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Abstract

We provide a formal treatment of security of digital signatures against subversion attacks
(SAs). Our model of subversion generalizes previous work in several directions, and is
inspired by the proliferation of software attacks (e.g., malware and buffer overflow attacks),
and by the recent revelations of Edward Snowden about intelligence agencies trying to
surreptitiously sabotage cryptographic algorithms. The main security requirement we put
forward demands that a signature scheme should remain unforgeable even in the presence
of an attacker applying SAs (within a certain class of allowed attacks) in a fully-adaptive
and continuous fashion. Previous notions—e.g., the notion of security against algorithm-
substitution attacks introduced by Bellare et al. (CRYPTO ’14) for symmetric encryption—
were non-adaptive and non-continuous.

In this vein, we show both positive and negative results for the goal of constructing
subversion-resilient signature schemes.

� Negative results. We show that a broad class of randomized signature schemes is
insecure against stateful SAs, even if using just a single bit of randomness. On the
other hand, we establish that signature schemes with enough min-entropy are insecure
against stateless SAs. The attacks we design are undetectable to the end-users (even
if they know the signing key).

� Positive results. We complement the above negative results by showing that signa-
ture schemes with unique signatures are subversion-resilient against all attacks that
meet a basic undetectability requirement. A similar result was shown by Bellare et al.
for symmetric encryption, who proved the necessity to rely on stateful schemes; in con-
trast unique signatures are stateless, and in fact they are among the fastest and most
established digital signatures available. As our second positive result, we show how to
construct subversion-resilient identification schemes from subversion-resilient signature
schemes. We finally show that it is possible to devise signature schemes secure against
arbitrary tampering with the computation, by making use of an un-tamperable cryp-
tographic reverse firewall (Mironov and Stephens-Davidowitz, EUROCRYPT ’15), i.e.,
an algorithm that “sanitizes” any signature given as input (using only public informa-
tion). The firewall we design allows us to successfully protect so-called re-randomizable
signature schemes (which include unique signatures as a special case).

As an additional contribution, we extend our model to consider multiple users and show
implications and separations among the various notions we introduced. While our study is
mainly theoretical, due to its strong practical motivation, we believe that our results have
important implications in practice and might influence the way digital signature schemes
are selected or adopted in standards and protocols.
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1 Introduction

Balancing national security interests with the rights to privacy of lawful citizen is always a
daunting task. It has been particularly so in the last few years, after the revelations of Edward
Snowden [PLS13, BBG13, Gre14] that have evidenced a massive collection of metadata and
other information perpetrated by several intelligence agencies. It is now clear that intelligence
operators were not just interested in collecting and mining information, but they also actively
deployed malware, exploited zero-day vulnerabilities, and carried out active attacks against
standard protocols. In addition, it appears some cryptographic protocol specifications were
modified to embed backdoors. Whether this activity was effective is open to debate, and
it is indeed being furiously discussed among policy makers, the public, and the intelligence
community.

The ability of an adversary to replace a cryptographic algorithm with an altered version was
first considered formally by Young and Yung (extending previous works of Simmons on sublim-
inal channels [Sim83, Sim84]), who termed this field kleptography [YY96, YY97]. The idea is
that the attacker surreptitiously modifies a cryptographic scheme with the intent of subverting
its security. This research area has recently been revitalized by Bellare et al. [BPR14], who
considered encryption algorithms with the possibility of mass surveillance under the algorithm-
substitution attack. They analyzed the possibility of an intelligence agency substituting an
encryption algorithm with the code of an alternative version that undetectably reveals the se-
cret key or the plaintext. What they uncovered is that any randomized and stateless encryption
scheme would fall to generic algorithm-substitution attacks. The only way to achieve a meaning-
ful security guarantee (CPA-security) is to use a nonce-based encryption that must keep state.
Clearly, stateless schemes are preferable as they are easier to deploy effectively, and indeed,
most of the deployed encryption algorithms are in this class.

In this paper we analyze digital signature schemes under the so-called subversion attacks
(SAs), that in particular include algorithm-substitution and kleptographic attacks as a special
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case, but additionally cover more general malware and virus attacks (see below). Unlike en-
cryption, we show positive results and truly efficient schemes that provide the strongest security
guarantee, and can thus be deployed within real systems. We stress that our intention is not
to propose schemes that can be abused by criminals to avoid monitoring. We are motivated by
pure scientific curiosity, and aspire to contribute to an active field of research.

1.1 Our Results and Techniques

We introduce a new and generic framework and definitions for subversion of digital signatures.
In the standard black-box setting, a signature scheme should remain unforgeable even against
an adversary able to obtain signatures on (polynomially many) chosen messages. Our security
definitions empower the adversary with the ability of continuously subverting the signing algo-
rithm within a class A of allowed SAs. For each chosen subversion in the class, the adversary
can access an oracle that answers (polynomially many) signature queries, using the subverted
signature algorithm. Importantly, the different subversions can be chosen in a fully adaptive
manner, possibly depending on the target verification key of the user.

The above definition is very general, as it covers adaptive and continuous tampering with the
computation performed by the signing algorithm (within the class A). In particular, it includes
algorithm-substitution and kleptographic attacks as a special case, but additionally models,
e.g., a machine running a signature software infected by multiple viruses and malware (e.g.,
due to buffer overflow attacks [One96, Fry00, PB04]); we also obtain memory and randomness
tampering (see Section 1.3) as a special case. We refer the reader to Section 3.1 (where we
introduce our model formally) for a more comprehensive discussion.

Clearly, without making any restriction on the class A (or without making additional as-
sumptions) there is no hope for security: An arbitrarily subverted signature algorithm could,
for instance, just ignore all inputs and output the secret key. In this paper we investigate two
approaches to tackle attacks of this sort and obtain positive results.

� Limiting the adversarial power. We consider a setting where the adversarial goal is to
subvert the signature algorithm in a way that is undetectable to the end-user (or at least
allows to maintain plausible deniability). For instance, the simple attack above—where
the subversion outputs the secret key—is easily detectable given only public informa-
tion. As we show in Section 5, requiring that the class A satisfies a basic undetectability
requirement already allows for interesting positive results.

� Using a reverse firewall. In Section 6, we show that security against arbitrary tam-
pering with the computation can be achieved, by making the additional assumption of an
un-tamperable cryptographic reverse firewall (RF) [MS15, DMS16]. Roughly, a RF takes
as input a message/signature pair, and is allowed to “sanitize” the input signature using
only public information.

A more detailed description of our techniques follows.

Negative results. We define what it means for a class A of SAs to be undetectable. Roughly,
this means that there exists a single efficient sampling strategy yielding an algorithm Ã from
the class A such that the following holds: (i) no user can distinguish black-box access to the
genuine signature algorithm from black-box access to the subverted signature algorithm Ã; (ii) an
adversary given a polynomial number of samples from Ã, no matter how the samples are chosen,
can recover the signing key with high probability. See Section 3.2 for a precise definition. Our
definitions of undetectability are similar in spirit to the ones put forward by [BPR14, BJK15]
for the setting of symmetric encryption. Importantly, we distinguish the case where the user
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(trying to detect the attack) knows only public or private information (i.e., it knows, or even is
allowed to choose, the secret key).1

Next, we explore the possibility of designing classes of SAs that are (even secretly) unde-
tectable, and yet allow for complete security breaches. This direction was already pursued by
Bellare et al. [BPR14], who showed that it is possible to stealthily bias the random coins of
sufficiently randomized symmetric encryption schemes in a way that allows to extract the secret
key after observing a sufficient number of (subverted) ciphertexts. As a first negative result,
we explain how to adapt the “biased randomness attack” of [BJK15] to the case of signature
schemes; similar to [BJK15], our attack is completly stateless (i.e., the class of SAs we consider
does not need to maintain a state across invocations), which makes it undetectable even in the
presence of state resets.

The above generic attack requires that the signature scheme uses a minimal amount of
randomness. This leaves the interesting possibility that less randomized schemes (such as the
Katz-Wang signature scheme [KW03], using only one bit of randomness) might be secure. In
Section 4, we present a new attack showing that this possibility is vacuous: Our attack allows to
stealthily bias the randomness in a way that later allows to extract the signing key—regardless
of the number of random bits required by the scheme—assuming that the targeted signature
scheme is coin-extractable. The latter roughly means that the random coins used for generating
signatures can be extracted efficiently from the signature itself; as we discuss in more detail in
Section 4.2, many real schemes (including Katz-Wang) are coin-extractable.

Our second attack is stateful, in that a counter has to be maintained by the subverted
algorithm in order to leak different parts of the secret key. We leave it as an open problem
to design a stateless attack that works for (coin-extractable) signature schemes with small
randomness.

Positive results. As a first positive result, we show that fully deterministic schemes with
unique2 signatures are existentially unforgeable under chosen-message attacks against the class
of SAs that satisfies the so-called verifiability condition.3 This means that—for all values in
the message space—signatures produced by the subverted signature algorithm should (almost
always) verify correctly under the target verification key (note that both attacks mentioned
above fall into this category).

The above fact is reminiscent of the main positive result in [BPR14], who also showed
that stateful symmetric encryption schemes with unique ciphertexts remain CPA-secure in the
presence of one-time SAs that satisfy a similar “decryptability condition.” Unique ciphertexts
here means that, for any given key, message, associated data and state, there exists at most
one ciphertext that the receiver will decrypt to the message in question. The main difference
between the two results is that, for the case of signatures, we achieve security against adaptive
and continuous attacks, without the need of keeping any state.

Clearly, the assumption that the verifiability condition should hold for all messages is quite
a strong one. Hence, we also relax the verifiability condition to hold for all but a negligible
fraction of the messages. However, we are not able to prove that unique signatures achieve
existential unforgeability under chosen-message attacks against the class of SAs that satisfies

1As we show, secret and public undetectability are not equivalent, in that there exist natural classes of SAs
that are publicly undetectable but secretly detectable.

2A signature scheme is unique if for an honestly generated verification key there is a single valid signature for
each message.

3One might ask whether a similar result holds for all deterministic schemes where signatures are not unique;
the answer to this question is negative as our attacks also apply to certain types of deterministic schemes (e.g.,
de-randomized schemes—see the proof of Theorem 9 in Section 7.2).
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relaxed verifiability.4 Instead, as our second positive result, we show that unique signatures
are existentially unforgeable under random-message attacks (where the adversary can only see
potentially subverted signatures of random messages) against the class of SAs that satisfies
relaxed verifiability. Interestingly, this weaker security flavor is still useful for applications, e.g.
to construct subversion-resilient identification schemes.

As our third positive result, we provide a way to achieve the ambitious goal of protecting
signature schemes against arbitrary SAs, relying on a cryptographic reverse firewall. The latter
primitive was introduced in [MS15] (see also [DMS16]) to model security of arbitrary two-party
protocols run on machines possibly corrupted by a virus. On a high level, a RF for a signature
scheme is an algorithm taking as input a message/signature pair (m,σ), some public state, and
outputting a “patched” signature (m,σ′); the initial state of the firewall is typically a function of
the verification key vk . A good RF should maintain functionality, meaning that, whenever the
input is a valid message/signature pair, the patched signature (almost always) verifies correctly
under the target verification key. Moreover, we would like the firewall to preserve unforgeability;
this means that patched signatures (corresponding to signatures generated via the subverted
signing algorithm) should not help an adversary to forge on a fresh message.

We prove that every signature scheme that is re-randomizable (as defined in [HJK12]) admits
a RF that preserves unforgeability against arbitrary SAs. Re-randomizable signatures admit
an efficient algorithm ReRand that takes as input a tuple (m,σ, vk) and outputs a signature
σ′ that is distributed identically to a freshly generated signature on m under signing key sk
(corresponding to vk); unique signatures, for instance, are re-randomizable. Upon input a pair
(m,σ), our firewall uses the public state to verify (m,σ) is valid under vk , and, in case the
test passes, it runs ReRand on (m,σ) and outputs the result. Otherwise, the firewall simply
returns an invalid symbol ⊥ and self-destructs, i.e., it stops processing any further query.5 The
latter is a requirement that we prove to be unavoidable: No RF can at the same time main-
tain functionality and preserve unforgeability of a signature scheme without the self-destruct
capability.

We remark that our results and techniques for the setting of RFs are incomparable to
the ones in [MS15]. The main result of Mironov and Stephens-Davidowitz is a compiler that
takes as input an arbitrary two-party protocol and outputs a (different) protocol that admits
a RF preserving functionality and preventing leakage to an eavesdropper. Instead, we model
directly security of RFs for signatures schemes in the game-based setting; while our goal is
more restricted (in that we only design RFs for signatures), our approach results in much more
efficient and practical solutions.

Multi-user setting. Our discussion so far considered only a single user. In Section 7, we
discuss how our models and results can be extended to the important (and practically relevant)
multi-user scenario. In particular, similarly to [BPR14], we generalize our undetectability and
security notions to a setting with u ≥ 1 users, where each user has a different signing/verification
key.

As we argue, security in the single-user setting already implies security in the multi-user
setting (by a standard hybrid argument), and the same holds for secret undetectablity in case
of stateless subversion.6 This does not hold for public undetectability though, as there exist

4In fact, as shown recently by Degabriele et al. [DFP15] for the case of symmetric encryption, it is not hard to
show that such limitation is inherent: No (even deterministic) scheme can achieve security under chosen-message
attacks against the class of SAs that meets relaxed verifiability. See Section 1.3 for more details.

5This can be implemented, for instance, by having the public state include a single one-time writable bit used
to signal a self-destruct took place.

6A previous version of this paper [AMV15] considered a weaker flavour of secret undetectability that does not
immediately generalize to the multi-user setting.
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classes of SAs that are publicly undetectable by a single user but can be efficiently publicly
detected by more than one user, as shown in Theorem 9 (iii).

1.2 Impact

Our study has strong implications in practice, and might influence the way digital signature
schemes are selected or adopted in standards and protocols. A subverted signature scheme is,
arguably, even more deceitful and dangerous in practice than subverted encryption. Indeed,
public-key cryptography typically involves digital certificates that are signed by Certification
Authorities (CAs). If a CA is using a subverted signature scheme, it is reasonable to expect
the signing key will eventually be exposed. With knowledge of the signing key, it is possible to
impersonate any user and carry out elementary man-in-the-middle attacks. This renders the
use of any type of encryption utterly pointless, and underlines the important role played by
signatures in the context of secure communications.

Unfortunately, signature schemes currently employed to sign digital certificates, or used in
protocols such as OTR, TLS/SSL, SSH, etc., are all susceptible to subversion attacks, and as
such they should be used with caution. The positive news, however, is that there already exist
signature schemes that are subversion-resilient, and they are very efficient and well established.

1.3 Related Work

Sabotage of cryptographic primitives, before and during their deployment, has been the focus
of extensive research over the past years. We briefly review the main results below, and refer
the reader to [SFKR15] for a taxonomy of these (and more) types of attacks.

Subliminal channels. Remarkably, digital signatures were the first cryptographic primitive
used to create a subliminal channel in order to solve Simmons’ “Prisoners’ Problem” [Sim83]:
By agreeing on a partition of the secret keys into two sets (one set for “0” and the other
set for “1”), two prisoners can communicate confidentially over an insecure channel, without
being detected by the warden which knows all keys and reads the entire communication. Later
work [Sim84, Sim85, Sim93, Sim94, AVPN96, Sim98] showed that several digital signature
schemes, and even natural ones, such as the Digital Signature Algorithm [Sim93, AVPN96],
admit subliminal channels.

After their introduction, the potential of subliminal channels has been explored in other
settings beyond digital signatures (e.g., [Des88a, Des88b, BDI+99]); this line of research led, for
instance, to the concept of divertible protocols, that are intimately related to reverse firewalls.

Backdoored implementations. The setting of backdoored implementations includes, in
particular, the realm of kleptography and SETUP attacks (see [YY04] for a survey). Dodis et
al. [DGG+15] provide a formal treatment of backdoored pseudorandom generators (building on
previous work of Vazirani and Vazirani [VV83]); their work has been extended in [DPSW16]
to the setting of robust pseudorandom generators with inputs. Subversion of pseudorandom
generators is of particular importance, given the potential sabotage of the NIST Dual EC
PRG [NIS07]. The problem of parameters subversion has also been considered in the context
of zero-knowledge proofs [BFS16], and public-key encryption [ABK18].

Bellare and Hoang [BH15] tackle the question of SAs in the setting of public-key encryption
(PKE). In particular, they give a standard model construction of an IND-secure7 determinis-

7In the context of deterministic PKE, IND security captures the best possible privacy in terms of semantic
security in the presence of unpredictable messages (that do not depend on the public key).
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tic PKE [BFOR08]—although leveraging strong tools such as universal computational extrac-
tors [BHK13] and lossy trapdoor functions [PW11]—and show a generic transformation from
any such PKE to a unique-ciphertext PKE, which in turn achieves IND-security against the
class of one-time SAs meeting the decryptability condition.

Russell et al. [RTYZ16, RTYZ17, RTYZ18] consider the setting of complete subversion,
where all algorithms (including, for instance, the key generation algorithm) are subject to
kleptographic attacks, and show how to build (trapdoor) one-way permutations, pseudorandom
generators, digital signatures, and chosen-plaintext secure encryption in this model, by relying
on the random oracle methodology [BR96].

Input-triggered subversions. Degabriele, Farshim, and Poettering (DFP) [DFP15] pointed
out some shortcomings of the Bellare-Patterson-Rogaway (BPR) [BPR14] security model for
subversion resilience of symmetric encryption schemes. Consider the class of SAs that, upon
input a secret (trapdoor) message m̄ outputs the secret key, but otherwise behaves like the
genuine signature algorithm. Clearly this class of SAs will be undetectable by the users, as
without knowing the trapdoor, there is only a negligible chance to query the secret message m̄
and detect that the signature algorithm was subverted (at least if the message space is large
enough). Yet, an adversary mounting a chosen-message attack can recover the signing key by
asking a signature for message m̄.

As a consequence, it is impossible to prove existential unforgeability under chosen-message
attacks against such “input-triggered” subversions (in the BPR model). Note, however, that
for the case of signatures, one can still prove a positive result by restricting the adversary to
only see signatures of random messages (i.e., in case of a random-message attack). Indeed,
input-triggered subversions meet our notion of relaxed verifiability (see Section 1.1), and thus
our positive results for unique signatures apply to such case.

The solution proposed by DFP is to modify the definition of undetectability so that the ad-
versary (and not the user) specifies the input messages to the (potentially subverted) encryption
algorithm, whereas the goal of the user is to detect the attack given access to the transcript of
all queries made by the adversary (and answers to these queries). Hence, a scheme is said to
be subversion-resilient if there exists a fixed polynomial-time test algorithm such that, either a
subversion attack cannot be detected efficiently but it does not leak any useful information, or
it is possible to efficiently detect that the system was subverted.8

It is possible to make a similar change as in [DFP15] and adapt the DFP model to signature
schemes in order to achieve security under chosen-message attacks. The end result would share
some similarities with our approach using cryptographic RFs; however, our framework provides
notable advantages. First, note that the DFP model does not provide any guarantee against
SAs that are efficiently detectable, whereas our RF model explicitly accounts for the actions to
be taken after an attack is detected; this is particularly relevant for signature schemes where
our generic attack uncovered the necessity of a self-destruct capability. Second, the polynomial-
time detection test in DFP is performed directly by the user since it requires knowledge of
the secret key. This is problematic in practice, especially in cases where the user’s machine is
compromised; instead, in our framework, a cryptographic RF for a signature scheme relies only
on public information and could easily be located on an (untrusted) external proxy.

Tampering attacks. A related line of research analyzes the security of cryptosystems against
tampering attacks. Most of these works are restricted to the simpler setting of memory tam-
pering (sometimes known as related-key security), where only the secret key of a targeted cryp-

8For instance, in case of the attack outlined above, the polynomial-time test could simply decrypt the cipher-
text and check the outcome matches the input message.
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toscheme is subject to modification. By now, we know several concrete primitives that remain
secure against different classes of memory-tampering attacks, including pseudorandom func-
tions and permutations [BK03, Luc04, BC10, AFPW11, BCM11], pseudorandom generators and
hard-core predicates [GL10], hash functions [GOR11], public-key encryption [AHI11, Wee12],
and digital signatures and identification protocols [KKS11, DFMV13]. Elegant generic compil-
ers are also available, relying on so-called tamper-resilient encodings and non-malleable codes
(see, among others, [GLM+04, DPW10, LL12, FMNV14, FMVW14, ADL14, JW15, DLSZ15,
AGM+15, FMNV15, DFMV15]).

The setting of randomness tampering, where the random coins of a cryptographic algorithm
are subject to tampering, has also been considered. For instance, Austrin et al. [ACM+14]
consider so-called p-tampering attacks, that can efficiently tamper with each bit of the random
tape with probability p. In this setting, they show that some cryptographic tasks (including
commitment schemes and zero-knowledge protocols) are impossible to achieve, while other tasks
(in particular signature and identification schemes) can be securely realized.

Yet another related setting is that of tampering attacks against gates and wires in the com-
putation of a cryptographic circuit, and the design of tamper-proof circuit compilers [IPSW06,
FPV11, DK12, KT13, DK14, GIP+14].

Conference version. An abridged version of this paper appeared as [AMV15]. The cur-
rent version contains significantly revised proofs and new material, including the stateless un-
detectable attack against signature schemes with non-trivial randomness, the definition and
construction of subversion-resilient identification schemes, and a complete treatment of the
multi-user setting.

2 Preliminaries

2.1 Notation

For a string x, we denote its length by |x|; if X is a set, |X | represents the number of elements
in X . When x is chosen randomly in X , we write x←$ X . When A is an algorithm, we write
y←$ A(x) to denote a run of A on input x and output y; if A is randomized, then y is a
random variable and A(x; r) denotes a run of A on input x and randomness r. An algorithm A
is probabilistic polynomial-time (PPT) if A is randomized and for any input x, r ∈ {0, 1}∗ the
computation of A(x; r) terminates in at most poly(|x|) steps.

We denote with κ ∈ N the security parameter. A function ε : N→ [0, 1] is negligible in the
security parameter (or simply negligible) if it vanishes faster than the inverse of any polynomial
in κ, i.e. ε(κ) = κ−ω(1). We sometimes write negl(κ) to denote an unspecified negligible function
in the security parameter.

The statistical distance between two random variables A and B, defined over the same
domain D, is SD (A; B) = 1

2

∑
x∈D |P [A = x] − P [B = x]|. We rely on the following simple

lemma.

Lemma 1. Let A and B be a pair of random variables, and E be an event defined over the
probability space of A and B such that PA[E] = PB[E] = P [E]. Then,

SD (A; B) ≤ SD (A|¬E; B|¬E) + P [E].

Proof. The lemma follows by the definition of statistical distance and an application of the
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triangle inequality:

SD (A; B) =
1

2

∑
x∈D

∣∣∣∣PA [x]− P
B

[x]

∣∣∣∣
=

1

2

∑
x∈D

∣∣∣∣PA [x|E] · P
A

[E]− P
B

[x|E] · P
B

[E] + P
A

[x|¬E] · P
A

[¬E]− P
B

[x|¬E] · P
B

[¬E]

∣∣∣∣
≤ P [E] · SD (A|E; B|E) + P [¬E] · SD (A|¬E; B|¬E)

≤ SD (A|¬E; B|¬E) + P [E].

2.2 Signature Schemes

A signature scheme is a triple of polynomial algorithms SS = (KGen, Sign,Vrfy) specified as
follows: (i) KGen takes as input the security parameter κ and outputs a verification/signing
key pair (vk , sk) ∈ VK × SK, where VK := VKκ and SK := SKκ denote the sets of all
verification and secret keys produced by KGen(1κ); associated to each vk ∈ VK are a message
space M := Mvk , a randomness space R := Rvk , and a signature space Σ := Σvk . (ii) Sign
takes as input the signing key sk ∈ SK, a message m ∈ M and random coins r ∈ R, and
outputs a signature σ ∈ Σ. (iii) Vrfy takes as input the verification key vk ∈ VK and a pair
(m,σ) ∈ ({0, 1}∗)2, and outputs a decision bit that equals 1 iff σ is a valid signature for message
m under key vk .

Correctness of a signature scheme informally says that verifying honestly generated signa-
tures always9 works.

Definition 1 (Correctness of signatures). Let SS = (KGen,Sign,Vrfy) be a signature scheme.
We say that SS satisfies (perfect) correctness if for all κ ∈ N, for all (vk , sk) output by KGen(1κ),
and all m ∈M,

P [Vrfy(vk , (m,Sign(sk ,m))) = 1] = 1,

where the probability is taken over the randomness of the signing algorithm.

The standard notion of security for a signature scheme demands that no PPT adversary given
access to a signing oracle returning signatures for arbitrary messages can forge a signature on
a “fresh” message (not asked to the signing oracle).

Definition 2 (Existential unforgeability). Let SS = (KGen, Sign,Vrfy) be a signature scheme.
We say that SS is (t, q, ε)-existentially unforgeable under chosen-message attacks ((t, q, ε)-EUF-
CMA in short) if for all adversaries A running in time t it holds:

P
[
Vrfy(vk , (m∗, σ∗)) = 1 ∧m∗ 6∈ Q : (vk , sk)←$ KGen(1κ); (m∗, σ∗)←$ ASign(sk ,·)(vk)

]
≤ ε,

where Q = {m1, . . . ,mq} denotes the set of queries to the signing oracle. If for all t, q = poly(κ)
there exists ε(κ) = negl(κ) such that SS is (t, q, ε)-EUF-CMA, then we simply say SS is EUF-
CMA.

9All our results can be extended to the case where there is a negligible correctness error. Note, however, that
assuming perfect correctness is wlog. if we allow the signing algorithm to run in expected polynomial time.
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Unique signatures. For our positive results, we rely on so-called unique signatures, that we
define next. Informally, a signature scheme is unique if for any message, there is only a single
signature that verifies w.r.t. an honestly generated verification key.

Definition 3 (Uniqueness of signatures). Let SS be a signature scheme. We say that SS
satisfies uniqueness if for all κ ∈ N, for all vk output by KGen(1κ), and all m ∈M, there exists
a single value σ ∈ Σ such that Vrfy(vk , (m,σ)) = 1.

Full Domain Hash signatures using trapdoor permutations, for instance RSA-FDH [BR96],
are unique. Sometimes unique signatures are also known under the name of verifiable unpre-
dictable functions (VUFs).10 Known constructions of VUFs exist based on strong RSA [MRV99],
and on several variants of the Diffie-Hellman assumption in bilinear groups [Lys02, Dod03,
DY05, ACF14, Jag15].

2.3 Pseudorandom Generators

We say that G : {0, 1}κ → {0, 1}κ × {0, 1}d is a stateful pseudorandom generator (PRG) if G
is polynomial-time computable and d ≥ 1. A run of the PRG yields G(si−1) = (si, vi) where
s0 ∈ {0, 1}κ is the initial seed, and (si, vi) are, respectively, the seed and the output at the i-th
iteration. Security of a PRG demands that its outputs are computationally indistinguishable
from a uniform bitstring, for all efficient distinguishers.

Definition 4 (Pseudorandom generator). A function G : {0, 1}κ → {0, 1}κ×{0, 1}d is a (t, q, ε)-
secure pseudorandom generator, if for all adversaries D running in time at most t we have∣∣∣∣ P
s0←$ {0,1}κ

[D(v1, . . . , vq) = 1 : ∀i ∈ [q], G(si−1) = (si, vi)]− P
v1,...,vq ←$ Ud

[D(v1, . . . , vq) = 1]

∣∣∣∣ ≤ ε,
where Ud is the uniform distribution over d-bit strings.

2.4 Pseudorandom Functions

Let F : {0, 1}κ × X → Y be an efficient keyed function, where X and Y denote the domain
and the range of F . Denote by F the set of all functions mapping X into Y. Intuitively, a
pseudorandom function (PRF) is a function that is computationally indistinguishable from a
truly random function, for all efficient distinguishers.

Definition 5 (Pseudorandom function). A function F : {0, 1}κ × X → Y is a (t, q, ε)-secure
pseudorandom function, if for all adversaries D running in time at most t we have∣∣∣∣ P

s←$ {0,1}κ

[
DFs(·)(1κ) = 1

]
− P
f ←$ F

[
Df(·)(1κ) = 1

]∣∣∣∣ ≤ ε,
where D asks at most q queries to its oracle.

3 Subverting Signatures

We proceed to define what it means for an adversary B to subvert a signature scheme SS =
(KGen,Sign,Vrfy). We model subversion as the ability of the adversary to replace the genuine
signing algorithm with a different algorithm, within a certain class A of Subversion Attacks

10Strictly speaking, VUFs satisfy a stronger requirement—namely the uniqueness property holds even for
maliciously generated verification keys; the weak variant above is sufficient for the results of this paper.
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(SAs). A subversion of SS is a randomized algorithm Ã ∈ A taking as input a signing key
sk ∈ SK and a message m ∈ M, and outputting a subverted signature σ̃ ∈ {0, 1}∗, where
σ̃ := Ã(sk ,m; r) for r←$ {0, 1}∗.

Notice that algorithm Ã is completely arbitrary; in particular, its randomness space does not
need to be equal to the randomness space R, and the value σ̃ could be outside the range Σ of the
original signing algorithm. Moreover, algorithm Ã can hard-wire arbitrary auxiliary information
chosen by the adversary, which we sometimes denote by a string α ∈ {0, 1}∗. Finally, we also
allow algorithm Ã to be stateful, even in case the original signing algorithm is not, and we
denote the corresponding state by τ ∈ {0, 1}∗; the state is only used internally by the subverted
algorithm, and never revealed to the outside.

In Section 3.1, we define what it means for a signature scheme to be secure against a certain
class of SAs. In Section 3.2, we define what it means for a class of SAs to be undetectable by
a user. Apart from being undetectable, a SA class should successfully extract the secret key of
the underlying signature scheme, a goal that we formalize in Section 3.3. Intuitively, the last
two adversarial goals (i.e., undetectability and key recovery) must be satisfied at the same time
by a single, and efficient, sampling strategy that selects one subversion algorithm for a given
SA class; this yields a successful class of SAs, as defined in Section 3.4.

3.1 Security

We consider two security definitions, corresponding to different adversarial goals.

Indistinguishability. In the first definition, it is required that an adversary B, with the
ability to subvert the original signing algorithm polynomially many time (possibly depending
on the user’s verification key), cannot distinguish signatures produced via the genuine signing
algorithm from subverted signatures.

Definition 6 (Indistinguishability against SAs). Let SS = (KGen, Sign,Vrfy) be a signature
scheme, and A be some class of SAs for SS. We say that SS is (t, n, q, ε)-indistinguishable w.r.t
continuous A-SAs if for all adversaries B running in time t, we have

∣∣P [B wins]− 1
2

∣∣ ≤ ε(κ) in
the following game:

1. The challenger runs (vk , sk)←$ KGen(1κ), samples b←$ {0, 1}, and gives vk to B.

2. The adversary B can specify an algorithm Ãj ∈ A, for a total of at most n ∈ N queries.
Each such algorithm implicitly defines an oracle that can be queried adaptively up to
q ∈ N times.

� Upon input a query of the form (j,mi,j), where j ∈ [n] and i ∈ [q], the answer
from the j-th oracle depends on the value of the secret bit b: If b = 1, the output
is σi,j ←$ Sign(sk ,mi,j); if b = 0, the output is σ̃i,j ←$ Ãj(sk ,mi,j). In case Ãj is
undefined, the oracle returns ⊥.

� Note that B does not need to ask all q queries before choosing the next algorithm,
i.e. the queries to each oracle Ãj can be interleaved in an arbitrary manner.

3. Finally, B outputs a value b′ ∈ {0, 1}; we say that B wins iff b′ = b.

If for all t, q, n = poly(κ) there exists ε(κ) = negl(κ) such that SS is (t, n, q, ε)-indistinguishable
w.r.t continuous A-SAs, we simply say that SS is indistinguishable against continuous A-SAs.
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Impersonation under chosen-message attacks. We also consider an alternative defini-
tion, where the goal of the adversary is to forge a signature on a “fresh” message (not asked to
any of the oracles). As we show in Theorem 8, this definition is strictly weaker than Definition 6
for all signature schemes that are unforgeable (i.e., UF-CMA as per Definition 2).

Definition 7 (EUF-CMA against SAs). Let SS = (KGen,Sign,Vrfy) be a signature scheme,
and A be some class of SAs for SS. We say that SS is (t, n, q, ε)-EUF-CMA w.r.t. continuous
A-SAs if for all adversaries B running in time t, we have P [B wins] ≤ ε(κ) in the following
game:

1. The challenger runs (vk , sk)←$ KGen(1κ), and gives vk to B.

2. The adversary B is given oracle access to Sign(sk , ·). Upon input the i-th query mi, this
oracle returns σi←$ Sign(sk ,mi) for a total of at most q ∈ N queries.

3. The adversary B can specify an algorithm Ãj ∈ A, for a total of at most n ∈ N queries.
Each such algorithm implicitly defines an oracle that can be queried adaptively up to
q ∈ N times.

� Upon input a query of the form (j,mi,j), where j ∈ [n] and i ∈ [q], the j-th oracle

outputs σ̃i,j ←$ Ãj(sk ,mi,j). In case Ãj is undefined, the oracle returns ⊥.

� Note that B does not need to ask all q queries before choosing the next algorithm,
i.e. the queries to each oracle Ãj and to oracle Sign can be interleaved in an arbitrary
manner.

4. Let Q = {m1, . . . ,mq} be the set of messages queried to oracle Sign(sk , ·); similarly, for

each j ∈ [n], let Q̃j = {m1,j , . . . ,mq,j} be the set of messages queried to oracle Ãj .

5. Finally, B outputs a pair (m∗, σ∗); we say that B wins iff Vrfy(vk , (m∗, σ∗)) = 1 and
m∗ 6∈ Q ∪ Q̃, where Q̃ :=

⋃n
j=1 Q̃j .

If for all t, q, n = poly(κ) there exists ε(κ) = negl(κ) such that SS is (t, n, q, ε)-EUF-CMA
against continuous A-SAs, we simply say that SS is EUF-CMA against continuous A-SAs.

Remarks. Some remarks on the above definitions are in order.

� First, note that it is impossible to prove that a signature scheme SS satisfies Definition 6
(and consequently Definition 7) for an arbitrary class A, without making further assump-
tions.11 To see this, consider the simple algorithm that ignores all inputs and outputs the
secret key.12

� Consider the class of algorithms Akey = {Ãf}f∈F , where F is a class of functions such
that each f ∈ F has a type f : SK → SK, and for all f ∈ F , m ∈M and r ∈ R we define
Ãf (·,m; r) := Sign(f(·),m; r). Note that continuous security against Akey-SAs implies
security in the presence of related-key attacks within the family F . It is also worth noting
that, already for n = 1, Definition 7 implies EUF-CMA security under non-adaptive key
tampering, as a single subverted algorithm can hard-wire (the description of) polynomially
many pre-set tampering functions.

11Looking ahead, one of our positive results achieves security w.r.t. arbitrary SAs assuming the existence of a
cryptographic reverse firewall. See Section 6.

12In case the secret key is too long, one can make the algorithm stateful, so that it outputs a different chunk
of the key at each invocation. Alternatively, consider the single subversion algorithm Ãm̄ that always outputs
a signature σ̄ on some hard-wired message m̄ ∈ M; obviously this subversion allows to forge on m̄ without
explicitly querying the message m̄ to any of the oracles.

12



� We note that each algorithm Ãj ∈ A keeps its own state, say τj ∈ {0, 1}∗, which gets
updated at each invocation. However, this state is not shared among different algorithms
within the class A. This models, e.g., a machine infected by multiple (but different)
viruses, causing the execution of malicious code.

Multi-user setting. For simplicity, Definition 6 and 7 consider a single user. We provide an
extension to the more general setting with u ≥ 1 users, together with a complete picture of the
relationships between different notions, in Section 7.

3.2 Public/Secret Undetectability

By undetectability, we mean the inability of ordinary users to tell whether signatures are com-
puted using the subverted or the genuine signing algorithm. We will distinguish between the
case where a subversion is publicly or secretly undetectable. Roughly speaking, public unde-
tectability means that no user can detect subversions using the verification key vk only (i.e.,
without knowing the signing key sk); secret undetectability means that no user, even with
knowledge of the signing key sk , can detect subversions.

A formal definition follows. While reading it, bear in mind that the challenger plays the
role of the “bad guy”, trying to sabotage the signature scheme without being detected. The
definition is parameterized by a distribution over the class of SAs, corresponding to an efficient
strategy by which the saboteur can (efficiently) select a specific algorithm from the SA class in
such a way that undetectability holds (with high probability).

Definition 8 (Public/secret undetectability). Let SS = (KGen, Sign,Vrfy) be a signature
scheme, A be some class of SAs for SS, and DA be an efficiently samplable distribution over
A. We say that A is secretly (t, q, ε,DA)-undetectable w.r.t. SS if for all users U running in
time t, we have that

∣∣P [U wins]− 1
2

∣∣ ≤ ε(κ) in the following game:

1. The challenger samples an algorithm Ã←$ DA, and picks b←$ {0, 1}.

2. The user U can ask queries (sk i,mi), where sk i ∈ SK and mi ∈ M, for all i ∈ [q].
The answer to each query depends on the secret bit b. If b = 1, the challenger returns
σi←$ Sign(sk i,mi); if b = 0, the challenger returns σ̃i←$ Ã(sk i,mi).

3. Finally, U outputs a value b′ ∈ {0, 1}; we say that U wins iff b′ = b.

We say thatA is publicly undetectable w.r.t. SS if, in step 1. of the above game the challenger
picks (vk , sk)←$ KGen(1κ) and gives vk to U, and the queries specified by U in step 2 only consist
of values mi ∈ M upon which the challenger replies with either σi←$ Sign(sk ,mi) or with
σ̃i←$ Ã(sk ,mi) (depending on the value of the hidden bit b). Moreover, if for all t, q = poly(κ)
there exists ε(κ) = negl(κ) such that A is (t, q, ε,DA)-secretly/publicly undetectable w.r.t. SS,
we simply say that SS is secretly/publicly DA-undetectable w.r.t. SS.

Our definition of undetectability is similar to the corresponding definition considered by
Bellare et al. [BPR14, BJK15] for the case of symmetric encryption. One key difference is that,
in the definition above, the challenger is required to choose the subversion algorithm Ã ∈ A
following some polynomial-time sampling strategy DA that is a parameter in the definition.
We stress that achieving Definition 8 in isolation might be trivial;13 however, the saboteur’s
goal is to design an attack class A that breaks security (e.g., by exposing the signing key—
see Section 3.3) while at the same time being (publicly or secretly) undetectable for the same
sampling distribution DA. See Section 3.4 for further discussion on this point.

13It suffices, e.g., to artificially include the original signing algorithm in any class of SAs.
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While one could in principle define even stronger forms of undetectability, e.g. by requiring
that continuous and fully-adaptive SAs remain undetectable, we do not pursue this direction
here. The reason for this is that the attacks we analyze in Section 4 are non-adaptive, and only
require to use a single subversion.

Secret vs. public undetectability. While secret undetectability clearly implies public un-
detectability, the converse is not true. In particular, in Section 7.2, we show that there exists
a signature scheme SS and a set of subversions A of it, such that A is publicly undetectable
w.r.t. SS but it is secretly detectable w.r.t. SS.

Strong undetectability. The notion of strong undetectability, introduced in [BJK15], basi-
cally limits the class of undetectable subversions to be the class of stateless subversions, which
is enforced by the challenger returning the state to the user in the definition of undetectabil-
ity. Since we will construct both stateless and stateful attacks, we will equivalently say that
a class of SAs A is strongly (publicly or secretly) undetectable, if it satisfies Definition 8, and
additionally A is a family of stateless algorithms.

Multi-user setting. For simplicity, Definition 8 considers a single user. We provide an
extension to the more general setting with u ≥ 1 users, together with a complete picture of the
relationships between different notions, in Section 7.

3.3 Signing Key Recovery

Apart from being (publicly or secretly) DA-undetectable, a class A of SAs w.r.t. a signature
scheme SS should yield some advantage from the point of view of the saboteur. For instance,
one could imagine the saboteur being able to distinguish subverted signatures from real ones, or
to produce signature forgeries on chosen messages. Below, we formalize an even more ambitious
goal which is the ability of fully recovering the secret signing key.

Definition 9 (Signing key recovery). Let SS = (KGen,Sign,Vrfy) be a signature scheme, A be
some class of SAs for SS, and DA be an efficiently samplable distribution over A. We say that
adversary B (t, q, ε,DA,M)-recovers the signing key of SS if B runs in time t, and moreover
P [B wins] ≥ ε(κ) in the following game:

1. The challenger runs (vk , sk)←$ KGen(1κ), samples Ã←$ DA, and gives vk to B.

2. The adversary B is given access to an oracle that can be queried at most q times: Upon
an empty input, the oracle picks mi←$ M, computes σ̃i←$ Ã(sk ,mi), and sends (mi, σ̃i)
to B.

3. Finally, B outputs a key sk ′; we say that B wins iff sk ′ = sk .

Whenever ε(κ) is non-negligible, for some t, q = poly(κ), we simply say that the attacker
(DA,M)-recovers the signing key of SS.

We note that in the above definition, M is a message sampler algorithm that chooses the
message to be signed according to some pre-defined strategy. From the perspective of an ad-
versary, an attack is stronger the less it assumes about M; in fact, the strongest attack is one
that works for any M, i.e., regardless of which messages the signer chooses to sign.
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3.4 Successful SAs

Note that designing a class of SAs that achieves either (public/secret) undetectability or key
recovery in isolation (w.r.t. some efficiently samplable distribution DA) might be trivial. For
instance, consider the class of SAs Abad that contains only two algorithms: the original signing
algorithm, and the constant function whose output is always equal to the signing key. Clearly,
such class satisfies undetectability w.r.t. the distribution that always returns the first algorithm
in the class, whereas the same class satisfies key recovery (for any message sampler algorithm)
w.r.t. the distribution that always returns the second algorithm in the class.

However the challenge, from the perspective of an attacker, is to design a class of SAs that
admits a single sampling strategy achieving at the same time undetectability and key recovery.
This motivates the following definition.

Definition 10 (Successful SA). Let SS be a signature scheme, and A be some class of SAs
for SS. We call A ((t, t′), (q, q′), (ε, ε′))-successful w.r.t. SS if there exists an adversary B and
a distribution DA over A, such that the following conditions are met:

(i) A is secretly/publicly (t′, q′, ε′,DA)-undetectable w.r.t. SS;

(ii) For any message sampler algorithm M, attacker B (t, q, ε,DA,M)-recovers the signing key
of SS.

We observe that it is still trivial to design classes of SAs that are successful for some unin-
teresting range of the parameters. For instance, let SS be EUF-CMA and consider the uniform
distribution over the above defined class of SAs Abad. The latter yields large key-recovery prob-
ability ε ≥ 1/2, but also large detection advantage ε′ ≥ 1/4. Looking ahead, our attacks provide
classes of SAs that are successful for tiny ε′, large ε, and reasonably small t, t′, q, q′. (In the
asymptotic setting, negligible ε′, overwhelming ε, and polynomial t, t′, q, q′.)

4 Mounting Subversion Attacks

In Section 4.1, we show that the biased-randomness attack of [BJK15] (adapted to the case of
signatures) yields a successful class of SAs, as per Definition 10, against all signature schemes
using a sufficient amount of randomness. This attack is completely stateless. In Section 4.2, we
present a stateful attack that is successful even for signatures using only little randomness (in
fact, even 1 bit), provided that the targeted scheme satisfies an additional property.

4.1 Non-Trivial Randomness Attack

In this section, we describe a strongly undetectable14 attack against all probabilistic signature
schemes with a non-trivial amount of randomness. We measure the randomness of a signature
scheme via a notion of min-entropy, which is adapted from [BJK15].

Definition 11 (Signatures min-entropy). Let SS = (KGen,Sign,Vrfy) be a signature scheme.
For all κ ∈ N, we say that SS has min-entropy η(κ) ∈ N if the following holds:

2−η = max
sk∈SK,m∈M,σ∈Σ

P [Sign(sk ,m; r) := σ], (1)

where M, R, SK, Σ denote, respectively, the message/randomness/secret-key/signature space
of SS, and where the probability is taken over the choice of the random coins r ∈ R.
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SA class Abias

Let SS = (KGen, Sign,Vrfy) be a probabilistic signature scheme with signature space Σ, ran-
domness space R, and signing key space SK = {0, 1}`. Also, let F : {0, 1}κ × Σ → {0, 1} × [`]
be a PRF. The class Abias consists of a set of algorithms {Ãs,τ}s∈{0,1}κ , for some τ ∈ N, where
each algorithm in the class behaves as follows.

Ãs,τ (sk ,m):

� Initialize counter j := 0.

� Repeat the following instructions, until (sk [i] = v ∨ j = τ):

– Increment the counter j := j + 1;

– Sample r←$R;

– Compute a fresh signature σ = Sign(sk ,m; r);

– Evaluate (v, i) = Fs(σ).

� Return σ as the signature of m.

Figure 1: Strongly undetectable attack against probabilistic signature schemes with non-trivial
randomness.

The intuition behind the attack is as follows. Let F be a PRF (cf. Section 2.4) with range
{0, 1} × [`], where ` is the length of the secret key in bits. We consider the class of SAs which
outputs a real signature, subject to the constraint that the output of the PRF (for a key which
is embedded in the subverted implementation and known only by the adversary) evaluated on
the computed signature represents a correct guess for one of the bits of the secret key. As the
analysis shows, this allows to recover the entire key with high probability.

Theorem 1. Let SS be a randomized signature scheme with signature space Σ, secret key space
SK = {0, 1}`, and min-entropy η ∈ N. Consider the class of SAs Abias described in Fig. 1,
and let F : {0, 1}κ × Σ → {0, 1} × [`] be a (tprf , qprf , εprf)-secure PRF, Ubias be the uniform
distribution over Abias, and M be an arbitrary message sampling algorithm. Then:

(i) There exists an adversary B (and we describe it in the proof of this theorem) that (t, q, ε,
Ubias,M)-recovers the signing key of SS, for any τ, q ∈ N and with

ε ≥ 1− (εprf + ` · e−q/` + q2τ2 · 2−η−1 + q · 2−τ ),

as long as qprf ≥ τ ·q, and tprf is at least τ ·q times the sum of the running time of algorithm
Sign plus the running time required to sample an element from M. The running time t of
B is at most q times the time to compute F , whereas the maximum running time of each
Ãs,τ ∈ Abias is roughly τ times the sum of the running time of algorithm Sign plus the time
to compute F .

(ii) For any τ, q ∈ N, the class Abias is strongly secretly (tprf , q, εprf + q2τ2 · 2−η−1,Ubias)-
undetectable.

Proof. (i) Consider the following adversary B playing the game described in Definition 9, for
the SA class Abias described in Fig. 1.

14This terminology is inherited from [BJK15], and it simply means that the subversion is undetectable and
stateless.
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Adversary B:

� Initialize sk ′ := 0`.

� The challenger chooses a subversion algorithm Ãs,τ uniformly at random from
the SA class Abias. (This is equivalent to sampling the algorithm from the
distribution Ubias, and implicitly corresponds to picking a random key s ∈
{0, 1}κ for the PRF.)

� For j ∈ [q] do:

– Make a query to the signature oracle, receiving a pair (mj , σj) such that

σj ← Ãs,τ (sk ,mj) for mj ← M;

– Compute (v, i) = Fs(σj).

– Set sk ′[i] := v.

� Return sk ′.

Notice that B specifies a single subversion algorithm, and runs in time roughly equal to q times
the time to evaluate F . Consider the following game.

Game G0(κ, q, τ,M):

� Sample (vk , sk)←$ KGen(1κ) and s ←$ {0, 1}κ.

� For q times:

– Initialize j := 0;

– Repeat the following instructions, until (sk [i] = v ∨ j = τ):

* Increment the counter j := j + 1;

* Sample r←$R and m←$ M;

* Compute a fresh signature σ = Sign(sk ,m; r);

* Evaluate (v, i) = Fs(σ).

Define the event E := E′ ∨ E′′, where both events E′ and E′′ are defined in the probability
space of G0 and are specified as follows:

� Event E′: The event becomes true whenever, for at least one of the q repetitions, the
index j reaches the value τ + 1 (i.e., for no pair (v, i) ∈ {0, 1}× [`] we have that sk [i] = v).

� Event E′′: The event becomes true whenever, at the end of the q repetitions, the values
v do not cover the entire set [`] (i.e., there exists an index î ∈ [`] such that for all pairs
(v, i) ∈ {0, 1} × [`] we have i 6= î).

Observe that the distribution of the pairs (v, i) in game G0 is identical to that induced during a
run of the game from Definition 9. Moreover, whenever the event E does not happen, adversary
B recovers the signing key with probability one,15 and thus P [B wins] ≥ 1 − P [E]. It remains
to upper bound the probability of event E.

Towards this goal, consider a mental experiment in which instead of sampling the pair (v, i)
by running the PRF on input the signature σ, we now pick (v, i)←$ {0, 1} × [`] uniformly at
random, unless the value σ was already generated as part of a previous query, in which case we
return the previously sampled pair (v, i). More formally:

Game G1(κ, q, τ,M):

15This is because in each of the q repetitions we always have that sk [i] = v for some pair (v, i), and furthermore
the latter happens for all i ∈ [`].
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� Sample (vk , sk)←$ KGen(1κ) and initialize an empty array S.

� For q times:

– Initialize j := 0;

– Repeat the following instructions, until (sk [i] = v ∨ j = τ):

* Increment the counter j := j + 1;

* Sample r←$R and m←$ M;

* Compute a fresh signature σ = Sign(sk ,m; r);

* If S[σ] is undefined, sample (v, i)←$ {0, 1} × [`] and let S[σ] := (v, i).

Claim 1.1. For all message samplers M, we have that |PG0 [E]− PG1 [E]| ≤ εprf .

Proof. Fix an arbitrary message sampler algorithm M with sampling running time tM. Consider
the following distinguisher Dprf attempting to break the PRF security of the function F .

Distinguisher Dprf :

� Run (vk , sk)←$ KGen(1κ).

� For q times:

– Initialize j := 0;

– Repeat the following instructions, until (sk [i] = v ∨ j = τ):

* Increment the counter j := j + 1;

* Sample r←$R and m←$ M;

* Compute a fresh signature σ = Sign(sk ,m; r);

* Query σ to the target oracle (i.e., either the PRF or a random function)
and obtain a pair (v, i).

� Use all the collected pairs to check whether the event E has happened or not.
In case the event happens output 1, and otherwise output 0.

For the analysis, note that Dprf asks at most τ · q ≤ qprf oracle queries and runs in time at most
equal to τ · q times the sum of the running time of algorithm Sign plus the time required to
sample an element from M. Moreover, in case Dprf ’s target oracle is Fs(·), for a randomly chosen
key, the probability that Dprf outputs 1 is identical to the probability that event E happens in
G0. Similarly, in case Dprf ’s target oracle is a random function f(·), the probability that Dprf

outputs 1 is identical to the probability that event E happens in G1. Hence, by security of the
PRF: ∣∣∣∣ PG0

[E]− P
G1

[E]

∣∣∣∣ =

∣∣∣∣ P
s←$ {0,1}κ

[
D
Fs(·)
prf (1κ) = 1

]
− P
f ←$ F

[
D
f(·)
prf (1κ) = 1

]∣∣∣∣ ≤ εprf ,
concluding the proof.

Next, we modify the previous game by requiring that a different pair (v, i) is sampled
uniformly at random in each of the queries (independently of collisions on signatures). More
formally:

Game G2(κ, q, τ,M):

� Sample (vk , sk)←$ KGen(1κ).

� For q times:
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– Initialize j := 0;

– Repeat the following instructions, until (sk [i] = v ∨ j = τ):

* Increment the counter j := j + 1;

* Sample r←$R and m←$ M;

* Compute a fresh signature σ = Sign(sk ,m; r);

* Sample (v, i)←$ {0, 1} × [`].

Claim 1.2. For all message samplers M, and for all q ∈ N, we have that |PG1 [E]− PG2 [E]| ≤
q2τ2 · 2−η−1.

Proof. Let W be the event that for some of the messages sampled via the message sampler
algorithm M there is a collision in the computation of a signature. Clearly, if W does not
happen, the values (v, i) are sampled uniformly and independently for each query, and thus G1

and G2 are identical. Since PG1 [W ] = PG2 [W ] = P [W ], by Lemma 1, SD (G1; G2) ≤ P [W ].
It remains to bound the probability of event W . By definition of min-entropy, the worst-case

probability (over the choice of the randomness) that a particular value σ is hit is at most 2−η

(regardless of the distribution by which we sample the message). Since at most τq signatures
are generated, a standard union bound gives

P [W ] ≤
(
τq

2

)
· 2−η ≤ q2τ2

2
· 2−η,

as desired.

Finally, we upper bound the probabilty of event E in game G2.

Claim 1.3. For all message samplers M, and for all q ∈ N, we have that PG2 [E] ≤ ` · e−q/` +
q · 2−τ .

Proof. We simply analyze the probability of event E happening in G2, by looking at the sub-
events E′, E′′.

� Event E′: Since in each of the τ trials, the value v hits sk [i] with probability 1/2, and
since such a process is repeated at most q times, we have that PG2 [E′2] ≤ q · 2−τ .

� Event E′′: Since each index i ∈ [`] is hit with probability 1/`, the probability that a
particular index is not hit after q trials is at most (1 − 1

` )
q ≤ e−q/`. Hence, by applying

the union bound, we have that PG2 [E′′] ≤ ` · e−q/`.

The claim follows by a union bound and by the definition of event E := E′ ∨ E′′.

The above claims imply P [B wins] ≥ 1 − εprf − q2τ2

2 · 2−η − (` · e−q/` + q · 2−τ ), concluding
the proof of part (i).

(ii) Let G be the game described in Definition 8. Consider the game G0 to be an identical
copy of G when b = 0, and consider the game G1 to be an identical copy of G when b = 1. We
need to prove that G0 and G1 are computationally indistinguishable. To this end, we consider
a sequence of games defined below.

Game H0: Identical to G1.

Game H1: We change the way the subversion algorithm Ãs,τ works. Namely, instead of
computing the pair (v, i) by running the PRF on input the signature σ, we now pick
(v, i)←$ {0, 1}× [`] uniformly at random unless the value σ was already generated as part
of a previous query, in which case we return the previously sampled pair (v, i).
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Game H2: Identical to the previous game, but now a different pair (v, i) is sampled uniformly
at random in each of the queries (independently of collisions on signatures).

Notice that in game H2 the choice of (v, i), for each signature query, is independent of the choice
of σ, and thus it does not affect the distribution of the latter; hence, H2 ≡ G0. The next two
claims, whose proof is analogous to the proof of Claim 1.1 and Claim 1.2, imply the statement.

Claim 1.4. For all distinguishers D running in time t and asking q oracle queries, we have
that |P [D(H0) = 1]− P [D(H1) = 1]| ≤ εprf .

Claim 1.5. For all (even unbounded) distinguishers D asking q oracle queries, we have that
|P [D(H1) = 1]− P [D(H2) = 1]| ≤ q2τ2 · 2−η−1.

The fact that the class Abias is strongly undetectable follows directly by the fact that each
algorithm Ãs,τ (sk ,m), as described in Fig. 1, is stateless.

Concrete parameters. Observe that the size of the signing key determines the efficiency of
the attack. If we consider the case of RSA-PSS signatures [BR96], with a signing key of size
1536 bits, we can achieve a key-recovery probability of ≈ 0.73 by setting q = 1536 · 10 = 15360
and τ = 18 as long as η ≥ 38.

As a comparison, if we consider the case of ECDSA signatures, with signing key of size
256 bits, we can achieve a key-recovery probability of ≈ 0.85 if we take the parameters to be
q = 256 · 8 = 2048 and τ = 15 as long as η ≥ 40.

4.2 Coin-Extractable Attack

The attack in Section 4.1 allows to break all sufficiently randomized schemes. This leaves the
interesting possibility to show a positive result for schemes using less randomness, e.g., the
Katz-Wang signature scheme [KW03] that uses a single bit of randomness. In this section we
present a simple attack (cf. Fig. 2) ruling out the above possibility for all signature schemes
that are coin extractable, a notion which we define next.

Definition 12 (Coin-extractable signatures). Let SS = (KGen,Sign,Vrfy) be a signature scheme.
We say that SS is νext-coin-extractable if there exists a PPT algorithm CExt such that for all
κ ∈ N, for all (vk , sk) output by KGen(1κ), and all m ∈M,

P
[
r′ = r : r←$R;σ = Sign(sk ,m; r); r′←$ CExt(vk ,m, σ)

]
≥ 1− νext.

We point out that many existing signature schemes are νext-coin-extractable, for small νext:

� All public-coin signature schemes [Sch12], where the random coins used to generate a
signature are included as part of the signature. Concretely, the schemes in [GHR99,
CS00, NPS01, CL02, Fis03, CL04, BB08, HW09a, HW09b, HK12], and the Unstructured
Rabin-Williams scheme [Ber08], are all public-coin.

� The Katz-Wang scheme [KW03], where the signature on a message m is computed as
σ = f−1(H(m||r)) such that f is a trapdoor permutation, H is a hash function (modeled
as a random oracle), and r is random bit. Given a pair (m,σ) the extractor simply sets
r = 1 iff f(σ) = H(m||1).

� The PSS signature scheme [BR96, Cor02].
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SA class Acext

Let SS = (KGen,Sign,Vrfy) be a signature scheme with randomness space R := {0, 1}d, and let
G : {0, 1}κ → {0, 1}κ × {0, 1}d be a stateful pseudorandom generator. For simplicity, assume
that d|`, where ` is the size of the signing key in bits (a generalization is straightforward). The
class Acext consists of a set of algorithms {Ãs,τ=0}s∈{0,1}κ , where each algorithm in the class
behaves as follows.

Ãs,τ (sk ,m):

� If τ ≥ `, then τ := 0;

� Run (s ′, v) = G(s) and re-define s := s ′;

� Compute the biased randomness r̃ := v ⊕ sk [τ + 1, τ + d];

� Update the state τ ← τ + d;

� Return σ := Sign(sk ,m; r̃).

Figure 2: Attacking coin-extractable schemes

In Fig. 2 we describe a secretly undetectable attack that allows to break all coin-extractable
schemes (even if the scheme relies on a single bit of randomness). The intuition behind it is
as follows.16 Let G be a stateful PRG (cf. Section 2.3) with d ≥ 1 bits of stretch, and assume
that the randomness space of the signature scheme consists of all d-bit strings. We consider the
class of SAs which outputs a real signature, except that the randomness used to compute the
signature is derived by first running the PRG, and later xor-ing the obtained pseudorandom
bits with the next d bits of the secret key. Since the scheme is coin-extractable, an adversary
can recover the coins used to generate each signature and remove the pseudorandom pad by
re-iterating the PRG, which allows to fully recover the secret key.

Theorem 2. Let `, d ≥ 1, with d|`, and let SS be a randomized, νext-coin-extractable, signature
scheme, with randomness space R = {0, 1}d and signing key space SK = {0, 1}`. Consider
the class of SAs Acext described in Fig. 2, and let G : {0, 1}κ → {0, 1}κ × {0, 1}d be a stateful
(tprg, qprg, εprg)-secure PRG, Ucext be the uniform distribution over Acext, and M be an arbitrary
message sampler algorithm. Then:

(i) There exists an adversary B (and we describe it in the proof of this theorem) that (t, `/d, ε,
Ucext,M)-recovers the signing key of SS, with

ε ≥ 1− νext · `/d,

The running time t of B is roughly equal to `/d times the sum of the running time of
algorithm CExt plus the time to evaluate a single iteration of the function G.

(ii) The class Acext is secretly (tprg, qprg, εprg,Ucext)-undetectable, as long as qprg ≥ `/d and tprg
is at least `/d times the running time of algorithm Sign.

Proof. (i) Consider the following adversary B playing the game G described in Definition 9, for
the SA class Acext described in Fig. 2, and let q := `/d.

Adversary B:

16A previous version of this paper [AMV15] contained a similar attack that even achieves secret undetectability
unconditionally; however that attack does not immediately work in the multi-user setting.
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� Initialize sk ′ := 0`.

� The challenger chooses a subversion algorithm Ãs,τ uniformly at random from
the SA class Acext. (This is equivalent to sampling the algorithm from the
distribution Ucext, and implicitly corresponds to picking an initial random seed
s0 ∈ {0, 1}κ for the PRG.)

� For j ∈ [q] do:

– Make a query to the signature oracle, receiving a pair (mj , σj) such that

σj ← Ãs,τ (sk ,mj) for mj ← M;

– Run (sj , vj) = G(sj−1);

– Extract the randomness from the j-th signature r̃j ← CExt(vk ,mj , σj).

– Set sk ′[(j − 1)d+ 1, jd] := r̃j ⊕ vj .
� Return sk ′.

Notice that B specifies a single subversion algorithm, asks exactly q := `/d oracle queries,
and runs in time roughly equal to q times the sum of the running time of algorithm CExt plus
the time to evaluate a single iteration of the function G. The claim below concludes the proof.

Claim 2.1. The following holds for the adversary B defined above: P [B wins G] ≥ 1− q · νext.

Proof. We note that adversary B fails to extract the biased randomness bits r̃j ∈ {0, 1}d for
each σj with negligible probability, more precisely with probability at most νext. By the union
bound, we have that the probability of B failing to recover all ` bits of the signing key sk is at
most q · νext, and thus B’s advantage is lower bounded by ε ≥ 1− q · νext.

(ii) Let G be the game described in Definition 8, where the challenger picks Ã←$Acext

uniformly at random. Consider the game G0, an identical copy of game G when b = 0, and
consider the game G1, an identical copy of game G when b = 1. We need to show that G0 and
G1 are computationally indistinguishable.

Define the hybrid game H that is identical to G0, except that the subversion algorithm
Ãs,τ now uses, at each run, a random v←$ Ud, where Ud is the uniform distribution over d-bit
strings. The two claims below conclude the proof.

Claim 2.2. For all distinguishers D running in time tprg and asking qprg oracle queries, we
have that |P [D(G0) = 1]− P [D(H) = 1]| ≤ εprg.

Proof. Let D be an algorithm that distinguishes G0 and H with probability at least εprg, running
in time t and asking q oracle queries. We build a distinguisher Dprg that, by using distinguisher
D, breaks the PRG security of the function G. A description of Dprg follows.

Distinguisher Dprg(v1, . . . , vqprg):

� Initialize τ := 0.

� For each query (sk i ∈ SK,mi ∈M) asked by D:

– If τ ≥ `, then τ := 0;

– Let ri := vi ⊕ sk i[τ + 1, τ + d];

– Compute a fresh signature σ = Sign(sk i,mi; ri);

– Update τ ← τ + d;

– Return σ to D.

� Output whatever D outputs.
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For the analysis, note that Dprg needs q = `/d ≤ qprg samples, and runs in time tprg roughly
equal to q times the running time of algorithm Sign. Moreover, the simulation done by Dprg is
perfect, in the sense that the view of D when run as a sub-routine by Dprg is either identical to
that of G0 (in case the values vi are computed using the PRG), or to that of game H (in case
the values vi are uniformly random). Hence, Dprg retains the same advantage of D, concluding
the proof.

Claim 2.3. H ≡ G1.

Proof. The only difference between H and G1 is that, upon input a query sk j ∈ SK from
the distinguisher, both games sample mj ← M and return σj = Sign(sk j ,mj ; rj) where the
randomness rj is either sampled uniformly at random from {0, 1}d (in G1) or computed as
vj ⊕ sk j [(j − 1)d + 1, jd] for a random vj ∈ {0, 1}d. Hence, the two games retain the same
distribution.

On removing the state. While the above attack works even against signature schemes using
a very little amount of randomness, in fact as small as a single bit, it has the drawback that
it requires to keep and update a state within each invocation. As observed by [BJK15], this
might lead to detection in some settings, e.g., because of a state reset due to reboot or cloning
to create a virtual machine.

We leave it as an open problem to design a stateless (secretly) undetectable attack that
recovers the signing key for signature schemes with arbitrary min-entropy, and that works for
arbitrary message samplers.

5 Security of Unique Signatures

In this section we prove that signature schemes with unique signatures are subversion-resilient
against SAs that meet a basic undetectability requirement, which we call the verifiability con-
dition.

5.1 The Verifiability Condition

We say that A meets the verifiability condition relative to SS if for all Ã ∈ A, and for all
m ∈ M, the signatures produced using the subverted signing algorithm Ã upon input an
honestly generated signing key sk , (almost) always verify under the corresponding verification
key vk (for any value of the algorithm’s internal state).

Definition 13 (Verifiability). Let A be some class of SAs for a signature scheme SS. We say
that A satisfies νv-verifiability if for all κ ∈ N, for all (vk , sk) output by KGen(1κ), for all states
τ ∈ {0, 1}∗, for all algorithms Ãτ ∈ A, and all m ∈M,

P
[
Vrfy(vk , (m, Ãτ (sk ,m))) = 1

]
≥ 1− νv,

where the probability is taken over the randomness of algorithm Ãτ .
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Public undetectability vs. verifiability. One might think that verifiability is a special
case of public undetectability. However, this is not true and, in fact, Definition 13 and 8
are incomparable. To see this, consider the class of SAs Amsg = {Ãm̄}m̄∈M that behaves
identically to the original signing algorithm, except that upon input m̄ ∈ M it outputs an
invalid signature.17 Clearly, whenever the message space is large enough, Amsg satisfies public
undetectability w.r.t. the uniform distribution over Amsg, as a user has only a negligible chance
of hitting the value m̄; yet, Amsg does not meet the verifiability condition as the latter is a
property that holds for all messages.

On the other hand, let SS be any UF-CMA signature scheme with large randomness space
(say, R = {0, 1}κ). Consider the stateful class of SAs Adet that is identical to the original
signing algorithm, except that it behaves deterministically on repeated inputs. Clearly, Adet

meets the verifiability condition relative to SS; yet, Adet does not satisfy public undetectability
(for any distribution over Adet), as a user can simply query the same message twice in order to
guess the value of the hidden bit b with overwhelming probability.

Relaxed verifiability. The assumption that the verifiability condition should hold for all
values m ∈ M is quite a strong one. A natural relaxation is to require that the probability in
Definition 13 is taken also over the choice of the message.

Definition 14 (Relaxed verifiability). Let A be some class of SAs for a signature scheme SS.
We say thatA satisfies relaxed νv-verifiability if for all κ ∈ N, for all (vk , sk) output by KGen(1κ),
for all states τ ∈ {0, 1}∗, and for all algorithms Ãτ ∈ A,

P
[
Vrfy(vk , (m, Ãτ (sk ,m))) = 1 : m←$M

]
≥ 1− νv,

where the probability is taken over the (uniform) choice of the message and over the randomness
of algorithm Ãτ .

Unfortunately, public undetectability does not imply even relaxed verifiability in general.
This is because relaxed verifiability still has to hold for all algorithms Ã ∈ A, while public
undetectability only holds w.r.t. some (efficiently samplable) distribution over A. (See also the
discussion after Definition 8.)

5.2 Chosen-Message Attacks

The theorem below shows that unique signature schemes (cf. Definition 3) achieve indistin-
guishability (and thus EUF-CMA) against the class of all SAs that meet the verifiability con-
dition (cf. Definition 13).

Theorem 3. Let SS = (KGen,Sign,Vrfy) be a signature scheme with perfect correctness and
uniqueness, and denote by Aνvver the class of all algorithms that satisfy νv-verifiability relative to
SS. Then SS is (t, n, q, ε)-indistinguishable against continuous Aνvver-SAs, for all t, n, q ∈ N and
for all ε ≤ qn · νv.

Proof. Let G be the game described in Definition 6. Consider the game G0, an identical copy
of game G when b = 0, and consider the game G1, an identical copy of game G when b = 1.
The objective here is to show that G0 ≈ G1.

17A similar class of attacks—under the name of input-triggered subversion—has been considered in [DFP15]
for the case of symmetric encryption.
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For an index k ∈ [0, n], consider the hybrid game Hk that answers each query (j,mi,j)

such that j ≤ k as in game G0 (i.e., by running Ãj(sk ,mi,j)),
18 while all queries (j,mi,j) such

that j > k are answered as in G1 (i.e., by running Sign(sk ,mi,j)). We note that H0 ≡ G1

and Hn ≡ G0. Abusing notation, let us write Hk for the distribution of the random variable
corresponding to B’s view in game Hk.

Fix a particular k ∈ [0, n], and for an index l ∈ [0, q] consider the hybrid game Hk,l that is
identical to Hk except that queries (k,mi,k) with i ≤ l are treated as in game G0, while queries
(k,mi,k) with i > l are treated as in G1. Observe that Hk,0 ≡ Hk−1, and Hk,q ≡ Hk.

Claim 3.1. Fix some k ∈ [0, n]. For each l ∈ [0, q], we have SD (Hk,l−1,Hk,l) ≤ νv.

Proof. Notice that the only difference between Hk,l−1 and Hk,l is how the two games an-

swer the query (k,ml,k): Game Hk,l−1 returns σ̃l,k←$ Ãk(sk ,ml,k), whereas game Hk,l returns
σl,k←$ Sign(sk ,ml,k). Now let El,k be the event that σl,k 6= σ̃l,k; observe that w.l.o.g. we may
assume that each experiment Hk,l computes both sequences of signatures (σ1,k, . . . , σq,k) and
(σ̃1,k, . . . , σ̃q,k), so that the event El,k is well defined on both Hk,l−1 and Hk,l. We can write

SD (Hk,l−1,Hk,l) ≤ SD (Hk,l−1|¬El,k; Hk,l|¬El,k) + P [El,k] (2)

≤ νv. (3)

Eq. (2) follows by Lemma 1, since PHk,l−1
[El,k] = PHk,l

[El,k] = P [El,k]. Eq. (3) follows by the
fact that Hk,l−1 and Hk,l are identically distributed conditioned on El,k not happening, and
moreover P [El,k] ≤ νv. The latter can also be seen as follows. By the correctness condition of

SS we have that σl,k is valid for ml,k under vk . By the assumption that Ãk ∈ Aνvver we have that
σ̃l,k is also valid for ml,k under vk except with probability at most νv (for every possible value
of the implicit state information τk ∈ {0, 1}∗). Finally, by the uniqueness property of SS we
have that σl,k and σ̃l,k must be equal. It follows that P [El,k] ≤ νv, as desired.

The statement now follows by the above claim and by the triangle inequality, as

SD (G0,G1) ≤
n∑
k=1

SD (Hk−1,Hk) ≤
n∑
k=1

q∑
l=1

SD (Hk,l−1,Hk,l) ≤ qn · νv.

Unfortunately, unique signatures do not satisfy EUF-CMA against the class of all SAs that
satisfy relaxed verifiability (cf. Definition 14). In fact, it is not hard to show that no signature
scheme with large enough message space (no matter if randomized or deterministic) can achieve
EUF-CMA against such class of SAs. This can be seen by looking again at the class of SAs
Amsg = {Ãm̄}m̄∈M that behaves identically to the original signing algorithm, except that upon
input m̄ ∈M it outputs the secret key. Clearly, Amsg satisfies relaxed verifiability, as a randomly
chosen message will be different from m̄ with high probability; yet, Amsg allows to break EUF-
CMA for an adversary knowing m̄.

18Recall that each subversion can be stateful, and thus algorithm Ãj additionally takes as input state informa-
tion τj ∈ {0, 1}∗ that gets updated at each invocation. To simplify the notation we omit to write the dependency
on τj explicitly.
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5.3 Random-Message Attacks

We show that if we restrict to the case of random-message attacks (RMA), i.e. the adversary
can only see signatures of randomly chosen messages, unique signatures achieve unforgeability
against the class of SAs that meets relaxed verifiability (cf. Definition 14).

Definition 15 (EUF-RMA against SAs). Let SS = (KGen,Sign,Vrfy) be a signature scheme,
and A be some class of SAs for SS. We say that SS is (t, n, q, ε)-EUF-RMA w.r.t. continuous
A-SAs if for all adversaries B running in time t, we have P [B wins] ≤ ε(κ) in the game of Defi-
nition 7, with the adaptation that the messages in the sets Q, Q̃1, . . . , Q̃n are drawn uniformly
at random from the message space M.

While the above definition might seem a weak guarantee, it is still useful for applications. In
particular, in Section 5.4, we show how to use any signature scheme that is EUF-RMA against
a given class of SAs, to construct an identification scheme that is subversion-resilient against
the same class of SAs.

Theorem 4. Let SS = (KGen,Sign,Vrfy) be a (t, (q+1)·n, ε)-EUF-RMA signature scheme with
perfect correctness and uniqueness, and denote by Aνvr ver the class of all algorithms that satisfy
relaxed νv-verifiability relative to SS. Then, SS is (t′, n, q, ε′)-EUF-RMA against continuous
Aνvr ver-SAs, for t′ ≈ t, for all n, q ∈ N, and for ε′ ≤ ε+ qn · νv.

Proof. Let G be the game of Definition 15. Consider the modified game H that is identical to
G except that queries to the subverted signing algorithms are answered as described below:

� For all i ∈ [q], j ∈ [n], sample mi,j ←$M and return σi,j ← Sign(sk ,mi,j).

Claim 4.1. |P [B wins in G]− P [B wins in H]| ≤ qn · νv.

Proof. For an index k ∈ [0, n], consider the hybrid game Hk that answers each query to the j-th
subversion oracle, such that j ≤ k, as in game G, while all queries with j > k are answered as in
H. We note that H0 ≡ H and Hn ≡ G. Abusing notation, let us write Hk for the distribution
of the random variable corresponding to B’s view in game Hk.

We will show that SD (Hk−1,Hk) ≤ q · νv for all k. Fix a particular k ∈ [0, n], and for an
index l ∈ [0, q] consider the hybrid game Hk,l that is identical to Hk except that it answers
queries (k, i) with i ≤ l as in game G, while all queries (k, i) with i > l are treated as in H.
Observe that Hk,0 ≡ Hk−1, and Hk,q ≡ Hk.

We now argue that for each l ∈ [q], one has that SD(Hk,l−1,Hk,l) ≤ νv. Notice that the
only difference between Hk,l−1 and Hk,l is how the two games answer the query (k, l): Game

Hk,l−1 returns σl,k←$ Sign(sk ,ml,k), whereas game Hk,l returns σ̃l,k←$ Ãk(sk ,ml,k) (where
ml,k←$M).19 Now let El,k be the event that σl,k 6= σ̃l,k; observe that w.l.o.g. we may as-
sume that each experiment Hk,l computes both sequences of signatures (σ1,k, . . . , σq,k) and
(σ̃1,k, . . . , σ̃q,k), so that the event El,k is well defined on both Hk,l−1 and Hk,l. We can write

SD (Hk,l−1,Hk,l) ≤ SD (Hk,l−1|¬El,k; Hk,l|¬El,k) + P [El,k] (4)

≤ νv. (5)

Eq. (4) follows by Lemma 1, since PHk,l−1
[El,k] = PHk,l

[El,k] = P [El,k]. Eq. (5) follows by the
fact that Hk,l−1 and Hk,l are identically distributed conditioned on El,k not happening, and
moreover P [El,k] ≤ νv. The latter can also be seen as follows. By the correctness condition of

SS we have that σl,k is valid for ml,k under vk . By the assumption that Ãk ∈ Aνvr ver we have

19Recall that each algorithm Ãk is stateful, but for simplicity we omit to write the state information explicitly.
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that σ̃l,k is also valid for ml,k under vk except with probability at most νv (this is because ml,k

is chosen at random, and moreover the verifiability condition holds for every possible value of
the implicit state information τk ∈ {0, 1}∗). Finally, by the uniqueness property of SS we have
that σl,k and σ̃l,k must be equal. It follows that P [El,k] ≤ νv, as desired.

The claim now follows by the above argument and by the triangle inequality, as

SD (G,H) ≤
n∑
k=1

SD (Hk−1,Hk) ≤
n∑
k=1

q∑
l=1

SD (Hk,l−1,Hk,l) ≤ qn · νv.

Claim 4.2. P [B wins in H] ≤ ε.

Proof. Towards a contradiction, assume B wins in game H with probability larger than ε. The
claim follows directly by observing that in game H the answers to B’s queries have exactly the
same distribution as the answer to signature queries in game EUF-RMA, and that moreover B
asks a total of q + qn queries (i.e., q queries to the original signing algorithm plus q queries for
each of the n subversions).

The proof follows by combining the above two claims.

5.4 Subversion-Resilient Identification Schemes

We show how to apply EUF-RMA against SAs to the setting of subversion-resilient identification
(ID) schemes. Similar applications already appeared in the literature for leakage and tamper
resistance [ADW09, FHN+12, DFMV13, NVZ14, FNV15].

In a public-key ID scheme, a prover with secret key sk attempts to prove its identity
to a verifier holding the corresponding verification key vk . More formally, an ID scheme
ID = (Setup,KGen,P,V) consists of four polynomial-time algorithms described as follows:
(1) The parameters generation algorithm takes as input the security parameter and outputs
public parameters params←$ Setup(1κ), shared by all users.20 (2) The key generation algo-
rithm takes as input the security parameter and outputs a verification key/secret key pair
(vk , sk)←$ KGen(1κ). (3) P and V are probabilistic Turing machines interacting in a protocol;
at the end of the execution V outputs a decision bit d ∈ {0, 1}, where d = 1 means that the
identification was successful. We write 〈P(sk),V(vk)〉 for the random variable corresponding to
the verifier’s verdict, and P(sk) � V(vk) for the random variable corresponding to transcripts
of honest protocol executions.

We now define a variant of passive security, where in a first phase the adversary is allowed to
subvert the prover algorithm; in a second phase, the adversary has to impersonate the prover.
Similarly to the case of signature schemes, subversion is modelled by considering a class A of
SAs, where each Ã ∈ A is an algorithm replacing the prover algorithm P within the ID scheme
ID.

Definition 16 (Subversion-resilient identification). Let ID = (Setup,KGen, Sign,Vrfy) be an
ID scheme, and A be some class of SAs for ID. We say that ID is (t, n, q, ε)-secure w.r.t.
continuous A-SAs if for all adversaries B running in time t, we have P [B wins] ≤ ε(κ) in the
following game:

1. The challenger runs params←$ Setup(1κ), (vk , sk)←$ KGen(1κ), and forwards (params, vk)
to B.

20In what follows, all algorithms take as input params, but we omit it here for ease of notation.
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2. The adversary B can observe up to q ∈ N transcripts P(sk) � V(vk) corresponding to
honest protocol executions between the prover and the verifier.

3. The adversary B can specify an algorithm Ãj ∈ A, for a total of at most n ∈ N queries.
Each such query implicitly defines an oracle that can be queried up to q ∈ N times.

� Upon an empty input, the j-th oracle outputs a transcript Ãj(sk) � V(vk) corre-
sponding to a protocol execution between the subverted prover and the verifier. In
case Ãj is undefined, the oracle returns ⊥.

� Note that B does not need to ask all q queries before choosing the next algorithm,
i.e. the queries in step 2 and step 3 can be interleaved in an arbitrary manner.

4. The adversary B loses access to all oracles and plays the role of the prover in an execution
with an honest verifier, obtaining d←$ 〈B(vk),V(vk)〉; we say that B wins if and only if
d = 1.

Consider the following standard construction (see, e.g., [BFGM01]) of an identification
scheme ID from a signature scheme SS = (KGen,Sign,Vrfy).

� Parameters generation. Algorithm Setup samples the public parameters params for the
signature schemes (if any).

� Key Generation. Algorithm KGen runs the key generation algorithm of the signature
scheme, obtaining (vk , sk)←$ KGen(1κ).

� Identification protocol. The interaction P(sk) � V(vk) is depicted in Figure 3.

Prover P(sk) Verifier V(vk)
m∗←− m∗←$M

σ∗←$ Sign(sk ,m∗)
σ∗−→

Output d = Vrfy(vk , (m∗, σ∗))

Figure 3: Two-round identification using a signature scheme SS with message space M

The theorem below states that the above protocol achieve subversion resilience w.r.t. a given
class A of SAs, provided that the underlying signature scheme is EUF-RMA w.r.t. the same
class A.

Theorem 5. Let SS be a signature scheme with message space M, and let A be a class of SAs
for SS. Assume that SS is (t, n, q, ε)-EUF-RMA w.r.t. continuous A-SAs. Then the ID scheme

ID from Figure 3 is (t′, n, q, ε′)-secure w.r.t. continuous A-SAs where t′ ≈ t and ε′ ≤ ε+ (n+1)q
|M| .

Proof. For the sake of contradiction, assume that there exists an adversary B breaking security
of the identification scheme with probability larger than ε+ (n+1)q

|M| . We construct an adversary

B′ breaking EUF-RMA of SS with probability larger than ε (a contradiction). Adversary B′

runs the game of Definition 15 and is described below. The main observation is that the prover’s
algorithm P is completely specified by algorithm Sign, and thus subverting the ID scheme is
equivalent to subverting the signature scheme.

Adversary B′:
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1. Receive the public parameters params and the verification key vk for SS, and
forward (params, vk) to B.

2. Whenever B wants to observe an honest transcript P(sk) � V(vk), query the
signing oracle obtaining a pair (mi, σi) such that σi←$ Sign(sk ,mi) and mi←$

M. Forward (mi, σi) to B.

3. Whenever B specifies an algorithm Ãj ∈ A, forward Ãj to the challenger. For
each query of B to its own j-th oracle, query the target j-th oracle obtain-
ing a pair (mi,j , σ̃i,j) such that σ̃i,j ←$ Ãj(sk ,mi,j) and mi,j ←$M. Forward
(mi,j , σ̃i,j) to B.

4. Finally, when B is ready to start the impersonation phase, sample a random
message m∗←$M and send it to B. Upon receiving a value σ∗ from B, output
(m∗, σ∗) as forgery.

It is easy to see that B′’s simulation of B’s queries is perfect; moreover, since the message m∗

in the impersonation stage is chosen at random from M, also the simulation of this phase has
the right distribution, and in particular, the forgery (m∗, σ∗) will be valid with probability ε.

It remains to compute the probability that B′ is successful. Observe that B′ is successful
whenever (m∗, σ∗) is valid and m∗ 6∈ Q ∪ Q̃. Also, note that m∗ is independent from Q̃, so in
particular

P
[
m∗ ∈ Q ∪ Q̃

]
≤ |Q|+ |Q̃|

|M|
=

(n+ 1)q

|M|
.

Let E be the event that m∗ 6∈ Q ∪ Q̃. We have,

P
[
B′ wins

]
≥ P [B wins ∧ E] ≥ P [B wins]− P [¬E]

≥ P [B wins]− (n+ 1)q

|M|
> ε,

where the last inequality follows by our initial assumption on B’s advantage. This concludes
the proof.

6 Reverse Firewalls for Signatures

In Section 5, we have shown that unique signatures are secure against a restricted class of
SAs, namely all SAs that meet the so-called verifiability condition. As discussed in Section 3,
by removing the latter requirement (i.e., allowing for arbitrary classes of SAs in Definition 6
and 7) would require that a signature scheme SS remains unforgeable even against an adversary
allowed arbitrary tampering with the computation performed by the signing algorithm. This is
impossible without making further assumptions.

In this section, we explore to what extent one can model signature schemes secure against
arbitrary tampering with the computation by making the extra assumption of an un-tamperable
cryptographic reverse firewall (RF). RFs were introduced by Mironov and Stephens-Davidowitz
[MS15] as a means of sanitizing the transcript of arbitrary two-party protocols that are run
on possibly corrupted machines; below, we specialize their definition to the case of signature
schemes. Roughly, a RF for a signature scheme is a (possibly stateful) algorithm that takes
as input a message/signature pair, and outputs an updated signature; importantly, the firewall
has to do so using only public information (in particular, without knowing the signing key). A
formal definition follows.
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Definition 17 (RF for signatures). Let SS be a signature scheme with verification-key space
VK. A RF for SS is a pair of algorithms FW = (Setup,Patch) specified as follows: (i) Setup
takes as input the security parameter and a verification key vk ∈ VK, and outputs some initial
(public) state δ ∈ {0, 1}∗; (ii) Patch takes as input the current (public) state δ, and a mes-
sage/signature pair (m,σ) ∈ ({0, 1}∗)2, and outputs a possibly modified signature or a special
symbol ⊥ and an updated (public) state δ′. We write this as (δ′, σ′)←$ Patch(δ, (m,σ)).

We will typically assume that the current state δcur of the RF can be computed efficiently
given just the verification key vk , the initial state δ, and the entire history of all inputs/outputs
ever processed by the RF.

6.1 Properties

Below, we discuss the correctness and security requirements of a cryptographic RF FW for a
signature scheme SS.

Maintaining functionality. The first basic property of a RF is that it should preserve
the functionality of the underlying signature scheme, i.e., if a signature σ on a message m is
computed using signing key sk , and the firewall is initialized with the corresponding verification
key vk , the patched signature σ′ should (almost always) be a valid signature for m under
vk . More precisely, we say that FW is functionality maintaining for SS if there exists a
negligible function ν : N → [0, 1] such that, for any polynomial p(κ) and any vector of inputs
(m1, . . . ,mp) ∈M,

P

[
∃i ∈ [p] s.t. Vrfy(vk , (mi, σ

′
i)) = 0 :

(vk , sk)← KGen(1κ), δ0←$ Setup(vk , 1κ)
σ1 ← Sign(sk ,m1), . . . , σp ← Sign(sk ,mp)
∀i ∈ [p], (δi, σ

′
i)←$ Patch(δi−1, (mi, σi))

]
≤ ν(κ),

where the probability is taken over the coin tosses of all involved algorithms.

Preserving Unforgeability. The second property of a RF is a security requirement. Note
that a firewall can never “create” security (as it does not know the signing key). Below, we
define what it means for a RF to preserve unforgeability of a signature scheme against arbitrary
tampering attacks.

Definition 18 (Unforgeability preserving RF). Let SS = (KGen,Sign,Vrfy) be a signature
scheme with RF FW = (Setup,Patch). We say that FW (t, n, q, ε)-preserves EUF-CMA for SS
against continuous SAs if for all adversaries B running in time t we have that P [B wins] ≤ ε in
the following game:

1. The challenger runs (vk , sk)←$ KGen(1κ), δ←$ Setup(vk , 1κ), and gives (vk , δ) to B.

2. The adversary B is given oracle access to Sign(sk , ·). Upon input the i-th query mi, this
oracle returns σi←$ Sign(sk ,mi) for a total of at most q ∈ N queries.

3. The adversary B can specify an algorithm Ãj ∈ A, for a total of at most n ∈ N queries.
Each such algorithm implicitly defines an oracle that can be queried adaptively up to
q ∈ N times.

� Upon input a query of the form (j,mi,j), where j ∈ [n] and i ∈ [q], the j-th oracle

outputs (δ′, σ̃i,j)←$ Patch(δcur, (mi,j , Ãj(sk ,mi,j))), where δcur is the current state of

the firewall, and updates the public state to δcur := δ′. In case Ãj is undefined, the
oracle returns ⊥.
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� Note that B does not need to ask all q queries before choosing the next algorithm,
i.e. the queries to each oracle Ãj and to oracle Sign can be interleaved in an arbitrary
manner.

4. Let Q = {m1, . . . ,mq} be the set of messages queried to oracle Sign(sk , ·); similarly, for

each j ∈ [n], let Q̃j = {m1,j , . . . ,mq,j} be the set of messages queried to oracle Patch(δ,

(·, Ãj(sk , ·))).

5. Finally, B outputs a pair (m∗, σ∗); we say that B wins iff Vrfy(vk , (m∗, σ∗)) = 1 and
m∗ 6∈ Q ∪ Q̃, where Q̃ :=

⋃n
j=1 Q̃j .

If for all t, n, q = poly(κ) there exists ε = negl(κ) such that FW (t, n, q, ε)-preserves EUF-CMA
for SS, we simply say that FW preserves EUF-CMA for SS. Furthermore, in case B specifies
all of its queries {Ãj ,mi,j}j∈[n],i∈[q] at the same time we say that FW non-adaptively preserves
EUF-CMA.

We observe that Definition 18 is very similar to Definition 7, except that the above definition
considers arbitrary classes of SAs instead of SAs within a given class A; this is possible because
the output of each invocation of the subverted signing algorithm is patched using the firewall
(which is assumed to be un-tamperable).

Looking ahead, no RF can preserve unforgeability (even non adaptively) without keeping
state. In fact, as we show in Section 6.2, there exist simple generic attacks that allow for
complete security breaches in case of a stateless RF. On the positive side, in Section 6.3, we
show how to design an unforgeability preserving RF for any re-randomizable signature scheme by
using a single bit of public state that is used to implement the so-called self-destruct capability:
Whenever the firewall returns ⊥, all further queries will result in ⊥. Let us stress, however,
that assuming self-destruct does not make the problem of designing an unforgeability preserving
reverse firewall trivial: The biased-randomness attacks of Section 4 allow to break all randomized
schemes without ever provoking a self-destruct.

On exfiltration resistance. More generally, one might require a stronger security property
from a RF. Namely, we could ask that patched signatures are indistinguishable from real signa-
tures to the eyes of an attacker. This property, which is called exfiltration resistance in [MS15],
would be similar in spirit to our definition of indistinguishability w.r.t. continuous SAs (see
Definition 6).

It is not hard to see that exfiltration resistance against arbitrary SAs is impossible to achieve
in the case of signature schemes; this is because the attacker could simply set the subverted
signing algorithm to always output the all-zero string, in which case the RF has no way to patch
its input to a valid signature (and thus the adversary can easily distinguish subverted patched
signatures from real signatures).21

6.2 Necessity of Keeping State

We show that no RF can preserve both functionality and unforgeability, without maintaining
state. This is achieved via a generic (non-adaptive) attack that allows to extract the secret key
in case the RF does not self-destruct. The attack itself is a generalization of a similar attack
by Gennaro et al. [GLM+04], in the context of memory tampering.

21We note, however, that our techniques from Section 5 can be extended to design a RF that is weakly exfil-
tration resistant, namely it is exfiltration resistant against restricted SAs that satisfy the verifiability condition.
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Theorem 6. Let SS be an EUF-CMA signature scheme with perfect correctness. No stateless
RF FW can, at the same time, be functionality maintaining and non-adaptively (poly(κ), 1,
poly(κ),negl(κ))-preserve EUF-CMA for SS.

Proof. Let FW = (Setup,Patch) be a stateless RF; formally, this means that the state δ is fixed
by algorithm Setup and never updated by algorithm Patch. Consider the following adversary B
playing the game of Definition 18.

� Upon input the verification key vk , and the initial state δ, initialize τ := 1.

� Let Ãτ be the following algorithm. Upon input a message mi, set j = τ mod ` (where
` := |sk |) and

– If sk [j] = 1, output σ̃i ← Sign(sk ,mi).

– Else, output 0|σ| (where |σ| is the length of the signatures produced by the signing
algorithm).

Update τ ← τ + 1.

� Forward (Ãτ ,m1, . . . ,m`) to the challenger, where m1, . . . ,m` ∈ M. Let (σ̃′1, . . . , σ̃
′
`) be

the answers computed by the challenger, where σ̃′i ← Patch(δ, (mi, Ãτ (sk ,mi))).

� Define sk ′[i] = Vrfy(vk , (mi, σ̃
′
i)) and return sk ′ := (sk ′[1], . . . , sk ′[`]).

Notice that B specifies its queries non-adaptively, and moreover, it only uses one subversion
which is queried upon the sequence of messages m1, . . . ,m` ∈ M. We will show that the
extracted key sk ′ is equal to the original secret key sk with overwhelming probability, which
clearly implies the statement. Define the following events, parametrized by an index i ∈ [`]:
(i) Event E′i becomes true if sk [i] = 1 and Vrfy(vk , (mi, σ̃

′
i)) = 0; (ii) Event E′′i becomes true if

sk [i] = 0 and Vrfy(vk , (mi, σ̃
′
i)) = 1. Let Ei := E′i ∨ E′′i .

Claim 6.1. There exists a negligible function ν ′ : N → [0, 1] such that P [E′i] ≤ ν ′(κ), for all
i ∈ [`].

Proof. Follows directly by the fact that SS satisfies (perfect) correctness, and moreover FW is
stateless and functionality maintaining.

Claim 6.2. There exists a negligible function ν ′′ : N → [0, 1] such that P [E′′i ] ≤ ν ′′(κ), for all
i ∈ [`].

Proof. Intuitively, whenever E′′i happens, the RF forged a signature on message mi by patching
the all-zero string using only public information, which contradicts EUF-CMA security of SS.
More formally, assume there exists an index i ∈ [`], a polynomial p(·), and an adversary B
provoking event E′′i with probability at least 1/p(κ) for infinitely many values of κ ∈ N. Consider
the following adversary A′ attacking EUF-CMA of SS:

Adversary A′:

1. Receive the target vk from the challenger.

2. Run δ←$ Setup(vk , 1κ), and forward (vk , δ) to B.

3. Whenever B outputs (Ãτ ,m1, . . . ,m`), pick a random j←$ [`], compute σ̃′j ←$ Patch(δ,

(mj , 0
|σ|)), and return (mj , σ̃

′
j) as the forgery.
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Alice RAlice’s Firewall R
m ∈M
σ̃ ← Ã(sk ,m)

m,σ̃
−−−−→

Read δ = (vk , β)
If β = 1 set σ̃′ = ⊥
Else if Vrfy(vk , (m, σ̃)) = 1

σ̃′←$ ReRand(vk ,m, σ̃)
Else set σ̃′ = ⊥ and β = 1
Forward (m, σ̃′)

Figure 4: A cryptographic reverse firewall preserving unforgeability of any re-randomizable
signature scheme against arbitrary SAs.

By assumption, with probability at least 1/p(κ), we have that Vrfy(vk , (mi, σ̃
′
i)) = 1, and

moreover A′ guesses the index i (i.e., j = i) with probability 1/`. Thus P [A′ wins] ≥ 1/`·1/p(κ),
which is non-negligible. This concludes the proof.

Putting together the above two claims, we conclude that

P
[
sk ′ = sk

]
= 1− P

[
sk ′ 6= sk

]
= 1− P

[
∃i ∈ [`] : E′i ∨ E′′i

]
≥ 1−

∑̀
i=1

P
[
E′i ∨ E′′i

]
≥ 1− ` · (ν ′(κ) + ν ′′(κ)) ≥ 1− ν(κ),

which implies the theorem.

6.3 Patching Re-Randomizable Signatures

We design a RF preserving unforgeability of so-called re-randomizable signature schemes (that
include unique signatures as a special case).

Definition 19 (Re-randomizable signatures [HJK12]). A signature scheme SS = (KGen, Sign,
Vrfy) is efficiently re-randomizable if there exists a PPT algorithm ReRand such that, for all
κ ∈ N, for all (vk , sk) output by KGen(1κ), for all messages m ∈ M, and for all strings σ such
that Vrfy(vk , (m,σ)) = 1, we have that the output distribution of ReRand(vk ,m, σ) is identical
to the output distribution of Sign(sk ,m).

The original formulation of re-randomizability (as defined in [HJK12]) is slightly different
from the one defined above, in that the output distribution of ReRand is required to be identical
to the uniform distribution over the set Σ(vk ,m) of all strings σ that verify for message m under
the verification key vk , even if vk was maliciously generated. However, the variant considered
above suffices for our purpose. Note that unique signatures are efficiently re-randomizable,
for ReRand(vk ,m, σ) = σ; Waters’ signature scheme [Wat05], and its variant by Hofheinz et
al. [HJK12], are also efficiently re-randomizable as per the definition above.

Our firewall, which is formally described in Fig. 4, first checks if σ is a valid signature on
message m under key vk (provided that a self-destruct was not provoked yet). If not, it self-
destructs and returns ⊥; otherwise it re-randomizes σ and outputs the result. The self-destruct
capability is implemented using a one-time writable bit β (which is included in the public state).
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Theorem 7. Let SS be a (t, (q + 1)n, ε)-EUF-CMA signature scheme that is efficiently re-
randomizable and that satisfies perfect correctness. Then, the RF of Fig. 4 maintains function-
ality and (t′, q, ε′)-preserves EUF-CMA for SS, where t′ ≈ t and ε′ ≤ qn · ε.

Proof. The fact that the firewall maintains functionality follows directly by correctness of SS.
We now proceed to show that the firewall preserves unforgeability. Let G be the game of
Definition 18. Consider the modified game H that is identical to G, except that tampered
signature queries (j,mi,j) are answered as follows: If such query is specified before a self-
destruct happens in G (if any), return σi,j ← Sign(sk ,mi,j) and δ′ = (vk , 0), else return ⊥ and
δ′ = (vk , 1). In what follows, we write (i∗, j∗) ∈ [q] × [n] for the pair of indexes in which the
firewall self-destructs; notice that such a pair depends on the randomness of the game, but is
the same for both G and H.

Claim 7.1. P [B wins in G] = P [B wins in H].

Proof. For an index k ∈ [0, n], consider the hybrid game Hk that answers each query (j,mi,j)
such that j ≤ k as in game G, while all queries (j,mi,j) such that j > k are answered as in H.
We note that H0 ≡ H and Hn ≡ G. Abusing notation, let us write Hk for the distribution of
the random variable corresponding to B’s view in game Hk.

We will show that SD (Hk−1,Hk) = 0 for all k. Fix a particular k ∈ [0, n], and for an index
l ∈ [0, q] consider the hybrid game Hk,l that is identical to Hk except that it answers queries
(k,mi,k) with i ≤ l as in game G, while all queries (k,mi,k) with i > l are treated as in H.
Observe that Hk,0 ≡ Hk−1, and Hk,q ≡ Hk.

We now argue that for each l ∈ [q], one has that SD(Hk,l−1,Hk,l) = 0. Observe that, since
for k > j∗ both games always return ⊥, we can assume without loss of generality that k ≤ j∗.
Note that the only difference between Hk,l−1 and Hk,l is how the two games answer the query
(k,ml,k): Hk,l−1 returns σl,k←$ Sign(sk ,ml,k), whereas Hk,l returns σ̃′l,k←$ Patchδ(ml,k, σ̃l,k),

for σ̃l,k←$ Ãk(sk ,ml,k). Now, since σ̃l,k is valid, the fact that signatures are re-randomizable
directly implies that the Hk,l−1 and Hk,l are identical. The statement follows.

Claim 7.2. P [B wins in H] ≤ qn · ε.

Proof. Towards a contradiction, assume B wins in game H with probability larger than qn · ε.
Wlog. we assume that B always outputs its forgery after provoking a self-destruct.22 We build
an adversary B′ (using B) that breaks EUF-CMA of SS. Adversary B′ is described below.

Adversary B′:

� Receive the verification key vk from the challenger, sample a random pair
(j∗, i∗)←$ [n]× [q], and return vk to B.

� Upon input the i-th signature query mi, forward this value to the signing oracle
receiving back a signature σi ← Sign(sk ,mi). Return σi to B.

� Upon input a query of the form (j,mi,j) answer as follows:

– In case j < j∗, forwardmi,j to the signing oracle, obtaining σ̃i,j ←$ Sign(sk ,mi),
and return σ̃i,j and δ′ = (vk , 0) to B.

– In case j = j∗, if i < i∗ forward mi,j to the signing oracle, obtaining
σ̃i,j ←$ Sign(sk ,mi), and return σ̃i,j and δ′ = (vk , 0) to B. Else, return ⊥
and δ′ = (vk , 1).

22If not we can always modify B in such a way that it asks one additional query provoking a self-destruct; this
clearly does not decrease B’s advantage.
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– In case j > j∗ answer with (⊥, δ′ = (vk , 1)).

� Whenever B outputs (m∗, σ∗), output (m∗, σ∗).

For the analysis, note that B′ runs in time similar to that of B and asks a total of at most q+qn
signing queries. Moreover, define the event E that B′ guesses correctly the query (j∗, i∗) where
B provokes a self-destruct. Clearly, in case E happens, we have that B′ perfectly simulates the
distribution of game H. Hence P [B′ wins] ≥ (qn · ε)/(qn) = ε, a contradiction.

The proof follows by combining the above two claims.

7 The Multi-User Setting

In this section, we consider the multi-user setting for all the definitions of Section 3. We also
provide a complete picture of relationships between the different definitions, as shown in Fig. 5
and Fig. 6.

7.1 Multi-User Security

Analogous to the single-user setting, we consider two security definitions corresponding to dif-
ferent adversarial goals.

Indistinguishability. In the indistinguishability definition for the multi-user setting, adver-
sary B now receives u ≥ 1 verification keys from the challenger and can continuously subvert
each user independently. Similarly to Definition 6, multiple subversions of the same user are
not allowed to share state. A formal definition follows.

Definition 20 (Indistinguishability against SAs—Multi-user setting). Let SS = (KGen, Sign,
Vrfy) be a signature scheme, and A be some class of SAs for SS. We say that SS is u(κ)-users
indistinguishable w.r.t. continuous A-SAs if for all PPT adversaries B there exists a negligible
function ε : N→ [0, 1], such that

∣∣P [B wins]− 1
2

∣∣ ≤ ε(κ) in the following game:

1. The challenger samples b←$ {0, 1}, generates (vk `, sk `)←$ KGen(1κ) for ` ∈ [u], and gives
vk1, . . . , vku to B.

2. For each user ` ∈ [u], the adversary B can specify polynomially many algorithms Ã`,j ∈ A.
Each such algorithm implicitly defines an oracle that can be queried adaptively polyno-
mially many times.

� Upon input a query of the form (`, j,m), where ` ∈ [u], the answer depends on the
value of the secret bit b: If b = 1, the output is σ←$ Sign(sk `,m); if b = 0, the output
is σ̃←$ Ã`,j(sk `,m). In case the algorithm Ã`,j is undefined the oracle returns ⊥.

� Note that B can interleave queries between different oracles in an arbitrary way.

3. Finally, B outputs a value b′ ∈ {0, 1}; we say that B wins iff b′ = b.

Impersonation. In the impersonation definition for the multi-user setting, adversary B now
receives u ≥ 1 verification keys from the challenger and can continuously subvert each user
independently; adversary B is successful if it can impersonate any of the users. Similarly to
Definition 7, multiple subversions of the same user are not allowed to share state. A formal
definition follows.

35



Definition 21 (EUF-CMA against SAs—Multi-user setting). Let SS = (KGen, Sign,Vrfy) be
a signature scheme, and A be some class of SAs for SS. We say that SS is u(κ)-users EUF-
CMA w.r.t. continuous A-SAs if for all PPT adversaries B there exists a negligible function
ε : N→ [0, 1], such that P [B wins] ≤ ε(κ) in the following game:

1. The challenger generates (vk `, sk `)←$ KGen(1κ) for ` ∈ [u], and gives vk1, . . . , vku to B.

2. The adversary B can submit polynomially many queries of the form (` ∈ [u],m) to the
challenger that returns σ←$ Sign(sk `,m).

3. For each user ` ∈ [u], the adversary B can specify polynomially many algorithms Ã`,j ∈ A.
Each such algorithm implicitly defines an oracle that can be queried adaptively polyno-
mially many times.

� Upon input a query of the form (`, j,m), where ` ∈ [u], the output is σ̃←$ Ã`,j(sk `,m).

In case the algorithm Ã`,j is undefined the oracle returns ⊥.

� Note that B can interleave queries between different oracles in an arbitrary way, and
that the queries in step 2 and step 3 can also be interleaved arbitrarily.

4. For each ` ∈ [u], let Q` be the set of all messages queried to oracle Sign(sk`, ·) and Q̃`,j
be the set of all messages queried to oracle Ã`,j(sk `, ·).

5. Finally, B outputs a tuple (m∗, σ∗, `∗); we say that B wins iff Vrfy(vk `∗ , (m
∗, σ∗)) = 1 and

m∗ 6∈ Q`∗ ∪ Q̃`∗ , where Q̃`∗ :=
⋃
j Q̃`∗,j .

Security relations. Theorem 8 below formalizes the relations between the notions of imper-
sonation/indistinguishability in the presence of SAs, which are depicted in Fig. 5. Note that for
u = 1 Definition 20 and Definition 21 collapse, respectively, to Definition 6 and Definition 7.

1-IMP

u-IMP

1-IND

u-IND

Figure 5: Diagram of the relationships between the subversion notions considered in this pa-
per. X → Y means that X implies Y (for all SA classes A); X 9 Y indicates a separation
between X and Y (for some specific SA class A). The lighter arrows indicates trivial impli-
cations (or implications that follow from Theorem 8). Indistinguishability (cf. Definition 6) is
represented by 1-IND and Impersonation (cf. Definition 7) is represented by 1-IMP. Multi-user
Indistinguishability (cf. Definition 20) is represented by u-IND and multi-user Impersonation
(cf. Definition 21) is represented by u-IMP.

Theorem 8. The following relations hold.

(i) (1-IND → u-IND) For all signature schemes SS and all SA classes A against SS, if SS
is 1-user indistinguishable w.r.t. continuous A-SAs, then, for any u ∈ poly(κ), it is also
u-users indistinguishable w.r.t. continuous A-SAs.
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(ii) (1-IMP 9 1-IND) Assuming the existence of EUF-CMA signature schemes, there exist a
signature scheme SS and a SA class A against SS such that SS is 1-user EUF-CMA
w.r.t. continuous A-SAs, but it is not 1-user indistinguishable w.r.t. continuous A-SAs.

(iii) (u-IND→ u-IMP) Let SS be a EUF-CMA signature scheme. For all SA classes A against
SS, and for any u ∈ poly(κ), if SS is u-users indistinguishable w.r.t. continuous A-SAs,
then it is also u-users EUF-CMA w.r.t. continuous A-SAs.

(iv) (1-IMP → u-IMP) For all signature schemes SS and all SA classes A against SS, if SS
is 1-user EUF-CMA w.r.t. continuous A-SAs then, for any u ∈ poly(κ), it is also u-users
EUF-CMA w.r.t. continuous A-SAs.

Proof. (i) Towards contradiction, consider an adversary B that wins the game described in
Definition 20. We build an adversary B′ that (using B) wins the game described in Definition 6.
Let G be the game described in Definition 20. Consider the game G0, an identical copy of game
G when b = 0, and consider the game G1 an identical copy of game G when b = 1. For an
index `∗ ∈ [0, u], consider the hybrid game H`∗ where each oracle corresponding to query (`, j, ·)
such that ` ≤ `∗ behaves as Ã`,j(sk `, ·) (i.e., as in game G0), while all oracles corresponding
to queries (`, j, ·) such that ` > `∗ behave as Sign(sk `, ·) (i.e., as in game G1). We note that
H0 ≡ G1 and Hu ≡ G0. We can construct B′ as follows.

Adversary B′:

1. Sample a random `∗←$ [u].

2. Receive vk∗ from the challenger and sample (vk `, sk `)←$ KGen(1κ) for all ` ∈
[u] \ {`∗}. Define vk `∗ = vk∗ and forward (vk1, . . . , vku) to adversary B.

3. Whenever B outputs a subversion Ã`,j , if ` = `∗ forward it to the challenger.

4. Upon input a query (`, j,m) from B, behave as follows.

� If ` ≤ `∗ − 1 answer with σ̃←$ Ã`,j(sk `,m).

� If ` = `∗ forward m to the challenger and send the reply to B.

� If ` ≥ `∗ + 1 answer with σ←$ Sign(sk `,m).

5. Output whatever B outputs.

By assumption, we know that B can distinguish between the extreme hybrid games H0 and Hu,
so there must exist an index `∗(κ) ∈ [0, u(κ)] such that B can distinguish H`∗(κ) and H`∗(κ)−1

with a non-negligible advantage. Therefore,

∣∣P [B′(G1) = 1
]
− P

[
B′(G0) = 1

]∣∣ =
1

u
·

∣∣∣∣∣
u−1∑
`∗=0

P [B(H`∗+1) = 1]− P [B(H`∗) = 1]

∣∣∣∣∣
=

1

u
· |P [B(Hu) = 1]− P [B(H0) = 1]|

≥ 1/poly(κ),

which is a contradiction, finishing the proof.
(ii) Consider SS to be an EUF-CMA signature scheme with signature size ` bits, and let

A be the class of SAs for SS that always outputs 0` as the signature of any message m ∈ M.
By SS being EUF-CMA, adversary B has only a negligible probability of winning at the game
described in Definition 7. Consider the adversary B against the game described in Definition 6.

Adversary B:
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1. The challenger samples b←$ {0, 1}, runs (vk , sk)←$ KGen(1κ) and forwards vk
to B.

2. B queries the oracle for an arbitrary message m and receives σ as a reply.

3. If σ = 0` then output 0, otherwise output 1.

Adversary B clearly has a non-negligible probability of distinguishing the real signing oracle
from the subversion oracle in the game of Definition 6.

(iii) Let G be the game described in Definition 21; consider the hybrid game H that behaves
exactly like G, except that queries of type (`, j), for ` ∈ [u], are answered using Sign(sk `, ·)
instead of Ã`,j(sk `, ·). We claim that for all PPT adversaries B, there exists a negligible function
ε′ : N→ [0, 1] such that

|P [B wins G]− P [B wins H]| ≤ ε′(κ). (6)

In fact, G and H are computationally indistinguishable, as any distinguisher between the two
games directly yields an efficient adversary against the u-users indistinguishability w.r.t. con-
tinuous A-SAs of SS.

On the other hand, note that in game H all queries are answered using the real signing
algorithm. Thus, a straightforward reduction to the EUF-CMA security of SS implies that
there exists a negligible function ε′′ : N→ [0, 1] such that, for all PPT adversaries B,

P [B wins H] ≤ ε′′(κ). (7)

Putting Eq. (6) and Eq. (7) together, we conclude that for all PPT adversaries B there exists
a negligible function ε : N→ [0, 1] such that

P [B wins G] ≤ ε′(κ) + ε′′(κ) ≤ ε(κ),

concluding the proof.
(iv) Consider an adversary B that wins the game described in Definition 21. We build an

adversary B′ that (using B) wins the game described in Definition 7.

Adversary B′:

1. Receive vk∗ from the challenger, sample `∗←$ [u] and (vk `, sk `)←$ KGen(1κ)
for all ` ∈ [u] \ {`∗}. Set vk `∗ := vk∗ and forward (vk1, . . . , vku) to B.

2. Upon each query (`,m), for ` ∈ [u]: If ` 6= `∗ reply with σ←$ Sign(sk`,m), else
forward the query to the challenger.

3. Whenever B outputs a subversion Ã`,j , if ` = `∗ forward it to the challenger.

4. Upon each query (`, j,m), with ` ∈ [u], behave as follows.

� If ` 6= `∗, answer with σ̃←$ Ã`,j(sk `,m), else forward the query to the
challenger.

5. Eventually B outputs a forgery (`′,m′, σ′); adversary B′ outputs (m′, σ′) as its
own forgery.

Adversary B′ is successful if adversary B outputs a valid forgery for user `∗. Define E to be
the event that B′ guesses correctly the index `′ = `∗; note that P [E] = 1/u. Therefore, since
u is a polynomial in the security parameter, adversary B′ has a non-negligible probability of
winning at the game described in Definition 7.
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7.2 Multi-User Public/Secret Undetectability

In the undetectability definition for the multi-user setting, user U now receives u ≥ 1 key pairs
from the challenger (only the verification keys for public undetectability) and is allowed to make
polynomially many signature queries for all users (key pairs). The answer to these queries are
either computed using the real signature algorithm or a subverted algorithm previously chosen
by the challenger according to an efficiently samplable distribution DA that is a parameter in
the definition. A formal definition follows.

Definition 22 (Public/secret undetectability—Multi-user). Let SS = (KGen, Sign,Vrfy) be a
signature scheme, A be some class of SAs for SS, and DA be an efficiently samplable distribution
over A. We say that A is u(κ)-users secretly DA-undetectable w.r.t. SS if for all PPT users U,
there exists a negligible function ε : N→ [0, 1] such that

∣∣P [U wins]− 1
2

∣∣ ≤ ε(κ) in the following
game:

1. The challenger samples b←$ {0, 1}, generates (vk `, sk `)←$ KGen(1κ) for ` ∈ [u], samples
Ã←$ DA, and gives ((vk1, sk1), . . . , (vku, sku)) to U. Let Ã1, . . . , Ãu be u identical copies
of Ã.

2. The user U can ask polynomially many queries of the form (`,m), where ` ∈ [u]. The
answer to each query depends on the secret bit b. If b = 1, the challenger returns
σ←$ Sign(sk `,m); if b = 0, the challenger returns σ̃←$ Ã`(sk `,m).

3. Finally, U outputs a value b′ ∈ {0, 1}; we say that U wins iff b′ = b.

We say that A is u-users publicly undetectable w.r.t. SS if in step 1. of the above game, U
is only given the verification keys of the u users.

Undetectability relations. Theorem 9, below, formalizes the relations between the notions
of public/secret undetectability in the presence of SAs, which are depicted in Fig. 6.

1-pUND

u-pUND

1-sUND

u-sUND

sUND

Figure 6: Diagram of the relationships between the undetectability notions considered in this
paper. X → Y means that X implies Y (for all SA classes A); X 9 Y indicates a separation
between X and Y (for some specific SA classA). The lighter arrows indicates trivial implications
(or implications that follow from Theorem 9). For u ≥ 2, public undetectability is represented
by u-pUND and secret undetectability is represented by u-sUND (cf. Definition 22). Secret
undetectability (cf. Definition 8) is represented by sUND, whereas public undetectability (cf.
Definition 8) is equivalent to 1-pUND.

Theorem 9. The following relations hold.

(i) (u-sUND → u-pUND) For any signature scheme SS, all SA classes A against SS and
all efficiently samplable distributions DA over A, if A is u-users secretly DA-undetectable
w.r.t. SS, then it is also u-users publicly DA-undetectable w.r.t. SS.
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(ii) (1-pUND 9 1-sUND) There exist a signature scheme SS, a SA class A against SS
and an efficiently samplable distribution DA over A, such that A is 1-user publicly DA-
undetectable w.r.t. SS but it is not 1-user secretly DA-undetectable w.r.t. SS.

(iii) (1-pUND 9 u-pUND) There exist a signature scheme SS, a SA class A against SS
and an efficiently samplable distribution DA over A, such that A is 1-user publicly DA-
undetectable w.r.t. SS but it is not u-users publicly DA-undetectable w.r.t. SS (for any
u ≥ 2).

(iv) (sUND 9 u-sUND) Assuming that PRGs exist, there exist a signature scheme SS, a SA
class A against SS and an efficiently samplable distribution DA over A, such that A is
1-user secretly DA-undetectable w.r.t. SS but it is not u-users secretly DA-undetectable
w.r.t. SS (for any u ≥ 2).

(v) (u-sUND 9 sUND) There exist a signature scheme SS, a SA class A against SS and
an efficiently samplable distribution DA over A, such that A is u-users secretly DA-
undetectable w.r.t. SS but it is not 1-user secretly DA-undetectable w.r.t. SS (for any
u ≥ 1).

Proof. (i) Towards contradiction, consider a user U that wins the u-users public undetectability
game described in Definition 22. We build a user U′ (using U) that wins the u-users secret
undetectability game described in Definition 22.

User U′:

1. Receive (vk `, sk `)←$ KGen(1κ), from the challenger, for ` ∈ [u], and forward
(vk1, . . . , vku) to user U.

2. User U asks polynomially many queries of the type (`,m) which are forwarded
to the challenger.

3. Output whatever U outputs.

We note that the simulation performed by user U′ is perfect, therefore U′ wins the secret
undetectability game with the same probability that user U wins the public undetectability
game.

(ii) Consider SS to be a randomized signature (with only two valid signatures for each
message m ∈M), and let SS ′ be its derandomized implementation s.t. sk ′ := (sk , b), vk ′ := vk ,
and σ′ := Sign(sk ,m; b), for a random b ∈ {0, 1}. Let A = {Ã} be the class of SAs for SS ′
which consists of a single algorithm described next.

Ã((sk , b),m):

1. Let b′ := 1− b (i.e., b′ is the complement bit of b).

2. Output σ := Sign(sk ,m; b′).

Let DA be the distribution over A that always returns Ã. We note that the class of SAs A is 1-
user publicly DA-undetectable w.r.t. SS ′, i.e. any PPT user U has only a negligible probability
of winning at the public undetectability game described in Definition 8. On the other hand, a
user U playing the secret undetectability game (with knowledge of sk ′ = (sk , b)) can easily detect
the subversion by simply comparing the output of the target oracle with that of Sign(sk ,m; b′).

(iii) and (iv) Consider SS to be a public-coin signature scheme, so that the signature of a
message m ∈ M is σ′ := σ||r := Sign(sk ,m; r), where r ∈ R are the coins sampled to generate
σ. Let A = {Ãr̄,τ=0}r̄∈R to be class of SAs for SS described next.
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Ãr̄,τ (sk ,m):

1. If τ = 0 then set r := r̄, else set r←$R;

2. Set τ := τ + 1;

3. Output σ||r := Sign(sk ,m; r).

Let DA to be the uniform distribution over A. Clearly, the class A is 1-user publicly/secretly
DA-undetectable w.r.t. SS, because the output of the subverted signature algorithm is indis-
tinguishable from that of the real signing algorithm even for the first query (when τ = 0).
However, the class A is clearly 2-users publicly/secretly DA-detectable w.r.t. SS, since it suf-
fices to ask one query for each signing key (i.e., each signing oracle) and compare the last part
of the signatures (i.e., the random coins).

(v) Consider SS to be any signature scheme. Let A = {Ãτ=0κ} be the class of SAs for SS
which consists of the algorithm described next.

Ãτ (sk ,m):

1. If τ 6= sk and τ 6= 0κ then σ := ⊥;

2. Else, σ←$ Sign(sk ,m);

3. τ := sk ;

4. Output σ.

Let DA be the distribution that always returns Ã0κ . A user U playing the secret undetectability
game of Definition 8 can easily win the game by making two queries with different signing keys;
if the answer to the second query is ⊥, then U detects the subversion. On the other hand, all the
queries made by a user U′ playing the u-users secret undetectability game of Definition 22 will
only produce a real signature, since a single signing key is used for each copy of the subversion
oracle.

Comparison between undetectability and multi-user undetectability. The above the-
orem shows that the secret undetectability notion of Definition 8 is actually incomparable to the
multi-user secret undetectability notion of Definition 22. (For public undetectability, instead,
Definition 8 is equivalent to Definition 22 with u = 1.) The latter is due to the fact that in the
game of Definition 8 the challenger queries a single oracle, whereas in the game of Definition 22
the challenger queries different copies of the same oracle (one for each signing key).

This difference creates a gap between the two notions in the case of stateful SAs. Nev-
ertheless, it is possible to slightly modify our attack from Section 4.2 in order to get secret
undetectability in the multi-user setting.23 On the other hand, for stateless SAs secret unde-
tectability as per Definition 8 does imply u-users secret undetectability as per Definition 22 (for
any u ∈ poly(κ)); in particular, the attack described in Fig. 1 is already secretly undetectable
in the multi-user setting.

7.3 Multi-User Signing Key Recovery

In this section, we extend the key recovery definition (Definition 9) for the multi-user setting.

23Briefly, we generate the biased randomness via a PRF (instead of a PRG); the PRF has a fixed key, hard-wired
in the subverted algorithm, and takes as input the signing key of each user and a counter that is incremented on
every call.
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Definition 23 (Key recovery—Multi-user setting). Let SS = (KGen,Sign,Vrfy) be a signature
scheme, A be some class of SAs for SS, and DA be an efficiently samplable distribution over
A. We say that adversary B recovers the signing key of all u(κ)-users of SS w.r.t. message
sampler M and distribution DA if there exists a non-neglible function ε : N → [0, 1], such that
P [B wins] ≥ ε(κ) in the following game:

1. The challenger runs (vk `, sk `)←$ KGen(1κ) and samples Ã`←$ DA, for each ` ∈ [u], and
gives (vk1, · · · , vku) to B.

2. For each ` ∈ [u], adversary B is given access to an oracle that can be queried polynomially
many times: Upon an empty input, the oracle samples m←$ M, computes σ̃ ← Ã`(sk `,m),
and sends (m, σ̃) to B.

3. Finally, B outputs the keys (sk ′1, · · · , sk ′u); we say that B wins iff sk′` = sk ` for all ` ∈ [u].

As in Definition 9, we note that M is a message sampler algorithm, that chooses the message
to be signed according to some pre-defined strategy.

Both attacks from Section 4 satisfy Definition 23, meaning that they can recover the signing
keys of all users of the scheme. More precisely, for the attack of Fig. 1, the key recovery
probability of adversary B, described in Theorem 1, is ε ≥ (1−εprf−`e−q/`−q2τ2·2−η−1−q·2−τ )u.
For the attack of Fig. 2, the key recovery probability of adversary B, defined in Theorem 2, is
ε ≥ (1− νext · `/d)u.
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