to a1, ai is strongly connected to ai+1 for each
1 ≤ i < p and ap is strongly connected to a′. If p = 0 we have the result, so we can
assume without loss of generality that p > 0. From Lemma 4, we know that all
the values in P are from Ci. Therefore from Definition 9, in particular the bullet
points (a), (d) and (e), all the values in P are congruent to each other modulo 3.
In particular, a is congruent to a′ modulo 3. Furthermore, from Lemma 6, there
is some col such that �a/3
+1 = col and a′ is in the domain of the permutation
variable ci,j2,1,col. So from Definition 9(ec), a and a′ are strongly connected.

Lemma 8. Let A be a compatible connected set with at most α values. Let V be the union
of the supporting set of A with the set of variables of I ′ that are destination variables of A.
Let v and v′ be two variables in V , such that v �= v′. Then v and v′ are not from the same
line of variables.

Proof. First, note that from Definition 18, if a is a value of I ′ and L is a line of variables of
I ′, then there is at most one destination variable of a in L.
Let v and v′ be two variables of V such that v and v′ are from the same line of variables L.
If neither v nor v′ is a destination variable of A, then from Lemma 5 v = v′. Otherwise, we
have two possibilities:

1. There is a value a ∈ A in the domain of v and v′ is a destination variable of A. Let a′

be a value of A such that v′ is a destination variable of a′. There are three possibilities
for L:

• There is some i such that L = Li. So from Definition 18, in particular bullet
points (d) and (f), there is some j such that a′ is from Lj,i,β−1 (respectively
Li,j,1). So from Definition 14(c) (respectively Definition 14(a)), a and a′ are
from consecutive lines. So from Lemma 7, they are strongly connected. So from
Definition 9, in particular bullet point (d) (respectively (a)), �a′/3
+ 1 is equal
to the column of a (respectively the column of a′ is equal to the column of a).
So from Definition 18, in particular bullet point (d) (respectively (f)), a is in the
domain of a destination variable of a′. Since there is at most one destination
variable of a′ in Li, v = v′.

• There are some i and j such that L = Li,j,1. So from Definition 18, in particular
bullet points (a), (b) and (e), there is some j′ such that a′ is from Li (respectively
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Li,j′,1 and Lj′,i,β−1). So from Definition 14(a) (respectively Definition 14(da)
and Definition 14(dc)), a and a′ are from consecutive lines. So from Lemma 7,
they are strongly connected. So from Definition 9, in particular bullet point
(a) (respectively (ea) and (ec)), the column of a′ is equal to the colum of a
(respectively the column of a′ is equal to the column of a and �a′/3
 + 1 is
equal to the column of a). So from Definition 18, in particular bullet point (a)
(respectively (b) and (e)), a is in the domain of a destination variable of a′. Since
there is at most one destination variable of a′ in Li,j,1, v = v′.

• There are some i, j and l > 1 such that L = Li,j,l. So from Definition 18, in
particular bullet point (c), a′ is from Li,j,l−1. So from Definition 14(b), a and
a′ are from consecutive lines. So from Lemma 7, they are strongly connected.
So from Definition 9, in particular bullet points (b) and (c), �a′/3
 + 1 is equal
to the column of a. So from Definition 18, in particular bullet point (c), a is in
the domain of a destination variable of a′. Since there is at most one destination
variable of a′ in Li,j,l, v = v′.

2. Both v and v′ are destination variables of A. Let a and a′ be two values of A such that
v is a destination variable of a and v′ is a destination variable of a′. Let La be the line
of variable of a and let La′ be the line of variables of a′. There are three possibilities
for L:

• There is some i such that L = Li. So from Definition 18, in particular bullet
points (d) and (f), there are some j1, j2, j

′
1 and j′2 such that a is from Lj1,i,β−1

or Li,j2,1 and a′ is from Lj′1,i,β−1 or Li,j′2,1. Furthermore, from Lemma 5, a and
a′ are not from the same line of variables. So from Definition 14(d), a and a′

are from consecutive lines. So from Lemma 7, a and a′ are strongly connected.
Let f(a) be equal to �a/3
+ 1 if a is from Lj1,i,β−1 and let f(a) be equal to the
column of a if a is from Li,j2,1. Similarly, let f(a′) be equal to �a′/3
+ 1 if a′ is
from Lj′1,i,β−1 and let f(a′) be equal to the column of a′ if a′ is from Li,j′2,1. From
Lemma 6, f(a) = f(a′). So from Definition 18(d) and (f), vi,f(a) is a destination
variable of both a and a′. Since there is at most one destination variable of a′ in
Li, v = v′.

• There are some i and j such that L = Li,j,1. So from Definition 18, in particular
bullet points (a), (b) and (e), there are some j1, j2, j

′
1 and j′2 with j2 �= j and

j′2 �= j such that a is from Lj1,i,β−1, Li or Li,j2,1 and a′ is from Lj′1,i,β−1, Li

or Li,j′2,1. Furthermore, from Lemma 5, a and a′ are not from the same line of
variables. So from Definition 14(a), (c) and (d), a and a′ are from consecutive
lines. So from Lemma 7, a and a′ are strongly connected. Let f(a) be equal to
�a/3
+1 if a is from Lj1,i,β−1 and let f(a) be equal to the column of a if a is from
Li or Li,j2,1. Similarly, let f(a′) be equal to �a′/3
+1 if a′ is from Lj′1,i,β−1 and
let f(a′) be equal to the column of a′ if a′ is from Li or Li,j′2,1. From Lemma 6,
f(a) = f(a′). So from Definition 18(a), (b) and (e), ci,j,1,f(a) is a destination
variable of both a and a′. Since there is at most one destination variable of a′ in
Li,j,1, v = v′.

• There are some i, j and l with l > 1 such that L = Li,j,l. So from Definition 18, in
particular bullet point c, both a and a′ are from Li,j,l−1. So from Lemma 5,a = a′.
Therefore v = v′.
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We have shown that if two variables of V are in the same line of variables, then they are
equal. This completes the proof.

Lemma 9. Let A and A′ be two compatible sets of values, with at most α values in each
set, such that the union of A and A′ is a compatible set, the union of A and A′ is not a
connected set and ∀a ∈ A, ∀a′ ∈ A′, a and a′ are not in the same domain. Let v be a
destination variable of A and let v′ be a destination variable of A′. Then v �= v′.

Proof. Suppose that v = v′. Then there is a value a ∈ A and a value a′ ∈ A′ such that v is a
destination variable of both a and a′. If a and a′ are connected, then A∪A′ is a connected
set from Definition 10(c), so the conditions of the lemma are not satisfied. There are three
possibilities for v:

1. There are some i, j and col such that v is the permutation variable ci,j,1,col. Then the
relation between v on one hand, and a and a′ on the other hand, follows (a), (b) or
(e) in Definition 18. Therefore, there are 9 possibilities for the combination of the two
relations:

(a) The relation between a and v follows Definition 18(a) and the relation between
a′ and v follows Definition 18(a). From Definition 18(a), it means that both a
and a′ are in the domain of the root variable vi,col, which is in contradiction with
the conditions of the lemma.

(b) The relation between a and v follows Definition 18(a) and the relation between
a′ and v follows Definition 18(b). From Definition 18(a) and (b), it means that
a is in the domain of the root variable vi,col and that there is a j′ such that a′ is
in the domain of the permutation variable ci,j′,1,col. Either a is congruent to a′

modulo 3, in which case a and a′ are connected from Definition 9(a), or a is not
congruent to a′ modulo 3, in which case a and a′ are incompatible from bullet
point 4 in the definition of I ′. In any case, the conditions of the lemma are not
satisfied.

(c) The relation between a and v follows Definition 18(a) and the relation between
a′ and v follows Definition 18(e). From Definition 18(a) and (e), it means that
a is in the domain of the root variable vi,col and that there are some j′ and
col′ such that a′ is in the domain of the permutation variable cj′,i,β−1,col′ and
�a′/3
+1 = col. Either a is congruent to a′ modulo 3, in which case a and a′ are
connected from Definition 9(d), or a is not congruent to a′ modulo 3, in which
case a and a′ are incompatible from bullet point 7 in the definition of I ′. In any
case, the conditions of the lemma are not satisfied.

(d) The relation between a and v follows Definition 18(b) and the relation between
a′ and v follows Definition 18(a). Same argument as in (ii) by switching the roles
of a and a′.

(e) The relation between a and v follows Definition 18(b) and the relation between
a′ and v follows Definition 18(b). From Definition 18(b), it means that there
are some j1 and j2 such that a is in the domain of the permutation variable
ci,j1,1,col and a′ is in the domain of the permutation variable ci,j2,1,col. If j1 = j2,
then a and a′ are in the same domain and the conditions of the lemma are not
satisfied. Otherwise, either a is congruent to a′ modulo 3, in which case a and
a′ are connected from Definition 9(ea), or a is not congruent to a′ modulo 3, in
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which case a and a′ are incompatible from bullet point 8.1 in the definition of I ′.
In any case, the conditions of the lemma are not satisfied.

(f) The relation between a and v follows Definition 18(b) and the relation between
a′ and v follows Definition 18(e). From Definition 18(b) and (e), it means that
there are some j1, j2 and col′ such that a is in the domain of the permutation
variable ci,j1,1,col, a

′ is in the domain of the permutation variable cj2,i,β−1,col′

and �a′/3
+ 1 = col. Either a is congruent to a′ modulo 3, in which case a and
a′ are connected from Definition 9(ec), or a is not congruent to a′ modulo 3, in
which case a and a′ are incompatible from bullet point 8.3 in the definition of I ′.
In any case, the conditions of the lemma are not satisfied.

(g) The relation between a and v follows Definition 18(e) and the relation between a′

and v follows Definition 18(a). Same argument as in (iii) by switching the roles
of a and a′.

(h) The relation between a and v follows Definition 18(e) and the relation between a′

and v follows Definition 18(b). Same argument as in (vi) by switching the roles
of a and a′.

(i) The relation between a and v follows Definition 18(e) and the relation between
a′ and v follows Definition 18(e). From Definition 18(e), it means that there
are some j1, j2, col1 and col2 such that a is in the domain of the permutation
variable cj1,i,β−1,col1 , a

′ is in the domain of the permutation variable cj2,i,β−1,col2

and �a/3
 + 1 = �a′/3
 + 1 = col. If j1 = j2, either a and a′ are in the same
domain, or they are incompatible from bullet point 3 in the definition of I ′. If
j1 �= j2, either a is congruent to a′ modulo 3, in which case a and a′ are connected
from Definition 9(eb), or a is not congruent to a′ modulo 3, in which case a and
a′ are incompatible from bullet point 8.2 in the definition of I ′. In any case, the
conditions of the lemma are not satisfied.

2. There are some i, j, l and col with 1 ≤ l < β − 1 such that v is the permutation
variable ci,j,l+1,col. Then the relation between v on one hand, and a and a′ on the
other hand, follows (c) in Definition 18. From Definition 18(c), there are some col1
and col2, such that a is in the domain of the permutation variable ci,j,l,col1 , a

′ is in
the domain of the permutation variable ci,j,l,col1 and �a/3
+ 1 = �a/3
+ 1 = col. If
a and a′ are in the same domain, then the conditions of the lemma are not satisfied.
If a and a′ are not from the same domain, then from bullet point 3 in the definition
of I ′, a and a′ are incompatible, which is in contradiction with the conditions of the
lemma.

3. There are some j and col such that v is the root variable vj,col. Then the relation
between v on one hand, and a and a′ on the other hand, follows either (d) or (f)
in Definition 18. Therefore, there are 4 possibilities for the combination of the two
relations:

(a) The relation between a and v follows Definition 18(d) and the relation between a′

and v follows Definition 18(d). From Definition 18(d), there are some i1, i2, col1
and col2 such that a is in the domain of the permutation variable ci1,j,l,col1 , a

′ is in
the domain of the permutation variable ci2,j,l,col2 and �a/3
+1 = �a′/3
+1 = col.
If a and a′ are in the same domain, then the conditions of the lemma are not
satisfied. If a and a′ are not from the same domain, then either i1 = i2, in
which case a and a′ are incompatible from bullet point 3 in the definition of I ′,
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or i1 �= i2. In the latter case, either a is congruent to a′ modulo 3, in which case
a and a′ are connected from Definition 9(eb), or a is not congruent to a′ modulo
3, in which case a and a′ are incompatible from bullet point 8.2 in the definition
of I ′. In any case, the conditions of the lemma are not satisfied.

(b) The relation between a and v follows Definition 18(d) and the relation between
a′ and v follows Definition 18(f). From Definition 18(d) and (f), there are some
i1, i2 and col′ such that a is in the domain of the permutation variable ci,i1,1,col,
a′ is in the domain of the permutation variable ci2,i,β−1,col′ and �a′/3
+1 = col.
Either a is congruent to a′ modulo 3, in which case a and a′ are connected from
Definition 9(ec), or a is not congruent to a′ modulo 3, in which case a and a′

are incompatible from bullet point 8.3 in the definition of I ′. In any case, the
conditions of the lemma are not satisfied.

(c) The relation between a and v follows Definition 18(f) and the relation between a′

and v follows Definition 18(d). Same argument as in (ii) by switching the roles
of a and a′.

(d) The relation between a and v follows Definition 18(f) and the relation between a′

and v follows Definition 18(f). From Definition 18(f), there are some i1, i2 and
col such that a is in the domain of the permutation variable cj,i1,1,col and a′ is in
the domain of the permutation variable cj,i2,1,col. If i1 = i2, then a and a′ are in
the same domain and the conditions of the lemma are not satisfied. Otherwise,
either a is congruent to a′ modulo 3, in which case a and a′ are connected from
Definition 9(ea), or a is not congruent to a′ modulo 3, in which case a and a′

are incompatible from bullet point 8.1 in the definition of I ′. In any case, the
conditions of the lemma are not satisfied and the proof of the lemma is complete.

Lemma 10. Let A be a connected set with at most α values. Then:

1. A is projectable.

2. The projection of A over I contains at most two values.

Proof. Let P = {a1, a2, . . . , ap} be a path of p values in A such that ai is strongly connected
to ai+1 for each 1 ≤ i < p. Suppose that there are some q, i1 and i2 such that aq is associated
with vi1 , aq+1 is associated with vi2 and vi1 �= vi2 . From Definition 9, in particular bullet
point (c), aq is from Li1,i2,α (respectively Li2,i1,α+1) and aq+1 is from Li1,i2,α+1 (respectively
Li2,i1,α). We are going to prove that aq+r is in Li1,i2,α+r (respectively Li2,i1,α+1−r) for each
0 ≤ r ≤ p − q. We have shown that the property is true for r = 0 and r = 1. Suppose
that the property is true for each r such that 0 ≤ r ≤ r′, with 1 ≤ r′ < p − q. Then
aq+r′−1 is in Li1,i2,α+r′−1 (respectively Li2,i1,α+1−r′+1) and aq+r′ is in Li1,i2,α+r′ (respec-
tively Li2,i1,α+1−r′). So aq+r′+1 is either in Li1,i2,α+r′−1 (respectively Li2,i1,α+1−r′+1) or in
Li1,i2,α+r′+1 (respectively Li2,i1,α+1−r′−1). But from Lemma 5, aq+r′+1 cannot be in the
same line of variables as aq+r′−1. So aq+r′+1 is in Li1,i2,α+r′+1 (respectively Li2,i1,α+1−r′−1).
So the property is true for each r such that 0 ≤ r ≤ r′ + 1, with 1 ≤ r′ < p − q. So by
induction the property is true for each r such that 0 ≤ r ≤ p− q. So from Definition 12, aq′

is associated with vi2 for each q′ such that q < q′ ≤ p.

1. We need to prove that both conditions in Definition 24 are satisfied.

(a) From Lemma 5.
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(b) Let a and b be two values of A such that a and b are associated with the same
variable v of I. From the definition of a connected set, we know that a and
b are connected. So from Definition 10(b) and (c), there is a path of values
P = {a, a1, a2, . . . , ap, b} from a to b, with 0 ≤ p ≤ α − 2, such that each
a is strongly connected to a1, ai is strongly connected to ai+1 for each 1 ≤
i ≤ p and ap is strongly connected to b. If there is some q such that aq is
associated with v′ �= v, then we have shown in the preamble of the proof that
aq, aq+1, aq+2, . . . , ap, b are all associated with v′ �= v. This is not possible because
we assumed that b is associated with v. So all values in P are associated with v.
So from Definition 9(a), (b), (d) and (e), all values in P are congruent to each
other modulo 3. In particular, a is congruent to b modulo 3.

2. The number of values in the projection of A over I is the number of variables vi in I
such that at least one value in A is associated with vi. Let a0, b0 and c be three differ-
ent values in A. Let vi, vj and vh be the variables in I such that a0 is associated with
vi, b0 is associated with vj and c is associated with vh. Suppose that i, j and h are all
different. Without loss of generality, assume that i < j < h. Since A is a connected
set, there exists a path P = {a0, a1, a2, . . . , ap, b0, b1, b2, . . . , bq, c} of p+ q+3 values of
A, with p ≤ α−2 and q ≤ α−2, such that ai is strongly connected to ai+1 for each 0 ≤
i < p, ap is strongly connected to b0, bi is strongly connected to bi+1 for each 1 ≤ i < q
and bq is strongly connected to c. As we have shown in the preamble in the proof, there
are some p′ and q′ with p′ ≥ 1 and q′ ≥ 1 such that the values a0, a1, a2, . . . , ap′−1

are associated with vi, the values ap′ , ap′+1, ap′+2, . . . , ap, b0, b1, b2, . . . , bq′−1 are as-
sociated with vj and the values bq′ , bq′+1, bq′+2, . . . , bq, c are associated with vh. So
ap′−1 and ap′ are from Li,j,α and Li,j,α+1 respectively, the two lines of variables in
the middle of the path Pi,j , while bq′−1 and bq′ are from Lj,h,α+1 and Lj,h,α respec-
tively, the two lines of variables in the middle of the path Pj,h. So P has to go
through Li,j,α, Li,j,α+1, Li,j,α+2, . . . , Li,j,β−2, then through at least one line of vari-
ables from Cj , then through Lj,h,β−2, Lj,h,β−3, . . . , Lj,h,α+1, Lj,h,α, for a total of at
least (β−2−α+1)+1+(β−2−α+1) = 2α+1−2−α+1+1+2α+1−2−α+1 = 2α
variables. Since the number of values in P is p+q+3 ≤ (α−2)+(α−2)+3 = 2α−1,
this is not possible. So no three values of A are associated with three different variables
in I. So there are at most two values in the projection of A over I.

Lemma 11. Let S be a solution for I. Let V � be a pseudo-instance of I ′ such that for all
i and j with 1 ≤ i < j ≤ n, the column of the variable of V � in Li is equal to the column of
the variable of V � in Li,j,1. Then the projection of S over V � is compatible.

Proof. For each i such that 1 ≤ i ≤ n, let si be the value of S in the domain of vi. Let A
�

be the projection of S over V �. To show that A� is compatible, we just have to show that
A� satisfies all the constraints in I ′. These constraints are given through bullet points 3 to
8 in the definition of I ′:

3. These constraints only apply to values within a same line of variables. From Defini-
tion 15, no line of variables of I ′ contains two different variables of V �. Therefore the
constraints given in the third bullet point in the definition of I ′ are always satisfied.

41



4. Let i and j be such that 1 ≤ i < j ≤ n. Let a be the value of A� in Li and let b be the
value of A� in Li,j,1. From the conditions of the Lemma, we know that the column
of a is equal to the column of b. From Definition 26(a) and (b) respectively, we know
that both a and b are congruent to si modulo 3. So from the fourth bullet point in the
definition of I ′, a and b are compatible. Therefore the constraints given in the fourth
bullet point in the definition of I ′ are always satisfied.

5. From Definition 26(b) and (c).

6. Let i and j be such that 1 ≤ i < j ≤ n. Let a be the value of A� in Li,j,α and let b be
the value of A� in Li,j,α+1. From Definition 26(b), we know that a is congruent to si
modulo 3, and from Definition 26(c) we know that b is congruent to sj modulo 3. Since
S is a solution for I, si in the domain of vi and sj in the domain of vj are compatible.
Furthermore, from Definition 26(b), �a/3
 + 1 is equal to the column of b. So from
the sixth bullet point in the definition of I ′, a and b are compatible. Therefore the
constraints given in the sixth bullet point in the definition of I ′ are always satisfied.

7. From Definition 26(d).

8. 8.1 Let i, j and j′ be such that 1 ≤ i < j, j′ ≤ n and j �= j′. Let a be the value
of A� in Li,j,1 and let b be the value of A� in Li,j′,1. From Definition 26(b), we
know that both a and b are congruent to si modulo 3. Furthermore, we know
from the conditions of the lemma that both the column of a and the column of
b are equal to the value of A� in Li. So from bullet point 8.1 in the definition of
I ′, a and b are compatible. Therefore the constraints given in bullet point 8.1 in
the definition of I ′ are always satisfied.

8.2 From Definition 26(d).
8.3 Let i, j and j′ be such that 1 ≤ j < i < j′ ≤ n. Let a be the value of A� in

Lj,i,β−1 and let b be the value of A� in Li,j′,1. From Definition 26(d) and (b)
respectively, we know that both a and b are congruent to si modulo 3. From
Definition 26(d), we also know that �a/3
+1 is equal to the column of the value
of A� in Li. From the conditions of the lemma we know that the column of b is
also equal to the value of A� in Li. So from bullet point 8.3 in the definition of
I ′, a and b are compatible. Therefore the constraints given in bullet point 8.3 in
the definition of I ′ are always satisfied.

Lemma 12. Let S be a solution for I. Let V � be a pseudo-instance of I ′ such that for all
i and j with 1 ≤ i < j ≤ n, the column of the variable of V � in Li is equal to the column of
the variable of V � in Li,j,1. Then the projection of S over V � is a pseudo-assignment.

Proof. Let A� be the projection of S over V �. Definition 26 explicitely states that there
is exactly one value of A� in the domain of each variable from V �, so A� satisfies the first
bullet point in the definition of a pseudo-assignment (Definition 16). Therefore, we only
have to prove that A� satisfies the second bullet point in Definition 16, that is that any
couple of values in A� from consecutive lines are strongly connected.
Let a and b be two values of A� such that a and b are from consecutive lines. From
Definition 14, we know that there are six possibilities for the relation between a and b:

1. There are some i and j such that a is from Li and b is from Li,j,1. From Defini-
tion 26(a), we know that a is equal to si. From Definition 26(b), we know that b

42



is congruent to si modulo 3. From the conditions of the current lemma, we know
that the columns of a and b are equal. So from Definition 9(a), a and b are strongly
connected.

2. There are some i, j and l with 1 ≤ l ≤ β − 2 such that a is from Li,j,l and b is from
Li,j,l+1. Let col be the column of b. Depending on the exact value of l, there are three
possibilities:

• 1 ≤ l < α: From Definition 26(b), we know that a is equal to 3(col− 1) + si and
that b is congruent to si modulo 3. So from Definition 9(b), a and b are strongly
connected.

• l = α: From Definition 26(b), we know that a is equal to 3(col − 1) + si. From
Definition 26(c), we know that a is congruent to sj modulo 3. Since S is a solution
for I, si is the domain of vi and sj in the domain of vj are compatible. So from
Definition 9(c), a and b are strongly connected.

• α+1 ≤ l ≤ β−2: From Definition 26(c), we know that a is equal to 3(col−1)+sj
and that b is congruent to sj modulo 3. So from Definition 9(b), a and b are
strongly connected.

3. There are some i and j such that a is from Li,j,β−1 and b is from Lj . Let col be the
column of b. From Definition 26(d), we know that a is equal to 3(col− 1) + sj . From
Definition 26(a), we know that b is equal to sj . So from Definition 9(d), a and b are
strongly connected.

(da) There are some i, j1 and j2 with j1 �= j2 such that a is from Li,j1,1 and b is from
Li,j2,1. From Definition 26(b), we know that both a and b are congruent to si modulo
3. From the conditions of the current lemma, we know that the columns of a and b
are equal. So from Definition 9(ea), a and b are strongly connected.

(db) There are some i, j1 and j2 with j1 �= j2 such that a is from Lj1,i,β−1 and b is from
Lj2,i,β−1. Let col be the column of the value of A� in Li. From Definition 26(d), we
know that both a and b are equal to 3(col − 1) + si. So from Definition 9(eb), a and
b are strongly connected.

(dc) There are some i, j1 and j2 with j1 �= j2 such that a is from Lj1,i,β−1 and b is from
Li,j2,1. Let col be the column of the value of A� in Li. From Definition 26(d), we
know that a is equal to 2(col − 1) + si. From the conditions of the current lemma,
we know that the column of b is col. So from Definition 9(ec), a and b are strongly
connected.

In all cases a and b are strongly connected, so we have the result.

Lemma 13. Let V � be a pseudo-instance of I ′. Let A� be a pseudo-assignment over V �.
Let a be a value of A�. Let v be a destination variable of a. Then v ∈ V �.

Proof. Let a′ be the value of A from the same line of variables as v. Definition 18 gives six
different possibilities for the relation between a and v.

• If this relation follows the situation laid out in Definition 18(a), then there are some
i, j and col such that a is in the domain of the root variable vi,col and v is the
permutation variable ci,j,1,col. So from Definition 14(a) we know that a and a′ are
from consecutive lines of variables, namely Li and Li,j,1. So from the second bullet
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point in the definition of a pseudo-assignment, we know that a and a′ are strongly
connected. The only bullet point in Definition 9 that allows two values from the lines
of variables Li and Li,j,1 to be strongly connected is (a). So from Definition 9(a), a′

is in the domain of the variable ci,j,1,col, which is actually v. So v ∈ V �.

• If this relation follows the situation laid out in Definition 18(b), then there are some
i, j, j′ and col with j �= j′ such that a is in the domain of the permutation variable
ci,j,1,col and v is the permutation variable ci,j′,1,col. So from Definition 14(da) we know
that a and a′ are from consecutive lines of variables, namely Li,j,1 and Li,j′,1. So from
the second bullet point in the definition of a pseudo-assignment, we know that a and
a′ are strongly connected. The only bullet point in Definition 9 that allows two values
from the lines of variables Li,j,1 and Li,j′,1 to be strongly connected is (ea). So from
Definition 9(ea), a′ is in the domain of the variable ci,j′,1,col, which is actually v. So
v ∈ V �.

• If this relation follows the situation laid out in Definition 18(c), then there are some i,
j, l and col with 1 ≤ l < β−1 such that a is in the domain of the permutation variable
ci,j,l,col and v is the permutation variable ci,j,l+1,�a/3�+1. So from Definition 14(b) we
know that a and a′ are from consecutive lines of variables, namely Li,j,l and Li,j,l+1.
So from the second bullet point in the definition of a pseudo-assignment, we know that
a and a′ are strongly connected. The only bullet points in Definition 9 that allow two
values from the lines of variables Li,j,l and Li,j,l+1 to be strongly connected are (b)
and (c). So from both Definition 9(b) and Definition 9(c), a′ is in the domain of the
variable ci,j,l+1,�a/3�+1, which is actually v. So v ∈ V �.

• If this relation follows the situation laid out in Definition 18(d), then there are some
i, j and col such that a is in the domain of the permutation variable ci,j,β−1,col and
v is the root variable vj,�a/3�+1. So from Definition 14(c) we know that a and a′ are
from consecutive lines of variables, namely Li,j,β−1 and Lj . So from the second bullet
point in the definition of a pseudo-assignment, we know that a and a′ are strongly
connected. The only bullet point in Definition 9 that allows two values from the lines
of variables Li,j,β−1 and Lj to be strongly connected is (d). So from Definition 9(d),
a′ is in the domain of the variable vj,�a/3�+1, which is actually v. So v ∈ V �.

• If this relation follows the situation laid out in Definition 18(e), then there are some
i1, i2, i3 and col such that a is in the domain of the permutation variable ci1,i2,β−1,col

and v is the permutation variable ci2,i3,1,�a/3�+1. So from Definition 14(dc) we know
that a and a′ are from consecutive lines of variables, namely Li1,i2,β−1 and Li2,i3,1. So
from the second bullet point in the definition of a pseudo-assignment, we know that a
and a′ are strongly connected. The only bullet point in Definition 9 that allows two
values from the lines of variables Li1,i2,β−1 and Li2,i3,1 to be strongly connected is
(ec). So from Definition 9(ec), a′ is in the domain of the variable ci2,i3,1,�a/3�+1, which
is actually v. So v ∈ V �.

• If this relation follows the situation laid out in Definition 18(f), then there are some
i, j and col such that a is in the domain of the permutation variable ci,j,1,col and v
is the root variable vi,col. So from Definition 14(a) we know that a and a′ are from
consecutive lines of variables, namely Li and Li,j,1. So from the second bullet point in
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the definition of a pseudo-assignment, we know that a and a′ are strongly connected.
The only bullet point in Definition 9 that allows two values from the lines of variables
Li and Li,j,1 to be strongly connected is (a). So from Definition 9(a), a′ is in the
domain of the variable vi,col, which is actually v. So v ∈ V �.

Lemma 14. Let V �
1 , V

�
2 , . . . , V

�
β be β pseudo-instances of I ′ such that for each variable v

of I ′, v appears in exactly one of the β pseudo-instances. For each p such that 1 ≤ p ≤ β,
let A�

p be a pseudo-assignment over the domains of the pseudo-instance V �
p . Let p and q be

such that 1 ≤ p < q ≤ β, and let a and b be two values such that a ∈ A�
p and b ∈ A�

q . Then
a and b are compatible.

Proof. Suppose that a and b are incompatible. Therefore a and b violate one of the con-
straints of I ′. These constraints are explicited through bullet points 3 to 8 in the definition
of I ′.

3. There are some i and j with 1 ≤ i < j ≤ n, some l with 1 ≤ l ≤ β − 1, some col and
col′ with 1 ≤ col < col′ ≤ β, such that a is in the domain of the permutation variable
ci,j,l,col, b is in the domain of the permutation variable ci,j,l,col′ and �a/3
 = �b/3
.
So if l < β − 1, then from Definition 18(c), the permutation variable ci,j,l+1,�a/3� is a
destination variable of both a and b and if l = β − 1, then from Definition 18(d) the
root variable vj,�a/3� is a destination variable of both a and b. In either case, there
is a variable v of I ′ such that v is a destination variable of both a and b. So from
Lemma 13, v belongs to both V �

p and V �
q , which contradicts the conditions of the

lemma. So the incompatibility between a and b cannot be because of the third bullet
point in the definition of I ′.

4. There are some i, j and col with 1 ≤ i < j ≤ n and 1 ≤ col ≤ β such that a is
in the domain of the root variable vi,col and b is in the domain of the permutation
variable ci,j,1,col. So ci,j,1,col belongs to V �

q . But from Definition 18(a), ci,j,1,col is a
destination variable of a. So from Lemma 13, ci,j,1,col belongs to both V �

p and V �
q ,

which contradicts the conditions of the lemma. So the incompatibility between a and
b cannot be because of the fourth bullet point in the definition of I ′.

5. and 6. There are some i, j, l and col with 1 ≤ i < j ≤ n, 1 ≤ l < β − 1 and 1 ≤ col ≤ β such
that a is in the domain of the permutation variable ci,j,l,col and b is in the domain of
the permutation variable ci,j,l+1,�a/3�+1. So ci,j,l+1,�a/3�+1 belongs to V �

q . But from
Definition 18(c), ci,j,l+1,�a/3�+1 is a destination variable of a. So from Lemma 13,
ci,j,l+1,�a/3�+1 belongs to both V �

p and V �
q , which contradicts the conditions of the

lemma. So the incompatibility between a and b cannot be because of the fifth or sixth
bullet point in the definition of I ′.

7. There are some i, j and col with 1 ≤ i < j ≤ n and 1 ≤ col ≤ β such that a is in
the domain of the permutation variable ci,j,β−1,col and b is in the domain of the root
variable vj,�a/3�+1. So vj,�a/3�+1 belongs to V �

q . But from Definition 18(d), vj,�a/3�+1

is a destination variable of a. So from Lemma 13, vj,�a/3�+1 belongs to both V �
p and

V �
q , which contradicts the conditions of the lemma. So the incompatibility between a

and b cannot be because of the seventh bullet point in the definition of I ′.
8. 8.1 There are some i, j1, j2 and col with 1 ≤ i < j1, j2 ≤ n, j1 �= j2 and 1 ≤ col ≤ β

such that a is in the domain of the permutation variable ci,j1,1,col and b is in the
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domain of the permutation variable ci,j2,1,col. So ci,j2,1,col belongs to V �
q . But

from Definition 18(b), ci,j2,1,col is a destination variable of a. So from Lemma 13,
ci,j2,1,col belongs to both V �

p and V �
q , which contradicts the conditions of the

lemma. So the incompatibility between a and b cannot be because of bullet point
8.1 in the definition of I ′.

8.2 There are some i, j1, j2, col, col1 and col2 with 1 ≤ j1, j2 < i ≤ n, j1 �= j2
and 1 ≤ col, col1, col2 ≤ β such that a is in the domain of the permutation
variable cj1,i,β−1,col1 , b is in the domain of the permutation variable cj2,i,β−1,col2

and �a/3
 = �b/3
 = col. So from Definition 18(d) the root variable vi,col is a
destination variable of both a and b. So there is a variable v of I ′ such that v is
a destination variable of both a and b. So from Lemma 13, v belongs to both V �

p

and V �
q , which contradicts the conditions of the lemma. So the incompatibility

between a and b cannot be because of bullet point 8.2 in the definition of I ′.
8.3 There are some j1, i, j2, col and col1 with 1 ≤ j1 < i < j2 ≤ n and 1 ≤ col, col1 ≤

β such that a is in the domain of the permutation variable cj1,i,β−1,col1 and b is in
the domain of the permutation variable ci,j2,1,�a/3+1�. So ci,j2,1,�a/3+1� belongs
to V �

q . But from Definition 18(e), ci,j2,1,�a/3+1� is a destination variable of a.
So from Lemma 13, ci,j2,1,�a/3+1� belongs to both V �

p and V �
q , which contradicts

the conditions of the lemma. So the incompatibility between a and b cannot be
because of bullet point 8.3 in the definition of I ′.

We have shown that no constraint of I ′ can be violated by a and b. This proves the
lemma.

Lemma 15. Let A0 be a projectable set of values of I ′. Let a be a value in A0. Let S be
a solution for S containing the projection of A0 over I. Let V �

i be a pseudo-instance of I ′

such that V �
i contains all destination variables of a. Let A�

i be the projection of S over V �
i .

Then a belongs to A�
i .

Proof. For each i such that 1 ≤ i ≤ n, let si be the value of S in the domain of vi. There
are four possibilities for a:

1. There are some i and col such that a is in the domain of the root variable vi,col. From
Definition 25(c), we know that si is equal to a. So from Definition 26(a), a belongs to
A�

i .

2. There are some i, j, l and col with 1 ≤ l ≤ α such that a is in the domain of the
permutation variable ci,j,l,col. From Definition 25(c), we know that a is congruent to
si modulo 3. Let col′ be equal to �a/3
 + 1. From Definition 18(c), ci,j,l+1,col′ is a
destination variable of a. Since V �

i contains all destination variables of a, ci,j,l+1,col′ ∈
V �
i . So from Definition 26(b), a belongs to A�

i .

3. There are some i, j, l and col with α+ 1 ≤ l ≤ β − 2 such that a is in the domain of
the permutation variable ci,j,l,col. From Definition 25(c), we know that a is congruent
to sj modulo 3. Let col′ be equal to �a/3
+ 1. From Definition 18(c), ci,j,l+1,col′ is a
destination variable of a. Since V �

i contains all destination variables of a, ci,j,l+1,col′ ∈
V �
i . So from Definition 26(c), a belongs to A�

i .

4. There are some i, j and col such that a is in the domain of the permutation variable
ci,j,β−1,col. From Definition 25(c), we know that a is congruent to sj modulo 3. Let
col′ be equal to �a/3
+1. From Definition 18(d), vj,col′ is a destination variable of a.
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Since V �
i contains all destination variables of a, vj,col′ ∈ V �

i . So from Definition 26(d),
a belongs to A�

i .

In all cases, a belongs to A�
i and we have the result.

Appendix B. Proof of Proposition 1: Majority Metaconstraints

In the proof of Proposition 1, we need to show that we can build a solution S to the
original instance I from a solution S′ to the constructed instance I ′. To do so, for each i
between 1 and n, we look at the 2α+1 values assigned to the 2α+1 variables vi,1, . . . , vi,2α+1

in I ′, and pick the value among 0, 1 and 2 that occurs at least α + 1 times. Since each
variable can be assigned one of three different values, and there are only 2α + 1 variables,
it is not clear why there will always be one value represented at least α+1 times. To make
sure this is always the case, we build a “majority metaconstraint” Mi for each 1 ≤ i ≤ n
that will ensure absolute majority while keeping α− minimality.
Here is the description of Mi for a given 1 ≤ i ≤ n:

1. (origin variables) A set of β variables wi,1, . . . , wi,β . Each one of these β variables has
a domain of size 3 containing the three values 0, 1 and 2. From now on, we will refer
to these β variables as “origin variables”.

2. (enforcing a majority) For all 1 ≤ j �= j′ ≤ α+1, we add an equality constraint between
the two origin variables wi,j and wi,j′ . This is the original part of the instance where
the property of the lemma will be enforced.

3. (majority variables and majority metaconstraints) A set of β(α+1) variablesmi,1,1, . . . ,
mi,1,β ,mi,2,1, . . . ,mi,2,β ,mi,3,1, . . . ,mi,α+1,β . From now on, we will refer to these vari-
ables as “majority variables”. For each 1 ≤ l ≤ α + 1, we will also refer to the β
variables mi,l,1, . . . ,mi,l,β as the “lth line of the majority metaconstraint Mi”. Each
of the β(α+1) majority variables has a domain containing 3× β × 6 values. Without
loss of generality, we assume that each value composed of three integers: the first one
between 0 and 2, the second one between 1 and β and the third one between 1 and 6.
Informally, the property of the lemma will transfer from the origin variables wi,1, . . . , wi,β

to the root variables vi,1, . . . , vi,β . The transfer will be done line after line of the ma-
jority metaconstraint, similarly to the method used in the proof of the proposition.
The first integer composing the value assigned to a majority variable corresponds to
the trilean value to carry to the next line of the majority metaconstraint. The second
integer composing the value assigned to a majority variable corresponds to the vari-
able of the next line to carry the trilean value. The third integer composing the value
assigned to a majority variable corresponds to one of the six possible bijections from
{0, 1, 2} to {0, 1, 2}. The correspondence is explicitely given in Table B.2.
For example, if the third integer composing the value assigned to a majority variable
is 3, then the bijection associated to this variable is f , with f(0) = 1, f(1) = 0 and
f(2) = 2. So if the value assigned to the majority variable mi,l,6 is composed of the
three integers 1,8 and 3, in that order, then the trilean value 1 will be carried over to
the majority variable mi,l+1,8, and the first integer composing the value of the major-
ity variable mi,l+1,8 will be 0, because f(1) = 0, with f being the bijection associated
to the majority variable mi,l,6.
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4. (guaranteeing permutations and bijections) For each 1 ≤ l ≤ α + 1, for all 1 ≤ j �=
j′ ≤ β, for each value a in the domain of the majority variable mi,l,j and each value
b in the domain of the majority variable mi,l,j′ , a is incompatible with b if the second
integer composing a is equal to the second integer composing b or if the third integer
composing a is different from the third integer composing b.
This is to ensure that in any majority constraint, the carrying of trilean values from
line l to line l + 1 follows a bijection, and that the bijections associated to the third
integer in the values associated to the majority variables in line l of the metaconstraint
are all the same. The latter property is needed to ensure that the property held by
the first line of the majority metaconstraint, namely that one trilean value occurs at
least α+ 1 times, is transferred to the last line of the majority metaconstraint, which
is also the first line of the permutation constraints involving the variable vi.

5. (first line in a majority metaconstraint) For each 1 ≤ j ≤ β, the value 0 in the domain
of the origin variable wi,j is incompatible with all values in the domain of the majority
variable mi,1,j that do not have 0 as their first integer, the value 1 in the domain of
the origin variable wi,j is incompatible with all values in the domain of the majority
variable mi,1,j that do not have 1 as their first integer and the value 2 in the domain
of the origin variable wi,j is incompatible with all values in the domain of the majority
variable mi,1,j that do not have 2 as their first integer. This is to ensure that mi,1,j is
the majority variable of the first line of the majority metaconstraint Mi that will carry
the trilean value assigned to wi,j to the second line of the majority metaconstraint
Mi.

6. (successive lines in a majority metaconstraint) For each 1 ≤ l ≤ α, for all 1 ≤ j, j′ ≤ β,
let a be a value in the domain of the majority variable mi,l,j such that the second
integer composing a is j′, and let b be a value in the domain of the majority variable
mi,l+1,j′ . Then a is incompatible with b if the first integer composing b is not the
result of the bijection corresponding to the third integer composing a applied to the
first integer composing a. The correspondence is given in Table B.2.
For example, if the first integer composing a is 0, and the third integer composing a is
3, then a will be incompatible with b if the first integer composing b is 0 or 2, because
the bijection corresponding to 3 (in the column labelled by ‘3’) gives 1 when applied
to 0 (in the line labelled by ‘0’). As another concrete example, if the first integer
composing a is 2, and the third integer composing a is 6, then a will be incompatible
with b if the first integer composing b is 1 or 2.

7. (last line in a majority metaconstraint) For all 1 ≤ j, j′ ≤ β, let a be a value in the
domain of the majority variable mi,α+1,j such that the second integer composing a is
j′, and let b be a value in the domain of the root variable vi,j′ . Then a is incompatible
with b if b is not the result of the bijection corresponding to the third integer composing
a applied to the first integer composing a. The correspondence is given in Table B.2.

8. (preventing contradictions around the origin variables) The majority variables on the
first line in a majority constraint determine the values of the origin variables on the
previous line, so we need to add the following constraints in order to make sure that
we do not have a compatible assignment on two majority variables that implies a
contradiction on one of the origin variables.
For all 1 ≤ j, j′ ≤ α+ 1 such that j �= j′, let a be a value in the domain of the origin
variable wi,j , let a

′ be a value in the domain of the majority variable mi,1,j and let b′
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Table B.2: Correspondence between the third integer in the value assigned to majority variables and the
bijections from {0, 1, 2} to {0, 1, 2}.

����������������������trilean value

third integer of a value assigned
to a majority variable 1 2 3 4 5 6

0 0 0 1 1 2 2
1 1 2 0 2 0 1
2 2 1 2 0 1 0

be a value in the domain of the majority variable mi,1,j′ . If the first integer composing
b′ is not equal to a, then a and b′ are incompatible. If the first integer composing a′

is not equal to the first integer composing b′, then a′ and b′ are incompatible.

9. (preventing contradictions around the root variables) The majority variables on the
last line in a majority constraint determine the values of the root variables on the
following line, so we need to add the following constraints in order to make sure that
we do not have a compatible assignment on two majority or permutation variables
that implies a contradiction on one of the root variables.

9.1 For each 1 ≤ j ≤ n such that j < i, for all 1 ≤ col, col′ ≤ β, let a be a value in the
domain of the permutation variable ci,j,2α,col and let b be a value in the domain
of the majority variable mi,α+1,col′ such that the second integer composing b is
equal to �a/3
+1 (informally, both ci,j,2α,col and mi,α+1,col′ carry a trilean value
to the same root variable vi,�a/3�+1). Then a and b are incompatible if the result
of the bijection corresponding to the third integer composing b applied to the
first integer composing b is not congruent to a modulo 3. The correspondence is
given in Table B.2.

9.2 For each 1 ≤ j ≤ n such that i < j, for all 1 ≤ col, col′ ≤ β, let a be a
value in the domain of the majority variable mi,α+1,col such that the second
integer composing a is equal to col′ and let b be a value in the domain of the
permutation variable ci,j,1,col′ . Then a and b are incompatible if the result of
the bijection corresponding to the third integer composing a applied to the first
integer composing a is not congruent to b modulo 3.

10. (the rest) All couples of values containing at least one value in Mi that have not
had their compatibility specified yet, including the couples that contain a value from
another majority metaconstraint or from a permutation metaconstraint, are set to
compatible.

To illustrate the construction, we present in Figure B.4 the majority metaconstraint Mi.
This figure should be viewed as a part of the same instance as the one from Figure 3, and i
takes the same value. In particular, the root variables vi,1, . . . , vi,β appear in both figures.
We present an example of a possible assignment for the 63 variables composing the majority
metaconstraint, with the values assigned to the 9 root variables being the same as they were
in Figure 3. Note that in this gadget, any compatible assignment on α = 4 variables can be
extended to a partial solution on all 63 variables.
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2 2 2 2 2 1 1 0 1

2,4,3 2,2,3 2,1,3 2,6,3 2,3,3 1,9,3 1,8,3 0,7,3 1,5,3

2,2,2 2,6,2 2,9,2 2,8,2 0,4,2 2,7,2 1,3,2 0,5,2 0,1,2

0,1,1 1,9,1 2,5,1 0,7,1 0,6,1 1,2,1 1,4,1 1,8,1 1,3,1

0,7,2 1,2,2 1,5,2 1,8,2 2,4,2 0,3,2 0,6,2 1,9,2 1,1,2

2,8,4 2,6,4 0,4,4 1,7,4 2,5,4 0,3,4 0,1,4 2,9,4 2,2,4

1 0 1 1 0 0 2 0 0

wi,1 wi,2 wi,3 wi,4 wi,5 wi,6 wi,7 wi,8 wi,9

vi,1 vi,2 vi,3 vi,4 vi,5 vi,6 vi,7 vi,8 vi,9

Figure B.4: The majority metaconstraint Mi.

It is clear from the definition ofMi (in particular from the fourth point) that if the bottom
line fulfills the absolute majority property, namely that one value is assigned at least α+ 1
times among the 2α + 1 assignments of the line, then every subsequent line until the top
one will also fulfill that property. The proof that adding the n majority metaconstraints
conserves α− minimality can be done by keeping the exact same construction and lemmas
used in Appendix A.
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