
Paid Exchanges are Worth the Price
Alejandro López-Ortiz1, Marc P. Renault∗†2, and Adi Rosén3

1 University of Waterloo, Canada
alopez-o@uwaterloo.ca

2 Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris,
France
marc.renault@lip6.fr

3 CNRS and Université Paris Diderot, France
adiro@liafa.univ-paris-diderot.fr

Abstract
We consider the list update problem as defined in the seminal work on competitive analysis by
Sleator and Tarjan [12]. In this problem, a sequence of requests, consisting of items to access in
a linked list, is given. After an item is accessed it can be moved to any position forward in the
list at no cost (free exchange), and, at any time, any two adjacent items can be swapped at a
cost of 1 (paid exchange). The cost to access an item is its current position in the list. The goal
is to dynamically rearrange the list so as to minimize the total cost (accrued from accesses and
exchanges) over the request sequence.

We show a lower bound of 12/11 on the worst-case ratio between the performance of an
(offline) optimal algorithm that can only perform free exchanges and that of an (offline) optimal
algorithm that can perform both paid and free exchanges. This answers an outstanding question
that has been open since 1996 [10].

1998 ACM Subject Classification F.2.2 Analysis of Algorithms and Problem Complexity (se-
quencing and scheduling)

Keywords and phrases list update problem, online computation, online algorithms, competitive
analysis, lower bounds

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.636

1 Introduction

The list update problem consists of a linked list of ` items and a finite request sequence. Each
request is to access an item of the list. Each item access begins at the head of the list and
follows the list item by item until the requested item is reached. The cost to access the i-th
item in the list is thus i. Then, the requested item can be moved forward in the list at no
cost and such a move is called a free exchange. At any time, two adjacent items may be
swapped at a cost of 1 and such swaps are called paid exchanges. The goal is to dynamically
rearrange the list over the request sequence so as to minimize the total cost of accesses and
paid exchanges over the request sequence.

The list update problem (also called the list access problem) was one of the two problems
studied in the seminal work on competitive analysis of Sleator and Tarjan [12] (the other
being the paging problem). It is a fundamental problem in the area of algorithms that has

∗ Research supported in part by ANR project NeTOC.
† Work performed while the author was at LIAFA, Université Paris Diderot – Paris 7, Sorbonne Paris-Cité,
France.

© Alejandro López-Ortiz, Marc P. Renault, and Adi Rosén;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 636–648

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.636
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. López-Ortiz, M. P. Renault, and A. Rosén 637

been intensely studied, particularly, due to its importance for compression algorithms [5].
For a recent survey on the list update problem, see [8].

In [12], Sleator and Tarjan present a 2-competitive online deterministic algorithm called
move to front (mtf) that Irani showed later to be an optimal online deterministic
algorithm [7]. As its name implies, mtf moves every requested item to the front, using a
free exchange. Also, in [7], Irani presented the first online randomized algorithm for the list
update problem; it has a competitive ratio of 15/8. Reingold and Westbrook presented the
first barely random online algorithm called bit that has a competitive ratio of 7/4 [11]. The
best known randomized online algorithm, comb, of Albers et al. [2] has a competitive ratio
of 1.6 and only uses free exchanges. The comb algorithm randomly uses the barely random
online algorithm bit with a probability of 4/5 and the non-parameterized, deterministic
online algorithm timestamp [1] with a probability of 1/5. The currently best randomized
online lower bound is 1.50115 [4]. It should noted that all the best known online algorithms
use only free exchanges [8].

The offline problem is known to NP-hard [3]. It is not known if this holds if only free
exchanges are permitted. In [10], an algorithm that computes the optimal schedule that
uses only paid exchanges is shown to have a running time of O(2`(`− 1)!n), where ` is the
length of the list and n is the number of requests.1 Based on the work of [10], an alternative
algorithm that computes the optimal schedule, with a running time of O(2``!f(`) + n+ `n),
where f(`) ≤ `!3`!, is presented in [6].

Free vs. Paid Exchanges

In [12], Sleator and Tarjan claim that an algorithm that uses paid exchanges and free exchanges
can be converted to an algorithm that uses only free exchanges without increasing the cost.
This claim turns out not to be true as Reingold and Westbrook gave the counterexample of
the request sequence 〈3, 2, 2, 3〉 for a list of length 3 with a starting configuration of 1, 2, 3
[10]. An optimal algorithm serves this sequence at a cost of 8 by moving item 1 to the back
of list with paid exchanges at a cost of 2, and then serving the sequence at a cost of 6. From
an enumeration of all possible schedules that use only free moves, it can be seen that an
algorithm using only free exchanges serves this sequence for a cost of at least 9, implying
that, in the worst case, there is at least an additive constant in the difference between the
performance of an optimal algorithm that uses only free exchanges and an unrestricted
optimal algorithm. Further, Reingold and Westbrook show that the opposite is true: they
show that an algorithm can replace the free exchanges by paid exchanges without increasing
the cost [10]. They also show that the permitted paid exchanges can be further restricted,
without increasing the cost, to allow only "subset transfers" (see Definition 2 below).

The competitive ratio of 1.6 for the comb algorithm [1] (as described above) implies
an upper bound of 1.6 on the worst case ratio between the cost of an optimal algorithm
restricted to free exchanges and the cost of an unrestricted optimal algorithm, over all finite
request sequences.

Our Contribution

We compare the cost of an optimal algorithm that can only perform free exchanges, denoted
by opt_free, and an optimal algorithm that can use both paid and free exchanges, denoted

1 As we indicate later, one can assume without loss of generality that the optimal schedule uses only paid
exchanges.

STACS 2015

638 Paid Exchanges are Worth the Price

by opt. We show that there is a multiplicative gap of at least 12/11 on the worst-case ratio,
over all possible finite request sequences, between the performance of opt_free and opt.
Until now, it was not known if there is such a gap in an asymptotic sense. We answer this
question in the affirmative, thus solving a question that has been open for almost 20 years
since Reingold and Westbrook [10] gave the counterexample to the claim of Sleator and
Tarjan.

As all online algorithms with currently best known competitive ratios use only free
exchanges [8], our result suggests that, in order to achieve better upper bounds, it may be
useful to consider online algorithms that make use of paid exchanges.

2 Preliminaries

The list update problem consists of a linked list of ` items and a finite request sequence
of accesses. Each request is to access an item of the list. Each item access begins at the
head of the list and there is a cost of 1 to the algorithm for each item accessed until the
requested item is found. That is, the cost to access the i-th item in the list is i. Then, the
requested item can be moved forward to any position in the list at no cost and such a move
is called a free exchange. At any time, two adjacent items may be swapped at a cost of 1
and these swaps are called paid exchanges. The goal is to dynamically rearrange the list over
the request sequence so as to minimize the total cost of accesses and paid exchanges over the
request sequence.

Note that, in the offline version of the list update problem (as defined above), the input
is still a request sequence that must be served in order. The difference between the offline
and online versions is that the offline algorithm has knowledge of the entire request sequence
whereas, in the online version, a request is not revealed until all prior requests in the sequence
have been served.

For an algorithm alg and a request sequence σ, we denote the cost to alg to serve σ by
alg(σ).

We will use opt to denote an unrestricted optimal (offline) algorithm, and we will use
opt_free to denote an optimal (offline) algorithm restricted to using only free exchanges.
For the request sequences, we will denote multiple requests in a row to the same item by
using exponents, e.g. xk means that x is requested k times in a row.

In [9, 10], Reingold and Westbrook consider the offline version of the list update problem
and show several properties of an offline optimum that uses both paid and free exchanges
such as the following lemma.

I Lemma 1. [9][Cor. 3.2] If an item x is requested 3 or more times consecutively, then an
optimal offline algorithm must move it to the front before the second access.

In [9, 10], Reingold and Westbrook also define the notion of a subset transfer and show
that there exists an optimal algorithm that only performs such moves.

I Definition 2 (Subset Transfer). Let x be a requested item. A subset transfer is a move,
performed just before x is accessed, of a subset of the items ahead of x in the list to the
position immediately after x such that the relative order of the items in the subset is
maintained.

I Theorem 3. [10][Thm. 2] There is an optimal offline algorithm that does only subset
transfers.

A. López-Ortiz, M. P. Renault, and A. Rosén 639

Using Lemma 1 and Theorem 3, we get the following theorem that states that, for any
sequence consisting of at least 3 consecutive requests to every item, mtf is opt_free.

I Theorem 4. Let σ =
〈
xk1

1 , . . . , x
kj

j

〉
, where, for all i, ki ≥ 3 and, for i < j, xi 6= xi+1.

For any initial list configuration, there exists an opt_free that moves each xi, 1 ≤ i ≤ j,
to the front of the list immediately after the first access to xi of xki

i in σ.

Proof. By Lemma 1, an (unrestricted) optimal algorithm must move each xi, 1 ≤ i ≤ j, of σ
to the front before the second request to that item. Furthermore, by Theorem 3, there exists
such optimal algorithm that only performs subset transfers; denote this optimal algorithm by
opt. Observe that if opt does not move xi to the front immediately before the first request
to xi, but does move xi to the front immediately before the second request to xi, then it
cannot be optimal, since smaller cost could be achieved by moving xi to the front immediately
before the first request to xi. We conclude that opt is an optimal, subset-transfer-only,
algorithm, that moves each xi, 1 ≤ i ≤ j, of σ to the front immediately before the first
request to xi. Observe now that since opt is a subset-transfer-only algorithm, then opt
does not perform any other rearrangements in the list while processing σ.

The action by opt of moving xi to the front by subset transfer immediately before the
first request to xi, and then accessing xi ki times, can be accomplished for the same cost
by an algorithm restricted to free exchanges. This is done by first accessing xi (on the first
request to xi), then moving xi to the front by a free exchange, and then accessing xi for the
remaining ki − 1 times. It follows that there exists an algorithm restricted to free moves,
that on σ moves every xi, 1 ≤ i ≤ j, to the front immediately after the first request to xi,
and its cost is equal to the cost of the optimal unrestricted algorithm for σ. This algorithm
must therefore be opt_free for σ. J

Informally, the next theorem shows that, on a series of sequential requests, it is not to
the advantage of alg_free to delay moving the requested item forward. That is, for an
arbitrary algorithm that only performs free exchanges, denoted by alg_free, and, for a
sequence of consecutive requests to an item x, such that β is the position closest to the head
of the list to which x is moved by the end of these consecutive requests, if alg_free would
move x to β immediately after the first request, it would not increase its cost. This holds
for both offline and online algorithms, but online algorithms generally are not able take
advantage of this fact given that they do not in general know the subsequent requests.

I Theorem 5. Let σ = 〈σ1, ν, σ2〉, where ν is at least two consecutive requests to the same
item x. Let β be the position of x immediately after ν for an arbitrary algorithm alg_free.
There exists an algorithm alg_free′ that moves x to β immediately after the first request
of ν such that alg_free′(σ) ≤ alg_free(σ), and alg_free′ serves σ1 and σ2 exactly as
alg_free.

Proof. The algorithm alg_free′ is defined to serve σ1 in the same manner as alg_free,
to then move x to position β immediately after the first request of ν, and to serve σ2 in the
same manner as alg_free. Note that the list configurations of alg_free′ and alg_free
match prior to and after serving ν. Therefore, the cost to both algorithms is the same for σ1
and σ2.

Since alg_free uses only free moves, i.e. moves of items towards the head of the list,
it follows that the cost of alg_free′ for all requests in ν is no more than the cost of
alg_free for those requests. Therefore, alg_free′(σ) ≤ alg_free(σ). J

STACS 2015

640 Paid Exchanges are Worth the Price

3 Lower Bound for OPT_FREE

In this section, we give a lower bound for the free move optimal offline algorithm as compared
to the unrestricted optimal offline algorithm. That is, we are comparing the power of paid
exchanges and free exchanges versus only free exchanges. We show that, for the case of a list
of length at least 3, the ratio between the performance of opt_free and that of opt is at
least 12/11 > 1.09 in the worst case. More formally, we show that there exists an infinite
family of finite request sequences σr, r > 0, such that the cost of an offline algorithm that can
use paid exchanges, paid, increases with r, and such that opt_free(σr)

opt(σr) ≥ opt_free(σr)
paid(σr) ≥ 12/11.

This implies that, for any ε > 0 and any additive constant η that does not depend on the
request sequence, there does not exist a free exchange algorithm, alg_free, such that
alg_free(σ) ≤

(12
11 − ε

)
opt(σ) + η for all σ.

To prove the claim, we use a list of length 3 and we begin by defining a request sequence
R(L). For a given initial list configuration L, we define the request sequence R(L) and a
deterministic offline algorithm paid that uses paid exchanges. By relabelling the list of paid
after having served R(L) to match L, we can define an arbitrarily long request sequence σr
consisting of repeated requests to R(L) based on a relabelling of the list state of paid after
each R(L). Our result applies to a list of length at least 3: If the list has a length greater
than 3, we can ignore all but 3 items. Hence, without loss of generality, we only consider
lists of length 3.

Line of Proof

As indicated above, our proof uses arbitrarily long request sequences, σr, r ≥ 1 that are built
by a repeated concatenation of r short request sequence R(L), defined using a relabelling of
the list state of paid after each R(L). We first prove two claims related to a single short
request sequence R(L). Namely, that paid serves R(L) starting with list configuration L at
cost of 11; and that any opt_free that serves R(L) starting with list configuration L has
cost at least 12. This however only repeats the claim of Reingold and Westbrook as to the
existence of a request sequence with an additive difference between the optimal performance
with free exchanges only and the optimal performance with both free and paid exchanges. We
then concatenate these short request sequences to create a long request sequence. Observe
that a multiplicative gap does not follow from such a concatenation. Indeed, an optimal
algorithm that uses only free exchanges could potentially pay more than 12 for a given request
sequence R(L), reach a different list configuration, and then be able to serve the next R(L)
with cost less than 12, thus paying in total no more than 23 for the two sequences (or have
such a phenomenon over a sequence of more than two sequences R(L)). To overcome this
difficulty we prove that, for the long sequences that we consider, σr, any opt_free must
reach the same configuration as paid does at the end of each R(L). We can then conclude
that for σr the cost of paid is 11r and the cost of any opt_free is at least 12r.

Offline Paid Exchange Algorithm

For a list of length 3 with a starting list configuration L = y, x1, x2, we define the request
sequence R(L) =

〈
x2, x

3
1, x

3
2
〉
.

Let paid be an unrestricted offline algorithm for R(L) defined as follows. Before the first
request of R(L), using two paid exchanges, x1 and x2 are moved to the front of the list.
Then, immediately before the second request to any xi, 1 ≤ i ≤ 2, paid moves xi to the
front.

A. López-Ortiz, M. P. Renault, and A. Rosén 641

Immediately from the definition of paid, we have the following facts.

I Fact 6. Given a starting list configuration of L = y, x1, x2, after serving R(L), the list
configuration of paid is x2, x1, y.

I Fact 7. Given a starting list configuration of L = y, x1, x2, the cost of paid to serve R(L)
is 11.

Proof. The cost to bring x1, x2 to the front by paid exchanges is 2 and the list configuration
is now x1, x2, y. The cost of the first access to x2 is 2, the cost to the next three requests
of x1 is 3. The second access to x2 costs 2 and then x2 is brought to the front and the
remaining two accesses cost 2. Overall, the cost to paid is 11. J

Arbitrarily Long Request Sequences

For an initial list configuration of L = y, x1, x2, from Fact 6, the configuration of the list
of paid after serving R(L) is x2, x1, y. Therefore, after serving R(L), with a relabelling of
the list of paid to that of L, R(L) can subsequently be requested again, and this can be
repeated to create arbitrarily long request sequences. That is, if L′ = x2, x1, y (as is the list
configuration paid after serving R(L) for L = y, x1, x2), then R(L′) =

〈
y, x3

1, y
3〉.

Let σr = 〈R1(L1), R2(L2), . . . , Rr(Lr)〉 such that Rj(Lj) is based on Lj , where Lj is the
configuration of the list of paid after serving R1, . . . , Rj−1 for 1 < j ≤ r and L1 = L is the
initial configuration of the list. We will use the term round to signify a subsequence R(L) in
σr.

Optimal (Offline) Free Exchange Algorithm

Let mtf be the algorithm that moves every requested item to the front. Immediately from
the definition of mtf, we have the following fact.

I Fact 8. Given a starting list configuration of L = y, x1, x2, after serving R(L), the list
configuration of mtf is x2, x1, y.

Note that, when starting from the same initial list configuration and serving R(L), the
list configuration of mtf is exactly that of paid after serving R(L).

For an initial configuration L = y, x1, x2 and R(L) =
〈
x2, x

3
1, x

3
2
〉
, the following lemma

shows that mtf is an optimal free move algorithm for R(L).

I Lemma 9. For an initial list configuration L = y, x1, x2, mtf(R(L)) = 12 and
opt_free(R(L)) = 12.

Proof. Irrespective of the specific free exchange algorithm, the access cost for the first request
is 3 and there are 3 possible list configurations after the access. They are y, x1, x2; y, x2, x1;
and x2, y, x1 (this last configuration corresponds to that of mtf). By Theorem 4, applied to
the suffix of R(L), after serving the first request of R(L),

〈
x3

1, x
3
2
〉
,every opt_free moves

x1 and x2 to the front of the list on the next request to each item. Table 1 summarizes the
costs of the 3 possible ways to serve R(L), as a function of the list configuration after the
first request. The actions of mtf on R(L) correspond to the x2, y, x1 column which is a
minimum. J

We note that our proof will go through also if instead of using mtf we would use the
algorithm that results in the list configuration as defined in the first configuration in the
table.

STACS 2015

642 Paid Exchanges are Worth the Price

Table 1 For an initial list configuration of L = y, x1, x2, this table summarizes the potential
optimal free exchange algorithms for R(L) =

〈
x2, x

3
1, x

3
2
〉
. From Theorem 4, we know that after

the first request every opt_free moves all the items to the front of the list for the remaining
requests. Therefore, the only variable is the configuration of the list immediately after the first
request. Columns 3− 5 represent the three possible list configurations. Column 1 is the index in
R(L) of the request listed in column 2. From the table, the first and third list configurations are
optimal, and mtf corresponds to the third list configuration.

List Configuration
Request y, x1, x2 y, x2, x1 x2, y, x1

1 x2 3 3 3
2 x1 2 3 3
3 x2

1 2 2 2
6 x2 3 3 2
7 x2

2 2 2 2

Total: 12 13 12

The Last Round of σr

In the following lemma, we show that any opt_free moves any item x to the front of the
list immediately after the first access of three consecutive requests to x in Rr(Lr) of σr, i.e.
in the last round of σr.

I Lemma 10. For σr = 〈R1(L1), . . . , Rr(Lr)〉, every opt_free moves any item x to the
front of the list immediately after the first access of three consecutive requests to x in Rr(Lr),
where L1 = y, x1, x2 and Lj, 1 < j ≤ r, is the list configuration of paid after serving
〈R1(L1), . . . , Rj−1(Lj−1)〉.

Proof. Let Lr = y, x1, x2 and let A be an arbitrary opt_free algorithm. By way of
contradiction, assume that A does not move some xi ∈ Rr(Lr) to the front immediately after
the first request to x3

i ∈ Rr(Lr).
Let σ′ = 〈R1(L1), . . . , Rr−1(Lr−1), x2〉 and σ′′ =

〈
x3

1, x
3
2
〉
(note that σr = 〈σ′, σ′′〉).

Define Â to be a free move algorithm that serves σ′ exactly as A and moves all xj ∈ σ′′ to
the front immediately after the first request to each item in σ′′.

Since A and Â serve σ′ in the same manner, Â(σ′) = A(σ′) and the list configurations
of A and Â are the same immediately after σ′. From Theorem 4, Â is opt_free over the
remainder of the sequence. But, given the list configuration of both A and Â after serving
σ′, starting with that list configuration, Â(σ′′) = opt_free(σ′′) < A(σ′′). Therefore,
Â(σr) = A(σ′) + opt_free(σ′′) < A(σr) which contradicts the fact that A is an optimal
free exchange algorithm. J

The Rest of σr

In the next lemma, we show that the property proved in Lemma 10 for the last round of σr
can be proved for all of σr. Namely, we show that for σr there exists an opt_free that
moves any item x to the front after the first access of any three consecutive requests to the
same item. We note that Theorem 4 holds only for the specific type of sequence defined in
the statement of that theorem, and that the property proved in the next lemma does not
hold in general for an arbitrary sequence. For example, it can be verified that the sequence
〈5, 5, 5, 4, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1〉 (starting with list configuration 1, 2, 3, 4, 5) can be served

A. López-Ortiz, M. P. Renault, and A. Rosén 643

by opt_free at cost of 44, while if alg_free moves item 5 to the front immediately after
the first request to item 5, then the cost of alg_free is at least 45.

I Lemma 11. For σr = 〈R1(L1), . . . , Rr(Lr)〉, there exists an opt_free that moves any
item x to the front of the list immediately after the first access of three consecutive requests
to x, where L1 = y, x1, x2 and Lj, 1 < j ≤ r, is the list configuration of paid after serving
〈R1(L1), . . . , Rj−1(Lj−1)〉.

Proof. In this proof, for σr, we consider an arbitrary opt_free algorithm A and show that,
if the property does not hold for A, then there exists another opt_free algorithm A′ that
does move every item x to the front of the list immediately after the first access of three
consecutive requests to x, and such that A′(σr) ≤ A(σr). This will be done by defining a
sequence of algorithms Aq, starting with A0 = A, and by reverse induction on i and j over
all the x3

i ∈ Rj(Lj) ∈ σr. That is, we consider the rounds from Rr(Lr) to R1(L1) and the
consecutive three requests in each round from the last consecutive three requests to the
first. For each x3, if Aq does not move x to the front immediately after the first request, we
define Aq+1, based on Aq, such that the desired property holds for x3 and all subsequent
consecutive three requests, and we show that the cost does not increase.

In the proof, we use the following notations. Let x3 be three consecutive requests in
Rj(Lj) for which Aq does not have the desired property. We will denote all the requests in
σr before x3 by σ1. The requests after x3 will be denoted by σ2. Note that σ2 could be an
empty sequence. For the analysis, we will often (Case 2 and Case 3 below) further partition
σ2 into disjoint subsequences 〈σ3, . . . , σp〉 such that σr =

〈
σ1, x

3, σ3, . . . , σp
〉
. At a risk of a

slight abuse of notation, we will denote the cost of a subsequence of an arbitrary σr to an
algorithm, alg, that serves all of σr, as alg(ri, . . . , rj) = alg(r1, . . . , rj)−alg(r1, . . . , ri−1),
where the prefix and the suffix are understood implicitly. That is, alg(ri, . . . , rj) is the
cost accrued by alg over the requests ri, . . . , rj of σr given that alg has served the prefix
r1, . . . , ri−1 and will serve the remaining requests. Therefore, we have that alg(σr) =
alg(σ1) + alg(x3) + alg(σ3) + · · · + alg(σp). Further note that by Theorem 5, we can
assume without loss of generality that Aq does not move x further ahead in the list on the
second or third requests of x3.

Definition of Âq
We first define an algorithm Âq that we use extensively in the proof. For σ =

〈
σ1, x

3
i , σ2

〉
and

algorithm Aq as defined previously, let Âq be an algorithm that serves σ1 in the same manner
as Aq and then moves xi from position α > 1 to the front of the list at the first request of
xi. Immediately after serving xi, the configuration of the list of Aq is some B, xi, C and
the configuration of the list of Âq is xi, B,C, where B is the set of items ahead of xi in the
configuration of Aq at this point and C is the set of items behind xi in the configuration of
Aq. As long as the list configurations of Aq and Âq differ, for each xj ∈ σ2, if Aq moves xj
to the front, Âq moves xj to front. Otherwise, Âq does not move xj forward at all. Once the
list configurations of Aq and Âq match, Âq will serve the remaining requests exactly as Aq.
Note that it is possible that the list configuration of Âq may never match that of Aq (see
Case 1 below).

From the definition of Âq, and the fact that the list has length of 3, we have the following
useful properties.

Âq(σ1) = Aq(σ1) , (1)
|B| ≥ 1 , (2)

|C| = 2− |B| , (3)
β = |B|+ 1 , (4)

STACS 2015

644 Paid Exchanges are Worth the Price

where β is the position to which xi is moved by Aq. Further, given that Aq moves xi from
α to β, 1 < β ≤ α, and Âq moves xi from α to the front of the list, we have the following
properties.

Aq(x3
i) = α+ 2β , (5)

Âq(x3
i) = α+ 2 (6)

= Aq(x3
i)− 2β + 2 , (7)

where (7) follows by replacing α in (6) by the value of α in (5).

We now turn to the inductive proof. For a list of length 3, there are two alternating
list configurations for paid (i.e. values for Lj) before each Rj(Lj): y, x1, x2 and x2, x1, y.
Therefore, x1 is requested in every Rj(Lj), and x2 and y are requested in alternating Rj(Lj)’s.

For xi ∈ Rj(Lj), which is the last point in σr for which Aq does not move xi to the front
immediately after the first request of three consecutive requests, we can distinguish between
three cases: (1) xi is never requested again in σr; (2) xi is requested again in Rj+1(Lj+1),
i.e. in the next round; (3) xi is requested again in Rj+2(Lj+2), i.e. in the round after the
next round. Note that this partitioning is exhaustive.

At each inductive step such that Aq does not have the desired property, we define an
algorithm Aq+1 based on Aq, for q ≥ 0, and show that Aq+1(σr) ≤ Aq(σr). This is done by
case analysis over the three cases defined above.

Case 1: xi ∈ Rj(Lj) is never requested again in σr.

Recall that σr =
〈
σ1, x

3
i , σ2

〉
. When j = r, this case follows immediately from Lemma 10 by

defining Aq+1 to be the algorithm defined in the proof of Lemma 10.
When j < r, we define Aq+1 to be Âq as defined above. For a list of length 3, this

only occurs when j = r − 1 and i = 2, where Lr−1 = y, x1, x2 and, hence, Rr−1(Lr−1) =〈
x2, x

3
1, x

3
2
〉
. For Lr−1 = y, x1, x2, Rr(Lr) =

〈
y, x3

1, y
3〉 and x2 is not requested.

Denote σ1 =
〈
R1(L1), . . . , Rr−2(Lr−2), x2, x

3
1
〉
,

σ2 =
〈
y, x3

1, y
3〉.

Cost for σ2 =
〈
y, x3

1, y
3〉. By the induction hypothesis we know that Aq moves x1 and y to

the front of the list on the first request to x1 and on the second request to y. It follows that
the configurations of the lists of Âq and Aq will match before the the third request to y is
processed.

If y is in B, then the total cost to access y for Âq over σ2 is at most 2 more than that of
Aq over σ2. This follows from the fact that there are two requests to y before Aq must move
y to the front, according to the induction hypothesis and, if y is in B, then Âq has x1 in
front of y, whereas Aq does not.

If y is in C, the total cost to access y for Âq over σ2 is at most 1 more than that of Aq
over σ2. This can occur if, on the first access to y in σ2, Aq were to move y between x1 and
x2 in its list. Then, on the second access, y is one item closer to the front in the list of Aq as
compared to the list of Âq.

By the induction hypothesis, Aq must move x1 to the front on the first request to x1 in
σ2. Therefore, if x1 is in B, the first access costs 1 more to Âq as compared to Aq and, if x1
is in C, the cost for the first access is the same for both Âq and Aq.

A. López-Ortiz, M. P. Renault, and A. Rosén 645

This gives that for σ2,

Âq(σ2) ≤ Aq(σ2) + 2|B|+ |C| − 1
= Aq(σ2) + |B|+ 1 , (8)

where the last line follows by applying (3).
Using (1), we get

Âq(σr) = Aq(σ1) + Âq(x3
i , σ2)

≤ Aq(σr)− 2β + |B|+ 3 , using (7) and (8),
= Aq(σr)− |B|+ 1 , using (4),
≤ Aq(σr) , by (2).

Case 2: xi ∈ Rj(Lj) and xi ∈ Rj+1(Lj+1), i.e. xi is requested in the next round.

Recall that σr =
〈
σ1, x

3
i , σ2

〉
. For Lj = y, x1, x2, Rj(Lj) =

〈
x2, x

3
1, x

3
2
〉
and Rj+1(Lj+1) =〈

y, x3
1, y

3〉. For this case, we define Aq+1 to be Âq as defined above.
Define σ1 = 〈R1(L1), . . . , Rj−1(Lj−1), x2〉,

σ3 =
〈
x3

2, y, x
3
1
〉
,

σ4 =
〈
y3, Rj+2(Lj+2), . . . , Rr(Lr)

〉
.

Note that σ2 = 〈σ3, σ4〉 =
〈
x3

2, Rj+1(Lj+1), . . . , Rr(Lr)
〉
.

Cost for σ3 =
〈
x3

2, y, x
3
1
〉
. After serving x3

1, the configuration of the list of Âq is x1, B,C

and the list of Aq is B, x1, C. By the induction hypothesis, Aq will move x2 to the front on
the first request to x2 in σ3. This request and the request to y will each cost 1 more to Âq
than to Aq if they are in B. If they are in C, there is no additional cost to Âq as compared
to Aq. Finally, on the first request to x1 in σ3, x1 is no further from the front in Âq than
it is in Aq. Then, by the induction hypothesis, Aq moves x1 to the front for the remaining
requests to x1 in σ3 as does Âq. Therefore,

Âq(σ3) ≤ Aq(σ3) + |B| . (9)

List Configuration after σ3. By the induction hypothesis, Aq will move x2 and x1 to the
front of the list immediately after the first access to each one in σ3. Consider the state of
the lists of Aq and Âq immediately after serving σ3, depending on whether or not Aq moves
y to the front. If Aq does not move y to the front of the list, the configuration of its list will
be x1, x2, y, and, by the definition of Âq, its list configuration will also be x1, x2, y. If Aq
does move y to the front of the list, the configuration of its list will be x1, y, x2, and, by the
definition of Âq, its list configuration will also be x1, y, x2.

Cost for σ4 =
〈
y3, Rj+2, . . . , Rr

〉
. After serving σ3, the configurations of the lists of Âq

and of Aq are the same. Therefore,

Âq(σ4) = Aq(σ4) . (10)

Summing (1), (7), (9), and (10), we get that the cost for Âq over σr is

Âq(σr) ≤ Aq(σr)− 2β + 2 + |B|
= Aq(σr)− |B| , using (4),
< Aq(σr) , by (2).

STACS 2015

646 Paid Exchanges are Worth the Price

Case 3: xi ∈ Rj(Lj) and xi ∈ Rj+2(Lj+2), i.e. xi is requested in the round after
next.

Recall that σr =
〈
σ1, x

3
i , σ2

〉
. We define Aq+1 to be Âq. For Lj = y, x1, x2, Rj(Lj) =〈

x2, x
3
1, x

3
2
〉
, Rj+1(Lj+1) =

〈
y, x3

1, y
3〉, and Rj+2(Lj+2) =

〈
x2, x

3
1, x

3
2
〉
.

Define σ1 =
〈
R1(L1), . . . , Rj−1(Lj−1), x2, x

3
1
〉
,

σ3 =
〈
y, x3

1, y
3〉, and

σ4 = 〈Rj+2(Lj+2), . . . , Rr(Lr)〉.
Note that σ2 = 〈σ3, σ4〉.

Cost for σ3 =
〈
y, x3

1, y
3〉. After serving σ1, x

3
2, the configuration of the list of Âq is x2, B,C

and the configuration of the list of Aq is B, x2, C. By the induction hypothesis, Aq will move
y to the front of the list on the second request to y in σ3 and x1 to the front of the list on
the first request to x1 in σ3. This is exactly the same scenario as σ2 for Case 1. Similarly to
(8) for Case 1 we have,

Âq(σ3) ≤ Aq(σ3) + |B|+ 1 . (11)

List Configuration after σ3. Since both y and x1 are moved to the front of the list in σ3
by both Aq and Âq, the configuration of the lists of both Aq and Âq is y, x1, x2 after σ3.

Cost for σ4 = 〈Rj+2(Lj+2), . . . , Rr(Lr)〉. After serving σ3, the configurations of the lists
of Âq and of Aq are the same. Therefore,

Âq(σ4) = Aq(σ4) . (12)

Summing (1), (7), (11), and (12), we get that the cost for Âq over σr is

Âq(σr) ≤ Aq(σr)− 2β + |B|+ 3
= Aq(σr)− |B|+ 1 , using (4),
≤ Aq(σr) , by (2).

To conclude, for each of the three cases possible at each inductive step, we have shown
that there exists an algorithm with the desired property. Overall, we have shown that
A′(σr) = Aq(σr) ≤ · · · ≤ A0(σr) = A(σr) which concludes the proof. J

For σr as defined above, Lemma 11 shows that there exists an opt_free that moves x
to the front when x is requested at least three times in a row. Let opt_free∗ be such an
opt_free. It follows that the list configuration of opt_free∗ after each Rj(Lj) ∈ σr is the
same as that of paid. For an initial list configuration of L = y, x1, x2, Lemma 9 shows that
the algorithm mtf is an optimal free move algorithm for R(L). Since the list configuration of
mtf after serving R1(L1), . . . , Rj(Lj), 1 ≤ j ≤ r, is the same as opt_free∗, combined with
the previous fact, this implies that mtf is an optimal free exchange algorithm for σr. Hence,
mtf serves all Rj+1(Lj+1) at a cost no more than that of opt_free∗. This is formally
stated in the following lemma.

I Lemma 12. For σr = 〈R1(L1), . . . , Rr(Lr)〉, mtf(σr) = opt_free(σr), where L1 =
y, x1, x2 and Lj, 1 < j ≤ r, is the list configuration of paid after serving
〈R1(L1), . . . , Rj−1(Lj−1)〉.

A. López-Ortiz, M. P. Renault, and A. Rosén 647

Proof. By Lemma 11, there exists an opt_free that will have the same configuration
as paid and mtf immediately before Rj(Lj), 1 ≤ j ≤ r. Let opt_free∗ be such an
opt_free. Since the list configuration of mtf and opt_free∗ match prior to serving
every Rj(Lj), Lemma 9 implies that mtf(σr) = opt_free(σr). J

Using the fact that, for any r > 0, mtf is an optimal free exchange algorithm for σr,
we can, in the following lemma and theorem, give a lower bound on the worst-case ratio
between opt_free(σ) and opt(σ) by analysing the ratio between mtf(σr) and paid(σr) for
σr = 〈R1(L1), . . . , Rr(Lr)〉, where L1 = y, x1, x2 and Lj , 1 < j ≤ r, is the list configuration
of paid after serving 〈R1(L1), . . . , Rj−1(Lj−1)〉.

I Lemma 13. For r > 0, opt_free(σr)
opt(σr) ≥ opt_free(σr)

paid(σr) = 12
11 > 1.09.

Proof. Let σ = 〈R1(L1), . . . , Rr(Lr)〉, where L1 = y, x1, x2 and Lj , 1 < j ≤ r, is the list
configuration of paid after serving 〈R1(L1), . . . , Rj−1(Lj−1)〉.

From Lemma 12 and Lemma 9, mtf is an optimal free move algorithm for σr with
a cost of 12r and, from Fact 7, the cost of paid for σr is 11r. Therefore, opt_free(σr)

opt(σr) ≥
opt_free(σr)

paid(σr) = 12
11 . J

I Theorem 14. Let alg_free be a free move algorithm such that alg_free(σ) ≤ α ·
opt(σ) + η. For any η not dependent on σ, α ≥ 12/11.

Proof. Towards a contradiction, assume α = 12
11−ε for some ε > 0. Hence, alg_free(σr) ≤(12

11 − ε
)

opt(σr) + η. Solving for ε and σr such that alg_free(σr) > η,

ε ≤ 12
11 −

alg_free(σr)− η
opt(σr)

≤ 12
11 −

alg_free(σr)− η
paid(σr)

≤ η

paid(σr)
(13)

by the fact that paid(σr) ≥ opt(σr) and Lemma 13. Since η does not depend on r, and
alg_free(σr) and paid(σr) both increase with r, we have a contradiction by choosing a
sufficiently large r such that alg_free(σr) > η and (13) no longer holds. J

4 Conclusions

We showed that the difference in the performance between an offline optimal algorithm
restricted to free exchanges and an unrestricted offline optimal algorithm is at least a
multiplicative factor of 12/11, answering a question that has been open since 1996 [10].

Based on computer simulations, we believe that it should be possible to generalize the
construction presented here and, based on this generalization, improve the lower bound to
3−
√

3.
Further, it would be interesting to consider upper bounds, in particular, an (offline)

algorithm restricted to free exchanges that improves upon the 1.6 upper bound that follows
from the randomized online algorithm comb [2].

We note that the currently best known online algorithms use only free exchanges (cf.
[8]). Our results bring up the possibility that improving the currently best randomized
competitive ratio for the list update problem might necessitate introducing paid exchanges
into the algorithm. The same might apply also to offline approximation algorithms.

Acknowledgements The authors would like to thank Amos Fiat, Rob van Stee, and Uri
Zwick for useful discussions. We also wish to thank the anonymous reviewer who pointed
out a minor change allowing an improvement of the lower bound from 13/12 to 12/11.

STACS 2015

648 Paid Exchanges are Worth the Price

References
1 Susanne Albers. Improved randomized on-line algorithms for the list update problem. In

Kenneth L. Clarkson, editor, SODA, pages 412–419. ACM/SIAM, 1995.
2 Susanne Albers, Bernhard von Stengel, and Ralph Werchner. A combined bit and

timestamp algorithm for the list update problem. Inf. Process. Lett., 56(3):135–139, 1995.
3 Christoph Ambühl. Offline list update is np-hard. In Mike Paterson, editor, ESA, volume

1879 of Lecture Notes in Computer Science, pages 42–51. Springer, 2000.
4 Christoph Ambühl. On the List Update Problem. PhD thesis, ETH Zürich, 2002.
5 Jon Louis Bentley, Daniel Dominic Sleator, Robert Endre Tarjan, and Victor K. Wei. A

locally adaptive data compression scheme. Commun. ACM, 29(4):320–330, 1986.
6 Torben Hagerup. Online and offline access to short lists. In Ludek Kucera and Antonín

Kucera, editors, Mathematical Foundations of Computer Science 2007, 32nd International
Symposium, MFCS 2007, Ceský Krumlov, Czech Republic, August 26-31, 2007, Proceedings,
volume 4708 of Lecture Notes in Computer Science, pages 691–702. Springer, 2007.

7 Sandy Irani. Two results on the list update problem. Inf. Process. Lett., 38(6):301–306,
1991.

8 Shahin Kamali and Alejandro López-Ortiz. A survey of algorithms and models for list
update. In Andrej Brodnik, Alejandro López-Ortiz, Venkatesh Raman, and Alfredo Viola,
editors, Space-Efficient Data Structures, Streams, and Algorithms - Papers in Honor of J.
Ian Munro on the Occasion of His 66th Birthday, volume 8066 of Lecture Notes in Computer
Science, pages 251–266. Springer, 2013.

9 Nick Reingold and Jeffery Westbrook. Off-line algorithms for the list up-
date problem. Technical Report YALEU/DCS/TR-805, Yale University, 1990.
http://cpsc.yale.edu/sites/default/files/files/tr805.pdf.

10 Nick Reingold and Jeffery Westbrook. Off-line algorithms for the list update problem. Inf.
Process. Lett., 60(2):75–80, 1996.

11 Nick Reingold, Jeffery Westbrook, and Daniel Dominic Sleator. Randomized competitive
algorithms for the list update problem. Algorithmica, 11(1):15–32, 1994.

12 Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency of list update and
paging rules. Commun. ACM, 28(2):202–208, 1985.

	Introduction
	Preliminaries
	Lower Bound for OPT_FREE
	Conclusions

