
Bubble-Flip—A New Generation Algorithm for

Prefix Normal Words

Ferdinando Cicalese, Zsuzsanna Lipták∗and Massimiliano Rossi

Dipartimento di Informatica, University of Verona

Strada le Grazie, 15, 37134 Verona, Italy

{ferdinando.cicalese,zsuzsanna.liptak,massimiliano.rossi 01}@univr.it

Article published in Theoretical Computer Science (2018)
doi: 10.1016/j.tcs.2018.06.021

Abstract

We present a new recursive generation algorithm for prefix normal
words. These are binary words with the property that no factor has
more 1s than the prefix of the same length. The new algorithm uses
two operations on binary words, which exploit certain properties of
prefix normal words in a smart way. We introduce infinite prefix nor-
mal words and show that one of the operations used by the algorithm,
if applied repeatedly to extend the word, produces an ultimately pe-
riodic infinite word, which is prefix normal. Moreover, based on the
original finite word, we can predict both the length and the density of
an ultimate period of this infinite word1.

keywords: algorithms on automata and words, combinatorics on
words, combinatorial generation, prefix normal words, infinite words,
binary languages, combinatorial Gray code

1 Introduction

Prefix normal words are binary words with the property that no factor
has more 1s than the prefix of the same length. For example, 11001010 is

∗Corresponding author.
1This is an extended version of our paper presented at LATA 2018 [11].

1

ar
X

iv
:1

71
2.

05
87

6v
3

 [
cs

.D
S]

 2
6

Ju
l 2

01
8

prefix normal, but 11001101 is not, since the factor 1101 has too many 1s.
These words were introduced in [13], originally motivated by the problem of
Jumbled Pattern Matching [1, 2, 3, 5, 9, 10, 12, 14, 15, 18, 20].

Prefix normal words have however proved to have diverse other connec-
tions [6, 7, 8]. Among these, it has been shown that prefix normal words form
a bubble language [22, 23, 24], a family of binary languages which include
Lyndon words, k-ary Dyck words, necklaces, and other important classes of
binary words. These languages have efficient generation algorithms2, and
can be listed as (combinatorial) Gray codes, i.e. listings in which successive
words differ by a constant number of operations. More recently, connections
of the language of prefix normal words to the Binary Reflected Gray Code
have been discovered [25], and prefix normal words have proved to be ap-
plicable to certain graph problems [4]. Moreover, three different sequences
related to prefix normal words are present in the On-Line Encyclopedia of
Integer Sequences (OEIS [26]): A194850 (the number of prefix normal words
of length n), A238109 (a list of prefix normal words over the alphabet {1, 2}),
and A238110 (equivalence class sizes of words with same prefix normal form,
a related concept from [8]).

In this paper, we present a new recursive generation algorithm for prefix
normal words of fixed length. In combinatorial generation, the aim is to find
a way of efficiently listing (but not necessarily outputting) each one of a given
class of combinatorial objects. Even though the number of these objects may
be very large, typically exponential, in many situations it is necessary to be
able to examine each one of them: this is when combinatorial generation
algorithms are needed. The latest volume 4A of Donald Knuth’s The Art of
Computer Programming devotes over 200 pages to combinatorial generation
of basic combinatorial patterns, such as permutations and bitstrings [17],
and much more is planned on the topic [16].

The previous generation algorithm for prefix normal words of length n
runs in amortized linear time per word [7], while it was conjectured there
that its running time is actually amortized O(log n) per word, a conjecture
which is still open. Our new algorithm recursively generates all prefix normal
words from a seed word, applying two operations, which we call bubble and
flip. Its running time is O(n) per word, and it allows new insights into
properties of prefix normal words. It can be applied (a) to produce all prefix
normal words of fixed length, or (b) to produce all prefix normal words of
fixed length sharing the same critical prefix. (The critical prefix of a binary

2Here, the term efficient is used in the sense that the cost per output word should be
small—in the best case, this cost is constant amortized time (CAT).

2

word is the first run of 1s followed by the first run of 0s.) This could help
proving a conjecture formulated in [7], namely that the expected critical
prefix length of an n-length prefix normal word is O(log n). Moreover, it
could prove useful in counting prefix normal words of fixed length: it is
easy to see that this number grows exponentially, however, neither a closed
form nor a generating function are known [8]. Finally, a slight change in the
algorithm produces a (combinatorial) Gray code on prefix normal words of
length n.

While both algorithms generate prefix normal words recursively, they
differ in fundamental ways. The algorithm of [7] is an application of a
general schema for generating bubble languages, using a language-specific
oracle. It generates separately the sets of prefix normal words with fixed
weight d, i.e. all prefix normal words of length n containing d 1s. The
computation tree is not binary, since each word w can have up to t children,
where t is the number of 0s in the first run of 0s of w. The algorithm uses an
additional linear size data structure which it inherits from the parent node
and modifies for the current node. A basic feature of the computation tree
is that all words have the same fixed suffix, in other words, for the subtree
rooted in the word w = 1s0tγ, all nodes are of the form vγ, for some v.

In contrast, our new algorithm generates all prefix normal words of length
n (except for 0n and 10n−1) in one single recursive call, starting from 110n−2.
The computation tree is binary, since each word can have at most two chil-
dren, namely the one produced by the operation bubble, and the one by flip.
Finally, for certain words w, the words in the subtree rooted in w have the
same critical prefix as w. This last property allows us to explore the sets of
prefix normal words with fixed critical prefix.

In the final part of the paper, we prove some surprising results about
extending prefix normal words. Note that if w is prefix normal, then so is w0,
but not necessarily w1. We introduce infinite prefix normal words and show
that repeatedly applying the flip-operation used by the new algorithm—in
a modified version which extends finite words—produces, in the limit, an
ultimately periodic infinite prefix normal word. Moreover, we are able to
predict both the length and the density of the period, and give an upper
bound on when the period will appear.

Part of the results of the present paper were presented in a preliminary
form in [11].

3

2 Basics

A (finite) binary word (or string) w is a finite sequence of elements from
{0, 1}. We denote the i’th character of w by wi, and its length by |w|. Note
that we index words from 1. The empty word, denoted ε, is the unique word
with length 0. The set of binary words of length n is denoted {0, 1}n and
the set of all finite words by {0, 1}∗. For two words u, v, we write w = uv
for their concatenation. For an integer k ≥ 1 and u ∈ {0, 1}n, uk denotes
the k ·n-length word uuu · · ·u (k-fold concatenation of u). If w = uxv, with
u, x, v ∈ {0, 1}∗ (possibly empty), then u is called a prefix, x a factor (or
substring), and v a suffix of w. We denote by wi · · ·wj , for i ≤ j, the factor
of w spanning the positions i through j. For a word u, we write |u|1 for
the number of 1s in u. We denote by ≤lex the lexicographic order between
words.

We denote by prefi(w) the prefix of w of length i, and by Pw(i) =
| prefi(w)|1, the number of 1s in the prefix of length i. (In the context of
succinct indexing, this function is often called rank1(w, i).) If clear from the
context, we write P (i) for Pw(i).

Definition 1 (Prefix normal words, prefix normal condition). A word w ∈
{0, 1}∗ is called prefix normal if, for all factors u of w, |u|1 ≤ Pw(|u|). We
denote the set of all finite prefix normal words by L, and the set of prefix
normal words of length n by Ln. Given a binary word w, we say that a
factor u of w satisfies the prefix normal condition if |u|1 ≤ Pw(|u|).

Example 1. The word 1101000100110100 is not prefix normal because the
factor 1001101 violates the prefix normal condition.

It is easy to see that the number of prefix normal words grows expo-
nentially, by noting that 1nw is prefix normal for any w of length n. In
Table 1, we list all prefix normal words for lengths n ≤ 5. Finding the
number of prefix normal words of length n is a challenging open problem,
see [8] for partial results. The cardinalities of Ln for n ≤ 50 can be found
in the On-Line Encyclopedia of Integer Sequences (OEIS [26]) as sequence
A194850.

Next, we give some basic facts about prefix normal words which will be
needed in the following.

Fact 1 (Basic facts about prefix normal words [8]). Let w ∈ {0, 1}n.

(i) If w ∈ L, then either w = 0n or w1 = 1.

(ii) w ∈ L if and only if prefi(w) ∈ L for i = 1, . . . , n.

4

Table 1: The set Ln of prefix normal words of length n for n = 1, 2, 3, 4, 5.

L1 L2 L3 L4 L5
0 00 000 110 0000 1010 1110 00000 10010 11000 11011 11110
1 10 100 111 1000 1100 1111 10000 10100 11001 11100 11111

11 101 1001 1101 10001 10101 11010 11101

(iii) If w ∈ L then w0i ∈ L for all i = 1, 2,

(iv) Let w ∈ L. Then w1 ∈ L if and only if for all 1 ≤ i < n, we have
Pw(i+ 1) > |wn−i+1 · · ·wn|1.

We will define several operations on binary words in this paper. For an
operation op : {0, 1}∗ → {0, 1}∗, we denote by op(i) the i’th iteration of op.
We denote by op∗(w) = {op(i)(w) | i ≥ 1}, the set of words obtainable from
w by a finite number of applications of op.

Finally, we introduce the critical prefix of word. The length of the critical
prefix plays an important role in the analysis of the previous generation
algorithm for prefix normal words [7].

Definition 2 (Critical prefix). Given a non-empty binary word w, it can be
uniquely written in the form w = 1s0tγ, where s, t ≥ 0, s = 0 implies t > 0,
and γ ∈ 1{0, 1}∗ ∪ {ε}. We refer to 1s0t as the critical prefix of w.

Example 2. For example, the critical prefix of 1100001001 is 110000, that
of 0011101001 is 00, while the critical prefix of 1111000000 is 1111000000.

In [7], it was conjectured that the expected length of the critical prefix
of a prefix normal word of length n is O(log n). This conjecture is still open.
In Section 3.3, we will see how to adapt our algorithm to generate all prefix
normal words with critical prefix 1s0t in one run.

To close this section, we briefly discuss combinatorial Gray codes. Recall
that a Gray code is a listing of all bitstrings (or binary words) of length n such
that two successive words differ by exactly one bit. In other words, a Gray
code is a sequence w(1), w(2), . . . , w(2n) ∈ {0, 1}n such that dH(w(i), w(i+1)) =
1 for i = 1, . . . , 2n − 1, where dH(x, y) = |{1 ≤ j ≤ n : xj 6= yj}| is the
Hamming distance between two equal-length words x and y.

This definition has been generalized in several ways, we give a definition
following [21, ch. 5].

5

Definition 3 (Combinatorial Gray Code). Given a set of combinatorial
objects S and a relation C on S (the closeness relation), a combinatorial
Gray code for S is a listing s1, s2, ..., s|S| of the elements of S, such that
(si, si+1) ∈ C for i = 1, 2, ..., |S| − 1. If we also require that (s|S|, s1) ∈ C,
then the code is called cyclic.

In particular, given a listing of the elements of a binary language S ⊆
{0, 1}n, such that each two subsequent words have Hamming distance bounded
by a constant, then this listing is a combinatorial Gray code for S. Note
that the specifier ’combinatorial’ is often dropped, so the term Gray code is
frequently used in this more general sense.

3 The Bubble-Flip algorithm

In this section we present our new generation algorithm for all prefix normal
words of a given length. We show that the words are generated in lexico-
graphic order. We also show how our procedure can be easily adapted to
generate all prefix normal words of a given length with the same critical
prefix.

3.1 The algorithm

Let w ∈ {0, 1}n. We let r(w) be the largest index r such that wr = 1, if
it exists, and ∞ otherwise. We will use the following operations on prefix
normal words:

Definition 4 (Operation flip). Given w ∈ {0, 1}n, and 1 ≤ j ≤ n, we define
flip(w, j) to be the binary word obtained by changing the j-th character in
w, i.e., flip(w, j) = w1w2 · · ·wj−1wjwj+1 · · ·wn, where x is 1− x.

Definition 5 (Operation bubble). Given w ∈ {0, 1}n\{0n} and r = r(w) <
n, we define bubble(w) = w1w2 · · ·wr−1010n−r−1, i.e., the word obtained
from w by shifting the rightmost 1 one position to the right.

We start by giving a simple characterization of those flip-operations
which preserve prefix normality.

Lemma 1. Let w ∈ Ln such that r = r(w) < n and let j be an index with
r < j ≤ n. Then w′ = flip(w, j) is not prefix normal if and only if there exists
a 1 ≤ k < r such that |wr−k+1 · · ·wr|1 = Pw(k) and |wk+1 · · ·wk+j−r|1 = 0.

6

Proof. If there exists a 1 ≤ k < r such that |wr−k+1 · · ·wr|1 = Pw(k) and
|wk+1 · · ·wk+j−r|1 = 0, then for the factor u = w′r−k+1 · · ·w′j of w′, we have
|u| = k + (j − r) and |u|1 = Pw′(k) + 1 > Pw′(k + (j − r)) = Pw′(|u|), thus
w′ is not prefix normal.

Conversely, note that w′ ∈ L if and only if v = prefj(w
′) ∈ L, by Fact 1

(ii) and (iii). If v 6∈ L, then, by Fact 1 (iv), there exists a suffix u of
w1 · · ·wj−1 such that |u|1 ≥ Pw(|u|+ 1) . Clearly, u cannot be shorter than
j − r − 1, since then |u|1 = 0 < Pw(|u| + 1), since w is prefix normal and
contains at least one 1. So u spans the position r of the last one of w. Let
us write u = u′0j−r−1, with k := |u′|. So we have Pw(k) ≥ |u′|1 = |u|1 ≥
Pw(|u| + 1), implying |u′|1 = |wr−k+1 · · ·wr|1 = Pw(k) by monotonicity of
P . Moreover, again by the monotonicity of P , we get Pw(k) = Pw(|u|+ 1),
which implies that the factor wk+1 · · ·wk+j−r consists of only 0s.

Algorithm 1: Compute ϕ

Given a prefix normal word w, computes the leftmost index j,
after the rightmost 1 of w, such that flip(w, j) is prefix normal

1 r ← r(w), f ← 0, g ← 0, i← 1, max← 0
2 while i < r do
3 f ← f + wi, g ← g + wr−i+1

4 if f = g then
5 l← 0, i← i+ 1
6 while i < r and wi = 0 do
7 l← l + 1, i← i+ 1

8 if l > max then
9 max← l

10 else
11 i← i+ 1

12 return min{r +max+ 1, n+ 1}

Definition 6 (Phi). Let w ∈ Ln \ {0n}. Let r = r(w). Define ϕ(w) as
the minimum j such that r < j ≤ n and flip(w, j) is prefix normal, and
ϕ(w) = n+ 1 if no such j exists.

Example 3. For the word w = 1101001001011000, we have ϕ(w) = 16,
since the words flip(w, 14) and flip(w, 15) both violate the prefix normal con-
dition, for the prefixes of length 3 and 6, respectively.

7

Lemma 2. Let w ∈ Ln \ {0n} and let r = r(w). Let m be the maximum
length of a run of zeros following a prefix of w1 · · ·wr−1 which has the same
number of 1s as the suffix of w1 · · ·wr of the same length. Formally,

m = max
1≤`<r

{` : exists k s.t. |wr−k+1 · · ·wr|1 = Pw(k) and |wk+1 · · ·wk+`|1 = 0},

where we set the maximum of the empty set to 0. Then, ϕ(w) = min(r +
m+ 1, n+ 1).

Proof. We first show that ϕ(w) ≤ r+m+1. We can assume that m < n−r,
for otherwise the desired inequality holds by definition. Let m′ = m + 1.
Then, there are no j, k ∈ {1, . . . , r− 1} such that j − k = m′, |w1 · · ·wk|1 =
|wr−k+1 · · ·wr|1 and |wk+1 · · ·wj |1 = 0. Thus, by Lemma 1, we have that
flip(w, r +m′) ∈ L, hence ϕ(w) ≤ r +m′ = r +m+ 1.

Let now j, k be indices attaining the maximum in the definition of
m, i.e., 1 < k < j < r, j − k = m, |w1 · · ·wk|1 = |wr−k+1 · · ·wr|1 and
|wk+1 · · ·wj |1 = 0. Let 0 < m′ ≤ m then for j′ = k+m′ we have |w1 · · ·wk|1 =
|wr−k+1 · · ·wr|1 and |wk+1 · · ·wj′ |1 = 0. Then, by Lemma 1, flip(w, r+m′) 6∈
L. Hence ϕ(w) > r + m′, for m′ ≤ m, and in particular ϕ(w) ≥ r + m + 1,
which completes the proof.

Algorithm 1 implements the idea of Lemma 2 to compute ϕ. For a given
prefix normal word w, it finds the position r of the rightmost 1 in w. Then,
for each length i such that the number of 1s in prefi(w) (counted by f) is
the same as the number of 1s in wr−i+1 · · ·wr (counted by g), the algorithm
counts the number of 0s in w following prefi(w) and sets m to the maximum
of the length of such runs of 0’s. By Lemma 2 and the definition of ϕ it
follows that min{r + m + 1, n + 1} is equal to ϕ, as correctly returned by
Algorithm 1. It is not hard to see that the algorithm has linear running time
since the two while-loops are only executed as long as i < r, and the variable
i increases at each iteration of either loop. Therefore, the total number of
iterations of the two loops together is upper bounded by r ≤ n. Thus, we
have proved the following lemma:

Lemma 3. For w ∈ Ln \ {0n}, Algorithm 1 computes ϕ(w) in O(r(w)),
hence O(n) time.

The next lemma gives the basis of our algorithm: applying either of the
two operations flip(w,ϕ(w)) or bubble(w) to a prefix normal word w results
in another prefix normal word.

Lemma 4. Let w ∈ Ln \ {0n}. Then the following holds:

8

a) for every `, such that ϕ(w) ≤ ` ≤ n, flip(w, `) is prefix normal, and

b) if |w|1 ≥ 2 then bubble(w) is prefix normal.

Proof. Let r = r(w). In order to show a) we can proceed as in the proof
of the upper bound in Lemma 2. Fix ϕ(w) ≤ ` ≤ n, and let m′ = ` − r.
Then, by Lemma 2, there exist no 1 < j < k < r such the k − j = m′ and
|w1 · · ·wk|1 = |wr−k+1 · · ·wr|1 and |wk+1 · · ·wj |1 = 0. This, by Lemma 1,
implies that flip(w, `) ∈ L.

For b), let r′ = max{i < r | wi = 1}, i.e., r′ is the position of the
penultimate 1 of w. Let w′ = w1 · · ·wr′0n−r

′
. By Fact 1 we have that

w′ ∈ L. Moreover, r ≥ ϕ(w′), since flip(w′, r) = w ∈ L. Therefore, by a) we
have that bubble(w) = flip(w′, r + 1) ∈ L.

Definition 7 (PN). Given w ∈ Ln \{0n} with r = r(w), we define PN (w)
as the set of all prefix normal words v of length n such that v = w1 · · ·wr−1γ
for some γ with |γ|1 > 0. Formally,

PN (w) = {v ∈ Ln | v = w1 · · ·wr−1γ, |γ|1 > 0}.

We will use the convention that PN (flip(w,ϕ(w))) = ∅ if ϕ(w) > n, and
PN (bubble(w)) = ∅ if r(w) = n, since then flip(w,ϕ(w)) resp. bubble(w)
are undefined.

Lemma 5. Given w ∈ Ln \ {0n, 10n−1}, we have

PN (w) = {w} ∪ PN (flip(w,ϕ(w))) ∪ PN (bubble(w)).

Moreover, these three sets are pairwise disjoint.

Proof. It is easy to see that the sets {w}, PN (bubble(w)), PN (flip(w,
ϕ(w))) are pairwise disjoint.

The inclusion PN (w) ⊇ {w}∪PN (flip(w,ϕ(w)))∪PN (bubble(w)) fol-
lows from the definition of PN (Def. 7) for each of the words w,flip(w,ϕ(w)),
and bubble(w).

Now let x ∈ PN (w) \ {w} and r = r(w). We argue by cases according
to the character xr.

Case 1. xr = 0. Then, x = w1 · · ·wr−10γ for some γ ∈ {0, 1}n−r such
that |γ|1 > 0. Since bubble(w) = w1 · · ·wr−1010n−r−1, it follows that x ∈
PN (bubble(w)).

Case 2. xr = 1. Then, since x 6= w, we also have that |xr+1 · · ·xn|1 > 0.
Therefore, x = w1 · · ·wr−11γ for some γ ∈ {0, 1}n−r such that |γ|1 > 0.

9

Let r′ = min{i > r | xr′ = 1}. Since x ∈ L, we have that prefr(x)0n−r,
prefr′(x)0n−r

′ ∈ L. Moreover, prefr′(x)0n−r
′

= flip(prefr(x)0n−r, r′), hence,
r′ ≥ ϕ(prefr(x)0n−r) = ϕ(w). Therefore, x = w1 · · ·wr0ϕ(w)−r−1γ for some
|γ|1 > 1. This, by definition, means that x ∈ PN (flip(w,ϕ(w))).

We are now ready to give an algorithm computing all words in the set
PN (w) for a prefix normal word w. The pseudocode is given in Algo-
rithm 2. The procedure generates recursively the set PN (w) as the union
of PN (flip(w,ϕ(w))) and PN (bubble(w)). The call to subroutine V isit()
is a placeholder indicating that the algorithm has generated a new word in
PN (w), which could be printed, or examined, or processed, as required. By
Lemma 5 we know that V isit() is executed for each word in PN (w) exactly
once.

Algorithm 2: Generate PN (w)

Given a prefix normal word w such that |w|1 > 1, generate the set
PN (w)

1 if r(w) 6= n then
2 w′ = bubble(w)
3 Generate PN (w′)

4 V isit()
5 j = ϕ(w)
6 if j ≤ n then
7 w′′ = flip(w, j)
8 Generate PN (w′′)

In order to ease the running time analysis, we next introduce a tree
T (w) on PN (w). This tree coincides with the computation tree of Gen-
erate PN (w), but it will be useful to argue about it independently of the
algorithm.

Definition 8 (Tree on PN (w)). Let w ∈ Ln \ {0n, 10n−1}. Then we denote
by T (w) the rooted binary tree T with V (T) = PN (w), root w, and for a
node v, (1) the left child of v defined as empty if vn = 1 and as bubble(v)
otherwise, and (2) the right child of v as empty if ϕ(v) = n + 1, and as
flip(v, ϕ(v)) otherwise.

The tree PN (w) has the following easy-to-see properties.

10

Observation 1 (Properties of T (w)). There are three types of nodes: the
root w, bubble-nodes (left children), and flip-nodes (right children).

1. The leftmost descendant of w has maximal depth, namely n− r, where
r = r(w).

2. If a node v has a right child, then it also has a left child.

3. If a node v has no right child, then no descendant of v has a right
child. Thus in this case, the subtree rooted in v is a path of length
n− r′, consisting only of bubble-nodes, where r′ = r(v).

The next lemma gives correctness, the generation order, and running
time of algorithm Generate PN (w).

Lemma 6. For w ∈ Ln\{0n, 10n−1}, Algorithm 2 generates all prefix normal
words in PN (w) in lexicographic order in O(n) time per word.

Proof. Algorithm 2 recursively generates first all words in PN (bubble(w))),
then the word w, and finally the words in PN (flip(w,ϕ(w))). As we saw
above (Lemma 5), these sets form a partition of PN (w), hence every word
v ∈ PN (w) is generated exactly once. Moreover, by definition of PN ,
for every u ∈ PN (bubble(w)) it holds that u = w1 · · ·wr−10γ with |γ| =
n − r and |γ|1 > 0, thus it follows that u <lex w. In addition, for every
v ∈ PN (flip(w,ϕ(w))) it holds that v = w1 · · ·wr−11βγ where |β| = k =
ϕ(w) − r − 1, |β|1 = 0, |γ| = n − r − k and |γ|1 > 0, thus w <lex v. Since
these relations hold at every level of the recursion, it follows that the words
are generated by Algorithm 2 in lexicographic order.

For the running time, note that in each node v, the algorithm spends
O(n) time on the computation of ϕ(v) (Lemma 3), and if vn 6= 1, another
O(1) time on computing bubble(v), and finally, if ϕ(v) ≤ n, further O(1)
time on computing flip(v, ϕ(v)). This gives a total running time of O(n ·
PN (w)), so O(n) amortized time per word. We now show that it actually
runs in O(n) time per word.

Notice that the algorithm performs an in-order traversal of the tree T (w).
Given a node v, the next node visited by the algorithm is given by:

next(v) =


leftmost descendant of right child, if ϕ(v) ≤ n,
parent(v), if ϕ(v) > n and v is a left child,

parent of first left child on path from v to root, otherwise.

In all three cases, the algorithm first computes ϕ(v), taking O(n) time by
Lemma 3. In the first case, it then descends down to the leftmost descendant

11

Figure 1: The words in PN (11010000) represented as a tree. If a node
of the tree is word w, then its left child is bubble(w) and its right child
is flip(w,ϕ(w)). In the tree, the position of ϕ(w) is indicated, whenever
ϕ(w) ≤ n; bubble operations (in the left child) resp. flip operations (in the
right child) are highlighted in bold. Algorithm 2 generates these words by
performing an in-order traversal of the tree. The corresponding list of words
is given on the right.

of the right child, which takes n−ϕ(v) bubble operations, in O(n) time. In
the second case, the parent is reached by one operation (moving the last 1
one position to the left if v is a left child, and flipping the last 1 if v is a right
child), taking O(1) time. Finally, in the third case, we have up to depth of
v many steps of the latter kind, each taking constant time, so again in total
O(n) time. In all three cases, we get a total of O(n) time before the next
word is visited.

Now we are ready to present the full algorithm generating all prefix
normal words of length n, see Algorithm 3 (Bubble-Flip). It first visits
the two prefix normal words 0n and 10n−1, and then generates recursively
all words in Ln containing at least two 1s, from the starting word 110n−2.

Theorem 1. The Bubble-Flip algorithm generates all prefix normal words
of length n, in lexicographic order, and in O(n) time per word.

Proof. Recall that by Fact 1(i) every prefix normal word of length n, other
than 0n, has 1 as its first character. It is easy to see that there is only one
prefix normal word of length n with a single 1, namely 10n−1. Moreover,
by Fact 1(i) and the definition of PN , the set of all prefix normal words
of length n with at least two 1s coincides with PN (110n−2). By Lemma 6,

12

Algorithm 3: Bubble-Flip

For a given n, generates all prefix normal words of length n

1 w = 0n

2 V isit()
3 w = 10n−1

4 V isit()
5 w = 110n−2

6 Generate PN (w)

this set is generated by Generate PN (110n−2) in lexicographic order and
in O(n) time per word. Noting that prepending 0n and 10n−1 preserves the
lexicographic order concludes the proof.

3.2 Listing Ln as a combinatorial Gray code

The algorithm Generate PN (w) (Algorithm 2) performs an in-order traver-
sal of the nodes of the tree T (w). If instead we do a post-order traversal,
we get a combinatorial Gray code of Ln, as we will show next. First note
that the change in the traversal order can be achieved by moving line 4 in
Algorithm 2 to the end of the code, resulting in Algorithm 4.

Algorithm 4: Generate2 PN (w)

Given a prefix normal word w such that |w|1 > 1, generate a
combinatorial Gray code on PN (w)

1 if r(w) 6= n then
2 w′ = bubble(w)
3 Generate2 PN (w′)

4 j = ϕ(w)
5 if j ≤ n then
6 w′′ = flip(w, j)
7 Generate2 PN (w′′)

8 V isit()

Lemma 7. In a post-order traversal of T (w), two consecutive words have
Hamming distance at most 3.

Proof. Let v be some node visited during the traversal of T (w). If v is a
flip-node, then the next node in the listing will be its parent node v′. Since

13

v = flip(v′, ϕ(v′)), v′ is at Hamming distance 1 from v. Otherwise v is a
bubble-node, i.e. v = u010k and its parent is u10k+1 for some word u and
integer k. If v has no right sibling, then the next node visited is its parent, at
Hamming distance 2 from v. Else the next node v′ is the leftmost descendant
of v’s right sibling, i.e. v′ = u10k1, and the Hamming distance to v is at
most 3.

Example 4. The words in PN (11010000) (Fig. 1) are listed by Algorithm 4
as follows: 11000001, 11000011, 11000010, 11000101, 11000110, 11000100,
11001001, 11001010, 11001100, 11001000, 11010001, 11010011, 11010010,
11010101, 11010110, 11010100, 11011001, 11011011, 11011010, 11011000,
11010000.

Theorem 2. The Bubble-Flip algorithm using a post-order traversal pro-
duces a cyclic combinatorial Gray code on Ln, generating each word in time
O(n).

Proof. By Lemma 7, Generate2 PN (110n−2) produces a combinatorial
Gray code. By visiting the two words 0n and 10n−1 first, followed by Gen-
erate2 PN (110n−2), we get a combinatorial Gray code on all of Ln. The
last word in this code is the root 110n−2 and dH(110n−2, 0n) = 2 ≤ 3, thus
this code is also cyclic.

Since only the order of the tree traversal changed w.r.t. the previous
algorithm, it follows immediately that the algorithm visits Ln in amortized
O(n) time per word, since the overall running time is, as before, O(n|L|).

To see that the time to visit the next word is O(n), we distinguish two
cases according to the type of node. If v is a flip-node, then the next node
is its parent, taking O(1) time to reach. If v is a bubble-node, then we
have to check whether it has a right sibling by computing ϕ(v′), where v′

is the parent of v, in O(n) time. If ϕ(v′) > n, then the next node is v′. If
ϕ(v′) ≤ n, then we have to reach the leftmost descendant of flip(v′, ϕ(v′)),
passing along the way only bubble-nodes. This takes n − ϕ(v′) time, so
altogether O(n) time for the node v.

3.3 Prefix normal words with given critical prefix

Recall Definition 2. It was conjectured in [7] that the average length of
the critical prefix taken over all prefix normal words is O(log n). Using the
Bubble-Flip algorithm, we can generate all prefix normal words with a
given critical prefix u, which could prove useful in proving or disproving

14

this conjecture. Moreover, if we succeed in counting prefix normal words
with critical prefix u = 1s0t, then this could lead to an enumeration of |Ln|,
another open problem on prefix normal words [8].

In the following lemma, we present a characterization of prefix normal
words of length n with the same critical prefix 1s0t in terms of our generation
algorithm. For s ≥ 1, t ≥ 0, let us denote by CritSet(s, t, n) the set of all
prefix normal words of length n and critical prefix 1s0t. Note that there is
only one prefix normal word whose critical prefix has s = 0, namely 0n.

Lemma 8. Fix s ≥ 1 and t ≥ 0, and let u = 1s0t. Then,

CritSet(s, t, n) =

{
{u} if s+ t = n,

{v} ∪ PN (flip(v, ϕ(v)), if s+ t < n,

where v = u10n−(s+t+1).

Proof. If s+ t = n, then clearly CritSet(s, t, n) = {u}. Otherwise,

CritSet(s, t, n) = {u10n−(s+t+1)} ∪ {u1γ ∈ Ln | |γ|1 > 0}
= {v} ∪ {u1γ ∈ Ln | γ1, . . . , γϕ(v)−(s+t+2) = 0, |γ|1 > 0}
= {v} ∪ PN (flip(v, ϕ(v))),

where the first equality holds by definition of critical prefix, the second by
definition of ϕ(v), and the third by definition of PN .

In Fig. 2, we give a sketch of the placement of some of the sets with
same critical prefix within T (110n−2), which, as the reader will recall, con-
tains all prefix normal words of length n except 0n and 10n−1. The nodes in
the tree are labelled with the corresponding generated word, and we have
highlighted the subtrees corresponding to CritSet(1, 1, n), CritSet(1, t, n),
CritSet(s, 1, n) and CritSet(s, t, n). Let us take a closer look at CritSet(s, t, n)
for s, t ≥ 2. The word 1s0t10n−(s+t+1) is reached starting from the root
110n−2, traversing s− 1 right branches (i.e. flip-branches), passing through
the word 1s010n−(s+1), and then traversing t left branches (i.e. bubble-
branches). The set CritSet(s, t, n) is then equal to the word 1s0t10n−(s+t+1)

together with its right subtree.
Apart from revealing the recursive structure of sets of prefix normal

words with the same critical prefix, the Bubble-Flip algorithm allows us
to collect experimental data on the size of CritSet(s, t, n) for different values
of s, t, and n. We give some of these numbers, for n = 32 and small values
of s, see Table 2. It was already known [7] that, for n ≤ 50, the average

15

⋯

⋯

+ ⋯

⋯

⋯

⋯

⋯

Figure 2: A sketch of the computation tree of Algorithm 2 for the set w =
110n−2, highlighting the subtrees corresponding to sets of prefix normal
words with the same critical prefix.

critical prefix length, taken over all w ∈ Ln, is approximately log n; with
the new algorithm we are able to generate more precise data. In Fig. 3, we
plot the relative number of prefix normal words with a given critical prefix
length, for lengths n = 16 and n = 32.

3.4 Practical improvements of the algorithm

The running time of the algorithm is dominated by the time spent at each
node for computing the value of ϕ, which, in general, takes time linear in
n, the length of the words. Therefore the overall generation of Ln takes
O(n|Ln|) time. One way of improving the running time of the overall gener-
ation would be to achieve faster amortized computation of ϕ by exploiting
the relationship between ϕ(w) and ϕ(w′) for words w and w′ generated at
close nodes of the recursion tree. Next we present two attempts in this di-
rection. We show two cases where the ϕ(w) can be computed in sublinear
time. This implies a faster generation algorithm, absolutely, however, since
the number of nodes falling in such cases is only o(|Ln|) we do not achieve
any significant asymptotic improvement on the overall generation.

The first practical improvement can be obtained from the following

16

t
1 2 3 4 5 6

s

1 284 663 14 295 2226 597 220 100
2 9 453 217 979 458 162 336 38 404 11 679 4317
3 25 025 726 4 907 605 1 103 214 293 913 91 632 32 459
4 27 244 624 7 961 078 2 338 632 732 602 248 717 91 441
5 20 423 789 7 521 441 2 677 376 964 483 360 542 144 460
6 12 789 981 5 378 726 2 178 190 874 907 358 717 151 429
7 7 270 699 3 301 575 1 454 694 633 310 276 593 121 726

t
7 8 9 10 11 12 13 14 15

s

1 53 30 16 11 9 7 5 3 1
2 1788 813 451 276 161 90 47 16 15
3 12 606 5815 2962 1475 723 346 121 106 92
4 37 967 16 994 7693 3507 1594 576 470 378 299
5 61 139 26 459 11 658 5169 1941 1471 1093 794 562
6 65 165 28 543 12 605 4944 3473 2380 1586 1024 638
7 54 118 24 188 9949 6476 4096 2510 1486 848 466

t
16 17 18 19 20 21 22 23 24 2526272829303132

s

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
2 14 13 12 11 10 9 8 7 6 5 4 3 2 1 1 0 0
3 79 67 56 46 37 29 22 16 11 7 4 2 1 1 0 0 0
4 232 176 130 93 64 42 26 15 8 4 2 1 1 0 0 0 0
5 386 256 163 99 57 31 16 8 4 2 1 1 0 0 0 0 0
6 382 219 120 63 32 16 8 4 2 1 1 0 0 0 0 0 0
7 247 127 64 32 16 8 4 2 1 1 0 0 0 0 0 0 0

Table 2: The size of CritSet(s, t, n) for n = 32, s = 1, . . . , 7 and t = 1, . . . , 32

17

Figure 3: The frequency of prefix normal words with given critical prefix
length, in percentage of the total number of prefix normal words of length
n, for n = 16 (solid) and n = 32 (dashed).

lemma. It shows that given a node w of the generation tree, for all nodes
w′ in the subtree rooted in w, which are reachable from w by traversing
only flip-branches, the value ϕ(w′) can be computed in time O(r(w)). Note
that on such a rightward-path words have a strictly increasing number of
1s. Therefore, the result of the lemma provides a strict improvement on the
original estimate that for each word w′ in such rightward-path the computa-
tion of ϕ(w′) requires Θ(r(w′)). This gives an improvement for nodes along
the right branches of the tree only; the improvement gets better as we move
further down a right path.

Lemma 9. Let w ∈ Ln and let

v(j) =

{
w j = 0

flip(v(j−1), ϕ(v(j−1))) j > 0

i.e., v(j) is the word produced by applying j times the flip operation starting
from w. For each j ≥ 0 and k ≥ 1, we have that v = flip(v(j), r(v(j))+k) is in
Ln if and only if for all t = 1, . . . , r(w) it holds that |vr(v(j))+k−t+1 · · · vr(v(j))+k|1
≤ |w1 · · ·wt|1, i.e., the suffix of v1 · · · vr(v(i))+k of length t satisfies the prefix
normal condition.

Proof. Assume otherwise and let j and k be the smallest integers such that
v = flip(v(j), r(v(j)) + k) is a counterexample—we first choose the smallest
j such that there is a k and then among all such k’s we choose the smallest,
given the choice of j.

18

Let n0 = r(v(j))+k. We write P (i) for Pv(i), and denote by S(i) the num-
ber of 1s in the i-length suffix of v1 · · · vn0 . Let r = r(w). By assumption,
S(t) ≤ P (t) for all t ≤ r, but there is an m > r such that S(m) > P (m).
Choose this m minimal. By definition, using the properties of the ϕ function,
we have that v(j) ∈ Ln. Moreover, by the minimality of the choice of j and
k, it holds that vn0−m+1 · · · vn0−1 satisfies the prefix normal condition, i.e.
|vn0−m+1 · · · vn0−1|1 ≤ P (m− 1). Therefore, it must hold that P (m− 1) =
P (m), hence vm = 0. Since m > r and vm = 0, there must be 0 ≤ j′ ≤ j
such that ϕ(v(j

′)) < n0 −m < ϕ(v(j
′+1)), i.e., the flip operation that pro-

duces v(j
′+1) has to be done on a position following n0−m. This means that

for some t′ < m, |vm−t′+1 · · · vm|1 = P (t′), otherwise we would have vm = 1.
Let m′ = m− t′. Thus we have P (m) = P (m′) + P (t′). On the other hand,
S(m) = S(m′)+ |vn0−m+1 · · · vn0−m+t′ |1 ≤ P (m′)+P (t′) = P (m), where the
inequality holds by the minimality of m and of n0, respectively. But this is
a contradiction to our assumption that S(m) > P (m).

Second, we show how to derive ϕ(v′) for a bubble-node v′ from ϕ(v),
where v is the parent of v′. This gives an improvement (from linear to
constant) for all nodes of the form bubble∗(v) of some node v, spreading out
the cost of computing ϕ(v) for v over all bubble-descendants of v. Note that
this covers the case of Observation 1, part 3, which tells us that we can skip
the computation of ϕ(v) if the parent of v does not have a flip-child.

Lemma 10. Let w be a prefix normal word w of length n with |w|1 ≥ 2 and
r = r(w) 6= n. Then

ϕ(bubble(w)) =


min{n+ 1, ϕ(w) + 2} if |w|1 = 2,

ϕ(w) if |w1 · · ·wϕ(w)−r|1 > 1,

min{n+ 1, ϕ(w) + 1} otherwise.

(1)

In particular, ϕ(bubble(w)) can be computed in constant time, given
ϕ(w).

Proof. An immediate observation is that ϕ(w) ≤ ϕ(bubble(w)). Therefore,
if ϕ(w) = n+ 1 the claim holds trivially.

Case 1. |w|1 = 2. Then we can write w as w = 10r−210n−r and bubble(w) =
10r−110n−r−1. It is then easy to see that we have ϕ(w) = ϕ(10r−210n−r) =
min{n+1, r+t+1} and ϕ(bubble(w)) = ϕ(10r−110n−r−1) = min{n+1, (r+
1) + (t+ 1) + 1} = min{n+ 1, ϕ(w) + 2}, as desired. Since w ∈ Ln, we have
w1 = 1.

19

Case 2. |w1 · · ·wϕ(w)−r|1 > 1. First of all, let us observe that we have
|w|1 > 2. For otherwise, if |w|1 = 2, the analysis of the previous case
implies that ϕ(w)− r = r− 1 hence |w1 · · ·wϕ(w)−r|1 = 1, contradicting the
standing hypothesis. From |w1 · · ·wϕ(w)−r|1 > 1, it follows that ϕ(w) > r+1.
Moreover, we have ϕ(w) < 2r, since w1 · · ·wr−110r−21 ∈ Ln (by Fact 1 (iv)).

Now let w′ = flip(w,ϕ(w)) and w′′ = flip(bubble(w), ϕ(w)), i.e.,

w′ = w1 · · ·wr−110ϕ(w)−r−110n−ϕ(w),

w′′ = w1 · · ·wr−1010ϕ(w)−r−210n−ϕ(w).

By the definition of ϕ we have w′ ∈ Ln. Moreover, it holds that
bubble(w) = w1 · · ·wr−1010n−r−1 ∈ Ln. For proving the claim, it is enough
to show that w′′ ∈ Ln.

Let Sw′′(i) = |w′′ϕ(w)−i+1 · · ·w
′′
ϕ(w)|1 and Sw′(i) = |w′ϕ(w)−i+1 · · ·w

′
ϕ(w)|1.

It is not hard to see that for each i 6∈ {r, ϕ(w)− r}, it holds that Sw′′(i) =
Sw′(i) ≤ Pw′(i) = Pw′′(i), where the inequality follows from the prefix nor-
mality of w′. Moreover, for i = ϕ(w)−r, we have Sw′′(ϕ(w)−r) = 2 and since
ϕ(w)−r < r, we also have Pw′′(ϕ(w)−r) = Pw′(ϕ(w)−r) = Pw(ϕ(w)−r) > 1
(by the standing hypothesis). Finally, for i = r, using again ϕ(w) − r < r,
it follows that Sw′′(r) = Sw′(r) ≤ Pw′(r) = Pw′′(r). In conclusion, we have
Sw′(i) ≤ Pw′(i) for each i = 1, . . . , ϕ(w), hence, by Fact 1 (iv), the word
w1 · · ·wr−1010ϕ(w)−r−21 ∈ L and by Fact 1 (iii), w′′ ∈ Ln, which concludes
the proof of this case.

Case 3. |w1 · · ·wϕ(w)−r|1 = 1 and |w|1 > 2. Proceeding as in the previous
case, we have that Sw′(ϕ(w) − r) = 2 > Pw(ϕ(w) − r) = Pw′(ϕ(w) − r),
which implies that w′ 6∈ Ln, hence ϕ(bubble(w)) ≥ ϕ(w) + 1. Let

w′′′ = w1 · · ·wr−1010ϕ(w)−r−110n−ϕ(w)−1 = flip(bubble(w), ϕ(w) + 1).

It is enough to show that w′′′ ∈ Ln. Let us redefine Sw′′′(i) = |w′′′ϕ(w)−i+2 · · ·w
′′′
ϕ(w)+1|1

and Sw′(i) = |w′ϕ(w)−i+1 · · ·w
′
ϕ(w)|1. It is not hard to see that for each

i ∈ {1, . . . , ϕ(w)}, it holds that Sw′′′(i) ≤ Sw′(i). Moreover, for each
i ∈ {1, . . . , ϕ(w) − 1} \ {r}, we have Pw′(i) = Pw′′′(i). Thus, for each
i ∈ {1, . . . , ϕ(w)−1}\{r}, it holds that Sw′′′(i) ≤ Sw′(i) ≤ Pw′(i) = Pw′′′(i),
where the second inequality follows from the prefix normality of w′.

For i = ϕ(w), using w′′′1 = 1 = w′′′ϕ(w)+1 we have Sw′′′(ϕ(w)) = |w|1 =

Pw′′′(ϕ(w)).
For i = r, we have ϕ(w) + 2 − r ≤ r + 1. If ϕ(w) + 2 − r = r + 1,

i.e., ϕ(w) = 2r − 1 then Sw′′′(r) = 2 = |w′r · · ·w′ϕ(w)|1 ≤ Pw′(r). Since

Pw′(r) = |w|1 ≥ 3, we have Pw′′′(r) = Pw′(r)− 1 ≥ 2 = Sw′′′(r).

20

If ϕ(w) + 2− r ≤ r, then

Pw′′′(r)− Sw′′′(r) = |w′′′1 · · ·w′′′r |1 − |w′′′ϕ(w)+2−r . . . w
′′′
ϕ(w)+1|1

= |w′′′1 · · ·w′′′ϕ(w)+1−r|1 − |w
′′′
r+1 · · ·w′′′ϕ(w)+1|1

= Pw′′′(ϕ(w) + 1− r)− Sw′′′(ϕ(w) + 1− r) ≥ 0,

where the middle equality follows by removing from the two words the com-
mon intersection, and the last inequality comes from the previous subcase,
as ϕ(w) + 1− r ∈ {1, . . . , ϕ(w)− 1} \ {r}.

In conclusion, we have Sw′′′(i) ≤ Pw′′′(i) for each i = 1, . . . , ϕ(w) + 1,
hence, by Fact 1 (iv) the word w1 · · ·wr−1010ϕ(w)−r−11 ∈ L and by Fact 1
(iii) w′′′ ∈ Ln, which concludes the proof of this case. The proof of (1) is
complete.

We now argue that ϕ(bubble(w)) can be computed in constant time.
Our result says that knowing r(w) and the position of the second leftmost 1
in w, then ϕ(bubble(w)) can be computed applying (1), i.e., in O(1) time.
In fact, the condition |w1 · · ·wϕ(w)−r|1 > 1 is equivalent to checking that the
second leftmost 1 of w is in a position not larger than ϕ(w) − r(w). It is
not hard to see that r(w) and the position of the second leftmost 1 of w can
be computed and maintained for each node on the generation tree without
increasing the computation by more than a constant amount of time per
node.

We provide the following examples to illustrate the two improvements.

Example 5. For the first improvement, consider the word w = 11001010n−7

with n some large number. Let w(1), w(2), . . . , w(i) be the words generated on
the right path rooted at w, i.e., w(1) is the flip-child of w, w(2) is the flip-child
of w(1) and so on.

It is not hard to see that w(1) = 1100101010n−9, w(2) = 110010101010n−11,
and in general w(i) = 1100101(01)i0n−7−2i for any i = 1, 2, . . . , n−72 .

What Lemma 9 guarantees is that, for i = 1, . . . , n−72 , w(i) = flip(w(i−1), ϕ(w(i−1)))

can be computed in time Θ(r(w)) rather than Θ(r(w(i−1))). Therefore, in
total, to generate them all, we need Θ(r(w) · n). Without applying Lemma
9, i.e., computing w(i) = flip(w(i−1), ϕ(w(i−1))) using Algorithm 1, in time
r(w(i−1)) = 7 + 2(i− 1), we would need in total Θ(n2) time.

Example 6. For the second improvement, consider the word w = 100100000000,
for which it holds that |w|1 = 2. We have that ϕ(w) = 7, and indeed, the
word bubble(w) = 100010000000 has ϕ(bubble(w)) = 9. As an example for

21

a word w with |w1 · · ·wϕ(w)−r|1 > 1, consider the word w = 110001010000.
We have ϕ(w) = 11 and also for the word bubble(w) = 110001001000, we
have ϕ(bubble(w)) = 11. Finally, consider the word w = 101001001000.
We have ϕ(w) = 11, and since |10|1 ≤ 1, it holds that bubble(w) =
101001000100 and ϕ(bubble(w)) = 12.

4 On finite and infinite prefix normal words

In this section, we study infinite prefix normal words. We focus on infinite
extensions of finite prefix normal words which satisfy the prefix normal con-
dition at every finite point and which are in a certain sense densest among
all possible infinite extensions of the starting word. We show that words in
this class are ultimately periodic, and we are able to determine both the size
and the density of the period and to upper bound the starting point of the
periodic behaviour.

4.1 Definitions

An infinite binary word is a function v : N → {0, 1} (where N denotes the
set of natural numbers not including 0). The set of all infinite binary words
is denoted {0, 1}ω. As with finite words, we refer to the i’th character of v
by vi, to the factor spanning positions i through j by vi · · · vj , and to the
prefix of length i by prefi(v). As before, P (i) = Pv(i) denotes the number
of 1s in the prefix of length i. Given a finite word u, uω denotes the infinite
word uuu · · · . An infinite word v is called ultimately periodic if there exist
two integers p, i0 ≥ 1 such that vi+p = vi for all i ≥ i0, or equivalently, if it
can be written as v = zuω for some finite words z, u. The word v is called
periodic if it is ultimately periodic with i0 = 1, or equivalently, if there exists
a finite word u such that v = uω. If v = zuω, then we refer to u as a period
of v.

Definition 9 (Minimum density, minimum density prefix). Let w ∈ {0, 1}∗∪
{0, 1}ω. Denote by D(i) = Dw(i) = Pw(i)/i, the density of the prefix of
length i. Define the minimum density of w as δ(w) = inf{D(i) | 1 ≤ i}. If
this infimum is attained somewhere, then we also define

ι(w) = min{j | ∀i : D(j) ≤ D(i)}, and κ(w) = Pw(ι(w)).

We refer to prefι(w)(w) as the minimum-density prefix, the shortest prefix
with density δ(w). Note that ι(w) is always defined for finite words, while
for infinite words, a prefix which attains the infimum may or may not exist.

22

Example 7. For w = 110100101001 and u = 110100101010 we have δ(w) =
5/11, ι(w) = 11, κ(w) = 5, and δ(u) = 1/2, ι(u) = 6, κ(u) = 3. For the
infinite words v = (10)ω and v′ = 1(10)ω, we have δ(v) = δ(v′) = 1/2, and
ι(v) = 2, κ(v) = 1, while ι(v′) is undefined, since no prefix attains density
1/2.

For a prefix normal word u, every factor of the infinite word u0ω respects
the prefix normal condition. This leads to the definition of infinite prefix
normal words.

Definition 10 (Infinite prefix normal words). An infinite binary word v is
called prefix normal if, for every factor u of v, |u|1 ≤ Pv(|u|).

Clearly, as for finite words, it holds that an infinite word is prefix normal
if and only if all its prefixes are prefix normal. Therefore, the existence
of infinite prefix normal words can also be derived from König’s Lemma
(see [19]), which states that the existence of an infinite prefix-closed set of
finite words implies the existence of an infinite word which has all its prefixes
in the set.

We now define an operation on finite prefix normal words which is similar
to the flip operation from Sec. 3: it takes a prefix normal word w ending in
a 1 and extends it by a run of 0s followed by a new 1, in such a way that this
1 is placed in the first possible position without violating prefix normality.

Definition 11 (Operation flipext). Let w ∈ L∩ {0, 1}∗1. Define flipext(w)
as the finite word w0k1, where k = min{j | w0j1 ∈ L}. We further define
the infinite word v = flipextω(w) = limi→∞ flipext(i)(w).

For a prefix normal word w, the word w0|w|1 is always prefix normal, so
the operation flipext is well-defined. Let w ∈ L and r = r(w) < |w|. Then
flipext(prefr(w)) is a prefix of flip(w,ϕ(w)) if and only if ϕ(w) ≤ |w|, in
particular, flip(w,ϕ(w)) = flipext(prefr(w)) · 0|w|−ϕ(w).

Definition 12 (Iota-factorization). Let w be a finite binary word, or an
infinite binary word such that ι = ι(w) exists. The iota-factorization of w
is the factorization of w into ι-length factors, i.e. the representation of w in
the form

w = u1u2 · · ·urv,
where r = b|w|/ιc, |ui| = ι for i = 1, . . . , r, and |v| < ι, for w finite, and

w = u1u2 · · · , where |ui| = ι for all i, for w infinite.

23

4.2 Flip extensions and ultimate periodicity

Lemma 11. Let w be a finite or infinite prefix normal word, such that
ι = ι(w) exists. Let w = u1u2 · · · be the iota-factorization of w. Then for
all i, |ui|1 = κ(w).

Proof. Since w is prefix normal, |ui| ≤ κ = κ(w). On the other hand,
assume there is an i0 for which |ui0 |1 < κ. Then the prefix u1u2 · · ·ui0 has
fewer than i0κ many 1s, and thus density less than i0κ/i0ι = κ/ι = D(ι), in
contradiction to the definition of ι.

The next lemma states that the iota-factorization of a word w constitutes
a non-increasing sequence w.r.t. lexicographic order, as long as w fulfils a
weaker condition than prefix normality, namely that factors of length ι(w)
obey the prefix normal condition. That this does not imply prefix normality
can be seen on the example (1110010)ω, which is not prefix normal.

Lemma 12. Let w be a finite or infinite binary word, such that ι = ι(w)
exists. Let w = u1u2 · · · be the iota-factorization of w. If for every i,
|ui|1 = κ = κ(w), and every factor u of length ι fulfils the prefix normal
condition, then for all i, ui ≥lex ui+1.

Proof. Let us write ui = ui,1 · · ·ui,ι. Let a(i, j) = |ui,1 · · ·ui,j |1 denote the
number of 1s in the j-length prefix of ui, and b(i, j) = |ui,j+1 · · ·ui,ι|1 the
number of 1s in the suffix of length ι − j. By Lemma 11, we have that
a(i, j) + b(i, j) = κ. On the other hand, b(i, j) + a(i + 1, j) ≤ κ, since all
ι-length factors satisfy the prefix normal condition. Thus, for all i: a(i, j) ≥
a(i+ 1, j).

If ui 6= ui+1, let h = min{j | j = 1, . . . , ι : a(i, j) > a(i + 1, j)}. Thus,
for every j < h, we have ui,j = ui+1,j and ui,h = 1, ui+1,h = 0, implying
ui ≥lex ui+1.

Corollary 1. Let w be a finite or infinite prefix normal word, such that
ι = ι(w) exists. Then for all i, ui ≥lex ui+1, where ui is the i’th factor in
the iota-factorization of w.

We now prove that the flipext operation leaves the minimum density
invariant. This means that among all infinite prefix normal extensions of a
word w ∈ L, the word v = flipextω(w) has the highest minimum density.

Lemma 13. Let w ∈ L such that wn = 1, and let v ∈ flipext∗(w) ∪
{flipextω(w)}. Then δ(v) = δ(w), and as a consequence, ι(v) = ι(w) and
κ(v) = κ(w).

24

Proof. Assume otherwise. Then there exists a minimal index i such that
Dv(i) < δ(w) =: δ. Clearly, i > |w|, by definition of δ. Since i is minimal,
it follows that Dv(i− 1) ≥ δ, which implies vi = 0. Since i > |w|, there was
an iteration of flipext, say the j’th iteration, which produced the extension
containing position i, i.e. |flipext(j−1)(w)| < i < | flipext(j)(w)|. Since vi =
0, this implies that there is an m such that the factor vi−m+1 · · · vi−11 would
have violated the prefix normal condition, i.e. |vi−m+1 · · · vi−11|1 > Pv(m).
This implies |vi−m+1 · · · vi−10|1 = Pv(m) (because v is prefix normal). Now
consider the prefix prefi(v) = v1 · · · vi, and let us write i = i′ + m. Since
i was chosen minimal, we have that Dv(i

′), Dv(m) ≥ δ. Since Dv(i
′) =

Pv(i′)
i′ , Dv(m) = Pv(m)

m , this implies

Dv(i) =
Pv(i)

i
=
Pv(i

′) + Pv(m)

i′ +m
≥ δ,

in contradiction to the assumption.

Theorem 3. Let w ∈ L and v = flipextω(w). Then v is ultimately periodic.
In particular, v can be written as v = uxω, where |x| = ι(w) and |x|1 = κ(w).

Proof. By Lemma 13, ι(v) = ι(w), and by Lemma 11, in the iota-factorization
of w, all factors ui have κ(w) 1s. Moreover, by Corollary 1, the factors ui
constitute a lexicographically non-increasing sequence. Since all ui have the
same length ι(w), and there are finitely many binary words of length ι(w),
the claim follows.

We can further show that the period x from the previous theorem is
prefix normal, as long as it starts in a position which is congruent 1 modulo
ι, in other words, if it is one of the factors in the iota-factorization of v.

Lemma 14. Let w ∈ L and v = flipextω(w) = uxω such that x is the
k′th factor in the iota-factorization of v, for some k ≥ 1. Then x is prefix
normal.

Proof. First note that if v = xω, then x is prefix normal by the prefix
normality of v. Else, assume for a contradiction that x is not prefix normal.
Let α be a factor of x of minimal length s.t. |α|1 > |β|1, where β is the
prefix of x of length |α|. Then β and α are disjoint due to the minimality
assumption. In other words, there is a (possibly empty) word γ s.t. βγα is
a prefix of x.

Since x is a ι-factor of v, therefore the prefix of v before x has length tι
for some t ≥ 1. Let x = βγαν, and write x′ for the rotation νβγα of x. Now

25

consider the word s = γα(x′)t, which has length |γ|+|α|+tι. By Theorem 3,
|x|1 = κ, and since x′ is a rotation of x, also |x′|1 = κ. Therefore, for the
factor s of v it holds that |s|1 = |γ|1 + |α|1 + tκ > |γ|1 + |β|1 + tκ = Pv(|s|),
in contradiction to v ∈ L.

Next we show that for a word v ∈ flipext∗(w), in order to check the
prefix normality of an extension of v, it is enough to verify that the suffixes
up to length |w| satisfy the prefix normal condition.

Lemma 15. Let w be prefix normal and v′ ∈ flipext∗(w). Then for all k ≥ 0
and v = v′0k1, v ∈ L if and only if for all 1 ≤ j ≤ |w|, the suffixes of v of
length j satisfy the prefix normal condition.

Proof. Directly from Lemma 9.

By Theorem 3, we know that v = flipextω(w) has the form v = uxω for
some x, whose length and density we can infer from w. The next theorem
gives an upper bound on the waiting time for x, both in terms of the length
of the non-periodic prefix u, and in the number of times a factor can occur
before we can be sure that we have essentially found the periodic factor x
(up to rotation).

Theorem 4. Let w ∈ L and v = flipextω(w). Let us write v = uxω, with

|x| = ι(w) and x not a suffix of u. Let ι = ι(w), κ = κ(w), and m =
⌈
|w|
ι

⌉
.

Then

1. |u| ≤ (
(
ι
κ

)
− 1)mι, and

2. if for some y ∈ {0, 1}ι, it holds that ym+1 occurs with starting position
j > |w|, then y is a rotation of x.

Proof. 1.: Assuming 2., then every ι-length factor y which is not the final
period can occur at most m times consecutively. By Cor. 1, consecutive non-
equal factors in the iota-factorization of v are lexicographically decreasing,
so no factor y can reoccur again once it has been replaced by another factor.
By Theorem 3, the density of each factor is κ. There are at most

(
ι
κ

)
such

y which are lexicographically smaller than prefι(w), and each of these has
length ι.

2.: By Lemma 15, in order to produce the next character of v, the
operation flipext needs to access only the last |w| many characters of the
current word. After m+1 repetitions of u, it holds that the |w|-length factor
ending at position i is equal to the |w|-length factor at position i− ι, which
proves the claim.

26

The following lemma motivates our interest in infinite words of the form
flipextω(w). It says that flipextω(w) is the prefix normal word with the
maximum number of 1’s in each prefix among all prefix normal words having
w as prefix.

Lemma 16. Let w ∈ L, v = flipextω(w), and let z ∈ L such that pref|w|(z) =
w. Then for every i = 1, 2, . . . , we have Pv(i) ≥ Pz(i).

Proof. By contradiction, let i > |w| be the smallest integer such that Pv(i) <
Pz(i). Then, by the minimality of i, we have Pv(i − 1) ≥ Pz(i − 1), hence
vi = 0 and zi = 1. The definition of the operation flipext together with vi = 0
implies the existence of some j > 0 such that Pv(j + 1) = |vi−j · · · vi−1|1 by
Fact 1 (iv), for otherwise we would have vi = 1. By the minimality of i it
must also hold that Pz(j + 1) ≤ Pv(j + 1). Let us write v′ = vi−j · · · vi−1
and z′ = zi−j · · · zi−1. Now assume that |z′|1 ≥ |v′|1. Since |v′|1 = Pv(j +
1) ≥ Pz(j + 1) ≥ |z′|1, this implies Pv(j + 1) = Pz(j + 1). But then
Pz(j+ 1) = Pv(j+ 1) = |v′|1 < |z′|1 + 1 = |z′zi|1, in contradiction to z being
prefix normal. So we have |z′|1 < |v′|1. Once more by the minimality of i,
it also holds that Pv(i− j − 1) ≥ Pz(i− j − 1), leading to

Pv(i− 1) = Pv(i− j − 1) + |v′|1 > Pz(i− j − 1) + |z′|1 = Pz(i− 1),

which implies Pv(i) ≥ Pz(i), contradicting the initial assumption, and
completing the proof.

5 Conclusion

We presented a new recursive generation algorithm for prefix normal words
of fixed length. The algorithm can also be used to generate all prefix normal
words sharing the same critical prefix, thus serving as an aid for counting
these words. The algorithm can generate the words either in lexicographic,
or in a (combinatorial) Gray-code order.

We introduced infinite prefix normal words, and gave some results on
the infinite extension of finite prefix normal words generated by a modified
version of our algorithm. We found that the minimum prefix density, as
well as its length, are important parameters of infinite prefix normal words.
This fact allows us to make predictions about the structure of this infinite
word, based on the starting prefix. A general investigation of infinite prefix
normal words will be the subject of future research.

27

Acknowledgements

We wish to thank two anonymous referees who read our paper very carefully
and contributed to improving its presentation.

References

[1] A. Amir, A. Apostolico, T. Hirst, G. M. Landau, N. Lewenstein, and
L. Rozenberg. Algorithms for jumbled indexing, jumbled border and
jumbled square on run-length encoded strings. Theoret. Comput. Sci.,
656:146–159, 2016.

[2] A. Amir, A. Butman, and E. Porat. On the relationship between his-
togram indexing and block-mass indexing. Philosophical Transactions
of The Royal Society A: Mathematical Physical and Engineering Sci-
ences, 372(2016), 2014.

[3] A. Amir, T. M. Chan, M. Lewenstein, and N. Lewenstein. On hardness
of jumbled indexing. In 41st International Colloquium on Automata,
Languages, and Programming (ICALP 2014), volume 8572 of LNCS,
pages 114–125, 2014.

[4] A. Blondin Massé, J. de Carufel, A. Goupil, M. Lapointe, É. Nadeau,
and É. Vandomme. Leaf realization problem, caterpillar graphs and
prefix normal words. Theoret. Comput. Sci., 732:1–13, 2018.

[5] P. Burcsi, F. Cicalese, G. Fici, and Zs. Lipták. Algorithms for Jumbled
Pattern Matching in Strings. International Journal of Foundations of
Computer Science, 23:357–374, 2012.

[6] P. Burcsi, G. Fici, Zs. Lipták, F. Ruskey, and J. Sawada. Normal, abby
normal, prefix normal. In Proc. of the 7th International Conference on
Fun with Algorithms (FUN 2014), volume 8496 of LNCS, pages 74–88,
2014.

[7] P. Burcsi, G. Fici, Zs. Lipták, F. Ruskey, and J. Sawada. On combi-
natorial generation of prefix normal words. In Proc. of the 25th Ann.
Symp. on Comb. Pattern Matching (CPM 2014), volume 8486 of LNCS,
pages 60–69, 2014.

[8] P. Burcsi, G. Fici, Zs. Lipták, F. Ruskey, and J. Sawada. On prefix
normal words and prefix normal forms. Theor. Comput. Sci., 659:1–13,
2017.

28

[9] T. M. Chan and M. Lewenstein. Clustered integer 3SUM via additive
combinatorics. In Proc. of the 47th Ann. ACM on Symp. on Theory of
Computing (STOC 2015), pages 31–40, 2015.

[10] F. Cicalese, E. S. Laber, O. Weimann, and R. Yuster. Approximating
the maximum consecutive subsums of a sequence. Theoret. Comput.
Sci., 525:130–137, 2014.

[11] F. Cicalese, Zs. Lipták, and M. Rossi. Bubble-Flip—A New Generation
Algorithm for Prefix Normal Words. In Proc. of the 12th International
Conference Language and Automata Theory and Applications (LATA
2018), volume 10792 of LNCS, pages 207–219, 2018.

[12] L. F. I. Cunha, S. Dantas, T. Gagie, R. Wittler, L. A. B. Kowada,
and J. Stoye. Faster jumbled indexing for binary RLE strings. In 28th
Annual Symposium on Combinatorial Pattern Matching (CPM 2017)
in: LIPIcs 78, pages 19:1–19:9, 2017.

[13] G. Fici and Zs. Lipták. On prefix normal words. In Proc. of the 15th In-
tern. Conf. on Developments in Language Theory (DLT 2011), volume
6795 of LNCS, pages 228–238. Springer, 2011.

[14] T. Gagie, D. Hermelin, G. M. Landau, and O. Weimann. Binary jum-
bled pattern matching on trees and tree-like structures. Algorithmica,
73(3):571–588, 2015.

[15] E. Giaquinta and S. Grabowski. New algorithms for binary jumbled
pattern matching. Inf. Process. Lett., 113(14–16):538–542, 2013.

[16] D. Knuth. The Art of Computer Programming (TAOCP). http://

www-cs-faculty.stanford.edu/~knuth/taocp.html. Accessed 15-
12-2017.

[17] D. E. Knuth. The Art of Computer Programming, Volume 4, Fasci-
cle 3: Generating All Combinations and Partitions. Addison-Wesley
Professional, 2005.

[18] T. Kociumaka, J. Radoszewski, and W. Rytter. Efficient indexes for
jumbled pattern matching with constant-sized alphabet. Algorithmica,
77(4):1194–1215, 2017.

[19] M. Lothaire. Algebraic Combinatorics on Words. Cambridge Univ.
Press, 2002.

29

http://

[20] T. M. Moosa and M. S. Rahman. Sub-quadratic time and linear space
data structures for permutation matching in binary strings. J. Discr.
Alg., 10:5–9, 2012.

[21] F. Ruskey. Combinatorial Generation. 2003.

[22] F. Ruskey, J. Sawada, and A. Williams. Binary bubble languages and
cool-lex order. J. Comb. Theory, Ser. A, 119(1):155–169, 2012.

[23] F. Ruskey, J. Sawada, and A. Williams. De Bruijn sequences for fixed-
weight binary strings. SIAM J. Discrete Math., 26(2):605–617, 2012.

[24] J. Sawada and A. Williams. Efficient oracles for generating binary
bubble languages. Electr. J. Comb., 19(1):P42, 2012.

[25] J. Sawada, A. Williams, and D. Wong. Inside the Binary Reflected
Gray Code: Flip-Swap languages in 2-Gray code order. Unpublished
manuscript, 2017.

[26] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. Avail-
able electronically at http://oeis.org.

30

http://oeis.org

	1 Introduction
	2 Basics
	3 The Bubble-Flip algorithm
	3.1 The algorithm
	3.2 Listing Ln as a combinatorial Gray code
	3.3 Prefix normal words with given critical prefix
	3.4 Practical improvements of the algorithm

	4 On finite and infinite prefix normal words
	4.1 Definitions
	4.2 Flip extensions and ultimate periodicity

	5 Conclusion

