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Abstract

This paper concerns the structure and the properties of a special class
of combinatorial systems called minimal linear grammars. The role of
unambiguous minimal linear grammars is investigated in the framework
of the information transmission and coding problem and some related
issues.
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1 Introduction

The aim of this paper is to investigate the structure and the properties of a spe-
cial class of combinatorial systems called minimal linear grammars. A minimal
linear grammar is a context-free linear grammar endowed with a unique non-
terminal symbol. In the sequel, the class of these objects will be simply denoted
MLG. These grammars appear for the first time in the foundational paper by
Chomsky and Schiitzenberger [13]|, where some problems on the ambiguity of
these grammars are formulated and discussed (¢f. Sec. 4.3, therein). Despite
their rather simple structure, the languages generated by such grammars fulfill
non trivial properties and are quite different from regular languages in several
respects. In particular, as a solution of one of the above mentioned questions
raised in [13], Greibach shows that the ambiguity problem is undecidable for



MLG [20]. As another related result, Gross shows the existence of languages
that are ambiguous in the class of MLG but are not in the more general class
of linear context-free grammars [21].

Minimal linear grammars seem to play an interesting role in the problem of
the information transmission and coding.

We recall that a (unique decipherable) code is a set of words that is useful
in the information transmission process. This process is described by the well-
known Shannon scheme ([29, 1]): it consists of a source S with source alphabet Y
that sends information to a receiver R. This sending process is realized through
a channel endowed with an alphabet A that depends upon its physical structure
and therefore is distinct from Y. The latter implies the need of a construction
of a coding ¢ : Y* — A* of the messages yielded from S. In particular, if the
coding is sequential, then ¢ is formally represented by an injective morphism
between the free monoids spanned by Y and A, respectively. The set of words
C = p(Y) that guarantees that ¢ is injective, is called code. The property of
being code is called unique decipherability and it is equivalent to the fact that
every word of the subsemigroup Ct generated by C is factorized in a unique
way as product of words of C.

It is worth recalling that a well-known theorem of Shannon defines for the
mazimal codes a relevant role in the theory: once a probability distribution is
given on the letters of the source alphabet of S, every optimal code for S, that is,
a code whose average cost is the least possible, must be maximal, provided that
the cost of transmission of each letter is uniform. Moreover, as a consequence
of a theorem of Kraft and Mc Millan, one can construct an optimal prefix code,
thus avoiding the synchronization delay.

A fundamental theorem of Schiitzenberger and Marcus [28] (see also [4]) then
provides an important characterization of maximal codes in term of complete
sets and Bernoulli distributions.

In some contexts, however, the specificity of the transmission process makes
possible a relaxation of the property of unique decipherability in order to con-
struct more efficient codings. This is the case, for instance, of multi-decipherable
codes introduced by Lempel in [24]. These codes are such that, given a finite
message, every possible parsing of the message into codewords must yield the
same multiset of codewords. Some important conjectures on multi-decipherable
codes raised in [24] has been solved by Restivo in [27]. An algebraic and more
general treatment of multi-decipherable codes has been provided in [7], by using
the notion of variety of codes introduced by Guzman in [23]. Another general-
ization of the notion of code is based upon that of coding partition introduced
in [6] (see also [2]).

In this paper, we investigate MLG in the information transmission problem.
Precisely we prove that unambiguous MLG — denoted UMLG, for short — can
be used to realize the coding and show that UMLG generalize codes in a very
precise way (cf. Sec. 3).

We then study a possible extension to UMLG of the theorem by Schiitzen-
berger and Marcus (¢f. Sec. 4). For this purpose, two notions are introduced:
the maximal grammar which corresponds to the natural analog of maximal code



and the very dense set which is a reinforcement of the notion of dense set. In
the theoretical setting mentioned above, it is proved that all the logical relations
among such concepts and that of Bernoulli set (w.r.t. positive distributions) are
very well preserved with one exception: the language generated by a maximal
UMLG is always dense but, in general, not very dense.

The attention is then focused on another meaningful relation between max-
imal UMLG and the measure of the corresponding languages w.r.t. a positive
Bernoulli distribution. It is proved that a sufficient condition for the maximality
of an UMLG G is that, denoting by L the language generated by G, w(L) = 1 for
some positive Bernoulli distribution 7 on the terminal alphabet of G. For the
reversal implication, a partial answer is obtained w.r.t. the subclass of propor-
tional UMLG. A UMLG is called proportional if there exists a rational number
g such that for all production X — uXw, one has |v| = q|u|. Precisely, for these
grammars, it is shown the equivalence among the property of maximality, that
of maximality as a proportional UMLG, and the measure w(L) = 1, where 7 is
the uniform Bernoulli distribution on its terminal alphabet.

In order to describe the last contribution of the paper, it is useful to recall a
relevant aspect of codes: the construction of optimal codes and its relation with
the commutative equivalence. We recall that two words are said to be commu-
tatively equivalent if one is obtained from the other by rearranging the letters
of the word. Moreover, two languages L1 and Lo are said to be commutatively
equivalent if there exists a bijection f: Ly — Lo such that every word u € L is
commutatively equivalent to f(u). A conjecture formulated by Schiitzenberger
in the 50’s asked for the existence, for an arbitrary finite code, of a commuta-
tively equivalent prefix one [25, 4]. An affirmative solution to the conjecture
would have provided a deep implication in the theory. Precisely, it would have
guaranteed, given an arbitrary source in which the cost of transmission of letters
was not uniform, the existence of an optimal code, avoiding the synchronization
delay. However, in [30], Shor has exhibited a counterexample to the conjecture,
that remains still open under the further hypothesis that the code is maximal.
The problem has been object of an intense research that yielded remarkable
results, notably in connection with Bernoulli sets, and with the related issue of
the finite completion of codes [17, 18, 19, 26].

In this framework, UMLG are investigated and compared with codes (cf.
Sec. 5). The first result shows that, as long as the cost of transmission of letters
of the source is uniform, then every UMLG can be replaced by a prefix code
with the same average cost per letter, showing that coding by UMLG cannot
accelerate the transmission rate obtained by optimal prefix codes.

The situation becomes less clear when the cost of transmission is not uniform.
In order to clarify this aspect, a natural adaptation of the notion of commutative
equivalence is introduced for MLG. It is then proved a result linking such notion
with the search for optimality of UMLG. Such result is akin to a theorem of
Carter and Gill [12] concerning the commutative equivalence of codes to prefix
codes. As a consequence, a characterization of UMLG that are commutatively
equivalent to regular ones is given in terms of assignment of symbol costs and



probability distribution on source symbols.

An open question is whether there exists an UMLG which is not commuta-
tively equivalent to any regular one. A negative answer to this question would
ensure that, also in the case of non-constant symbol cost, coding by UMLG
cannot accelerate the transmission rate obtained by optimal prefix codes.

It is worth noticing that UMLG seem to play an interesting role also in the
study of the commutative equivalence of context-free and regular languages.
Conditions ensuring that a language is commutatively equivalent with a regular
one, have been obtained for the classes of bounded semi-linear languages and
codes, context-free languages of finite index and UMLG [9, 10, 11, 14, 15, 16].

The paper is organized as follows. In Section 2, preliminaries on codes and
context-free grammars are presented. Section 3 is devoted to the coding process
realized by UMLG. In Section 4, the notions of maximality, Bernoulli set, dense
and very dense set, are analyzed for UMLG. Section 5 is devoted to the analysis
of optimal UMLG and the commutative equivalence of grammars. Section 6
contains concluding remarks and open problems.

2 Preliminaries

We now recall some useful terms and basic properties concerning codes and
minimal linear grammars [3, 4].

2.1 Words and codes

Let A be a finite non-empty alphabet and A* be the free monoid generated by
A. The identity of A* is called the empty word and is denoted by e. The set
A*\ {€} is denoted by AT. A subset X of A* is called a formal language over
A, or simply a language of A*. The length of a word w € A* is the integer |w|
inductively defined by |e| = 0, |wa| = |w| + 1, w € A*, a € A. For every a € A,
|w|, denotes the number of occurrences of the letter a in w. If n € N, then AS"
(resp., A<™) denotes the set of all the words of A* of length not larger than n
(resp., smaller than n).

Let w € A*. The word u is a factor of w if there exist p,q € A* such
that w = puq. If w = ug, for some ¢ € A* (respectively, w = pu, for some
p € A*), then u is called a prefiz (respectively, a suffiz) of w. Given a word
w € A* a factorization of w is a sequence of factors of w, wy,...,wy, such that
w = wy ---wg. For any subset X of A* we denote by Fact(X) the set of all
factors of words of X, that is Fact(X) = {u € Fact(w) : w € X}.

A subset X of AT is a code (over A) if every word of X+ has a unique
factorization as a product of words of X. Two important types of codes are
given by prefix and suffiz codes. A subset X of AT is said to be a prefiz code
if XAT N X = 0 that is, if, for every u,v € X, u is not a proper prefix of v.
Symmetrically, a subset X of A™ is said to be a suffiz code if AF X NX =0
that is, if, for every u,v € X, u is not a proper suffix of v.



Let R be the set of non-negative real numbers. A Bernoulli distribution p
on A is any map
w:A—>Ry,

such that ) ., pu(a) = 1. A Bernoulli distribution is positive if, for all a € 4,
w(a) > 0. Any Bernoulli distribution p over A is extended to a unique morphism
(still denoted p) of A* into the multiplicative monoid R;. One then extends u
to the family of subsets of A* by setting, for every X C A*, u(X) = >y p(x).

If A={ai,...,a:} is an ordered alphabet of ¢ letters, and if w € A* is an
arbitrary word, then the Parikh vector of w is the tuple ¢ (w) of N defined
as P(w) = (Jwlay,---,|wle,). The function ¢: A* — N' mapping w into the
Parikh vector of w, is an epi-morphism of the free monoid A* onto the free
commutative additive monoid N*, called the Parikh morphism (over A). One
can introduce in A* the equivalence relation ~, called commutative equivalence,
defined as follows: for all u,v € A*, one has u ~ v if ¢(u) = 9 (v). Thus one
has u ~ v if the word v is obtained rearranging the letters of u in a different
order. Two languages L and L’ are said to be commutatively equivalent, and one
writes L ~ L', if there exists a bijection f : L — L’ such that, for every u € L,
u ~ f(u). A set X of words over an alphabet A is said to be commutatively
prefiz if there exists a prefix set X’ such that X is commutively equivalent to
X'.

2.2 Minimal linear grammars

We will assume that the reader is familiar with the theory of context-free lan-
guages (see [3] for a reference). In the sequel, we will shortly recall some basic
concepts in order to fix the corresponding notation.

Let G = (V,T, P, S) be a context-free grammar, where V denotes the vo-

cabulary of G, N = V' \ T denotes the set of non-terminals of G, T denotes the
set of terminals, P denotes the set of productions of G, and S € V' denotes the
axiom of G. In order to simplify notation, for an arbitrary non-terminal X € V|
the set of all the productions of G of the form X — w;,i = 1,...,k, having X
as the left-side component, will be denoted by X — wuy | -+ | ug.
For every a, 8 € V*, we write a« =¢ [ if a directly derives 8 in G. As usually,
the transitive (resp., transitive and reflexive) closure of the relation =¢ will be
denoted by =7 (resp., =%). If no ambiguity arises =¢ (resp., =&, =5) is
simply denoted = (resp., =7, =*).

Let 6 = p1ps - - - pr. be a finite sequence of productions of G and

X=ay=>a1=> = q

be a derivation where any «; is obtained from «a;_; replacing an occurrence of
the left side of p; by the corresponding right side, 1 < i < k. In such a case
we write X =5 aj. Moreover, the integer k is said to be the length of the
derivation. For any non-terminal X and any a € V*, we write X = « if there
exists a derivation X =>4 a of length k.



We denote by L(G) the language {u € T* | S =¢ u} of all the words of
T* generated by G. A grammar G is said to be unambiguous if every u €
L(G) is generated by exactly one leftmost derivation; otherwise G is said to be
ambiguous.

The notion of commutative equivalence introduced earlier for words and
languages can be suitably extended to grammars. We say that two productions
of context-free grammars are commutatively equivalent if their left sides are equal
and their right sides are commutatively equivalent. Two context free grammars
G = (V,N,P,S) and G' = (V,N,P’,S) are commutatively equivalent if there
exists a bijection f: P — P’ such that every production p € P is commutatively
equivalent to f(p).

A context-grammar G = (V, T, P, S) is said to be minimal linearif V.= {X},
that is, G has a unique non-terminal, say X. In this case, in order to simplify
our notation, in the sequel, for an arbitrary minimal linear grammar G, we will
use the notation G = (A, X, P) to specify that the terminal alphabet is A, the
unique non-terminal symbol is X and the set of productions is P. A production
p € P is said to be terminating if p is of the form X — w, with w € A*,
otherwise, it is called non-terminating.

In the sequel, we will consider uniquely minimal linear grammars with a
unique terminating production. Let

P={X - wuXvi, X 2 usXva, ..., X 5w Xvy, X - wr}. (1)
Then L(G) is the set of the words w;, ---w;, wpv;, ---v;, with i1,...,4, €
{1,...,t}. Moreover, it is useful to observe that the grammar G is ambigu-
ous if and only if there exists indexes 41,...,%,j1,...Jk € {1,...,t} such that

Wiy - Ugy, = Uy = Ujp, Vi, o Vi = Vg -+ V5, and iy # g

3 Codes and UMLG

Let G = (A, X, P) be a minimal linear grammar with a unique terminating pro-
duction pr and let Py be the set of its non-terminating productions. We con-
sider an alphabet B such that Card(B) = Card(Py) and a bijection f: B — Py.
Such a bijection naturally defines an onto function ¢y: B* — L(G), mapping
any word w = aq - --a, (a1,...a, € B) to the word c¢;(w) € L(G) such that

X =0 = = o, = w.
f(a1) f(az) f(an) pT

The following statement is trivial.

Proposition 1 The map cy: B* — L(G) is injective if and only if G is an
UMLG.

This result suggests that if G' is an UMLG, then one may use the map cy
for ‘encoding’ on the alphabet A the words of B*.



Thus, UMLG’s could be an alternative to the classical encoding via variable
length codes. In fact, the following proposition shows that, in a certain sense,
UMLG’s generalizes codes.

Proposition 2 Let G be a minimal linear grammar with productions
X=X, X =X, ..., X —>uyuX, X —>wr,

Y1, Y2, -, Y, wp € A*. The grammar G is unambiguous if and only if the set
Y ={y1,vy2,...,yt} is a code. Moreover, L(G) =Y*.

PrROOF We denote by p; the production X — y; X, 1 < i <t and by pr the
terminating production X — wr.

Suppose that the grammar G is ambiguous. Then, there are two distinct
sequences of productions p;, ,...,p;,,pr and pj,, ..., pj.,pr of G, together with
W1y esihyJ1,---Jk € {1,...,t} generating the same word w. One derives

W= Yiy = Yi, W = Y5y = Y5, 0T, (2)

and, consequently v;, - - ¥i, = Yj, - Y., 50 that ¥ is not a code.

Conversely, if YV is not a code, we can find h,k > 1 and indexes i1, ...,1ip,
jl, e ,jk € {1, N ,t} such that Yiy *Yip, = Yji = Yjrs with il 7£ jl- Thus, (2)
is verified by a suitable word w which has, in fact, two distinct derivations in
G. We conclude that G is ambiguous. |

4 Maximality and probability

As is well known the notions of maximality and completeness play a fundamental
role in the theory of variable length codes. We wish to analyze some analogous
conditions for unambiguous minimal linear grammars.

In the sequel we will consider exclusively minimal linear grammars with a
unique terminating production, which will be denoted by pr : X — wrp.

We start with two definitions.

Definition 1 Let G be an UMLG and let Py be the set of its non-terminating
productions. We say that G is maximal if there does not exists another UMLG
G’ on the same terminal alphabet whose set of non-terminating productions
properly contains Py.

Our second definition is a refinement of the notion of dense set, useful when
dealing with non-regular sets.

Definition 2 A set of words L on the alphabet A is very dense (in A*) if there
exists a finite set F' C A* such that, for all w in A*, FwF N L # (.

We recall that L is dense (in A*) if for all w € A* one has A*wA* N L # 0.
Clearly, every very dense set is dense. Conversely, one can prove that a dense
regular set is very dense. This property does not hold, in general, for non-regular
sets, as shown by the following example



Example 1 Let L be the language of binary antipalindromes, which is gener-
ated by the UMLG with productions

X = aXb|bXa|e.

The set L is dense, but it is not very dense. Indeed, if F' is any finite set and n
is the maximal length of its words, then Fa" ™ F N L = (.

We establish a result on the measure of very dense sets which will be useful
later.

Lemma 1 Let L be a very dense subset of A*. For all positive Bernoulli dis-
tribution m on A, one has w(L) = 4o0.

PROOF As L is very dense, there is a finite set F' = {x1,...,2,} such that, for
all win A*, FwF N L # (. Denote by L;;, i,j =1,...,n, the sets

Lij = {UJ S A* | T, W4 € L}

Since A* = ; =y, Lij and m(A*) = +oo, there is at least one pair (4, j)
such that m(L;;) = +o00. Consequently, 7(x;L;jx;) = +00. The conclusion then
follows from the fact that z;L;;jz; C L. O

We recall that, according to a well-known theorem of Schiitzenberger and
Marcus [28], if X is a regular code on the alphabet A and 7 is a positive Bernoulli
distribution on A, the following conditions are equivalent:

1. the code X is maximal,
2. the set X* is dense,
3. one has 7(X) = 1.

In this context, it is worth recalling that a theorem proven by Boe, de Luca
and Restivo [5] (see also [18]) provides another remarkable relation among the
concepts above. Indeed it is shown that, for every set X of words of AT, any two
of the following three conditions imply the remaining one: (i) X is a code; (ii)
X is a complete set (iii) pu(X) = 1, where p is a positive Bernoulli distribution.

We would like to establish some similar properties relating maximal UMLG
and dense and very dense sets.

Let G be a linear minimal grammar with non-terminating productions

X—>uini, 1=1...,1, (3)

and 7 be a Bernoulli distribution on the terminal alphabet. Then we will denote

by 7(G) the number
¢

©(G) = Zw(uivi).
i=1
One can easily verify that 7(G) = m(L1)/m(wr), where L1 = {w | X =2 w}.
The following proposition has been proved in [11]. We report here the proof
for the sake of completeness.



Proposition 3 Let G = (A, X, P) be an UMLG. For all positive Bernoulli
distribution 7 on the terminal alphabet, one has w(G) < 1. Moreover,

7T(’LUT)
L =—
m(L(G) = R
where the right hand side of the above equation has to be meant as +oco in the

case that 7(G) = 1.

PrOOF We assume that G has the nonterminating productions (3) and the
terminating production X — wr, so that 7(G) = 22:1 m(u;v;). For all m > 1,
we denote by L,, the set

{we A* | X =™ wl.
As one easily verifies, a word w belongs to L,, if and only if it can be factorized
w=u;sv; withse L, 1, 1<7<t.

Moreover, such a factorization is unique by the unambiguity of G. One derives

(L) =Y Y w(uisvi) = 7(G)m(Lyn-1).

i=1 $€Lm_1
From the equation above, one obtains
m(Lm) =p™q, m =0, (4)

where p = 7(G) and ¢ = 7(Lo) = 7(wr).

Now, let ¢ be the maximal length of the right sides of the productions of G.
One easily verifies that, for all m > 0, the maximal length of the words of L,
is not larger than (m + 1)¢. Consequently,

(m+1)¢
(L) < Y w(A)=(m+1)¢, m>0. (5)
i=0
From Equations (4) and (5) one obtains p™¢ < (m + 1)¢ for all m > 0. This
necessarily implies p < 1, proving the first part of the statement.
To complete the proof, it is sufficient to observe that, in view of the unam-
biguity of G, from (4) one derives

+o00 +o00
w(L(@) =Y w(Lw) =Y p"a = ﬁ.
m=0 m=0

O

Remark 1 Consider the polinomial ) = Z§=1 u;v;, where the letters of A are
viewed as unknowns. Taking into account that 7(G) is equal to the value of @,
when each unknown a € A is replaced by its probability m(a), the statement of
the proposition above may be extended, by continuity, to all (not necessarily
positive) Bernoulli distributions.



As a straightforward consequence of Lemma 1 and Proposition 3 one obtains
the following

Proposition 4 Let G be an UMLG. If L(G) is very dense, then for all Bernoulli
distribution 7 on the terminal alphabet, one has w(G) = 1.

Now, we establish a sufficient condition for the maximality of an UMLG.

Proposition 5 Let G be an UMLG. If there exists a positive Bernoulli distri-
bution 7 on the terminal alphabet such that n(G) = 1, then G is mazimal.

PrOOF Let Py be the set of non-terminating productions of G. Clearly, for
any minimal linear grammar G’ on the same terminal alphabet whose set of
non-terminating productions properly contains Py, one has 7(G') > #(G) =
1. Thus, by Proposition 3, G’ cannot be an UMLG. We conclude that G is
maximal. O

Proposition 6 Let G be a mazimal UMLG. Then L(G) is dense.

PROOF By contradiction, suppose that L(G) is not dense. Then there is a word
s which is not in Fact(L(G)). With no loss of generality, we assume that s
is unbordered (if it is not the case, just replace s by sal®l where a is a letter
different from the initial letter of s).

Let G’ be the grammar obtained adding to G' the production X — sXs.
By the maximality of G, there would be two different sequences of productions
D1y---,pn and q1,...,qr of G’ generating the same word w. With no loss of
generality, we assume p; # q;.

First suppose w € L(G). Then s ¢ Fact(w) and, therefore, none of the
productions p1,...,Pn,q1,-..,qr can be X — sXs. Thus, w has two distinct
derivations in G. This contradicts the hypothesis that G is unambiguous.

Now, suppose w ¢ L(G). This implies that the production X — sXs occur
in both the sequences p1,...,p, and q1,...,qr. Let i and j be, respectively, the
least integers such that p; = ¢; = (X — sXs). Then one has

W = TYSWISYL = TaSWasYa, T WY1, Towrys € L(G), (6)

where x1 Xy and x2 Xys are the sentential forms generated respectively by the
sequences of productions p,...,p;—1 and q1,...,gj—1. By the unambiguity of
G, one has xywry; # xowrys and therefore, either x1 # zo or y; # yo. We
assume x1 # T, as the other case can be symmetrically dealt with. Moreover,
with no loss of generality, we assume that |z1| < |za|. With such assumptions,
from (6) one has

T1 = Tz, 2SW1SY] = SWaSYs, (7)

for some z # e. Notice that z is a factor of the word zywry; € L(G), so that
s cannot be a prefix of z. Thus, from the latter of (7) one derives that z is
a proper prefix of s and s is bordered, which contradicts our assumption. We
conclude that L(G) is dense. O

10



Remark 2 By the previous propositions, any UMLG generating a very dense
language is maximal and any maximal UMLG generates a dense language. Con-
versely, there exist maximal UMLG’s generating languages which are not very
dense and dense languages generated by non-maximal UMLG’s.

For instance, the language of binary antipalindromes considered in Exam-
ple 1 is dense but it cannot be generated by a maximal UMLG. A maximal
UMLG generating a language which is not very dense is given in the next ex-
ample.

By Proposition 5, a sufficient condition for the maximality of an UMLG G
is that 7(G) = 1 for some positive Bernoulli distribution 7 on the terminal
alphabet of G. An open question is whether this condition is also necessary.

Example 2 Let P and S be, respectively, a maximal prefix code and a maximal
suffix code on the alphabet A and G be the UMLG with the productions

X —>uXv, ueP veSs, X —e

One easily verifies that G is an UMLG. One has L(G) = |,>, P"S™. If,
moreover, P and S are maximal codes, then for all Bernoulli distribution 7 one
has m(P) = w(S) = 1 and, consequently, 7(L(G)) = +oo. Moreover, both P*
and S* and, consequently, L(G) are dense sets.

However, in general, L(G) is not very dense. For instance, take P =
{a,ba,bb} and S = {a,ab,bb}. Then

L(G) = | J{a, ba,bb}"{a, ab, bb}"
n>0

is not a very dense set. Indeed, one can verify that if F' is any finite set and n
is the maximal length of its words, then F(ab)"aF N L(G) = 0.

The following proposition gives a partial answer to the question settled in
Remark 2. We say that an UMLG is proportional if there exists a rational
number ¢ (called the ratio of the grammar) such that for all non-terminating
production X — uXw, one has |v| = q|ul.

Let G be an UMLG and let Py be the set of its non-terminating productions.
We shall say that G is a maximal proportional UMLG if it is proportional and
there does not exists another proportional UMLG G’ on the same terminal
alphabet whose set of non-terminating productions properly contains Py .

Proposition 7 Let G be a proportional UMLG and m be the uniform Bernoulli
distribution on its terminal alphabet. The following conditions are equivalent:

1. the grammar G is a mazximal UMLG;
2. the grammar G is a maximal proportional UMLG;
3. 7(G) =1.

In order to prove Proposition 7, we need some preliminary lemmas. The
first one concerns the measure of the set of unbordered words of any length.

11



Lemma 2 For alln > 0, let U, be the set of unbordered words of length n on
a d-letter alphabet A and 7 be the uniform Bernoulli distribution on A. Then
7(U,) >1—d ' —d=2.

PROOF The statement is trivial if d = 1. Thus, we assume d > 2.
Let C(n) be the number of unbordered words of length n over A. As is well
known (see, e.g., [22]), for all n > 0 one has

Ln/2]
C(n)=d"— > d"*C(k).
k=1

Taking into account that 7(U,) = d~™C(n), this equation can be rewritten as

ln/2]
m(Up) =1= Y d *n(Us). (8)
k=1

In particular, the sequence 7w (U,) is decreasing, so that for n > 2 one has

ln/2]
m(Up) 21 —d 'n(Uy) = Y d *n(Us)
k=2

ln/2)
=1-d'=(1-d") ) d*
k=2

=1-d ' —d?4q "3
>1—d*t—d?.

Since for n < 2 the statement is trivially true, the conclusion follows. O

Our second lemma establishes a ‘density property’ of languages generated
by maximal proportional UMLG.

Lemma 3 Let G be a mazimal proportional UMLG of ratio q. There exists a
finite set F' such that for all pair of unbordered words w,v with |v| = glu|, one

has
FuFvF N L(G) # 0. 9)

PrROOF We set F' = A<3 where / is the maximal length of the right sides of
the productions of G.

Let u,v be as in the statement. If X — uXwv is a production of G, then one
has vwpv € L(G) and the condition is fulfilled.

Now, suppose that X — uXwv is not a production of G and let G’ be the
grammar obtained adding such a production to G.

By the maximality of G, the grammar G’ is ambiguous. Thus, there are
two different sequences of productions pi,...,pp,pr and pi,...,p;,pr of G’
generating the same word w. We assume that w has minimal length among the
words with two distinct derivations.

12



If p; is the production X — u;Xv; and p’; is the production X — u X7,
1<i<h,1<j <k, then one has

w:ul"'uthvh"'vl:u/l"'u;ng'U;C"'vllo (]_0)

Taking into account that G and, consequently, G’ are proportional grammars
of ratio ¢, one has

|/ljh.-.’l]1|:q|u1.-.uh|, |U;€-.-Ui|:q|u;€-..ua|7
w] = Jug - up| + Jon - vr| + wr| = Ju -]+ o v+ wr -
One easily derives that

|u1.-.uh|:|u€l...u;€‘7 ‘/ljh...’Ullz"l};...’Ui7

and therefore, from (10),
U1"'Uh:u11"'u§€, vh""Ul:'U;C""Ull (]_]_)

Since G is unambiguous at least one of the productions involved in one of the
derivations of w is X — uXwv. Thus we assume with no loss of generality that
uy = u, vy = v for a suitable ¢, 1 < ¢ < h. From (11) one derives that

/ / / / / /
Ul"'Ut—1:U1"'Ui_1fE1, ut+1...uh:y1uj+1...uk’ ui...uj:xluy17

with 1 <4 < j <k, x1 a proper prefix of u; and y; a proper suffix of u; Taking
into account that G’ is proportional, one has also
_ / / 0 / / !
Ug—1-"V1 = T2U;_q1 " Vy,  Up- V41 = Vg ViqY2, V50U = Y22,

with x9 a proper suffix of v} and y2 a proper prefix of v}. Since u is unbordered,
one has either u # w;,...,u; or u = u; and ¢ = j. In the first case, pj, ... ,p}
are all productions of G so that the word

! ! ! !/
2= U UWTVG U = T UYL WTY2 U T2

belongs to L(G), while x1, yjwrys, x2 € F. Thus, condition (9) is fulfilled.
In the second case, one has p; = p}, 1 = 2 = y1 = Y2 = €, v = v;, Pt = D,
and the word

/
W = Uy Ut Uty1 " UpWT VR " - - Vgp1Vp—1 - - VU1
7 / / / / / / /
— ul .'.ui—luj-'rl ...ukwaUk ...ij+1Ui_1 ...Ul

has two derivations in G’, contradicting the minimality of w. O

PROOF (OF PROPOSITION 7) The implication 1 = 2 is trivial and the impli-
cation 3 = 1 is a straightforward consequence of Proposition 5. Thus, it is
sufficient to prove the implication 2 = 3.

13



Let g be the ratio of G and let F' be as in Lemma 3. For all x1, 29,23 € F
we denote by D(x1,xa,z3) the set

{(u,v) € A* x A* | u,v unbordered, |v| = q|u|, xjuzqvas € L(G)}.

By Lemma 3, for all pair of integers n,m > 0 such that m = gn, each pair
(u,v) € U, x U, belongs to some of the sets D(x1,x2,23), 1,223,235 € F.

Thus,
Z m(uv) > Z T(Un)7(Un ),

@1,w0,23EF m=qn
(u,v)ED(x1,®2,23)

where the sum in the right hand side is extended to all pairs of integers m,n > 0
such that m = gn. Taking into account that this sum contains infinitely many
terms and, by Lemma 2, each of them is larger than (1 — d=' — d=2)2, we
conclude that it amounts to +o0o. Hence, in view of the finiteness of F', there
exist y1,y2,ys € F such that

Z m(uv) = +o0.

(u,v)€D(y1,Y2,Y3)

Let K = {yiuysvys | (u,v) € D(y1,y2,y3)}. From the previous equation,
one obtains 7(K) = 4oo0. Since K is a subset of L(G), we conclude that
m(L(G)) = 400 and therefore, by Proposition 3, 7(G) = 1. O

5 Optimality

According to the classical model of Shannon [1, 29] a transmitter computes an
injective coding function h: B* — A* on the messages w € B* generated with
probability p,, by a source.

Let Ry denote the additive semigroup of positive real numbers. Any letter
a € A has a transmission cost c(a) € Ry (ideally, the time necessary for its
transmission). We can extend ¢ to a morphism ¢: A* — R,. The average cost
of the transmission of a message of length n is then given by

Con= Y puc(h(w)).

weB™

Thus, the limit C' = lim,,_, Cp/n, if existing, may be interpreted as the average
cost per letter of the transmission.

In the most common case, one has p,, = m(w), w € B*, for a suitable
Bernoulli distribution 7 on the alphabet B.

The encoding function » may be a monomorphism. In such a case, the set
Y = h(B) is a uniquely decipherable code and, as one easily verifies, C,, = nC,
so that

C=Cr=Y pely), (12)

yey
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where p, = 7(h™(y)).

However, the encoding function h may be the function ¢y obtained as de-
scribed in Section 3 from an UMLG G = (A, X, P) and a bijection f: B — Py.
In such a case, setting B = {by,...,b:} and f(b;) = (X — u; Xv;), 1 = 1,...¢,
with easy computations, one obtains

Cp = > (b, -+ by Velug, -+ ug, wrvg, -+ v;,)
i1,0in €{1,...,t}

=n Zw(bi)c(uivi) + c(wr).
i=1

Thus,

C= Zﬂ'(bi)c(uivi). (13)

In particular, C; = 3'_, 7(bi)e(u;v;) +c(wr) and Cy = c(wr), so that (13) can

be rewritten as
C=C1—Co= " pyely) —c(wr),
yeLy

where Ly = {y | X =2 y} and p, = 7(h"(y)), y € L.

In the simplest case, all letters of the alphabet B have the same cost, say
1, so that ¢(v) = |v| for all v € B*. Thus, if h is a monomorphism, then
C = 3 ey pylyl, where Y = h(A), while if h is the function ¢y considered
above, then one obtains

t
C= sz‘|uﬂfi|,
i=1

where p; = 7(b;).
From Proposition 3 and the Kraft-McMillan Theorem one derives the fol-
lowing

Proposition 8 Let G be an UMLG with non-terminating productions of the
form X — u; Xv;, i =1,...,t. There exists a prefix code Y = {y1,...,y1} such
that |y;| = |luvi], i =1,...,t.

This proposition shows that when the letter cost is constant, every UMLG can
be replaced by a prefix code with the same average cost per letter. Thus, coding
by UMLG cannot accelerate the transmission rate obtained by optimal prefix
codes.

The situation is less clear when there are letters with different costs.

The following proposition shows a link between the search for optimality and
the commutative equivalence of UMLG’s. It is analogous to a result of Carter
and Gill [12] concerning the commutative equivalence of codes to prefix codes.

Proposition 9 Two UMLG G and G’ are commutatively equivalent if and only
if they satisfy the following two conditions.

15



1. The terminating productions of G and G' are commutatively equivalent,

2. For every assignment of symbol costs and every probability distribution on
source symbols, G and G’ have the same average cost per letter.

PRrROOF It is evident that commutatively equivalent grammars satisfy Condi-
tions 1 and 2.

In order to prove that the conditions are also sufficient, it is sufficient to
show that for any non-terminating production X — « of an UMLG G and any
letter a of the terminal alphabet, the number |a|, is completely determined by
the knowledge of the average cost per letter for every assignment of symbol costs
and every probability distribution on source symbols.

Let G = (A, X, P) be an UMLG. We set A = {ay,...,aq} and assume that
P is given by (1). Moreover, we consider an alphabet B = {by,...,b;} and
the bijection f: B — Py mapping any b; into the production X — u;Xv;,
ji=1,...,t.

Let us verify that for any given cost function c¢: A* — R, the values of
c(uv), i = 1,...,t, are completely determined by the knowledge of the average
cost per letter for every probability distribution on source symbols.

Indeed, let 7, h = 1,...,t, be Bernoulli distributions such that the matrix
(Wh(bi))m:l,m’t is non-singular. For instance, one may take m,(b;) = (1 +
0in)/(t+1),4,h =1,...,t, where &;p, is the Kronecker delta.

The average cost per letter K}, with respect to the distribution 7, is given
by

t
Ky = Zﬂ'h(bi)c(uivi)'
i=1
Thus, the numbers c(u;v;), ¢ = 1,...,t are solutions of the linear system

t
> mn(bi)wi = Kn, h=1,...t.
i=1
As the matrix of this system is non-singular, we conclude that the values of
¢(u;v;) are uniquely determined.
Now let us verify that for all s = 1,...,¢, the numbers |u; Xv;|a;, = [V,
j =1,...,d are completely determined by the knowledge of ¢(u;v;) for every
assignment of symbol costs.
Indeed, let ¢®: A — Ry, k = 1,...,d, be d cost functions such that the
matrix (c(k)(aj))j,k:h“’d is non-singular. For instance, one may take c(¥)(a;) =
14+6k),4,k=1,...,d. For k=1,...,d, one has

c(k)(uivi): Z c(k)(aj)\uivi|aj,

j=1,...,d
Thus, the numbers |Uﬂ/i|aj7 j=1,...,d are solutions of the linear system
Z P (aj)z; = P (uvg), k=1,...,d

j=1,...,d
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As the matrix of this system is non-singular, we conclude that the values of
c(u;v;) are uniquely determined.

In conclusion, we have shown that the numbers |u; Xv;[q,, or equivalently,
the commutation classes of the words u; Xv;, are completely determined by the
average cost per letter for every assignment of symbol costs and every proba-
bility distribution on source symbols. This ensures that two UMLG’s G and G’
satisfying conditions 1 and 2 are, necessarily, commutatively equivalent. O

As a consequence of the previous proposition we obtain the following

Corollary 1 An UMLG is commutatively equivalent to a regular one if and
only if there exists a code Y such that for every assignment of symbol costs and
every probability distribution on source symbols, G andY have the same average
cost per letter.

PRrROOF Let G = (4, X, P) be as in the proof of Proposition 9 and let ¥ =
{y1,y2,...,y+} be a code such that for every assignment of symbol costs and
every probability distribution on source symbols, G and Y have the same average
cost per letter.

By Proposition 2, the grammar G’ with the productions

X=X, X =X, ..., X >yX, X —wrp,

is an UMLG. Moreover, in view of (12) and (13), for every assignment of symbol
costs and every probability distribution on source symbols, G’ and Y have the
same average cost per letter. Consequently, G and G’ satisfy Conditions 1 and
2 of Proposition 9 and, therefore, they are commutatively equivalent.
Conversely, if G is commutatively equivalent to a regular UMLG G’, then
by Proposition 9, G and G’ have the same average cost per letter for every
assignment of symbol costs and every probability distribution on source symbols.
In view of Proposition 9, (12) and (13), one can find a code Y with the same
average cost per letter of G’ for every assignment of symbol costs and every
probability distribution on source symbols. The conclusion follows. |

An open question is whether there exists an UMLG which is not commuta-
tively equivalent to any regular one. A negative answer to this question would
ensure that, also in the case of non-constant symbol cost, coding by UMLG
cannot accelerate the transmission rate obtained by optimal prefix codes.

Some sufficient condition ensuring that an UMLG is commutatively equiva-
lent to any regular one has been studied in [9, 11].

6 Further remarks

Ambiguity of minimal linear grammars is undecidable [20]. Thus, it is not
possible to devise a “Sardinas-Patterson Algorithm” for UMLG’s. Hence, it
may be useful to devise some restriction on the form of the productions of
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a minimal linear grammar which ensure decidability of unambiguity and an
efficient parsing.

Code completion has been a challenging subject of research. One may ask
whether from any UMLG one can obtain a maximal UMLG by conveniently
adding productions.

Example 3 Let G be the UMLG with productions
X = a®X | bX | abX | ba*X | e.

Since the code X = {a®,b, ab,ba?} is not included in a finite maximal one (see
[4]), the productions of G cannot occur in a regular maximal UMLG. We do not
know whether it is possible to obtain a (non-regular) maximal UMLG adding
productions to G.
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