
Arbitrary Pattern Formation on Infinite Grid by
Asynchronous Oblivious Robots ?

Kaustav Bose[0000−0003−3579−1941], Ranendu Adhikary[0000−0002−9473−2645], Manash
Kumar Kundu[0000−0003−4179−8293], and Buddhadeb Sau

Department of Mathematics, Jadavpur University, Kolkata, India
{kaustavbose.rs, ranenduadhikary.rs, manashkrkundu.rs

}@jadavpuruniversity.in, bsau@math.jdvu.ac.in

Abstract. The ARBITRARY PATTERN FORMATION problem asks to design a
distributed algorithm that allows a set of autonomous mobile robots to form any
specific but arbitrary geometric pattern given as input. The problem has been ex-
tensively studied in literature in continuous domains. This paper investigates a
discrete version of the problem where the robots are operating on a two dimen-
sional infinite grid. The robots are assumed to be autonomous, identical, anony-
mous and oblivious. They operate in Look-Compute-Move cycles under a fully
asynchronous scheduler. The robots do not agree on any common global coordi-
nate system or chirality. We have shown that a set of robots can form any arbitrary
pattern, if their starting configuration is asymmetric.

Keywords: Distributed algorithm · Autonomous robots · Arbitrary Pattern For-
mation · Grid · Asynchronous · Look-Compute-Move cycle.

1 Introduction

1.1 Motivation
Distributed coordination of autonomous mobile robot systems has attracted consider-
able research interest in recent years owing to its potential applications in a wide range
of real-world problems. The problem of forming an arbitrary geometric pattern is a
fundamental coordination task for autonomous robot swarms. The pattern formation
problem has been extensively investigated in continuous domains under different as-
sumptions. In the continuous setting, the robots are assumed to be able to execute ac-
curate movements in arbitrary directions and by arbitrarily small amounts. Hence, even
in densely crowded situations, the robots can maneuver avoiding collisions. Certain
models also permit the robots to move along curved trajectories, in particular, circum-
ference of a circle. For robots with weak mechanical capabilities, it may not be possible
to execute such intricate movements with precision. This motivates us to consider the
problem in a grid based terrain where the movements of the robots are restricted only

? This is the full version of the paper, with the same title and authors, that was accepted in the
13th International Conference and Workshops on Algorithms and Computation (WALCOM
2019), February 27 - March 02, 2019, Guwahati, India

ar
X

iv
:1

81
1.

00
83

4v
1

 [
cs

.D
C

]
 2

 N
ov

 2
01

8

along grid lines and only by a unit distance in each step. Grid type floor layouts can
be easily implemented in real life robot navigation systems using magnets or optical
guidances.

1.2 Earlier Works
The ARBITRARY PATTERN FORMATION problem was first studied by Suzuki and Ya-
mashita [12,13] on the Euclidean plane. In these papers, a complete characterization
of the class of formable patterns has been provided for autonomous and anonymous
robots with an unbounded amount of memory. They characterized the class of formable
patterns by using the notion of symmetricity which is essentially the order of the cyclic
group that acts on the initial configuration. In [8], Flocchini et. al. investigated the solv-
ability of the problem for fully asynchronous and oblivious robots. Initially, the robots
are in arbitrary positions, with the only requirement that no two robots are in the same
position. They showed that if the robots have no common agreement on coordinate sys-
tem, they cannot form an arbitrary pattern. If the robots have one-axis agreement, then
any odd number of robots can form an arbitrary pattern, but an even number of robots
cannot, in the worst case. If the robots agree on both X and Y axes, then any set of
robots can form any pattern. They also proved that it is possible to elect a leader for
n ≥ 3 robots if it is possible to form any pattern. In [6,7], the authors studied the rela-
tionship between ARBITRARY PATTERN FORMATION and LEADER ELECTION among
robots in asynchronous scheduler. They provided algorithms to form an arbitrary pat-
tern starting from any geometric configuration wherein the leader election is possible.
More precisely, their solutions work for four or more robots with chirality and for at
least five robots without chirality. Combined with the result in [8], they deduced that
ARBITRARY PATTERN FORMATION and LEADER ELECTION are equivalent, i.e., it is
possible to solve ARBITRARY PATTERN FORMATION for n ≥ 4 with chirality (resp.
n ≥ 5 without chirality) if and only if LEADER ELECTION is solvable. While all the
previous works considered robots with unlimited visibility, Yamauchi et. al. [14] first
studied the problem with limited visibility. Randomized pattern formation algorithms
were studied in [2,15]. In [5], Das et al. investigated the problem of forming a sequence
of patterns in a given order. In [3,9], the problem was studied allowing the pattern to
have multiplicities. In [4,9] the so-called EMBEDDED PATTERN FORMATION problem
was studied where the pattern to be formed is provided as a set of visible points in the
plane. Recently in [10], the pattern formation problem was studied on an infinite grid
for robots with limited visibility. The problem was studied in synchronous setting for
robots with constant size memory, and having a common coordinate system. Further-
more, robots were given a fixed point on the grid so that they can form a connected
configuration containing it. Other specific types of formation problems that have been
studied in the infinite grid set up, are the Gathering problem [11], i.e., the point forma-
tion problem and the Mutual Visibility problem [1], where a set of opaque robots have
to form a pattern in which no three robots are collinear.

The paper is organized as follows. In Section 2, some basic definitions and a formal
description of the model and the problem are presented. In Section 3, we present and
solve a preliminary problem that will be used in the main algorithm, which is described
with formal proof in Section 4.

2 Model and Definition

2.1 The Model

Robots: The robots are autonomous (there is no central control), homogeneous
(they execute the same distributed algorithm), anonymous (they have no unique iden-
tifiers), identical (they are indistinguishable by their appearance) and oblivious (they
have no memory of past configurations and previous actions). The robots cannot ex-
plicitly communicate with each other. The robots have global visibility which means
that they can observe the entire grid and the positions of all the robots. The robots do
not have access to any common global coordinate system. In particular, they do not
have a common notion of direction or chirality. Each robot has its own local view of the
world with respect to its local Cartesian coordinate system. All the robots are initially
positioned on distinct grid points.

Movement: The movement of the robots are restricted only along grid lines from
one grid point to one of its four neighboring grid points. Traditionally in discrete do-
mains, robot movements are assumed to be instantaneous. For simplicity of analysis,
we also assume the movements to be instantaneous. This implies that the robots are
always seen on grid points, not on edges. However, our strategy will also work without
this assumption (by asking the robots to wait i.e, do nothing, if they see a robot on a
grid edge).

Look-Compute-Move cycles: The robots, when active, operate according to the
so-called LOOK-COMPUTE-MOVE cycle. In each cycle, a previously idle or inactive
robot wakes up and executes the following steps. In the LOOK phase, the robot takes
the snapshot of the positions of all the robots, represented in its own local coordinate
system. Based on the perceived configuration, the robot performs computations accord-
ing to a deterministic algorithm to decide whether to stay put or to move to an adjacent
grid point. Based on the outcome of the algorithm, the robot either remains stationary
or makes an instantaneous move to an adjacent grid point.

Scheduler: We assume that the robots are controlled by a fully asynchronous ad-
versarial scheduler (ASYNC). This implies that the amount of time spent in LOOK,
COMPUTE, MOVE and inactive states by different robots is finite but unbounded and
unpredictable. As a result, the robots do not have a common notion of time and the con-
figuration perceived by a robot during the LOOK phase may significantly change before
it actually makes a move.

2.2 Basic Geometric Definitions

Consider a team of a finite number of robots placed on the vertices of a simple undi-
rected connected graph G = (V,E). Define a function f : V −→ N∪{0}, where f (v) is
the number of robots on the vertex v1. The pair (G, f) is called a configuration of robots
on G, or simply a configuration. Given a configuration of robots C , let R denote the
smallest grid-aligned rectangle that contains all the robots.

1 Since we have assumed that the robots are initially positioned on distinct grid points and our
algorithm guarantees collisionless movements, f (v) is always either 0 or 1.

An automorphism of a graph G = (V,E) is a bijection ϕ : V −→ V such that for
all u,v ∈ V , u,v are adjacent if and only if ϕ(u),ϕ(v) are adjacent. The set of all auto-
morphisms of G forms a group, called the automorphism group of G and is denoted by
Aut(G). The definition of automorphism of graphs can be extended to robot configura-
tions on graphs. An automorphism of a configuration (G, f) is an automorphism ϕ of
G such that f (v) = f (ϕ(v)) for all v ∈ V . The set of all automorphisms of (G, f) also
forms a group that will be denoted by Aut(G, f). We shall refer to an automorphism of
a configuration as a symmetry. We shall call a symmetry trivial if ϕ(v) = v, for all v∈V
with f (v) 6= 0. If a configuration admits no non-trivial symmetries, then it is called an
asymmetric configuration, and otherwise, a symmetric configuration.

An infinite path is the graph P = (Z,E), where E = {(i, i+1) | i ∈ Z}. An infinite
grid can be defined as the Cartesian product G=P×P. Assume that the infinite grid G is
embedded in the Cartesian plane R2. It is not difficult to see that Aut(G) is generated by
three types of automorphisms: translations, reflections and rotations. A translation shifts
all the vertices of G by the same amount. Since a configuration (G, f) has only finite
number of robots, it is not difficult to see that Aut(G, f) has no translations. Reflections
are defined by an axis of reflection. The axis can be horizontal or vertical or diagonal.
The angle of rotation can be of 90 or 180 degrees, and the center of a rotation can be a
vertex, or the center of an edge, or the center of the unit square.

The solvability of the arbitrary pattern formation problem depends on the symme-
tries of the initial configuration of the robots. This paper exclusively considers only
asymmetric initial configurations. Some impossibility results regarding symmetric con-
figurations are briefly discussed in Section 5.

2.3 The Arbitrary Pattern Formation Problem
A swarm of k robots is arbitrarily deployed on the vertices of the infinite grid. We as-
sume that the initial configuration Cinit is asymmetric, and no two robots are in the
same position. The goal of the ARBITRARY PATTERN FORMATION problem is to de-
sign a distributed algorithm that guides the robots to form an arbitrary geometric pattern
Ctarget . The pattern Ctarget is a set of k (distinct) vertices in the grid given in an arbitrary
Cartesian coordinate system. The pattern Ctarget is given to all robots in the system as
input. Due to absence of a common global coordinate system, the robots decide that the
pattern is formed when their present configuration becomes ‘similar’ to Ctarget with re-
spect to translations, rotations, reflections. We say that a pattern formation algorithm is
collision-free, if, at any time t, there are no two robots that occupy the same grid point.
Avoiding collisions is a necessary requirement of the problem under this model. This
is because, if two robots at any point in time, occupy the same grid point, they can not
be deterministically separated thereafter, as they both execute the same deterministic
algorithm.

3 Pattern Formation on a Finite Grid
In this section, we will discuss a related problem that will be used in the main algo-
rithm. Consider a set of k robots deployed on an m× n finite grid. Starting from any

arbitrary (symmetric or asymmetric) configuration, they are required to form a given
arbitrary pattern. Unlike our original problem, we assume that the robots agree on a
common global coordinate system. The input Ctarget is also given in this coordinate
system. Hence, the given input corresponds to a fixed set T of k grid points on the
grid and our problem is to place a robot on each of these grid points. All the other
assumptions from our original problem, stated in Section 2.1, are retained.

We shall first consider the case where m = 1, i.e., the grid is just a discretized line
segment. Since the robots have a common global coordinate system, they agree on left
and right. Hence, in the starting configuration, the robots can be labeled as r1, . . . ,rk
from left to right. If we can devise a swap-free (the act of two adjacent robots exchang-
ing their positions is called a swap) and collision-free movement strategy, then the la-
bels will remain unchanged throughout the algorithm. Note that, in the asynchronous
setting, a collision-free algorithm is necessarily swap-free. We can also label the grid
points in T as t1, . . . , tk from left to right. Our strategy is to simply ask each ri to go to
ti. In order to avoid collisions, a robot will move to an adjacent grid point only if it is
empty. A pseudocode description of the strategy is given in Algorithm 1.

Algorithm 1: Pattern formation on a 1×n grid
1 Procedure PFONPATH()
2 s ∈ {le f t,right}
3 ri← me
4 if I am not at ti then
5 if ti is on my s then
6 u← the adjacent grid point on my s
7 if u is empty then
8 Move to u

Theorem 1. Algorithm PFONPATH() is correct.

Proof. We first show that the algorithm does not lead to a collision. A collision can only
occur in a situation shown in Fig. 1a, where the algorithm asks both ri and ri+1 to move
to B. This implies that ti is somewhere on the right of A, while ti+1 is on the left of C.
But this is impossible, since ti and ti+1 are two distinct grid points with ti+1 on the right
of ti.

It remains to show that following this strategy, each ri will be able to reach ti. The
algorithm can only fail if a deadlock is created. This can only happen if we have two
robots, ri and ri+1, adjacent to each other, where ri wants to move towards right and
ri+1 is either at ti+1 or wants to move towards left. Again this is impossible by the same
arguments as earlier. ut

Now we consider the general m×n finite grid. An m×n finite grid can be seen as a
coiled up path as shown in Fig. 1b. To be precise, an m×n grid has a spanning subgraph
isomorphic to the finite path Pmn. But there are many such spanning subgraphs. The
common global coordinate system allows the robots to agree on a particular subgraph as

ri ri+1

CBA

(a)

A B

CD

(b)

Fig. 1: a) Illustration supporting the proof of Theorem 1. b) A coiled up path in a finite
grid.

shown in Fig. 1b. Hence, pattern formation on a finite grid reduces to pattern formation
on a path, which can be solved by algorithm PFONPATH().

4 The Main Algorithm
Consider a configuration C , where R =

r1 r2

D C

BA

Fig. 2: In this configuration, the lexi-
cographically largest string is λAD =
0101000010001000000001011000010100
00000010001000. The head and the tail
are respectively r1 and r2.

ABCD is an m× n rectangle with |AB| =
n≥ m = |AD| (See Fig. 2). Here, the size
of a side is defined as the number of grid
points on it. If all robots in C lie on one
grid line, then R is just a line segment. In
this case, when we say R = ABCD, it is
to be regarded as a 1×n ‘rectangle’ with
A = D, B = C and |AD| = |BC| = 1. Let
us first assume that ABCD is a non-square
rectangle with |AB|= n > m = |AD|> 1.
We associate a binary string of length mn
to each corner of R. The binary string as-
sociated to a corner A is defined as fol-
lows. Scan the grid from A along the shorter
side AD to D and sequentially all grid lines
parallel to AD in the same direction. For
each grid point, put a 0 or 1 according to whether it is empty or occupied. We denote
this string by λAD. The three other strings λBC, λCB and λDA are defined similarly. If
ABCD is a square, i.e., m = n, then we have to associate two strings to each corner. In
that case, the two sequences associated with A will be denoted by λAD and λAB. If any
two of these strings are equal, then it implies that the configuration has a (reflectional
or rotational) symmetry. Hence, if the configuration is asymmetric, then all the strings
are distinct and we can find a unique lexicographically largest string. Assume that λAD
is the lexicographically largest string. Then A will be called the leading corner. Once
we have the unique lexicographically largest string λAD, the robots can agree on a com-

mon coordinate system as follows. The leading corner A is taken as origin and X-axis
=
−→
AB, Y -axis =

−→
AD. Unless mentioned otherwise, any asymmetric configuration C will

be expressed in this coordinate system. In the case where m = 1, λAD and λDA essen-
tially refers to the same string. Hence, in this case, we have only two binary strings to
compare. Again, if they are equal then the configuration is symmetric. Hence, if the
configuration is asymmetric 2, then we shall have a leading corner, say A = D. Then A
will be taken as origin and X-axis =

−→
AB. But there will be no agreement on the Y -axis.

However, as all the robots lie on the X-axis, the points in C can still be unambiguously
expressed in coordinates.

Therefore, we see that in an asymmetric configuration, all the robots can agree on
a common global coordinate system. By ‘up’ (resp. ‘right’) and ‘down’ (resp. ‘left’),
we shall refer to the positive and negative direction of Y (resp. X) axis of this coor-
dinate system respectively. Also, given any asymmetric configuration C , the robots
corresponding to the first and the last 1 in the lexicographically largest string, will be
called the head and the tail respectively. The remaining robots will be called interior
robots. C ′ and C ′′ will denote the sets C \{tail} and C \{head, tail} respectively.

The configuration Ctarget , given to the robots as an input, is expressed in some arbi-
trary coordinate system. We can take the smallest enclosing rectangle of Ctarget , call it
Rtarget . Assume that Rtarget is an M×N rectangle, with N ≥M. Now associate binary
strings to its corners in the same manner as we did for R. We shall assume that Ctarget
is expressed in a coordinate system where the origin is the leading corner and the pos-
itive Y axis is along the side corresponding to the lexicographically largest string. No
generality is lost, as the robots can always perform such a coordinate transformation on
the input. However, unlike the previous case, we may not have a unique lexicographi-
cally largest string. This is because, the configuration Ctarget can have symmetries. In
that case, for the coordinate transformation, we have to choose one among the largest
strings to define the coordinate system. Notice that any choice leads to the same set of
values. Therefore, in general, we shall assume that the origin of the coordinate system
of Ctarget is one of the leading corners, and the positive Y axis is along the side corre-
sponding to one of the lexicographically largest strings. We shall call this coordinate
system the canonical coordinate system. Given Ctarget in the canonical coordinate sys-
tem, we define htarget , ttarget ∈Ctarget as the points, corresponding to the first and the last
1 of the binary string that starts from the origin and goes along the Y axis respectively.
Also, define C ′target = Ctarget \{ttarget} and C ′′target = C \{htarget , ttarget}.

We can logically divide the algorithm into seven phases. The starting configuration
of the robots can fall into any one of the phases. These phases will be described in detail
in the following subsections. Since the robots are oblivious, in each LOOK-COMPUTE-
MOVE cycle, it has to infer from the perceived configuration, which phase it is currently
in. It does so by checking if certain conditions are fulfilled or not. These conditions can
be expressed in terms of Boolean variables listed in Fig. 3.

The main algorithmic difficulty of the problem arises from the restrictions imposed
on the movements of the robots. In the continuous setting the robots can freely move
in any direction by arbitrarily small amounts and in some models, along any curve.

2 In the m = 1 case, we already have a reflectional symmetry with respect to
←→
AB. But this is a

trivial symmetry, and is to be ignored by our definition of asymmetric configurations.

C0 C = Ctarget
C1 C ′ = C ′target
C2 Y -coordinate of the tail in C = Y -coordinate of ttarget in Ctarget
C3 n≥max{M,m}+2

C4
n≥ 2·max{N,H}, where H is the length of the horizontal side of the smallest
enclosing rectangle of C ′

C5 The head in C is at the origin

C6
m ≥ max{M,V}+1, where V is the length of the vertical side of the smallest
enclosing rectangle of C ′

C7 C ′′ = C ′′target
C8 C ′ has a non-trivial reflectional symmetry with respect to a horizontal line

Fig. 3: The Boolean variable on the left is true if and only if the condition on the right
is satisfied.

Therefore, techniques used in the previous works on continuous space (e.g., [7,8,6])
are not immediately portable in the discrete setting. Collision less movement is a major
challenge in the grid model due to movement restriction. To resolve this, the tail ex-
pands the initial smallest enclosing rectangle (in Phase 1 and 3) making enough room
for the interior robots to reconfigure themselves inside the rectangle without colliding.
Our main idea is to utilize the asymmetry of the configuration to reach an agreement on
a coordinate system, and try to keep the coordinate system invariant during the move-
ments. To achieve this, in the first three phases, the head is put at the origin and the
smallest enclosing rectangle is large enough so that the interior robots are confined in
an appropriately small finite subgrid. Any movement by the interior robots restricted
inside the finite subgrid keeps the coordinate system unaltered. So in Phase 4, the inte-
rior robots will rearrange themselves inside the finite subgrid to partially form the given
pattern. In the final three phases, the head and the tail will move to their prescribed po-
sitions. Despite the apparent simplicity of the final three phases, designing movements
is somewhat complicated as the coordinate system may change or the agreement in the
coordinate system may be lost in some cases in the final phases.
4.1 Phase 1

A robot infers that it is in Phase 1 if ¬(C1∧C2)∧¬(C3∧C4) is true 3. In this case, the
tail will move to the right and all other robots will remain static. Our aim is to make
both C3 and C4 true.

Theorem 2. If we have an asymmetric configuration C in phase 1 at some time t, then

1. after one move by the tail towards right, the new configuration is still asymmetric
and the coordinate system remains unchanged.

2. after one move by the tail towards right, we have ¬(C1∧C2) = true.
3. after finite number of moves by the tail, we shall have (C3∧C4) = true.

3 A∧B is true if and only if both A and B are true. ¬A is true if and only if A is false.

4. after finite number of moves by the tail, Phase 1 completes with ¬(C1∧C2)∧ (C3∧
C4) = true.

Proof. 1) Let the smallest enclosing rectangle at time t be Rold =ABCD, with |AD|=m
and |AB| = n, n ≥ m. Since C is asymmetric, we must have n > 2. Let λAD be the
lexicographically largest string. Hence the tail r is on the edge BC. After a move by
the tail towards right, the smallest enclosing rectangle becomes Rnew = AB′C′D, with r
now on the edge B′C′.

We already have λ old
AD > λ old

DA . Suppose that in C , r is the only robot on BC. Then
it is easy to see that λ new

AD > λ new
DA . Now assume that there are multiple robots on BC.

Suppose that r corresponds to the xth and yth term in λ old
AD and λ old

DA respectively.
Case-1 : Let x = y. This means that m is odd and r is on the middle point of BC.

Since the xth term is the last non-zero term in λ old
AD , we must have λ old

AD |x−1
> λ old

DA |x−1
,

where λ |p is the string obtained by taking the first p terms of λ . Therefore, λ new
AD |x−1

>

λ new
DA |x−1

, which implies λ new
AD > λ new

DA .

Case-2 : Let x < y. Let x = m(n−1)+b. Since x < y, we have b≤ b n
2c. Since r is

the tail, the (mn−m+1)th to (mn−m+b)th terms of λ old
DA are all 0. The same is true

for λ new
DA . Since there were multiple robots on BC at time t, there is at least one 1 among

the (mn−m+1)th to (mn−m+b)th terms in λ new
AD . Hence, λ new

AD > λ new
DA .

Case-3 : If x > y, then r is encountered strictly earlier, as we scan Rold according
to the string λ old

DA , than λ old
AD . This implies that λ old

DA |y > λ new
DA |y and λ old

AD |y = λ new
AD |y .

But as λ old
AD > λ old

DA , we have λ old
AD |y ≥ λ old

DA |y . Hence, we have λ new
AD |y > λ new

DA |y , and so

λ new
AD > λ new

DA .
Therefore, we have λ new

AD > λ new
DA . Now we compare λ new

AD and λ new
C′B′ . Clearly, r cor-

responds to the first 1 in λ old
CB (and also λ new

C′B′). Suppose it is the xth term λ old
CB . If the

first 1 in λ old
AD appears before the xth term, then we easily have λ new

AD > λ new
C′B′ . So let

the xth term be the first 1 in λ old
AD . Let the second 1 in λ old

AD be the yth term. Again, if
the second 1 in λ old

CB appears beyond the yth term, then we are done. So assume that
the second 1 in λ old

CB is the yth term. Hence, λ old
AD |y = λ old

CB |y . Now λ new
C′B′ is obtained by

inserting a string of 0’s of length m in λ old
CB after the xth term. Hence, we clearly have

λ new
AD |y = λ old

AD |y > λ new
C′B′ |y . Thus, λ new

AD > λ new
C′B′ . We can similarly show that λ new

AD > λ new
B′C′ .

Hence, λ new
AD is lexicographically strictly larger than λ new

DA , λ new
B′C′ and λ new

C′B′ . Since,
Rnew = AB′C′D is a non-square rectangle, we only have these four binary strings to
consider. Hence, we can clearly see that the new configuration is still asymmetric and
the coordinate system is unchanged.

2) Since only the tail moves, the value of C1 remains unchanged. As the tail moves
to the right, its Y -coordinate and hence C2 is also unchanged. Therefore, ¬(C1 ∧C2)
remains true after the move.

3) It follows from 1) that the tail remains invariant throughout phase 1. Clearly, after
a finite number of moves by the tail towards right, both C3 and C4 will become true.

4) Follows from 2) and 3). ut

4.2 Phase 2
The algorithm is in phase 2, when either C3∧C4∧¬C5∧¬C7 or¬C2∧C3∧C4∧¬C5∧C7
is true. Our aim is to take the head to the origin. Hence, in this phase, the head will move
down towards the origin.

Theorem 3. If we have an asymmetric configuration C in phase 2 at some time t, then

1. after one move by the head downwards, the new configuration is still asymmetric
and the coordinate system is unchanged.

2. after finite number of moves by the head, C5 becomes true.
3. after finite number of moves by the head, phase 2 completes with C3∧C4∧C5∧¬C7

or ¬C2∧C3∧C4∧C5∧C7 true.

4.3 Phase 3
The algorithm is in phase 3, if C3∧C4∧C5∧¬C6∧¬C7 is true. In this phase, there are
two cases to consider. The robots will check if C8 is true or false. Let us first consider
the case where C8 is false. In this case, the tail will move upwards and the rest will
remain static.

Theorem 4. If we have an asymmetric configuration C in phase 3 at some time t with
C8 = false, then

1. after one move by the tail upwards, the new configuration is still asymmetric and
the coordinate system is unchanged.

2. after one move by the tail upwards, we still have C4∧C5∧¬C7 = true.
3. after finite number of moves by the tail, we shall have C3 ∧C4 ∧C5 ∧C6 ∧¬C7 =

true.

Proof. Let the smallest enclosing rectangle at time t be Rold = ABCD, with |AD|= m
and |AB|= n, n > m. Let λ old

AD be the lexicographically largest string.
Case 1 : Suppose the smallest enclosing rectangle remains unchanged after the

move, i.e., Rnew = ABCD. Since C4∧C5 is true, it is easy to see that λ new
AD > λ new

BC and
λ new

AD > λ new
CB . Finally, λ new

AD > λ new
DA follows from the fact that C4∧C5∧¬C8 is true. To

see this, note that n ≥ 2H as C4 is true. This implies that the first p = mb n
2c terms of

both λ old
AD and λ old

DA contains all terms corresponding to the robots in C ′. Since C8 is
false, we must have λ old

AD |p > λ old
DA |p , and hence λ new

AD |p > λ new
DA |p . So, λ new

AD > λ new
DA .

Case 2 : Suppose that the tail is at C at time t, and after a move upwards, we
have Rnew = ABC′D′, |AD′| = m+ 1. Since n ≥ m+ 2⇒ n > m+ 1 ⇒ |AB| > |AD′|,
the smallest enclosing rectangle is still not a square. This implies that we still need to
consider only four binary strings and it is easy to see that λAD′ is strictly largest among
them.

Therefore, we have proved 1). It is easy to see 2), i.e., C4∧C5∧¬C7 is true after the
move. However, C3 might become false after the move described in case 2. Then the
phase changes to phase 1. Since, before the move, we had C3 = true, n≥m+2 and n≥
M+2. If C3 becomes false after the move, we have n <max{M,m+1}+2⇒ n≤m+2

(as n≥M+2). Since we also have n≥m+2, we get n = m+2⇒m = n−2. If M ≤m,
after the move, C6 becomes true as m+1 ≥ V +1 and m+1 ≥M +1. If m < M, then
n−2 < M⇒ n < M+2, a contradiction. Therefore, after the move, we have C6 = true,
i.e., we have ¬C3 ∧C4 ∧C5 ∧C6 ∧¬C7 = true. So we are in phase 1, and the tail will
move rightwards. After one rightwards move, we shall have C3∧C4∧C5∧C6∧¬C7 =
true. ut

D C

BA

E

D′

B′

C′ r

L

(a) Case 1

D = D′

BA

C

E

B′

C′

r

L

(b) Case 2

Fig. 4: Illustration of phase 3 with C8 = true.

Now assume that C8 is true, i.e., C ′ has a non-trivial reflectional symmetry with
respect to a horizontal line L. Again, let the smallest enclosing rectangle be Rold =
ABCD, with |AD| = m and |AB| = n, n > m. Let λ old

AD be the lexicographically largest
string. Let E be the point of BC where it intersects with L. Let the smallest enclosing
rectangle of C ′ be R ′ = AB′C′D′. There are two cases to consider: D 6= D′ (Case 1) and
D = D′ (Case 2).

Case 1: See Fig.4a. In this case, the tail r will move upwards. Clearly, after finite
number of moves by the tail C6 = true is achieved. However, C3 may become false, but
is recovered after one move rightwards as explained previously.

Case 2: See Fig.4b. Since the configuration is asymmetric and λ old
AD is the largest

string, the tail r must be in [B,E). In this case, r will move downwards. When r goes
below B, the coordinate system flips. The new coordinate system has origin at D, X-axis
=
−→
DC and Y -axis =

−→
DA. Clearly, the case is reduced to the situation similar to case 1.

Theorem 5. If we have an asymmetric configuration C in phase 3 at some time t with
C8 true, then after finite number of moves by the tail, we have C3∧C4∧C5∧C6∧¬C7 =
true.

4.4 Phase 4
If the configuration satisfies C3 ∧C4 ∧C5 ∧C6 ∧¬C7 = true, then the algorithm is in
phase 4. In this phase, the head and the tail will remain static. Let F be the subgrid
of R of size (m− 1)×b n

2c with coinciding bottom-left corners (See Fig. 5). F can
be considered as a finite line segment L as shown in Fig. 5. The interior robots will
execute the protocol PFONPATH() on L to achieve C ′′ = C ′′target , i.e., C7 = true.

r1

r2

D C

BA

Fig. 5: A configuration in phase 4.

Theorem 6. If we have an asymmetric configuration C at some time t, with C3∧C4∧
C5∧C6∧¬C7 = true, then

1. after any move by an interior robot according to PFONPATH(), the new configura-
tion is still asymmetric and the coordinate system is unchanged.

2. after any move by an interior robot according to PFONPATH(), we still have C3∧
C4∧C5∧C6 = true.

3. after finite number of moves by the interior robots, we shall have C7 = true.
4. after finite number of moves by the interior robots, Phase 4 completes with C3 ∧

C4∧C5∧C6∧C7 = true.

Proof. It is easy to see that C3∧C4∧C5∧C6 is true after any move. Let Rold =Rnew =
ABCD. Let λ old

AD be the lexicographically largest string in Rold . C5 = true implies that
A is occupied. C4∧C6 = true implies that B,D are empty and C is occupied by the tail.
Hence, λ new

AD > λ new
BC and λ new

AD > λ new
DA . Also, it implies from C4 = true that λ new

AD > λ new
CB .

The rest are easily seen. ut

4.5 Phase 5
The algorithm is in phase 5, if ¬C2∧C3∧C4∧C5∧C7 is true. In this phase, the tail will
move along the vertical grid line in order to make C2 true.

If we have an asymmetric configuration C which is in phase 5, then depending on
whether C8 is true or false, there are two cases to consider.

Let the smallest enclosing rectangle of C be R = ABCD, with |AD|= m and |AB|=
n, n>m. Let A be the leading corner, and hence X-axis =

−→
AB and Y -axis =

−→
AD. Now, let

us plot the points of Ctarget in this coordinate system. Except htarget and ttarget , all other

points of Ctarget are occupied by the robots. Let the smallest enclosing rectangle of C ′

be R ′ = AB′C′D′ (See Fig. 6). Hence, the tail is currently on BC, and all the remaining
robots are inside the region AB′C′D′.

Case-1 First, assume that C8 is true. Since the head is at A, D′ is also occupied due
to the symmetry. Let C′′ be the grid point where the grid lines

←−→
D′C′ and

←→
BC intersect.

Let C′′′ be the middle point of BC′′. C′′′ is a grid point if |BC′′| is odd. If the tail is on
BC′′, then C = C′′ and D = D′. Note that the tail can not be on [C′′′,C′′], because then
we shall have λDA ≥ λAD. Hence, the tail is on [B,C′′′) or (C′′,∞).

In this phase, we want to make C2 true. This means that the tail needs to go to the
grid point on

←→
BC′′ that is on the same horizontal line with ttarget . Let us call this point

t̃target . Consider the case where t̃target ∈ [B,C′′]. In this case, the upper left corner of the
smallest enclosing rectangle of Ctarget is D′, which is occupied by a robot. Since the
input is given in canonical coordinates, the bottom left corner (origin) of the smallest
enclosing rectangle of Ctarget , i.e., A, must be the leading corner. Therefore, A must
be occupied in the final configuration. Since A is already occupied, it implies that C1
is currently true. Also note that t̃target /∈ (C′′′,C′′], as A is the leading corner in Ctarget .
Hence, t̃target is on [B,C′′′] or (C′′,∞).

Case 1A: tail ∈ [B,C′′′)∈ [B,C′′′)∈ [B,C′′′) and t̃target ∈ [B,C′′′]t̃target ∈ [B,C′′′]t̃target ∈ [B,C′′′]

The tail will move towards t̃target . During the movements, the coordinate system
remains invariant. However, if t̃target is at C′′′, a horizontal symmetry will be created
when it reaches t̃target .

Case 1B: tail ∈ (C′′,∞)∈ (C′′,∞)∈ (C′′,∞) and t̃target ∈ (C′′,∞)t̃target ∈ (C′′,∞)t̃target ∈ (C′′,∞)

The tail will move towards t̃target . Again it is easy to see that the coordinate system
remains invariant during the movements.

Case 1C: tail ∈ (C′′,∞)∈ (C′′,∞)∈ (C′′,∞) and t̃target ∈ [B,C′′′]t̃target ∈ [B,C′′′]t̃target ∈ [B,C′′′]

In this case, the tail will move downwards. When r reaches C′′, the coordinate sys-
tem flips. The new coordinate system has origin at D′, X-axis =

−−→
D′C′′ and Y -axis =

−−→
D′A.

In the new coordinate system, r requires to place itself in [C′′,C′′′]. Hence, the case is
reduced to the situation similar to case 1A. Thus r achieves C2 = true without going
beneath C′′′.

Case 1D: tail ∈ [B,C′′′)∈ [B,C′′′)∈ [B,C′′′) and t̃target ∈ (C′′,∞)t̃target ∈ (C′′,∞)t̃target ∈ (C′′,∞)

In this case, the tail will move downwards. When r goes beneath B, the coordinate
system flips. The new coordinate system has origin at D′, X-axis =

−−→
D′C′′ and Y -axis

=
−−→
D′A. Clearly, the case is reduced to the situation similar to case 1B.

Case-2 Now assume that C8 is false. It is easy to see that where ever t̃target is on
←→
BC, the binary string attached to A is lexicographically strictly largest as the tail moves
towards it. Hence, the movement of the tail in phase 5 does not change the coordi-
nate system. Clearly, after finite number of moves, C2 becomes true. Then phase 5 is
completed with C2∧C3∧C4∧C5∧C7 true.

Theorem 7. If we have an asymmetric configuration C in phase 5 at some time t, then
after finite number of steps phase 5 completes with C2∧C3∧C4∧C5∧C7 = true.

D C

BA

C′′

C′′′

D′

B′

C′

r

Fig. 6: Illustration of case 1 of phase 5.

4.6 Phase 6

If we have ¬C1∧C2∧C3∧C4∧C7 = true, then the algorithm is in phase 6. In this case,
the head will move towards htarget .

D C

BA B′

C′

TT ′
H ′

H

Fig. 7: Illustration of phase 6.

Consider an asymmetric configuration C which is in phase 6. Let ABCD be the
smallest enclosing rectangle, with λAD being the (strictly) largest string. Let H and
T be the position of the head and the tail respectively. H and T are clearly on AD
and BC respectively. Plot the points of Ctarget on the grid with respect to the current
coordinate system (X-axis =

−→
AB and Y -axis =

−→
AD). The smallest enclosing rectangle

of these points is AB′C′D (See Fig. 7). Let H ′ and T ′ be the points htarget and ttarget .
Therefore, if the head moves from H to H ′ and the tail moves from T to T ′, then the
given pattern is formed. H ′ and T ′ are clearly on AD and B′C′ respectively, with T and
T ′ being on the same horizontal line.

The aim of this phase is to move the head from H to H ′. Let Ch be the configuration
obtained from C , if the the head moves from H to H ′. Since the input is given in
canonical coordinates, λAD is the lexicographically largest string in Ctarget . This implies
that λAD is lexicographically largest in Ch. Recall that, λAD may not be strictly largest, as
Ctarget may have some symmetries. In particular, if Ctarget has a reflectional symmetry
with respect to a horizontal axis, then Ch also has the same. Then λAD and λDA are
both lexicographically largest in Ch. In any case, as the head moves from H to H ′, λAD
remains lexicographically strictly largest until it reaches H ′.

Theorem 8. Let C be an asymmetric configuration in phase 6. Then after finite number
of moves by the head, phase 6 completes with C1 ∧C2 ∧C3 ∧C4 = true, and hence,
¬C0∧C1∧C2 = true. The final configuration has a horizontal reflectional symmetry, if
Ctarget also has the same.

4.7 Phase 7

Finally, the algorithm is in phase 7 if we have ¬C0∧C1∧C2 = true. Suppose that the tail
is at T ′. The tail will move horizontally towards T = ttarget . Note that a configuration
C in phase 7 can have a reflectional symmetry with respect to a horizontal axis. Let
λAD be a largest string in the configuration. Since λAD is also a largest string in the final
configuration, it is easy to see that, when the tail is moving from T ′ to T , λAD remains
the largest string (may be jointly with λDA) until it reaches T .

Theorem 9. If we have a configuration C at some time t, with ¬C0 ∧C1 ∧C2 = true,
then after finite number of moves by the tail, C0 becomes true.

It is not difficult to verify (See Appendix) that any configuration with C0 = false,
belongs to one of the seven phases that we have discussed. From the results we have
proved, it follows that starting from any asymmetric configuration, our algorithm can
form any given pattern in finite time (See Appendix for a phase transition diagram of
our proposed algorithm). Hence, we can conclude the following theorem.

Theorem 10. ARBITRARY PATTERN FORMATION is solvable in ASYNC from any
asymmetric initial configuration.

5 Concluding Remarks

We have proved that any arbitrary pattern is formable by a set of asynchronous robots if
the initial configuration is asymmetric. The immediate course of future research would
be to characterize the patterns formable from symmetric configurations. It can be proved
that if a configuration C admits symmetry ϕ such that no robot lies on the axis of
reflection or the center of rotation, then any configuration formable from C necessarily
has the same symmetry ϕ . This is however not true, if the axis of reflection or the center
of rotation contains a robot r. The symmetry may be broken by asking the robot r to
move. However, this is not straightforward especially in a crowded situation. It would be
also interesting to consider randomized algorithms. Another direction of future research
would be to extend our work for patterns allowing multiplicities.

Acknowledgements. The first three authors are supported by NBHM, DAE, Govt. of
India, CSIR, Govt. of India and UGC, Govt. of India respectively. We would like to
thank the anonymous reviewers for their valuable comments which helped us improve
the quality and presentation of this paper.

References
1. Adhikary, R., Bose, K., Kundu, M.K., Sau, B.: Mutual visibility by asynchronous robots on

infinite grid. In: 14th International Symposium on Algorithms and Experiments for Wireless
Networks (ALGOSENSORS 2018), 23-24 August 2018, Helsinki, Finland ((Forthcoming))

2. Bramas, Q., Tixeuil, S.: Brief announcement: Probabilistic asynchronous arbitrary pattern
formation. In: Proceedings of the 2016 ACM Symposium on Principles of Distributed
Computing, PODC 2016, Chicago, IL, USA, July 25-28, 2016. pp. 443–445 (2016), doi:
10.1145/2933057.2933074

3. Cicerone, S., Di Stefano, G., Navarra, A.: Asynchronous arbitrary pattern formation: the
effects of a rigorous approach. Distributed Computing pp. 1–42 (2018), doi: 10.1007/
s00446-018-0325-7

4. Cicerone, S., Di Stefano, G., Navarra, A.: Embedded pattern formation by asyn-
chronous robots without chirality. Distributed Computing pp. 1–25 (2018), doi: 10.1007/
s00446-018-0333-7

5. Das, S., Flocchini, P., Santoro, N., Yamashita, M.: Forming sequences of geometric patterns
with oblivious mobile robots. Distributed Computing 28(2), 131–145 (2015), doi: 10.1007/
s00446-014-0220-9

6. Dieudonné, Y., Petit, F., Villain, V.: Leader election problem versus pattern formation prob-
lem. CoRR abs/0902.2851 (2009), http://arxiv.org/abs/0902.2851

7. Dieudonné, Y., Petit, F., Villain, V.: Leader election problem versus pattern formation
problem. In: Distributed Computing, 24th International Symposium, DISC 2010, Cam-
bridge, MA, USA, September 13-15, 2010. Proceedings. pp. 267–281 (2010), doi: 10.1007/
978-3-642-15763-9 26

8. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation by asyn-
chronous, anonymous, oblivious robots. Theor. Comput. Sci. 407(1-3), 412–447 (2008), doi:
10.1016/j.tcs.2008.07.026

9. Fujinaga, N., Yamauchi, Y., Ono, H., Kijima, S., Yamashita, M.: Pattern formation by
oblivious asynchronous mobile robots. SIAM J. Comput. 44(3), 740–785 (2015), doi:
10.1137/140958682

10. Lukovszki, T., Meyer auf der Heide, F.: Fast collisionless pattern formation by anonymous,
position-aware robots. In: Principles of Distributed Systems - 18th International Conference,
OPODIS 2014, Cortina d’Ampezzo, Italy, December 16-19, 2014. Proceedings. pp. 248–262
(2014), doi: 10.1007/978-3-319-14472-6 17

11. Stefano, G.D., Navarra, A.: Gathering of oblivious robots on infinite grids with minimum
traveled distance. Inf. Comput. 254, 377–391 (2017), doi: 10.1016/j.ic.2016.09.004

12. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots. In: SIROCCO’96, The 3rd
International Colloquium on Structural Information & Communication Complexity, Siena,
Italy, June 6-8, 1996. pp. 313–330 (1996)

13. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of geometric
patterns. SIAM J. Comput. 28(4), 1347–1363 (1999), doi: 10.1137/S009753979628292X

14. Yamauchi, Y., Yamashita, M.: Pattern formation by mobile robots with limited visibility.
In: Structural Information and Communication Complexity - 20th International Colloquium,
SIROCCO 2013, Ischia, Italy, July 1-3, 2013, Revised Selected Papers. pp. 201–212 (2013),
doi: 10.1007/978-3-319-03578-9 17

15. Yamauchi, Y., Yamashita, M.: Randomized pattern formation algorithm for asynchronous
oblivious mobile robots. In: Distributed Computing - 28th International Symposium, DISC
2014, Austin, TX, USA, October 12-15, 2014. Proceedings. pp. 137–151 (2014), doi: 10.
1007/978-3-662-45174-8 10

10.1145/2933057.2933074
10.1007/s00446-018-0325-7
10.1007/s00446-018-0325-7
10.1007/s00446-018-0333-7
10.1007/s00446-018-0333-7
10.1007/s00446-014-0220-9
10.1007/s00446-014-0220-9
http://arxiv.org/abs/0902.2851
10.1007/978-3-642-15763-9_26
10.1007/978-3-642-15763-9_26
10.1016/j.tcs.2008.07.026
10.1137/140958682
10.1007/978-3-319-14472-6_17
10.1016/j.ic.2016.09.004
10.1137/S009753979628292X
10.1007/978-3-319-03578-9_17
10.1007/978-3-662-45174-8_10
10.1007/978-3-662-45174-8_10

Appendix

A Different Phases of the Main Algorithm
From the following tree, it can be easily seen that any configuration with C0 = false
belongs to one of the seven phases described in the algorithm. It is also evident that the
phases are mutually disjoint.

¬C0

¬C0∧C1∧C2
(Phase 7)

¬C0∧¬(C1∧C2)
⇔¬(C1∧C2)

¬(C1∧C2)∧C3∧C4

¬(C1∧C2)∧C3∧C4∧C7

¬C2∧C3∧C4∧C7

¬C2∧C3∧C4∧C5∧C7
(Phase 5)

¬C2∧C3∧C4∧¬C5∧C7
(Phase 2)

¬C1∧C2∧C3∧C4∧C7
(Phase 6)

¬(C1∧C2)∧C3∧C4∧¬C7
⇔C3∧C4∧¬C7

C3∧C4∧C5∧¬C7

C3∧C4∧C5∧C6∧¬C7
(Phase 4)

C3∧C4∧C5∧¬C6∧¬C7
(Phase 3)

C3∧C4∧¬C5∧¬C7
(Phase 2)

¬(C1∧C2)∧¬(C3∧C4)
(Phase 1)

B Phase Transition Diagram of the Main Algorithm
A general scheme of transition between different phases of the algorithm is shown in
the following diagram. Observe that the only cycle in the graph is the one involving
phase 1 and phase 3. It has been shown in the proof of Theorem 4 that this does not
create a livelock. Clearly, starting from any phase, the algorithm terminates with C0 =
true.

Phase1

Phase2

Phase3

Phase4

Phase5

Phase6

Phase7

C0

	Arbitrary Pattern Formation on Infinite Grid by Asynchronous Oblivious Robots
	1 Introduction
	1.1 Motivation
	1.2 Earlier Works

	2 Model and Definition
	2.1 The Model
	2.2 Basic Geometric Definitions
	2.3 The Arbitrary Pattern Formation Problem

	3 Pattern Formation on a Finite Grid
	4 The Main Algorithm
	4.1 Phase 1
	4.2 Phase 2
	4.3 Phase 3
	4.4 Phase 4
	4.5 Phase 5
	4.6 Phase 6
	4.7 Phase 7

	5 Concluding Remarks
	A Different Phases of the Main Algorithm
	B Phase Transition Diagram of the Main Algorithm

