
Pushing Lines Helps: Efficient Universal
Centralised Transformations for Programmable
Matter
Abdullah Almethen
Department of Computer Science, University of Liverpool, UK
A.almethen@liverpool.ac.uk

Othon Michail
Department of Computer Science, University of Liverpool, UK
Othon.Michail@liverpool.ac.uk

Igor Potapov
Department of Computer Science, University of Liverpool, UK
Potapov@liverpool.ac.uk

Abstract
In this paper, we study a discrete system of entities residing on a two-dimensional square grid. Each
entity is modelled as a node occupying a distinct cell of the grid. The set of all n nodes forms initially
a connected shape A. Entities are equipped with a linear-strength pushing mechanism that can push
a whole line of entities, from 1 to n, in parallel in a single time-step. A target connected shape B is
also provided and the goal is to transform A into B via a sequence of line movements. Existing models
based on local movement of individual nodes, such as rotating or sliding a single node, can be shown
to be special cases of the present model, therefore their (inefficient, Θ(n2)) universal transformations
carry over. Our main goal is to investigate whether the parallelism inherent in this new type of
movement can be exploited for efficient, i.e., sub-quadratic worst-case, transformations. As a first
step towards this, we restrict attention solely to centralised transformations and leave the distributed
case as a direction for future research. Our results are positive. By focusing on the apparently hard
instance of transforming a diagonal A into a straight line B, we first obtain transformations of time
O(n
√

n) without and with preserving the connectivity of the shape throughout the transformation.
Then, we further improve by providing two O(n log n)-time transformations for this problem. By
building upon these ideas, we first manage to develop an O(n

√
n)-time universal transformation.

Our main result is then an O(n log n)-time universal transformation. We leave as an interesting
open problem a suspected Ω(n log n)-time lower bound.

Keywords and phrases Line movement, programmable matter, transformation, shape formation,
reconfigurable robotics, time complexity

1 Introduction

As a result of recent advances in components such as micro-sensors, electromechanical
actuators, and micro-controllers, a number of interesting systems are now within reach.
A prominent type of such systems concerns collections of small robotic entities. Each
individual robot is equipped with a number of actuation/sensing/communication/computation
components that provide it with some autonomy; for instance, the ability to move locally and
to communicate with neighbouring robots. Still, individual local dynamics are uninteresting,
and individual computations are restricted due to limited computational power, resources,
and knowledge. What makes these systems interesting is the collective complexity of the
population of devices. A number of fascinating recent developments in this direction have
demonstrated the feasibility and potential of such collective robotic systems, where the scale
can range from milli/micro [6, 26, 28, 36, 43] down to nano [20, 35].

This progress has motivated the parallel development of a theory of such systems. It
© Abdullah Almethen, Othon Michail and Igor Potapov;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ar
X

iv
:1

90
4.

12
77

7v
1

 [
cs

.D
S]

 2
9

A
pr

 2
01

9

mailto:A.almethen@liverpool.ac.uk
mailto:Othon.Michail@liverpool.ac.uk
mailto:Potapov@liverpool.ac.uk
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 Pushing Lines Helps: Efficient Universal Centralised Transformations for Programmable Matter

has been already highlighted [32] that a formal theory (including modelling, algorithms,
and computability/complexity) is necessary for further progress in systems. This is because
theory can accurately predict the most promising designs, suggest new ways to optimise them,
by identifying the crucial parameters and the interplay between them, and provide with those
(centralised or distributed) algorithmic solutions that are best suited for each given design and
task, coupled with provable guarantees on their performance. As a result, a number of sub-
areas of theoretical computer science have emerged such as mobile and reconfigurable robotics
[1, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 25, 29, 30, 37, 41, 42, 43], passively-mobile systems
[3, 4, 31, 32] including the theory of DNA self-assembly [19, 34, 39, 40], and metamorphic
systems [21, 22, 23, 33, 38]; connections are even evident with the theory of puzzles [5, 13, 27].
A latest ongoing effort is to join these theoretical forces and developments within the
emerging area of “Algorithmic Foundations of Programmable Matter” [24]. Programmable
matter refers to any type of matter that can algorithmically change its physical properties.
“Algorithmically” means that the change (or transformation) is the result of executing an
underlying program.

In this paper, we embark from the model studied in [21, 22, 23, 30], in which a number
of spherical devices are given in the form of a (typically connected) shape A lying on a
two-dimensional square grid, and the goal is to transform A into a desired target shape B
via a sequence of valid movements of individual devices. In those papers, the considered
mechanisms were the ability to rotate and slide a device over neighbouring devices (always
through empty space). We here consider an alternative (linear-strength) mechanism, by
which a line of one or more devices can translate by one position in a single time-step.

As our main goal is to determine whether the new movement under consideration can in
principle be exploited for sub-quadratic worst-case transformations, we naturally restrict our
attention to centralised transformations. We generally allow the transformations to break
connectivity, even though we also develop some connectivity-preserving transformations on the
way. Our main result is a universal transformation of O(n logn) worst-case running time that
is permitted to break connectivity. Distributed transformations and connectivity-preserving
universal transformations are left as interesting future research directions.

1.1 Our Approach
In [30], it was proved that if the devices (called nodes from now on) are equipped only
with a rotation mechanism, then the decision problem of transforming a connected shape
A into a connected shape B is in P, and a constructive characterisation of the (rich) class
of pairs of shapes that are transformable to each other was given. In the case of combined
availability of rotation and sliding, universality has been shown [21, 30], that is, any pair of
connected shapes are transformable to each other. Still, in these and related models, where
in any time step at most one node can move a single position in its local neighbourhood, it
can be proved (see, for instance, [30]) that there will be pairs of shapes that require Ω(n2)
steps to be transformed to each other. This follows directly from the inherent “distance”
between the two shapes and the fact that this distance can be reduced by only a constant in
every time step. An immediate question is then “How can we come up with more efficient
transformations?”

Two main alternatives have been explored in the literature in an attempt to answer
this question. One is to consider parallel time, meaning that the transformation algorithm
can move more than one node (up to a linear number of nodes if possible) in a single time
step. This is particularly natural and fair for distributed transformations, as it allows all
nodes to have their chances to take a movement in every given time-step. For example,

A. Almethen, O. Michail and I. Potapov XX:3

such transformations based on pipelining [23, 30], where essentially the shape transforms by
moving nodes in parallel around its perimeter, can be shown to require O(n) parallel time in
the worst case and this technique has also been applied in systems (e.g., [36]).

The other approach is to consider more powerful actuation mechanisms, that have the
potential to reduce the inherent distance faster than a constant per sequential time-step.
These are typically mechanisms where the local actuation has strength higher than a constant.
This is different than the above parallel-time transformations, in which local actuation can
only move a single node one position in its local neighbourhood and the combined effect
of many such movements at the same time is exploited. In contrast, in higher-strength
mechanisms, it is a single actuation that has enough strength to move many nodes at the
same time. Prominent examples in the literature are the linear-strength models of Aloupis et
al. [1, 2], in which nodes are equipped with extend/contract arms, each having the strength
to extend/contract the whole shape as a result of applying such an operation to one of its
neighbours and of Woods et al. [40], in which a whole line of nodes can rotate around a single
node (acting as a linear-strength rotating arm). The present paper follows this approach,
by introducing and investigating a linear-strength model in which a node can push a line of
consecutive nodes one position (towards an empty cell) in a single time-step.

In terms of transformability, our model can easily simulate the combined rotation and
sliding mechanisms of [21, 30] by restricting movements to lines of length 1 (i.e., individual
nodes). It follows that this model is also capable of universal transformations, with a time
complexity at most twice the worst-case of those models, i.e., again O(n2). Naturally, our
focus is set on exploring ways to exploit the parallelism inherent in moving lines of larger
length in order to speed-up transformations and, if possible, to come up with a more efficient
in the worst case universal transformation.

As reversibility of movements is still valid for any line movement in our model, we adopt
the approach of transforming any given shape A into a spanning line L (vertical or horizontal).
This is convenient, because if one shows that any shape A can transform fast into a line
L, then any pair of shapes A and B can then be transformed fast to each other by first
transforming fast A into L and then L into B by reversing the fast transformation of B into
L.

We start this investigation by identifying the diagonal shape D (which is considered
connected in our model and is very similar to the staircase worst-case shape of [30]) as a
potential worst-case initial shape to be transformed into a line L. This intuition is supported
by the O(n2) individual node distance between the two shapes and by the initial unavailability
of long lines: the transformation may move long lines whenever available, but has to pay
first a number of movements of small lines in order to construct longer lines. In this
benchmark (special) case, the trivial lower and upper bounds Ω(n) and O(n2), respectively,
hold. Moreover, observe that a sequential gathering of the nodes starting from the top right
and collecting the nodes one after the other into a snake-like line of increasing length is still
quadratic, because, essentially, for each sub-trip from one collection to the next, the line has
to make a “turn”, meaning to change both a row and a column, and in this model this costs a
number of steps equal to the length of the line, that is, roughly, 1 + 2 + . . .+ (n− 1) = Θ(n2)
total time.

We first prove that by partitioning the diagonal into
√
n diagonal segments of length

√
n

each, we can first transform each segment in time quadratic in its length into a straight line
segment, then push all segments down to a “collection row” y0 in time O(n

√
n) and finally

re-orient all line segments to form a horizontal line in y0, paying a linear additive factor.
Thus, this transformation takes total time O(n

√
n), which constitutes our first improvement

XX:4 Pushing Lines Helps: Efficient Universal Centralised Transformations for Programmable Matter

compared to the Ω(n2) lower bound of [30]. We then take this algorithmic idea one step
further, by developing two transformations building upon it, that can achieve the same
time-bound while preserving connectivity throughout their course: one is based on folding
segments and the other on extending them.

As the O(
√
n) length of uniform partitioning into segments is optimal for the above

type of transformation, we turn our attention into different approaches, aiming at further
reducing the running time of transformations. Allowing once more to break connectivity, we
develop an alternative transformation based on successive doubling. The partitioning is again
uniform for individual “phases”, but different phases have different partitioning length. The
transformation starts from a minimal partitioning into n/2 lines of length 2, then matches
them to the closest neighbours via shortest paths to obtain a partitioning into n/4 lines of
length 4, and, continuing in the same way for logn phases, it maintains the invariant of
having n/2i individual lines in each phase i, for 1 ≤ i ≤ logn. By proving that the cost of
pairwise merging through shortest paths in each phase is linear in n, we obtain that this
approach transforms the diagonal into a line in time O(n logn), thus yielding a substantial
improvement. Observe that the problem of transforming the diagonal into a line seems to
involve solving the same problem into smaller diagonal segments (in order to transform those
into corresponding line segments). Then, one may naturally wonder whether a recursive
approach could be applied in order to further reduce the running time. We provide a negative
answer to this, for the special case of uniform recursion and at the same time obtain an
alternative O(n logn) transformation for the diagonal-to-line problem.

Our final aim is on attempting to generalise the ideas developed for the above benchmark
case in order to come up with equally efficient universal transformations. We successfully
generalise both the O(n

√
n) and the O(n logn) approaches, obtaining universal transforma-

tions of worst-case running times O(n
√
n) and O(n logn), respectively. We achieve this by

enclosing the initial shape into a square bounding box and then subdividing the box into
square sub-boxes of appropriate dimension. For the O(n

√
n) bound, a single such partitioning

into sub-boxes of dimension
√
n turns out to be sufficient. For the O(n logn) bound we

again employ a successive doubling approach through phases of an increasing dimension of
the sub-boxes, that is, through a new partitioning in each phase. Therefore, our ultimate
theorem (followed by a constructive proof, providing the claimed transformation) states that:
“In this model, when connectivity need not necessarily be preserved during the transformation,
any pair of connected shapes A and B can be transformed to each other in sequential time
O(n logn)”.

Table 1 summarises the running times of all the transformations developed in this paper.
Section 2 brings together all definitions and basic facts that are used throughout the

paper. In Section 3, we study the problem of transforming a diagonal shape into a line,
without and with connectivity preservation. Section 4 presents our universal transformations.
In Section 5, we conclude and discuss further research directions that are opened by our
work.

2 Preliminaries and Definitions

The transformations considered here run on a two-dimensional square grid. Each cell of
the grid possesses a unique location addressed by non-negative coordinates (x, y), where x
denotes columns and y indicates rows. A shape S is a set of n nodes on the grid, where each
individual node u ∈ S occupies a single cell cell(u) = (xu, yu), therefore we may also refer to
a node by the coordinates of the cell that it occupies at a given time. Two distinct nodes

A. Almethen, O. Michail and I. Potapov XX:5

Transformation Problem Running Time Lower Bound
DL-Partitioning Diagonal O(n

√
n) Ω(n)

DL-Doubling Diagonal O(n log n) Ω(n)
DL-Recursion Diagonal O(n log n) Ω(n)
DLC-Folding Diagonal Connected O(n

√
n) Ω(n)

DLC-Extending Diagonal Connected O(n
√

n) Ω(n)
U-Box-Partitioning Universal O(n

√
n) Ω(n)

U-Box-Doubling Universal O(n log n) Ω(n)

Table 1 A summary of our transformations and their corresponding worst-case running times (the
trivial lower bound is in all cases Ω(n)). The Diagonal, Diagonal Connected, and Universal problems
correspond to the DiagonalToLine, DiagonalToLineConnected, and UniversalTransforma-
tion problems, respectively (being formally defined in Section 2.2).

(x1, y1), (x2, y2) are neighbours (or adjacent) iff x2−1 ≤ x1 ≤ x2 +1 and y2−1 ≤ y1 ≤ y2 +1
(i.e., their cells are adjacent vertically, horizontally or diagonally). A shape S is connected iff
the graph defined by S and the above neighbouring relation on S is connected. Throughout,
n denotes the number of nodes in a shape under consideration.

A line, L ⊆ S, is defined by one or more consecutive nodes in a column or row. That is,
L = (x0, y0), (x1, y1), . . . , (xk, yk), for 0 ≤ k ≤ n, k ∈ Z, is a line iff x0 = x1 = · · · = xk and
|yk− y0| = k, or y0 = y1 = · · · = yk and |xk−x0| = k. A line move, is an operation by which
all nodes of a line L move together in a single step, towards an empty cell adjacent to one of
L’s endpoints. A line move may also be referred to as step (or move or movement) and time
is discrete and measured in number of steps throughout. A move in this model is equivalent
to choosing a node u and a direction d ∈ {up, down, left, right} and moving u one position in
direction d. This will additionally push by one position the whole line L of nodes in direction
d, L (possibly empty) starting from a neighbour of u in d and ending at the first empty
cell. More formally and in slightly different terms: A line L = (x1, y), (x2, y), . . . , (xk, y) of
length k, where 1 ≤ k ≤ n, can push all k nodes rightwards in a single step to positions
(x2, y), (x3, y), . . . , (xk+1, y) iff there exists an empty cell to the right of L at (xk+1, y). The
“down”, “left”, and “up” movements are defined symmetrically, by rotating the whole system
90°, 180°, and 270° clockwise, respectively.

I Definition 1 (A permissible line move). Let L be a line of k nodes, where 1 ≤ k ≤ n. Then,
L can move as follows (depending on its original orientation, i.e. horizontal or vertical):
1. Horizontal. Can push all k nodes rightwards in a single step from (x1, y), (x2, y), . . . ,

(xk, y) to positions (x2, y), (x3, y), . . . , (xk+1, y) iff there exists an empty cell to the right of
L at (xk+1, y). Similarly, it can push all k nodes to the left to occupy (x0, y), (x1, y), . . . ,
(xk−1, y), iff there exists an empty cell at (x0, y).

2. Vertical. Can push all k nodes upwards in a single step from (x, y1), (x, y2), . . . , (x, yk) into
(x, y2), (x, y3), . . . , (x, yk+1), iff there exists an empty cell above L at (x, yk+1). Similarly,
it can push all k nodes down to occupy (x, y0), (x, y1), . . . , (x, yk−1), iff there exists an
empty cell below L at (x, y0).

The following definitions from [30] shall be useful for our study. Let us first agree that
we colour black any cell occupied by a node (as in Figure 1).

I Definition 2. A hole H is a set of empty cells that are unoccupied and enclosed by nodes
u ∈ S, where H = {hi | hi = (xi, yi), (xi, yi) ∈ Z2, i ≥ 0}, such that every infinite spanning

XX:6 Pushing Lines Helps: Efficient Universal Centralised Transformations for Programmable Matter

single path starting from the hole h ∈ H and moving, only vertically and horizontally,
certainly passes through a black cell of a node u ∈ S.

I Definition 3. A compact shape S′ contains all cells of S and the hole H, such that S′
has no holes, S′ = S ∪H. For instance, the black and grey cells in Figure 1 are forming a
connected compact shape S′.

I Definition 4. A perimeter (border) of S is defined as a polygon of unit length line segments,
which surrounds the minimum-area of the interior of S′, such as the blue line in Figure 1.

I Definition 5. A surrounded layer of S is consisting of cells that are not occupied by nodes
of S and contribute to the perimeter by at least one of its sides or corners (e,g the red cells in
Figure 1). Normally, each cell in a 2D grid owns four line-segment sides and four corners.

I Definition 6. The external surface of S is another shape W , which includes all cells
occupied by nodes of S and adjacent to the perimeter vertically or horizontally. The external
surface of S is also a connected shape itself, and that is proved in [30].

Figure 1 All nodes of S occupy the black cells, while the grey cells define a hole. The blue line
depicts the perimeter of S, and the surrounded layer is indicated by the red cells.

I Proposition 7. The surrounded layer of any connected shape S is always another connected
shape.

Proof. It follows from [30]. Since S is connected, then the perimeter of S is connected
too, and hence, forms a cycle. Each segment of the perimeter is contributed by two cells,
belonging to the external surface and the surrounded layer. Now, if one walks on the
perimeter (vertically or horizontally) or turns (left or right) clockwise or anticlockwise at
any segment, one of the following cases will occur:
(1) Pass through two adjacent vertical or horizontal cells on the surrounded layer and the

external surface of S.
(2) Stay put at the same position (cell) on the external surface and move through three

neighbouring cells connected perpendicularly on the surrounded layer of S.
(3) Stay put at the same position (cell) on the surrounded layer and pass through three

neighbouring cells connected perpendicularly on the external surface of S.
(4) Stay put at the same position (cell) on the surrounded layer and pass through two

neighbouring cells connected diagonally on the external surface of S and one cell of the
surrounded layer.

Subsequently, all cases above preserve connectedness of the surrounded layer and the external
surface of S. J

A. Almethen, O. Michail and I. Potapov XX:7

u1

x

y

x+ 1x− 1

y + 1

y − 1 u2 u3

(a)

u1

x

y

x+ 1x− 1

y + 1

y − 1 u2

(b)

Figure 2 (a) An example of sliding u1 over u2 and u3 to an empty cell to the left. (b) Rotate u1

a 90° clockwise around u2.

As already mentioned, we know that there are related settings in which any pair of
connected shapes A and B of the same order (“order” of a shape S meaning the number
of nodes of S throughout the paper) can be transformed to each other1 while preserving
the connectivity throughout the course of the transformation.2 This, for example, has been
proved for the case in which the available movements to the nodes are rotation and sliding
[21, 30]. We now show that the model of [21, 30] is a special case of our modeld, including
universal transformations, are also valid transformations in the present model.

I Proposition 8. The rotation and sliding model of [21, 30] is a special case of the present
model.

Proof. We establish a technique to prove that our model is capable of simulating rotation
and sliding models of a two-dimension square grid appeared in [21, 30]. First, the sliding
operation is equivalent in all those models, that is, if a node u is located at a cell of the grid,
u = (x, y), then u can slid right to any empty cell at (x + 1, y + 1) over a horizontal line
of length 2, such as in Figure 2 (a). The “down”, “left”, and “up” movements are defined
symmetrically, by rotating the whole system 90°, 180°, and 270° clockwise, respectively. By
Definition 1, our model is exploited sliding rule to push a line of 1 node into an adjacent
empty cell, whether vertically or horizontally. For rotation, all mentioned models perform
a single operation to rotate a node u1 = (x, y) around another u2 = (x, y − 1) by a 90°
clockwise iff there exits two empty cells at (x + 1, y) and (x + 1, y + 1), see Figure 2(b).
Analogously, this holds for all possible rotations by again rotating the whole system 90°,
180°, and 270° clockwise, respectively. Still, the rotation mechanism is also adopted by this
model following Definition 1, and actually it costs twice for a single rotation to take place,
compared with others. Subsequently, it implies that all transformations established there
(with their running time at most doubled, including universal transformations, are also valid
transformations in the present model).

J

Consider a line L of k nodes occupying (x1, y), (x2, y), . . . , (xk, y) and empty cells at (xk+1, y),
(xk+2, y), . . . , (xk+o, y) for all o, where k = o ≥ 1. Now, we aim to transfer all k nodes to the
right to fill in all k empty cells. As usual, any transformation of a single motion would move
all k nodes in a total of O(k2) moves, since each k transfers a distance of ∆ = k. On the

1 We also use A→ B to denote that shape A can be transformed to shape B.
2 In this paper, whenever transforming into a target shape B, we allow any placement of B on the grid,

i.e., any shape B′ obtained from B through a sequence of rotations and translations.

XX:8 Pushing Lines Helps: Efficient Universal Centralised Transformations for Programmable Matter

contrary, the k nodes move altogether in parallel ∆ = k distance to occupy the empty cells
in a total of O(k) steps, by exploiting the linear-strength of this model. Now, we are ready
to show a more beneficial property in the following lemma:

I Lemma 9. The minimum number of line moves by which a line of length k, 1 ≤ k ≤ n,
can completely change its orientation3, is 2k − 2.

Proof. Assume a 2D square grid contains only a line L1 of k nodes at (x1, y1), . . . , (x1, yk)
for all k, where k > 1, and empty cells on (x2, y1), . . . , (xk, y1), as depicted in Figure 3.
Now, the first bottommost node, u1 ∈ L1, moves one step right to occupy an empty cell on
(x1, y1). Consequently, a new empty cell is created at (x1, y1), and the length of L1 decreases
by k − 1. By the linear-strength, L1 pushes all k − 1 nodes down altogether in parallel
in a single-time-move to occupy (x1, y1), . . . , (x1, yk−1). Hence, two line steps have been
performed to move u1 and push down all k − 1 nodes. Therefore, it implies that each of
k − 1 ∈ L1 requires two steps to transfer into the bottommost row, y1. Thus, we conclude
that any line of length (k nodes) requires at most twice of its length, 2k − 2, to change its
orientation, which is bounded above by O(k).

For the matching lower bound consider w.l.o.g. a horizontal line. A complete change
of orientation requires the nodes of the line to occupy k consecutive rows (from just one
originally). The bound follows by observing that in any two consecutive steps, at most one
new row can become occupied. J

L1

u1

u2

uk

move one step right

(a) (b) (c)

x1 x2 x3 xk

u3

y1

y2

y3

yk

L1

u2

uk

xk

u3 m
ov
e
o
n
e
st
ep

d
ow

n

yk

u1

L1

u3

uk

xk

yk−1

u1u2

xk

uk L1u1u2u3

(d)

x1 x2 x3

y1

y2

y3

x1 x2 x3

y1

y2

y3

x1 x2 x3

y1

yk

Figure 3 A line of k nodes changes orientation by two consecutive steps per node. (a) Move u1

one step to the right. (b) and (c) All k − 1 nodes push down altogether in single step. In (d), the
line has finally transformed from vertical to horizontal after 2k steps.

A property that typically facilitates the development of universal transformations, is
reversibility of movements. To this end, we next show that line movements are reversible.

I Lemma 10 (Reversibility). Let (SI , SF) be a pair of connected shapes of the same number
of nodes n. If SI → SF (“→” denoting “can be transformed to via a sequence of line
movements”) then SF → SI .

3 From vertical to horizontal and vice versa.

A. Almethen, O. Michail and I. Potapov XX:9

u1 u2

u3 u4

i

i
+

1

j

j + 1

i
+

2

(a)

u1 u2

u3 u4

i

i
+

1

j

j + 1

i
+

2

(b)

Figure 4 An example of a reversible line step.

Proof. First, we should prove that each single line step is reversible. Figure 4 (a) shows
a simple connected shape of four nodes forming two horizontal and one vertical lines at
L1 = {u1, u2}, L2 = {u3, u4} and L3 = {u2, u3}, respectively. Assume this configuration has
no more space to the left, beyond the dashed line; therefore, L1 moves one step to occupy
the empty cell (i + 2, j + 1). Now, all L1 nodes are moving altogether to fill in positions
(xi+1, yj+1) and (xi+2, yj+1), as depicted in Figure 4 (b). Consequently, the previous line
step creates another empty cell at (xi, yj+1), which then gives the ability to L1 to move back
reversibly to fill in this new empty cell on the left. Thus, we conclude that any single line
step is reversible, which implies that any finite sequence of line steps are reversible too.

Still, reversibility is valid for any line movement in our model by transforming any given
shape SI into a line SL (vertical or horizontal). This is sufficient because if any shape SI

transforms into a line SL, then any pair of shapes SI and SF can then be transformed to
each other, via an intermediate connected shape SL, by first transforming SI into SL and
then SL to SF , by reversing the transformation of SF to SL. J

2.1 Nice shapes
A family of shapes, denoted NICE, is introduced in this study to probably act as efficient
intermediate shapes of the transformation. A nice shape is, informally, any connected shape
that contains a particular line called the central line (denoted LC). Intuitively, one may
think of LC as a supporting (say horizontal) base of the shape, where each node u not on
LC must be connected to LC through a vertical line.

I Definition 11 (Nice Shape). A connected shape S ∈ NICE if there exists a central line
LC ⊆ S, such that every node u ∈ S \ LC is connected to LC via a line perpendicular to LC

(Figure 5 shows some examples of a nice shape and non nice shapes).

By reversibility (Lemma 10), a nice shape is exploited as an intermediate shape that
simplifies the universal transformations. The following proposition shows that:

I Proposition 12. Let SNice be a nice shape and SL a straight line, both of the same order
n. Then SNice → SL (and SL → SNice) in O(n) steps.

Proof. By Definition 11, any SNice of n nodes must have a central line LC of k nodes,
1 ≤ k ≤ n, where other n− k nodes are connecting to LC via a line. By Lemma 9, each of
the n− k nodes requires at most two line steps to be included into LC in a maximum total
of 2(n− k) steps for all n− k. Then, SNice requires at most O(2n− 2k) steps to transform
into SL. As a consequence, the connected pair of shapes (SNice, SL) of the same order are
transformable to each other by Lemma 10, in O(n) steps. J

XX:10 Pushing Lines Helps: Efficient Universal Centralised Transformations for Programmable Matter

Figure 5 The central line LC occupies black cells of nice shapes in (a), (b) and (d). In (c), the
shape is not nice (due to the lack of LC). (e) is also not nice because of the hole, white cells inside
the shape, which prevents the formation of LC .

2.2 Problem Definitions

We now formally define the problems to be considered in this paper.

DiagonalToLine. Given an initial connected diagonal line SD and a target vertical or
horizontal connected spanning line SL of the same order, transform SD into SL, without
necessarily preserving the connectivity during the transformation.

DiagonalToLineConnected. Restricted version of DiagonalToLine in which connectiv-
ity must be preserved during the transformation.

UniversalTransformation. Give a general transformation, such that, for all pairs of
shapes (SI , SF) of the same order, where SI is the initial shape and SF the target shape, it
will transform SI into SF , without necessarily preserving connectivity during its course.

3 Transforming the Diagonal into a Line

We begin our study from the case in which the initial shape is a diagonal line SD of order n.
Our goal throughout the section is to transform SD into a spanning line SL, i.e.,f= solve the
DiagonalToLine and/or DiagonalToLineConnected problems. We do this, because
these problems seem to capture the worst-case complexity of transformations in this model.

Consider a SD of n nodes occupying (x1, y1), (x2, y2), . . . , (xn, yn), such as the diagonal
line of 6 nodes depicted in Figure 5 (c). Observe that the diagonal comprises some special
properties which cannot be found in other connected shapes, that is, each single node of SD

enjoys a unique x- and y- axis, in other words n = #rows = #columns. Below, we give three
O(n
√
n)-time strategies to transform the diagonal into a line. In Section 3.1, the algorithm

allows the shape to break its connectivity throughout transformation, whilst connectedness
is preserved in Sections 3.2 and 3.3.

A. Almethen, O. Michail and I. Potapov XX:11

√
n√
n

√
n√
n

n
(x, y)

l√n

l√n−1

l2

l1

(a)

√
n

1
2
3

∆ =
√
n− 1

(i, j)

(b)

√
n

n

n−
√
n

l√n

l√n−1

l1
l2

(c)

y +
√
n− 1

y

y + n− 1

x x+
√
n− 1 x+ n− 1

(d)

y

x x+
√
n− 1 x+ n− 1

(e)

Figure 6 (a) Dividing the diagonal into
√

n segments of length
√

n each (integer
√

n case). (b) A
closer view of a single segment, where 1, 2, 3, . . . ,

√
n− 1 are the required distances for the nodes to

form a line segment at the leftmost column (of the segment). (c) Each line segment is transformed
into a line and transferred towards the bottommost row of the shape, ending up as in (d). (e) All
line segments are turned into the bottommost row to form the target spanning line.

3.1 An O(n
√

n)-time Transformation
We start from DiagonalToLine (i.e., no requirement to preserve connectivity). Our strategy
is as follows. We divide the diagonal into several segments, as in Figure 6 (a). Then in
each segment, we perform a trivial (inefficient, but enough for our purposes) line formation
by moving each node independently to the leftmost column in that segment (Figure 6 (b)).
Therefore, all segments are transformed into lines (Figure 6 (c)). Then, we transfer each line
segment all the way down to the bottommost row of the diagonal SD (Figure 6 (d)). Finally,
we change the orientation of all line segments to form the target spanning line (Figure 6 (e)).

More formally, let SD be a diagonal, occupying (x, y), (x+1, y+1), . . . , (x+n−1, y+n−1),
such that x and y are the leftmost column and the bottommost row of SD, respectively. SD

is divided into d
√
ne segments, l1, l2, . . . , ld√ne, each of length b

√
nc, apart possibly from a

single smaller one. Figure 6 (a) illustrates the case of integer
√
n and in what follows, w.l.o.g.,

we present this case for simplicity. This strategy (called DL-Partitioning) consists of three
phases:

Phase 1: Transforms each diagonal segment l1, l2, . . . , l√n into a line segment. Notice
that segment lk, 1 ≤ k ≤

√
n, contains

√
n nodes occupying positions (x+hk, y+hk), (x+

hk + 1, y + hk + 1), . . . , (x + hk +
√
n − 1, y + hk +

√
n − 1), for hk = n − k

√
n; see

Figure 6 (b). Each of these nodes moves independently to the leftmost column of lk,
namely column x+ hk, and the new positions of the nodes become (x+ hk, y + hk), (x+
hk, y + hk + 1), . . . , (x+ hk, y + hk +

√
n− 1). By the end of Phase 1,

√
n vertical line

segments have been created (Figure 6 (c)).
Phase 2: Transfers all

√
n line segments from Phase 1 down to the bottommost row y

of the diagonal SD. Observe that line segment lk has to move distance hk (see Figure 6
(d)).

XX:12 Pushing Lines Helps: Efficient Universal Centralised Transformations for Programmable Matter

Phase 3: Turns all
√
n line segments into the bottommost row y (Figure 6 (e)). In

particular, line lk will be occupying positions (x+ hk, y), (x+ hk + 1, y), . . . , (x+ hk +√
n− 1, y).

Now, we are ready to analyse the running time of all phases of DL-Partitioning.

I Theorem 13. Given an initial diagonal of n nodes, DL-Partitioning solves the Diagon-
alToLine problem in O(n

√
n) steps.

Proof. From the above reasoning, the proof follows by analysing all phases of DL-Partitioning.
In the first phase, the cost of the trivial line formation is the run of all distances for
d
√
ne nodes to be gathered at the leftmost column of a single segment lk for all k, where

1 ≤ k ≤
√
n. Observe that in Figure 6 (b), the d

√
ne nodes of lk have to move distances

of ∆ = 0, 1, 2.3, . . . , (
√
n − 1). Therefore, the total run of all distances in lk (except the

bottommost node which stays still in place), is:

t1 = 1 + 2 + . . .+ (
√
n− 1) =

√
n−1∑

i=1
i

=
√
n(
√
n− 1)
2 = n−

√
n

2
= O(n), (1)

From (1), the total run T1 for all
√
n segments is given by:

T1 = t1 · d
√
ne

= n−
√
n

2 · d
√
ne = n

√
n− n
2 = n(

√
n− 1)
2

= O(n
√
n). (2)

Next, in phase 2, all
√
n line segments transfer down into the bottommost of the diagonal

except the one already there. As mentioned above, any line segment lk has to transfer a
distance of n− k

√
n to reach the y bottommost row in a total T2 as follows:

T2 =

√
n−1∑

k=1
(n− k

√
n) = (n

√
n− n)−

√
n−1∑

k=1
k
√
n

= (n
√
n− n)−

√
n

√
n−1∑

k=1
k = (n

√
n− n)−

√
n

(√
n(
√
n− 1)
2

)
= (n

√
n− n)− n

(√
n− 1
2

)
= n(

√
n− 1)
2

= O(n
√
n). (3)

The last phase is basically to turn (re-orientate) every line segments of
√
n nodes into the

y bottommost row of length n. Now, each line segment lk contributes a single node at the
bottommost row y, therefore, we have

√
n nodes are sitting on row y, and the other n−

√
n

nodes are waiting to be pushed (turned) into the bottommost row of length ∆ = n, in order
to form the goal spanning line. By Lemma 32 and 9, the transformation starts re-orientating
each lk towards the bottommost row y, until it is being completely filled in by n nodes of all
segments. Recall that turning each node of the n−

√
n into the bottommost row y costs two

A. Almethen, O. Michail and I. Potapov XX:13

line steps, therefore, the total T3 for all n−
√
n is:

T3 = 2 · (n−
√
n) = 2n− 2

√
n = 2(n−

√
n)

= O(n). (4)

Altogether, the sum of (2), (3) and (4) gives the total cost T , in steps, for all phases,

T = T1 + T2 + T3

= n(
√
n− 1)
2 + n(

√
n− 1)
2 + 2(n−

√
n)

= n(
√
n− 1) + 2n− 2

√
n = n

√
n+ n− 2

√
n = n(

√
n+ 1)− 2

√
n

= O(n
√
n).

J

3.2 Preserving Connectivity through Folding
In this section, our purpose is to transom the diagonal SD into a line SL by exploiting the
line mechanism, with preserving connectivity of the shape throughout transformations. This
strategy, called DLC-Folding, is as follows; we partition SD into several segments of the
same lengths, as we did previously in DL-Partitioning (see Figure 6 (a)). Then, in each
segment, we perform three operations: turn, push and turn. From the topmost segment of
SD, form a line segment by a trivial brute-force line formation, that is, move each node to
the bottommost row in that segment. After that, push the line segment towards the leftmost
column of SD by a distance of ∆ =

√
n. Lastly, we fold this line segment diagonally to

align above the next following diagonal segment, therefore two parallel diagonal segments
are formed, as illustrated in Figure 7. The strategy keeps folding segments above each other
in this way, until finishing at the bottommost segment of SD. In the end, SD transforms
into a nice shape, which is trivially converted into a line. Figures 8 to 12 demonstrate the
above transformations on a diagonal of 25 nodes.

√
n

√
n

l1 √
n

Turn

l2

√
n

Push Turn

√
n

√
n

Base point b1

Base point b2

Figure 7 Three operations (turn, push and turn) for folding the topmost segment of a diagonal
line.

3.2.1 Formal Description
Let SD be a diagonal of n nodes occupying (x, y), (x+1, y+1), . . . , (x+n−1, y+n−1), such
that x and y are the leftmost column and the bottommost row of SD, respectively. SD is
then divided into

√
n segments, l1, l2, . . . , l√n, each of which has a length of

√
n, where l1 and

l√n are the topmost and bottommost segments of SD, respectively. Observe that segment lk,
1 ≤ k ≤

√
n, consists of

√
n nodes occupying (i, j), (i+ 1, j + 1), . . . , (i+

√
n− 1, j +

√
n− 1),

XX:14 Pushing Lines Helps: Efficient Universal Centralised Transformations for Programmable Matter

√
n = 5

n
=
25

l1

l2

l3

l4

l5

Figure 8 A diagonal line of 25 nodes.

Turn TurnPush

Base point p1

Figure 9 turn, push and turn of the first phase.

TurnPushBase point p2 Turn

Figure 10 turn, push and turn of the second phase.

TurnPushTurn

Base point p3

Figure 11 turn, push and turn of the third phase.

TurnPushTurn
Base point p4

Figure 12 turn, push and turn of the forth phase. Notice the resulting figure in the far right
represents a nice shape.

where i = x+ hk and j = y + hk, for hk = n− k
√
n. Here, lk has a base point bk = (i, j),

which is the bottommost node of lk. Moreover, DLC-Folding completes its course in k phases,
in each phase k, we apply three operations (turn, push and turn) to fold the corresponding
segment(s) around the base point bk. The first segment l1 folds around b1 in the first phase
as follows (due to symmetry, it is sufficient to demonstrate one orientation):
(a) turn. Moves all

√
n nodes into the bottommost row of l1 (brute-force line formation).

Notice that the l1 nodes change their positions from (i, j), (i+ 1, j + 1), . . . , (i+
√
n−

1, j +
√
n− 1) into (i, j), (i+ 1, j), . . . , (i+

√
n− 1, j). By the fist operation, a horizontal

line segment of length
√
n have been formed, and the base point b1 keeps place at (i, j).

A. Almethen, O. Michail and I. Potapov XX:15

(b) push. Pushes the l1 line segment
√
n steps towards the leftmost column of the diagonal

SD, i.e., the y column. All
√
n nodes of l1 transfer altogether into (i−

√
n, j), (i+ 1−√

n, j), . . . , (i+
√
n− 1−

√
n, j).

(c) turn. Converts the line segment l1 into diagonal again by moving its
√
n nodes down to

align above the
√
n nodes of the next following diagonal segment l2. This takes place by

transferring them into positions (i−
√
n, j −

√
n+ 1), (i+ 1−

√
n, j −

√
n+ 2), . . . , (i+√

n− 1−
√
n, j), (except the bottommost node-base point b1 which stays still in place at

(i −
√
n, j)). By the end of this phase, two parallel diagonal segments l1 and l2 have

been created, as in Figure 7.

The two parallel segments l1 and l2 are consisting of 2
√
n nodes and comprising of 2

√
n

vertical lines. Consequently, a new connected shape has been formed and is defined below.

I Definition 14. A Ladle is a connected shape of n nodes consisting of two parts, D and S.
For a given phase k, where 2 ≤ k ≤ d

√
ne, we have Ladlek = Dk + Sk, where Dk and Sk are

connected via a base point bk = (i, j), such that:

- Dk, is a diagonal line containing n−k
√
n+1 nodes occupying (x, y), (x+1, y+1), . . . , (i, j),

such that x and y are the leftmost column and the bottommost row of Ladlek, respectively,
where

√
n < i = j < n−

√
n+ 1. Dk is connected to Sk via its topmost node at (i, j).

- Sk, is parallelogram consists of k parallel diagonal segments of size k
√
n nodes formed

√
n

lines. Sk is connected to Dk via its bottommost node at (i, j), as depicted in Figure 13.

Dk = n − k
√

n + 1

Sk = k
√

n

(x, y)

Base point ba

(i, j)

√ n

(i, j′)

(i +
√

n − 1, j′ +
√

n − 1)

(i +
√

n − 1, j +
√

n − 1)

Figure 13 A Ladle shape in phase k, where j′ = j + k − 1.

Throughout this section, we prove that at any phase k of DLC-Folding, there are k
parallel (diagonal) segments containing k

√
n nodes and forming

√
n vertical lines. We now

prove that the three operations (turn, push and turn) transforms SD into a Ladle by the
end of the first phase of DLC-Folding.

I Lemma 15. Let SD be a diagonal of order n partitioned into
√
n segments l1, l2, ..., l√n.

DLC-Folding converts SD into a Ladle by the end of the first phase.

Proof. Consider a diagonal SD of n nodes as defined previously, which is partitioned into√
n segments of length

√
n each. Now, perform the three operations (turn, push and turn)

described above on the topmost segment of SD (it is sufficient due to symmetry), we
will obtain a connected shape consists of two parts, a diagonal line whose nodes occupy
(x, y), (x+ 1, y+ 2), . . . , (x+ n−

√
n− 1, y+ n−

√
n− 1) and two parallel diagonal segments

XX:16 Pushing Lines Helps: Efficient Universal Centralised Transformations for Programmable Matter

of 2
√
n nodes. Both are connected via the base point (x+n−

√
n− 1, y+n−

√
n− 1), which

is the topmost node of the diagonal part and the bottommost of the two parallel diagonal
segments. As a result, a one can easily find out that the new shape constructed by the end of
the first phase meets all conditions mentioned in Definition 14, therefore, it is a Ladle. J

The following lemma shows that the three operations of DLC-Folding hold in any phase k,
where 2 ≤ k <

√
n, such that in phase k + 1, the size of Sk increases by

√
n, and conversely

the Dk length decreases by
√
n.

I Lemma 16. Consider a Ladle of n nodes in phase k, where 1 < k ≤
√
n. Then, in phase

k + 1, DLC-Folding increases the size of Sk by
√
n and decreases the length of Dk by

√
n.

Proof. The size of the Ladle = |n| must be the same each phase and all time over trans-
formations. In phase k, a Ladlek consists of two parts, Dk = |n− k

√
n+ 1| and Sk = |k

√
n|,

where both are connected via a common node (i, j) (see Definition 14). Now, perform the
three operations (turn, push and turn) on the Sk part that contains k segments of length

√
n

aligned diagonally on top of each other. Let assume that the k segments form
√
n vertical

lines since the same argument applies symmetrically to a different orientation. First, we move
all vertical

√
n lines downwards to the bottommost row i of Sk, which shall form k horizontal

lines by completely filling in the k bottom rows of Sk. Therefore, those horizontal lines create
a rectangle, as depicted in Figure 14 (a). Then, the second operation pushes the k vertical
lines of the rectangle

√
n steps horizontally towards the x leftmost column of the Ladlek, as

in Figure 14 (b). Lastly, the strategy completes folding by translating the vertical
√
n lines

downwards, until each of them stays above a node of the next following segment (notice that
every vertical line is moved except the rightmost one), see Figure 14 (c). By the end of phase
k + 1, a new Ladle has been created, which is consisting of Dk+1 = |n− (k − 1)

√
n+ 1| and

Sk+1 = |(k + 1)
√
n| connected via the common bk+1 base point at (i−

√
n, j −

√
n). Hence,

we conclude that in phase k + 1, the size of Sk+1 increased by
√
n nodes, while the length

of Dk+1 decreased by
√
n, and this holds trivially and inductively for any phase k, where

1 < k ≤
√
n. J

Now, we prove that DLC-Folding transforms SD into a nice shape in
√
n phases.

I Lemma 17. Given a diagonal SD of order n partitioned into
√
n segments, DLC-Folding

converts SD into a nice shape in
√
n phases.

Proof. By following Lemma 15, SD converts into a Ladle2 which consists of two parts
D2 = |n− 2

√
n+ 1| and S2 = |2

√
n|. Then, by Lemma 16, through the final phase k =

√
n,

all segments are being folded diagonally over each other, therefore the diagonal part of
the Ladle will be exhausted D√n = φ, whilst the parallelogram part acquires all n nodes,
S√n = |n|. The resulting shape of

√
n vertical (horizontal) lines at the end of the final phase

is no longer Ladle and complies perfectly with all standards and properties of nice shapes,
see Definition 11; as a result, it is a nice shape. J

At this point, we are ready to analyse the running time of DLC-Folding that preserves
connectivity over its course.

I Lemma 18. Given a diagonal SD of order n partitioned into
√
n segments, DLC-Folding

folds the topmost (bottommost) segment in O(n) steps.

A. Almethen, O. Michail and I. Potapov XX:17

Dk = n − k
√

n + 1

Sk = k
√

n

(x, y)

Base point bk

(i, j)

(i, j′)
(i +

√
n, j′)

(i +
√

n, j)

√
n

(a)

(x, y)

(i −
√

n, j)

(i −
√

n, j′) (i − 1, j′)

(i − 1, j)

√
n

(b)

(x, y)

(i −
√

n, j −
√

n − 1)

(i −
√

n, j′ −
√

n − 1)

(i − 1, j′)

(i − 1, j − 1)

√ n

Base point bk+1

Sk+1 = (k + 1)
√

n

Dk+1 = n − (k − 1)
√

n + 1

(c)

Figure 14 Folding a Ladlek over phase k, , where j′ = j + k − 1, see Lemma 16 for further
explanation.

Proof. In the first phase, we perform turn, push and turn on the first topmost (bottommost)
segment of SD of length

√
n. The first operation (turn) is a brute-force line formation that

is trivially computed by:

1 + 2 + ...+ (
√
n− 1) =

√
n(
√
n− 1)
2 = n−

√
n

2 , (5)

Then, the second operation pushes a line of
√
n length in

√
n line steps. Again, the last

operation costs as much as the first turn, namely n−
√

n
2 . Altogether, the total cost required

to fold the first segment thoroughly is at most:

t1 = n−
√
n

2 +
√
n+ n−

√
n

2 = n−
√
n+
√
n = n

= O(n).

J

I Lemma 19. By the end of phase k, for all 1 < k ≤
√
n, DLC-Folding folds Ladlek in

O(n) steps.

Proof. In phase k, Ladlek holds two parts, Dk = |n− k
√
n+ 1| and Sk = |k

√
n|. In the first

operation of DLC-Folding, by exploiting the linear mechanisms, all
√
n lines of Sk translate

in a distance equals to (5), namely n−
√

n
2 . Now, the

√
n lines have moved and formed another

k lines in a different orientation. Therefore, in the second operation, we push those k lines√
n steps in a total of:

k
√
n = O(n), (6)

XX:18 Pushing Lines Helps: Efficient Universal Centralised Transformations for Programmable Matter

And the third move is completing the process by (folding) the
√
n lines diagonally above the

next segment, with the same cost of (5):

n−
√
n

2 = O(n), (7)

With this, by summing (5) , (6) and (7), the total steps performed by the end of phase k
is given by:

tk = n−
√
n

2 + k
√
n+ n−

√
n

2 = n−
√
n+ k

√
n

= O(n). (8)

This holds trivially from phase 2 and inductively for every phase k, for all 1 < k ≤
√
n. J

Altogether, Proposition 12 and Lemmas 18 and 19, the running time of DLC-Folding is,

I Theorem 20. Given an initial connected diagonal of n nodes, DLC-Folding solves the
DiagonalToLineConnected problem in O(n

√
n) steps.

Proof. By Lemma 18, DLC-Folding creates a Ladle in a total of:

T1 = n−
√
n

2 . (9)

Now, Lemma 19 provides the running time of phase k, for all 1 < k ≤
√
n, therefore the

total run for all phases is computed by (except the first phase):

T2 =

√
n−1∑

i=1
n−
√
n+ i

√
n = n

√
n− 2n−

√
n+

√
n−1∑

i=1
i
√
n

= n
√
n− 2n−

√
n+
√
n

√
n−1∑

i=1
i = n

√
n− 2n−

√
n+ n

(√
n− 1
2

)
= n
√
n− 2n−

√
n+

(
n
√
n− n
2

)
= n
√
n− 5n− 2

√
n

2
= O(n

√
n). (10)

Then, the total cost for all phases of DLC-Folding is given by summing (9) and (10) :

T3 = T1 + T2

= n−
√
n

2 + n
√
n− 5n− 2

√
n

2 = 2n− 2
√
n+ 2n

√
n− 10n− 4

√
n

4

= 2n
√
n− 8n− 6

√
n

4 = n
√
n− 4n− 3

√
n

2
= O(n

√
n). (11)

Finally, the resulting shape of DLC-Folding is a nice shape, which transforms into a line
SL in O(n) steps(see Proposition 12), then the total cost T required to transform SD into
SL, is bounded above by:

T = T3 +O(n)
= O(n

√
n) +O(n)

= O(n
√
n).

J

A. Almethen, O. Michail and I. Potapov XX:19

Turn TurnPush

TurnPush Push

PushTurn Turn

Push

Figure 15 Shows all transformations of DLC-Extending on a diagonal of 25 nodes.

3.3 Preserving Connectivity through Extending
The current transformation, called DLC-Extending, is another strategy to transform the
diagonal SD into a line SL in O(n

√
n) steps, with preserving connectivity throughout

transformations. As mentioned earlier, SD is partitioned into
√
n segments of length

√
n each.

The implementation of this strategy lasts for
√
n phases equal to the number of segments.

In each phase, we perform two types of movements, turn and push. Generally speaking,
DLC-Extending starts building the spanning line by first performing a line formation on the
topmost (bottommost) diagonal segment of SD; after that, convert the rest of the diagonal
segments into lines and include them to the main spanning line, sequentially one after the
other. Notice that DLC-Extending extends the main spanning line gradually every phase
by a length of

√
n. Figure 15 shows the performance of DLC-Extending on a diagonal of 25

nodes.

3.3.1 Formal Description
Consider an initial diagonal SD of n nodes defined and partitioned as in Section 3.2.1. In phase
k, for all 1 ≤ k ≤

√
n, we perform two line operations, turn and push, on a diagonal segment

lk ∈ SD of length
√
n nodes. Assume lk occupies (i, j), (i+1, j+1), . . . , (i+

√
n−1, j+

√
n−1),

where i = x+hk and j = y+hk, for hk = n−k
√
n. Here, the bottommost node bk = (i, j) is

the base point of lk. Due to symmetry, we only show transformations starting vertically from
the topmost segment of SD. In the first phase, DLC-Extending forms a line at the topmost
segment l1, by performing a brute-force line formation to transfer all nodes into the leftmost
column of l1. Consequently, all nodes move from (i, j), (i+1, j+1), . . . , (i+

√
n−1, j+

√
n−1)

into (i, j), (i, j+1), . . . , (i, j+
√
n−1). Secondly, it pushes this line segment

√
n steps towards

XX:20 Pushing Lines Helps: Efficient Universal Centralised Transformations for Programmable Matter

the bottommost row of SD to occupy (i, j −
√
n), (i, j + 1−

√
n), . . . , (i, j +

√
n− 1−

√
n).

By the end of the first phase, DLC-Extending shall construct a spanning line of length
√
n.

For example, Figure 16 demonstrates the two operations (turn and push) of the first phase.

√
n

√
n

√
n

√
n

n

√
n

√
n

√
n

n

n
−
√ n

lk

lk−1

l2

l1

Turn

√
n

√
n

√
n

n

Push

(x, y)

Figure 16 The process of the two operations (turn and push) in the first phase.

√
n

√
n

√
n

n n

n
−
2
√ nTurn

√
n

√
n

n

Push

√
n

√
n

Figure 17 The process of the two operations (turn and push) in the second phase.

In the second phase, DLC-Extending turns l2 into a line by sending all l2 nodes towards
its bottommost row(in a sequential order). Observe that l1 and l2 are now connected
perpendicularly via (i, j −

√
n) (Figure 17), which then provides the ability to push l1 into l2

a distance of
√
n vertically towards the leftmost column of SD. By the end of this phase,

the length of the spanning line is extended by
√
n. As a result, we have obtained a specific

connected shape, called T _shape and defined as follows;

I Definition 21. A T _shape is a connected shape of n consisting of two parts, D and S.
Both are connected via a common intersection point (i, j). Figure 18 shows an example of
T _shape in phase k for all 1 < k <

√
n, such that T _shapek = Dk + Sk, where

A. Almethen, O. Michail and I. Potapov XX:21

(a) - Dk, is a diagonal line containing n− k
√
n+ 1 nodes and occupying (x, y), (x+ 1, y +

1), . . . , (i, j), such that x and y are the leftmost column and the bottommost row of
T _shapek, respectively, where

√
n < i = j < n−

√
n+ 1.

(b) - Sk, is a horizontal or vertical line of length k
√
n nodes occupying (i−

√
n− 1, j), (i+

1 −
√
n − 1, j), . . . , (i′, j) or (i, j −

√
n − 1), (i, j + 1 −

√
n − 1), . . . , (i, j′), respectively,

where i′ = i+ k
√
n− 1 and j′ = j + k

√
n− 1.

k
√

n −
√

n
√

n

Sk = k
√
n

Dk = n− k
√
n+ 1

(x, y)

(i −
√

n − 1, j)

(i, j)

(i + k −
√

n − 1, j)

intersection point =

Figure 18 An example of a T _shape in phase k.

We turn now to prove correctness of DLC-Extending. First, we show that the first and
second phase converts a diagonal SD into a T _shape.

I Lemma 22. Let SD be a diagonal of order n partitioned into d
√
ne segments l1, l2, ..., l√n.

By the end of the second phase, DLC-Extending converts SD into a T _shape.

Proof. By performing the above two main operations (turn and push) on the two topmost
segments, l2 and l2, respectively, we shall acquire a connected shape of two parts: 1) A
diagonal at (x, y), (x+1, y+1), . . . , (i, j), where i = x+n−2

√
n−2 and j = y+n−2

√
n−2,

and 2) A horizontal or vertical line of length 2
√
n occupying (i− 2

√
n, j), . . . , (i+ 2

√
n, j)

or (i, j − 2
√
n), . . . , (i, j + 2

√
n), respectively. Observe that the two parts will have the

same common intersection point at (i, j) in all cases. Therefore, the resulting shape of the
second phase meet all properties of Definition 21, and hence, we conclude that this shape is
a T _shape. J

The following lemma shows that the two operations of DLC-Extending hold in any phase
k, for all 2 ≤ k <

√
n.

I Lemma 23. Let a T _shapek of n nodes be in phase k, for all 2 ≤ k <
√
n. Therefore,

in phase k + 1, DLC-Extending increases and decreases the length of S and D by
√
n,

respectively.

Proof. By Definition 21, T _shapek in phase k holds two segments, a diagonal Dk = |n−k
√
n|

occupies (x, y), . . . , (i, j) and vertical (horizontal) line Sk = |k
√
n| at (i−

√
n, j), . . . , (i+ k−√

n, j), where both intersect at a common point (i, j), as shown in Figure 19 top-left. Assume
that Sk is horizontal (due to symmetry, it is sufficient to focus on only one orientation).
Therefore, we turn the topmost diagonal segment of Dk by performing a line formation to
collect all

√
n nodes at the leftmost column in that segment. Therefore, they move from cells

(i−
√
n+ 1, j−

√
n+ 1), . . . , (i− 1, j− 1) into (i−

√
n+ 1, j−

√
n+ 1), . . . , (i−

√
n+ 1, j− 1).

Notice that the shape still maintains connectivity.
Next, we push Sk to include the new constructed line segment, which subsequently

extends Sk vertically with an increase of
√
n in length, in order to occupy (i −

√
n, j −

XX:22 Pushing Lines Helps: Efficient Universal Centralised Transformations for Programmable Matter

2
√
n), . . . , (i−

√
n, j+ k− 2

√
n). in phase k+ 1, we obtain a new connected shape consists of

Dk+1 of length n− (k − 1)
√
n and Sk+1 of (k + 1)

√
n, and they both intersect at a common

point (i−
√
n− 1, j), as shown in Figure 19. Therefore, we derive that DLC-Extending in

phase k + 1 decreases the length of Dk by
√
n and increases Sk by

√
n. J

Sk = k
√

n

D k
=

n
−

k
√ n

+
1

Sk+1 = (k + 1)
√

n

D k
+
1
=

n
−

(k
−

1)
√ n

+
1

(x, y)

intersection point

(i, j)

(i −
√

n, j) (i + k −
√

n, j)

(x, y)

(x, y)

(i −
√

n, j) (i + k −
√

n, j)

(i −
√

n, j −
√

n)

(i −
√

n, j −
√

n)

intersection point

(i −
√

n, j − 2
√

n)

(i −
√

n, j + k − 2
√

n)

Turn

Push

Figure 19 All transformations of DLC-Extending on T _shape from phase k to k + 1, see Lemma
23 for more details.

Here, we show that the last phase
√
n of DLC-Extending converts a T _shape into a

spanning line SL.

I Lemma 24. Given a diagonal SD of n nodes and partitioned into
√
n segments, DLC-

Extending transforms a T _shape into a spanning line SL by the end of the last phase.

Proof. It follows from Lemmas 22 and 23. At any phase k, for all 2 ≤ k <
√
n, D decreases

and S increases by
√
n. Thus, we shall obtain the following in phase

√
n− 1;

T _shape√n−1 = D√n−1 + S√n−1

=
[
n− (

√
n− 1)

√
n
]

+
[
(
√
n− 1)

√
n
]

=
[
n− (n−

√
n)
]

+
[
(n−

√
n)
]

=
[√
n
]

+
[
(n−

√
n)
]
.

As a result, we acquire D√n−1 of length
√
n and S√n−1 of n−

√
n nodes. At this moment, in

the last phase
√
n, we can trivially turn and push the diagonal D√n−1 = |

√
n| and include it

to S√n−1 by the line formation and pushing mechanism, in order to form the final spanning
line SL.

J

To sum up, the total running time for all
√
n phases of DLC-Extending is analysed below.

A. Almethen, O. Michail and I. Potapov XX:23

I Theorem 25. Given an initial connected diagonal of n nodes, DLC-Extending solves the
DiagonalToLineConnected problem in O(n

√
n) steps.

Proof. By Lemmas 22, 23 and 24, DLC-Extending carries out transformations in
√
n phases.

In phase k, for all 1 ≤ k ≤
√
n, the two main operations, turn and push, is performed. Here,

the first operation turns a corresponding segment lk by applying a brute-force line formation
on its

√
n nodes (except the base point) as follows;

t1 = 1 + 2 + . . .+ (
√
n− 1) =

√
n−1∑

i=1
i

=
√
n(
√
n− 1)
2 = n−

√
n

2
= O(n), (12)

Multiply 12 by
√
n to obtain the total turns for all

√
n phases:

T1 = t1 ·
√
n = n−

√
n

2 ·
√
n = n

√
n− n
2

= O(n
√
n). (13)

The second operation of phase k pushes the spanning line by (k− 1)
√
n steps horizontally

or vertically in at most (see Lemma 9):

t2 = 2 · (k − 1)
√
n = k

√
n−
√
n, (14)

Now, observe that the last phase only turns and pushes the last diagonal segment of
length

√
n (dose not push the whole spanning line, see Lemma 24). Therefore, the total of

push operations for all
√
n phases is the summation of 14 plus pushing the last segment of

length
√
n:

T2 =

√
n−1∑

i=1
t2 + 2

√
n

=

√
n−1∑

i=1
i
√
n+
√
n =
√
n

√
n−1∑

i=1
i+
√
n =
√
n · n−

√
n

2 +
√
n = n

√
n− n
2 +

√
n

= O(n). (15)

Finally, putting 13 and 15 together, DLC-Extending completes its course in a total cost T
computed by,

T = T1 + T2

= n
√
n− n
2 + n+

√
n = n

√
n− n+ 2n+ 2

√
n

2 = n
√
n− n+ 2

√
n

2
= O(n

√
n).

J

3.4 An O(n log n)-time Transformation
We now investigate another approach (called DL-Doubling) for DiagonalToLine (i.e.,
without necessarily preserving connectivity). The main idea is as follows. The initial

XX:24 Pushing Lines Helps: Efficient Universal Centralised Transformations for Programmable Matter

configuration can be viewed as n lines of length 1. We start (in phases) to successively double
the length of lines (while halving their number) by matching them in pairs through shortest
paths, until a single spanning line remains. Let the lines existing in each phase be labelled
1, 2, 3, . . . from top-right to bottom-left. In each phase, we shall distinguish two types of
lines, free and stationary, which correspond to the odd (1, 3, 5, . . .) and even (2, 4, 6, . . .) lines
from top-right to bottom-left, respectively. In any phase, only the free lines move, while the
stationary stay still. In particular, in phase i, every free line j moves via a shortest path to
merge with the next (top-right to bottom-left) stationary line j + 1. This operation merges
two lines of length k into a new line of length 2k residing at the column of the stationary line.
In general, at the beginning of every phase i, 1 ≤ i ≤ logn, there are n/2i−1 lines of length
2i−1 each. These are interchangeably free and stationary, starting from a free top-right one,
and at distance 2i−1 from each other. The minimum number of steps by which any free line
of length ki, 1 ≤ ki ≤ n/2, can be merged with the stationary next to it is roughly at most
4ki = 4 · 2i (by two applications of turning of Lemma 9). By the end of phase i (as well as
the beginning of phase i+ 1), there will be n/2i lines of length 2i each, at distances 2i from
each other. The total cost for phase i is obtained then by multiplying n/2i free lines, each is
paying at most 4 · 2i to merge with the next stationary, thus, a linear cost in each one of
logn phases in total.

See Figure 20 for an illustration of DL-Doubling.

n/2 free lines of length 1

n/2 stationary lines of length 1

Each free line moves ∆ = 1 to join

the colsest stationary line at phase 1

n/4 free lines of of length 2

n/4 stationary lines of length 2

n/8 free lines of of length 4

n/8 stationary lines of of length 4

Each free line moves ∆ = 3 to

the colsest stationary line at phase 2
After (logn− 2) phases

The final spanning line of n

1
2

3

n− 1
n

1
2
3

n− 1
n

Figure 20 The process of the O(n log n)-time DL-Doubling. Nodes reside inside the black and
grey cells.

3.4.1 Formal Description
Consider an initial diagonal line SD of n nodes occupying cells (x1, y1), . . . , (xn, yn), there-
fore, we can define the odd and even nodes into two different types of line of length
1, free and stationary. In any phase of DL-Doubling, the permission of move is only
given to free lines, i.e., stationary lines cannot move in that phase. The dn

2 e nodes in
(x1, y1), (x3, y3), . . . , (xn−1, yn−1) are free, on the contrary, (x2, y2), (x4, y4), . . . , (xn, yn) are
occupied by dn

2 e stationary lines. Since DL-Doubling keeps doubling the length of lines from

A. Almethen, O. Michail and I. Potapov XX:25

1 up to n, it consequently lasts for logn phases. In the first phase i = 1, 1 ≤ i ≤ logn,
each of the dn

2 e free lines of length 1 moves a distance of ∆ = 1 to their left to occupy
(x2, y1), (x4, y3), . . . , (xn, yn−1), in order to merge with the next following dn

2 e stationary
lines. As a result, we obtain dn

2 e (vertical) lines of length 2, where their bottommost nodes
occupying (x2, y1), (x4, y3), . . . , (xn, yn−1), as depicted in the top of Figure 20. Due to sym-
metry, it is sufficient to show transformations occurring on one orientation, i.e., horizontal
doubling holds.

In the second phase, we divide the vertical dn
2 e lines of length 2 each into dn

4 e free and
dn

4 e stationary lines interchangeably, starting from a free top-right one at (xn−2, yn−2), and
at distance ∆ = 22−1 = 2 from each other. Now, the dn

4 e free lines must move at least ∆ = 3
steps to line up with the next following stationary line to the left. Consequently, all dn

4 e free
joint stationary lines, which forms dn

4 e (vertical) lines of length 4 each. Eventually, when
DL-Doubling repeats this process logn phases, it will form the goal spanning line SL of order
n by the end of phase logn.

Here, we should also take into account all turns and delays of which a free line asks for
moving and reallocating above the next following stationary line to the left. In particular,
each free line must first convert from vertical into horizontal, move one further step to fill
the empty cell above the topmost node of the stationary and finally converts again into
vertical. By Lemma 9, at any phase i, for all 1 ≤ i ≤ logn, a free line of length ki, where
1 ≤ ki ≤ n/2, performs at most 4ki = 4 · 2i steps to merge with closest stationary line.
Therefore, the following lemma shows that holds in all logn phases.

I Lemma 26. By the end of phase i, for all 1 ≤ i ≤ logn, DL-Doubling has created n/2i

lines, each of length 2i, by performing O(n) steps in that phase.

Proof. We use induction to prove this argument. Following the above reasoning of DL-
Doubling in Section 3.4.1, by the end of first phase (base case), each of n

2 free lines of length
1 moves only ∆ = 1 step to form n

2 lines of length 2, which costs at most 1 · n
2 = O(n) steps

in total. Hence, the base case is true for phase 1. Now, assume that holds in phase i, for all
1 ≤ i ≤ logn, where each free line of length 2i−1 pays at most 4 · 2i−1 = 2i+1 − 3 steps to
match with the closest stationary lines (two applications of Lemma 9), therefore, a total cost
ti required to form n

2i lines of length 2i in phase i is given as follows;

ti = n

2i
·
(
2i+1 − 3

)
= 2i+1 · n

2i
− 3n

2i
= 2n− 3n

2i
= n

(
2− 3

2i

)
= O(n), (16)

Now, we prove that this must hold in phase i+ 1,

ti+1 = n

2i+1 ·
(
2i+2 − 3

)
= 2i+2 · n

2i+1 − 3n
2i+1 = 2n− 3n

2i+1 = n(2− 3
2i+1)

= O(n). (17)

As a result, our assumption is also true for phase i, therefore, from 16 and 17, we conclude
that DL-Doubling pays at most O(n) steps in each phase. J

Utilising Lemma 26, we can now formulate the following:

XX:26 Pushing Lines Helps: Efficient Universal Centralised Transformations for Programmable Matter

I Theorem 27. DL-Doubling transforms any diagonal SD of order n into a line SL in
O(n logn) steps.

Proof. DL-Doubling constructs the goal spanning line SL of length n in logn phases, while
SL increases exponentially in each phase. Given that, the total running time T of this
transformation is computed by summing all steps of 16 over all logn phases, as follows:

T =
log n∑
i=1

ti

=
log n∑
i=1

n(2− 3
2i

)

= 2n logn− 3n
log n∑
i=1

1
2i
, (18)

Let us compute the right summation of 18,

log n∑
i=1

1
2i

= (1
2 + 1

4 + 1
8 + . . .+ 1

2log n
), (19)

By multiplying 19 by 2 and subtracting it again by itself,

(1 + 1
2 + 1

4 + 1
8 + . . .+ 1

2log(n−1))− (1
2 + 1

4 + 1
8 + . . .+ 1

2log(n−1) + 1
2log(n))

= 1− 1
2log(n) , (20)

Then, by plugging 20 into 18, this yields,

2n logn− 3n(1− 1
2log n

) = 2n logn− 3n+ 3n
2log n

= n(2 logn+ 3
2log n

− 3)

= O(n logn).

Thus, it has been proved that DL-Doubling transforms SD of n nodes into SL in a total
of O(n logn) steps. J

3.5 An O(n log n)-time Transformation Based on Recursion
An interesting observation for DiagonalToLine (i.e., without necessarily preserving con-
nectivity), is that the problem is essentially self-reducible. This means that any transformation
for the problem can be applied to smaller parts of the diagonal, resulting in small lines, and
then trying to merge those lines into a single spanning line. An immediate question is then
whether such recursive transformations can improve upon the O(n logn) best upper bound
established so far. The extreme application of this idea is to employ a full uniform recursion
(call it DL-Recursion), where SD is first partitioned into two diagonals of length n/2 each,
and each of them is being transformed into a line of length n/2, by recursively applying to
them the same halving procedure. Finally, the top-right half has to pay a total of at most
4(n/2) = 2n to merge with the bottom-left half and form a single spanning line (and the
same is being recursively performed by smaller lines).

More formally, consider a diagonal SD of n nodes where the bottom-left and top right
nodes occupy (x1, y1) and (xn, yn), respectively. Then, the goal is to collect all nodes at

A. Almethen, O. Michail and I. Potapov XX:27

the leftmost column, say xn. The collection can be arranged in a recursive way by creating
stop points (partitions) on SD in which each stop point always creates equal partitions of
the same length. This can be parametrized by n

x for each partition, where 2 ≤ x ≤ n. For
example, if x = 2, we have a stop point that halves SD into 2 partitions of length dn

2 e. As a
consequence, the first node on the top will stop at the middle of SD and wait for all nodes
to its right to gather at that point (column) and then continue directly to the gathering
(column) xn.

Now, let us repeat the same precess on each of the x partitions recursively, by considering
the partition as a diagonal of length roughly n

x −1, which is divided into x sub-partitions each
of length n

x2 roughly. Every recursion shrinks the partitions by a factor of 1
x . For example,

in the x = 2 case, we halve the length of the partitions every time we subdivide, therefore,
we will end the recursion when it arrives at partitions of length 1, which will happen after
logn repetitions. That occurs similarly for the general x case by simply end after logx n

repetitions. For example, Figure 21 demonstrates this procedure.

1

n

Stop point = n
x

n
x
− 1

n
x
− 1

1

n

n
x

n
x2 − 1

n
x2

n
x2

n
x2 − 1

n
x2 − 1

n
x2 − 1

1

n

n
x

n
x2

n
x2

2
3 1

1

Next Partition After log n

n− 1

Figure 21 Shows all steps of subdividing the diagonal SD recursively by a factor of 1
x
, where

x = 2.

Next, we draw an abstract underlying tree of the partitioning process to trace all necessary
computations required to travel from the diagonal SD into a bottommost left column xn.
Figure 22 presents the tree of n nodes and weighted edges indicate the minimum distances
(shortest paths) ∆ between them, with a degree and depth of log2 n, which is also the number
of phases that are needed to cease the segmentation recursively. Here, node n is the root
of the tree occupies the target column at xn, and it has logn child nodes (stop points)
n− 1, n− 2, n− 4, . . . , n

2 of distances ∆ = 1, 2, 4, . . . , n
2 , respectively. Now, the distance ∆

between a parent u and child node v defines two basic properties: 1) the number of sub-child
nodes (siblings) of v, namely each child node v gets log ∆(u, v) sub-child nodes, and 2) the
maximum cost by which a child node v requires to merge with its parent u, and it is computed
by (2∆+1 − 3) (a reader may consult Lemma 26 and Theorem 27). For example, the n

2 child
node needs (2 n

2 +1 − 3) steps to join its parent node n in a distance of ∆ = n− n
2 = n

2 , and
at the same time, this tells us that this child node is also holding log n

2 sub-child nodes.
On the contrary, n − 1 node got no sub-child since log 1 = 0, so it is a leaf and requires
(21+1 − 3) = 1 steps to reach its parent node n. The same idea follows for other sub-trees,
such as n

2 ,
n
4 ,

n
8 , . . . , 2.

Having said that, the steps of any transformation strategy that solves the above recursion
problem can generally be reordered without affecting the cost, and each stop point takes place
in the reordered version. That is because the abstract tree representation remains conveniently
invariant, (inherits the same cost), for any arrangement by which a transformation can exploit
to collect nodes into the target point (column or row). However, this recursion proceeds in
logn cost phases, where in each phase i, for all 1 ≤ i ≤ logn, we upper bound a cost that the
transformation A pays at most to move all nodes in each phase (even though A may move

XX:28 Pushing Lines Helps: Efficient Universal Centralised Transformations for Programmable Matter

n

n− 1

∆ = 1

n− 2

n− 3

2

n− 4

n− 6

n− 7n− 5

n
2

log n− 4

n
2 − 1

n
2

n
4

n
4 − 1

log n
4 − 2

n
4

n
8

n
8

3 1

1 1 1

2

4

1 1

log n
2 − 2

1 1

2

Phase: 1

Phase: 2

logn

4

2

logn− 1

logn− 2

Phase:

Phase:

Phase:

Figure 22 The underlying tree representation of a recursive partitioning of a diagonal. Edges are
weighted by the minimum distance (∆) between nodes. See the text for more explanation.

them in an entirely different order). In phase 1, A works on nodes 1, 3, 5, . . . , n− 1, each of
which posses roughly a single node (leaf) and eventually moves all of them. Therefore, no
matter in what order they move, A performs at most O(n

2) steps to transfer all leaves in the
first phase of the tree.

In the second phase, nodes 2, 4, 6, . . . , (n− 2) in the tree are occupied by 2 nodes (a line
of length 2). Those pairs of nodes principally move at some point (even together or as part
of other nodes going through them) to its parent nodes (the next occupied column or row),
with paying a cost of at most (22+1 − 3) = 5 each. Repeat the same argument for the rest
phases of the tree, the upper bound now is based on the following observation: whenever k
nodes, where 1 ≤ k < n, all move as maximum as (2k+1 − 3) steps to merge with the next
stop point (parent node). In other words, suppose that k nodes are a line of k nodes, it walks
at most (2k+1 − 3) steps to merge with a line in the next occupied row or column.

Generally, we can say that at any phase i of any transformation A solves the recursion
problem, where 0 ≤ i ≤ logn, there is a node v with other 2i nodes occupying the same
column (row), where the distance between v and its parent u (the next occupied column
(row) is ∆(u, v) = 2i. Then, our purpose is to upper bound A’s cost for v to reach and merge
with u; therefore, v walks at most (2i+1 − 3) steps to form a line with u.

By analysing the running time of such a uniform recursion, we obtain that it is still
O(n logn), partially suggesting that recursive transformations might not be enough to
improve upon O(n logn) (also possibly because of an Ω(n logn) matching lower bound, which
is left as an open question). If we denote by Tk the total time needed to split and merge
lines of length k, then the recursion starts from 1 line incurring Tn and ends up with n lines

A. Almethen, O. Michail and I. Potapov XX:29

incurring T1. In particular, we analyse the recurrence relation:

Tn = 2 · Tn/2 + 2n = 2(2 · Tn/4 + n) + 2n = 4 · Tn/4 + 4n = 4(2 · Tn/8 + n/2) + 4n
= 8Tn/8 + 6n = · · · = 2i · Tn/2i + 2i · n = · · · = 2log n · Tn/2log n + 2(logn)n

Since T1 = 1, we get,

Tn = n · T1 + 2n(logn) = n+ 2n(logn),
= O(n logn).

Finally, we give the following theorem,

I Theorem 28. DL-Recursion transforms any diagonal SD of order n into a line SL of the
same order in O(n logn) steps.

4 Universal Transformations

4.1 An O(n
√

n)-time Universal Transformation
In this section, we develop a universal transformation, called U-Box-Partitioning, which
exploits line movements in order to transform any initial connected shape SI into any target
shape SF of the same order n, in O(n

√
n) steps. Due to reversibility (Lemma 10), it is

sufficient to show that any initial connected shape SI can be transformed into a spanning
line (implying then that any pair of shapes can be transformed to each other via the line
and by reversing one of the two transformations). We maintain our focus on transformations
that are allowed to break connectivity during their course.

Observe that any initial connected shape SI of order n can be enclosed in an appropriately
positioned n× n square (called a box). Our universal transformation is divided into three
phases:

Phase A: Partition the n× n box into
√
n×
√
n sub-boxes (n in total in order to cover

the whole n× n box). For each sub-box move all nodes in it down towards the bottommost
row of that sub-box as follows. Start filling in the bottommost row from left to right, then if
there is no more space continue to the next row from left to right and so on until all nodes
in the sub-box have been exhausted (resulting in zero or more complete rows and at most
one incomplete row). Moving down is done via shortest paths (where in the worst case a
node has to move distance 2

√
n); see Figure 23.

Phase B: Choose one of the four length-n boundaries of the n× n box, say w.l.o.g. the
left boundary. This is where the spanning line will be formed. Then, transfer every line via
a shortest path to that boundary (incurring a maximum distance of n−

√
n per line).

Phase C: Turn all lines (possibly consisting of more than one line on top of each other),
by a procedure similar to that of Figure 6 (e), to end up with a spanning line of n nodes on
the left boundary.

However, there are two variants of
√
n×
√
n sub-boxes:

1. Occupied sub-box: Denoted by s and contains k nodes of SI , where 1 ≤ k ≤ n.
2. Unoccupied sub-box: An empty sub-box (has no nodes).

XX:30 Pushing Lines Helps: Efficient Universal Centralised Transformations for Programmable Matter

Now, we show some important properties of occupied sub-boxes. Given an occupied sub-box
s of k nodes, where 1 ≤ k ≤ n, therefore, the maximum number of lines which can be formed
inside s is at most d k√

n
e. As mentioned above, those k lines can be aligned horizontally at

bottommost rows or vertically at leftmost columns of the occupied sub-box, such as Figure 23.
The following lemma gives an upper bound on the number of sub-boxes that any connected
SI can occupy.

I Lemma 29. Any connected shape SI of order n occupies at most O(
√
n) sub-boxes.

Proof. It follows directly from Corollary 38, which states that for a given connected shape SI

of n nodes enclosed by a square box of size n×n and any uniform partitioning of that box into
sub-boxes of dimension d, then, it holds that SI can occupy at most O(n

d) sub-boxes. Here,
U-Box-Partitioning is dividing the n× n square box into

√
n×
√
n sub-boxes of dimension

d =
√
n, therefore, SI occupies at most n√

n
= O(

√
n) sub-boxes. J

Below, we prove correctness and analyse the running time of phase A.

I Lemma 30. Starting from any connected shape SI of order n, Phase A completes in
O(n
√
n) steps each.

Proof. By Lemma 29, let SI be a connected shape of n nodes occupies
√
n sub-boxes of size√

n ×
√
n each, and s ∈ SI be any occupied sub-box of k nodes, where 1 ≤ k ≤ n. Then,

s performs a trivial line formation to collect all k nodes at its bottommost (or leftmost)
boundary. Consider the worst case of a node occupies the top-right corner and wants to
gather at the bottom-left of s, therefore, it is incurring a distance (shortest path) of at most
∆ = 2

√
n to arrive there. Now, the k nodes fill in the

√
n bottommost row from left to

right, and then start filling in the next row from left to right and so on until all nodes in
s is exhausted. For example, Figure 23 shows the line formation at the bottommost rows
of a 6 × 6 sub-box of k = 11 nodes. Consequently, s forms at least one complete line of
length

√
n or one incomplete of less than

√
n. Recall that SI is connected. So there are at

most
√
n occupied sub-boxes, which means there are at most n√

n
= O(

√
n) lines (complete or

incomplete) inside all those occupied sub-boxes. This is trivial to prove, assume that the
√
n

occupied sub-box formed more than
√
n lines, resulting in |SI | > n, which is a contradiction.

√
n = 6

√
n = 6

√
n = 6

√
n = 6

Figure 23 An example of a brute-force line formation to collect all k nodes at bottommost rows
of a sub-box of size 6× 6 containing k = 11 nodes.

With that, the total cost t1 required to form a line l of w nodes, for all 1 ≤ l, w ≤
√
n,

inside s is:

t = w · 2
√
n =
√
n · 2
√
n = 2n

= O(n), (21)

Multiply 21 by
√
n, to obtain total steps T1 to form all

√
n lines inside all occupied

A. Almethen, O. Michail and I. Potapov XX:31

sub-boxes;

T1 =
√
n · t

=
√
n · 2n = 2n

√
n

= O(n
√
n). (22)

Finally, we conclude that Phase A finishes its course in O(n
√
n) steps. J

In phase B, set any (length-n) boundary of the n×n square box as the gathering boundary
of all lines formed inside the occupied sub-boxes in phase A. Then, the following lemma
computes the total steps required to transfer all those lines to that gathering boundary.

I Lemma 31. Starting from any connected shape SI of order n, Phase B completes in
O(n
√
n) steps.

Proof. It follows from Lemmas 29 and 30. Let SI be a connected shape of order n enclosed
by a n×n box and then partitioned into

√
n×
√
n occupied sub-boxes of k nodes each, where

1 ≤ k ≤ n. By phase A, there are l lines, for all 1 ≤ l ≤
√
n, formed inside all

√
n occupied

sub-boxes. Without loss of generality, define the left border of the n× n box as the gathering
boundary for all those lines. Now, the distance between any line inside an occupied sub-box
and the defined boundary is no longer than n−

√
n. Thus, the number of steps (distance δ)

by which a line requires to reach that boundary is therefore δ ≤ n−
√
n. As there are at

most
√
n lines in the occupied sub-boxes, then the total steps T2 for all l lines to transfer and

arrive at the left border is at most,

T2 = l · δ
=
√
n · (n−

√
n) = n

√
n− n

= O(n
√
n). (23)

J

By the end of phase B, all
√
n lines have transferred and arrived at the length-n gathering

boundary, where each contributes a node to that boundary. Therefore, in phase C, all those
lines ought to push and include themselves to the length-n border, in order to form the goal
spanning line of length n nodes. Formally, we give the following Lemma.

I Lemma 32. Consider any length-n boundary and n nodes forming k lines, where 1 ≤ k ≤ n,
that are perpendicular to that boundary. Then, by line movements, the k lines require at
most O(n) steps to form a line of length n on that boundary. This implies that Phase C is
completed in O(n) steps.

Proof. See the example in Figure 24, where the length-n gathering border denoted by the
dashed line, and the lines {l1, l2, . . . , lk} of n nodes are depicted by bold black lines, where
1 ≤ k ≤

√
n. Without doubt, the n nodes shall completely fill up the border of length ∆ = n.

Now, pick the first line l1 of k1 nodes and start to push k1 into the topmost point of the
boundary, until either 1) k1 are exhausted, or 2) reaching the topmost point of the boundary
and still have nodes waiting to be pushed, therefore, it can easily begin to push them down
towards the bottommost point of the boundary. By performing the same strategy for all
other lines, they shall eventually fill in the length-n border completely by n nodes.

Observe that, in our case, the k lines connect to length-n boundary by k nodes. Therefore,
there is still n−k nodes need to be pushed into the boundary. According to Lemma 9, each of

XX:32 Pushing Lines Helps: Efficient Universal Centralised Transformations for Programmable Matter

the n−k nodes requires 2 steps to be included, therefore all n−k nodes shall perform a total
of 2(n− k) steps to fully filled up the boundary of length n. Following that, for any k lines
of n nodes that are connected perpendicularly to a border of length-n, U-Box-Partitioning
pushes the n nodes of k lines into the length-n border by line mechanisms in a total T3 of at
most,

T3 = 2(n− k) = 2(n−
√
n)

= O(n). (24)

length-n gathering boundary

∆ = n

l1
l2

lk

Figure 24 The dashed line indicates the length-n gathering boundary of the n× n box, whilst
the bold black lines represent the k lines of n nodes.

J

Now, we prove that any connected shape SI transforms into a line SL in at most O(n
√
n)

steps.

I Lemma 33. U-Box-Partitioning transforms any connected shape SI into a straight line
SL of the same order n, in O(n

√
n) steps.

Proof. By the above Lemmas 29, 30 and 32, we sum 22, 23 and 24 to compute the overall
moves T as follows;

T = T1 + T2 + T3

= O(n
√
n) +O(n

√
n) +O(n)

= O(n
√
n). (25)

This provides an upper bound O(n
√
n) of U-Box-Partitioning to transform any arbitrary

connected shape SI into a single spanning line SL of the same number of nodes. J

Putting Lemma 33 and reversibility (Lemma 10) together gives:

I Theorem 34. For any pair of connected shapes SI and SF of the same order n, transform-
ation U-Box-Partitioning can be used to transform SI into SF (and SF into SI) in O(n

√
n)

steps.

4.2 An O(n log n)-time Universal Transformation
We now present an alternative universal transformation, called U-Box-Doubling, that trans-
forms any pair of connected shapes, of the same order, to each other in O(n logn) steps.

A. Almethen, O. Michail and I. Potapov XX:33

(a) (b)

Figure 25 (a) Pushing left in each 2i × 2i sub-box. (b) Cleaning the orientation by aligning
(filling) the leftmost columns.

Given a connected shape SI of order n, do the following. Enclose SI into an arbitrary n× n
box as in U-Box-Partitioning (Section 4.1). For simplicity, we assume that n is a power of 2,
but this assumption can be dropped. Proceed in logn phases as follows: In every phase i,
where 1 ≤ i ≤ logn, partition the n× n box into 2i × 2i sub-boxes, disjoint and completely
covering the n× n box. Assume that from any phase i− 1, any 2i−1 × 2i−1 sub-box is either
empty or has its k, where 0 ≤ k ≤ 2i−1, bottommost rows completely filled in with nodes,
possibly followed by a single incomplete row on top of them containing l, where 1 ≤ l < 2i−1,
consecutive nodes that are left aligned on that row. This case holds trivially for phase 1
and inductively for every phase. That is, in odd phases, we assume that nodes fill in the
leftmost columns of boxes in a symmetric way. Every 2i × 2i sub-box (of phase i) consists of
four 2i−1 × 2i−1 sub-boxes from phase i− 1, each of which is either empty or occupied as
described above.

Consider the case where i is odd, thus, the nodes in the 2i−1× 2i−1 sub-boxes are bottom
aligned. For every 2i × 2i sub-box, move each line from the previous phase that resides in
the sub-box to the left as many steps as required until that row contains a single line of
consecutive nodes, starting from the left boundary of the sub-box, as shown in Figure 25 (a).
With a linear procedure similar to that of Figure 12 (and of nice shapes), start filling in the
columns of the 2i × 2i sub-box from the leftmost column and continuing to the right. If an
incomplete column remains, push the nodes in it to the bottom of that column; see Figure
25 (b) for an example.

The case of even i is symmetric, the only difference being that the arrangement guarantee
from i− 1 is left alignment on the columns of the 2i−1× 2i−1 sub-boxes and the result will be
bottom alignment on the rows of the 2i × 2i sub-boxes of the current phase. This completes
the description of the transformation. We first prove correctness:

I Lemma 35. Starting from any connected shape SI of order n, U-Box-Doubling forms by
the end of phase logn a line of length n.

Proof. In phase logn, the procedure partitions into a single box, which is the whole original
n × n box. Independently of whether gathering will be on the leftmost column or on the
bottommost row of the box, as all n nodes are contained in it, the outcome will be a single
line of length n, vertical or horizontal, respectively. J

Now, we shall analyse the running time of U-Box-Doubling. To facilitate exposition, we
break this down into a number of lemmas.

I Lemma 36. In every phase i, the “super-shape” formed by the occupied 2i × 2i sub-boxes
is connected.

Proof. By induction on the phase number i. For the base of the induction, observe that
for i = 0 it holds trivially because the initial SI is a connected shape. Assuming that it
holds for phase i− 1, we shall now prove that it must also hold for phase i. By the inductive

XX:34 Pushing Lines Helps: Efficient Universal Centralised Transformations for Programmable Matter

assumption, the occupied 2i−1 × 2i−1 sub-boxes form a connected super-shape. Observe
that, by the way the original n× n box is being repetitively partitioned, any box contains
complete sub-boxes from previous phases, that is, no sub-box is ever split into more than
one box of future phases. Additionally, observe that a sub-box is occupied iff any of its own
sub-boxes (of any size) had ever been occupied, because nodes cannot be transferred between
2i × 2i sub-boxes before phase i+ 1. Assume now, for the sake of contradiction, that the
super-shape formed by 2i × 2i sub-boxes is disconnected. This means that there exists a
“cut” of unoccupied 2i × 2i sub-boxes as in Figure 26. Replacing everything by 2i−1 × 2i−1

a cut of unoccupied 2i × 2i sub-boxes

occupied 2i × 2i sub-boxes

Figure 26 An example of a “cut” of unoccupied 2i × 2i sub-boxes.

sub-boxes, yields that this must also be a cut of 2i−1 × 2i−1 sub-boxes, because a node
cannot have transferred between 2i × 2i sub-boxes before phase i+ 1. But this contradicts
the assumption that 2i−1 × 2i−1 sub-boxes form a connected super-shape. Therefore, it must
hold that the 2i × 2i sub-boxes super-shape must have been connected. J

Next, we give an upper bound on the number of occupied sub-boxes in a phase i.

I Lemma 37. Given that U-Box-Doubling starts from a connected shape SI of order n, the
number of occupied sub-boxes in any phase i is O(n

2i).

Proof. First, observe that a 2i × 2i sub-box of phase i is occupied in that phase iff SI

was originally going through that sub-box. This follows from the fact that nodes are not
transferred by this transformation between 2i × 2i sub-boxes before phase i+ 1. Therefore,
the 2i × 2i sub-boxes occupied in (any) phase i are exactly the 2i × 2i sub-boxes that the
original shape SI would have occupied, thus, it is sufficient to upper bound the number of
2i × 2i sub-boxes that a connected shape of order n can occupy. Or equivalently, we shall
lower bound the number Nk of nodes needed to occupy k sub-boxes.

In order to simplify the argument, whenever SI occupies another unoccupied sub-box,
we will award it a constant number of additional occupations for free and only calculate
the additional distance (in nodes) that the shape has to cover in order to reach another
unoccupied sub-box. In particular, pick any node of SI and consider as freely occupied that
sub-box and the 8 sub-boxes surrounding it, as depicted in Figure 27 (a). Giving sub-boxes
for free can only help the shape, therefore, any lower bound established including the free
sub-boxes will also hold for shapes that do not have them (thus, for the original problem).
Given that free sub -boxes are surrounding the current node, in order for SI to occupy
another sub-box, at least one surrounding 2i × 2i sub-box must be exited. This requires
covering a distance of at least 2i, through a connected path of nodes.

Once this happens, SI has just crossed the boundary between an occupied sub-box and
an unoccupied sub-boxs. Then, by giving it for free at most 5 more unoccupied sub-boxes,
SI has to pay another 2i nodes to occupy another unoccupied sub-box; see Figure 27 (b).
We then continue applying this 5-for-free strategy until all n nodes have been used.

A. Almethen, O. Michail and I. Potapov XX:35

(a) (b)

Figure 27 (a) A node of shape SI in red and the occupied sub-boxes that we give for free to the
shape. (b) The shape just exited the sub-box with arrow entering an unoccupied sub-box. By giving
the 5 horizontally dashed sub-boxes for free, a distance of at least 2i has to be travelled in order to
reach another unoccupied sub-box.

To sum up, the shape has been given 8 sub-boxes for free, and then for every sub-box
covered it has to pay 2i and gets 5 sub-boxes. Thus, to occupy k = 8 + l · 5 sub-boxes, at
least l · 2i nodes are needed, that is,

Nk ≥ l · 2i (26)

But, that leads to

k = 8 + l · 5⇒ l = k − 8
5 . (27)

Thus, from (26) and (27):

Nk ≥
k − 8

5 · 2i. (28)

But shape SI has order n, which means that the number of nodes available is upper bounded
by n, i.e., Nk ≤ n, which gives:

k − 8
5 · 2i ≤ Nk ≤ n⇒

k − 8
5 · 2i ≤ n⇒ k − 8

5 ≤ n

2i
⇒

k ≤ 5
(
n

2i

)
+ 8

We conclude that the number of 2i× 2i sub-boxes that can be occupied by a connected shape
SI , and, thus, also the number of 2i × 2i sub-boxes that are occupied by U-Box-Doubling in
phase i, is at most 5(n/2i) + 8 = O(n/2i). J

As a corollary of this, we obtain:

I Corollary 38. Given a uniform partitioning of n× n square box containing a connected
shape SI of order n into d× d sub-boxes, it holds that SI can occupy at most O(n

d) sub-boxes.

We are now ready to analyse the running time of U-Box-Doubling.

I Lemma 39. Starting from any connected shape of n nodes, U-Box-Doubling performs
O(n logn) steps during its course.

XX:36 Pushing Lines Helps: Efficient Universal Centralised Transformations for Programmable Matter

Proof. We prove this by showing that in every phase i, 1 ≤ i ≤ logn, the transformation
performs at most a linear number of steps. We partition the occupied 2i × 2i sub-boxes into
two disjoint sets, B1 and B0, where sub-boxes in B1 have at least 1 complete line (from the
previous phase), i.e., a line of length 2i−1, and sub-boxes in B0 have 1 to 4 incomplete lines,
i.e., lines of length between 1 and 2i−1 − 1. For B1, we have that |B1| ≤ n/2i−1. Moreover,
for every complete line, we pay at most 2i−1 to transfer it left or down, depending on the
parity of i. As there are at most n/2i−1 such complete lines in phase i, the total cost for
this is at most 2i · (n/2i−1) = n.

Each sub-box in B1 may also have at most 4 incomplete lines from the previous phase,
as in Figure 25 left, where at most two of them may have to pay a maximum of 2i−1 to
be transferred left or down, depending on the parity of i (as the other two are already
aligned). As there are at most n/2i−1 sub-boxes in B1, the total cost for this is at most
2 · 2i−1 · (n/2i−1) = 2n.

Therefore, the total cost for pushing all lines towards the required border in B1 sub-boxes
is at most:

n+ 2n = 3n. (29)

For B0, we have (by Lemma 37) that the total number of occupied sub-boxes in phase i
is at most 5(n/2i) + 8, therefore, |B0| ≤ 5(n/2i) + 8 (taking into account also the worst
case where every occupied sub-box may be of type B0). There is again a maximum of 2
incomplete lines per such sub-box that need to be transferred a distance of at most 2i−1,
therefore, the total cost for this to happen in every B0 sub-box is at most:

2 · 2i−1
(

5 · n2i
+ 8
)

= 5n+ 8 · 2i ≤ 13n. (30)

By paying the above costs, all occupied sub-boxes have their lines aligned horizontally to
their left or vertically to their bottom border, and the final task of the transformation for
this phase is to apply a linear procedure in order to fill in the left (bottom) border of the
n× n box. This procedure costs at most 2k for every k nodes aligned as above (Lemma 9),
therefore, in total at most:

2n. (31)

This completes the operation of U-Box-Doubling for phase i. Putting (29), (30) and (31)
together, we obtain that the total cost Ti, in steps, for phase i is,

Ti ≤ 3n+ 13n+ 2n
= 18n.

As there is a total of logn phases, we conclude that the total cost T of the transformation is,

T ≤ 18n · logn
= O(n logn).

J

Finally, together Lemma 35, Lemma 39 and reversibility (Lemma 10) imply that:

I Theorem 40. For any pair of connected shapes SI and SF of the same order n, transform-
ation U-Box-Doubling can be used to transform SI into SF (and SF into SI) in O(n logn)
steps.

A. Almethen, O. Michail and I. Potapov XX:37

5 Conclusions

In this work, we studied a new linear-strength model extending upon the model of [21, 30].
The nodes can now move in parallel by translating a line of any length by one position in
a single time-step. This model, having the model of [21, 30] as a special case, adopts all
its transformability results (including universal transformations). Then, our focus naturally
turned to investigating if pushing lines can help achieve a substantial gain in performance
(compared to the Θ(n2) of those models). Even though it can be immediately observed
that there are instances in which this is the case (e.g., initial shapes in which there are
many long lines, thus, much initial parallelism to be exploited), it was not obvious that
this holds also for the worst case. By identifying the diagonal as a potentially worst-case
shape (essentially, because in it any parallelism to be exploited does not come for free), we
managed to first develop an O(n

√
n)-time transformation for transforming the diagonal into

a line, then to improve upon this by two transformations that achieve the same bound while
preserving connectivity, and finally to provide an O(n logn)-time transformation (that breaks
connectivity). Going one step further, we developed two universal transformations that
can transform any pair of connected shapes to each other in time O(n

√
n) and O(n logn),

respectively.
There is a number of interesting problems that are opened by this work. The obvious

first target (and apparently intriguing) is to answer whether there is an o(n logn)-time
transformation (e.g., linear) or whether there is an Ω(n logn)-time lower bound matching
our best transformations. We suspect the latter, but do not have enough evidence to support
or prove it. The tree representation of the problem that we discuss in Section 3.5 (see,
e.g., Figure 22), might help in this direction. Moreover, we didn’t consider parallel time
in this paper. If more than one line can move in parallel in a time-step, then are there
variants of our transformations (or alternative ones) that further reduce the running time?
In other words, are there parallelisable transformations in this model? In particular, it would
be interesting to investigate whether the present model permits an O(logn) parallel time
(universal) transformation, i.e., matching the best transformation in the model of Aloupis et
al. [2]. It would also be worth studying in more depth the case in which connectivity has to
be preserved during the transformations. In the relevant literature, a number of alternative
types of grids have been considered, like triangular (e.g, in [14]) and hexagonal (e.g., in
[38]), and it would be interesting to investigate how our results translate there. Finally, an
immediate next goal is to attempt to develop distributed versions of the transformations
provided here.

References

1 Greg Aloupis, Nadia Benbernou, Mirela Damian, Erik D Demaine, Robin Flatland, John Iacono,
and Stefanie Wuhrer. Efficient reconfiguration of lattice-based modular robots. Computational
geometry, 46(8):917–928, 2013.

2 Greg Aloupis, Sébastien Collette, Erik D Demaine, Stefan Langerman, Vera Sacristán, and
Stefanie Wuhrer. Reconfiguration of cube-style modular robots using O(logn) parallel moves.
In International Symposium on Algorithms and Computation, pages 342–353. Springer, 2008.

3 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Computation
in networks of passively mobile finite-state sensors. Distributed Computing, 18(4):235–253,
March 2006.

4 Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational power
of population protocols. Distributed Computing, 20(4):279–304, November 2007.

XX:38 Pushing Lines Helps: Efficient Universal Centralised Transformations for Programmable Matter

5 Aaron T Becker, Erik D Demaine, Sándor P Fekete, Jarrett Lonsford, and Rose Morris-Wright.
Particle computation: complexity, algorithms, and logic. Natural Computing, pages 1–21,
2017.

6 Julien Bourgeois and Seth Copen Goldstein. Distributed intelligent mems: progresses and
perspectives. IEEE Systems Journal, 9(3):1057–1068, 2015.

7 Zack Butler, Keith Kotay, Daniela Rus, and Kohji Tomita. Generic decentralized control
for lattice-based self-reconfigurable robots. The International Journal of Robotics Research,
23(9):919–937, 2004.

8 Mark Cieliebak, Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed
computing by mobile robots: Gathering. SIAM J. Comput., 41(4):829–879, 2012. doi:
10.1137/100796534.

9 Alejandro Cornejo, Fabian Kuhn, Ruy Ley-Wild, and Nancy Lynch. Keeping mobile robot
swarms connected. In Proceedings of the 23rd international conference on Distributed computing,
DISC’09, pages 496–511, Berlin, Heidelberg, 2009. Springer-Verlag.

10 Shantanu Das, Paola Flocchini, Nicola Santoro, and Masafumi Yamashita. Forming sequences
of geometric patterns with oblivious mobile robots. Distributed Computing, 28(2):131–145,
April 2015.

11 Joshua J Daymude, Zahra Derakhshandeh, Robert Gmyr, Alexandra Porter, Andréa W
Richa, Christian Scheideler, and Thim Strothmann. On the runtime of universal coating for
programmable matter. Natural Computing, 17(1):81–96, 2018.

12 Xavier Défago, Maria Gradinariu, Stéphane Messika, and Philippe Raipin-Parvédy. Fault-
tolerant and self-stabilizing mobile robots gathering. In International Symposium on Distributed
Computing, pages 46–60. Springer, 2006.

13 Erik D Demaine. Playing games with algorithms: Algorithmic combinatorial game theory. In
International Symposium on Mathematical Foundations of Computer Science, pages 18–33.
Springer, 2001.

14 Zahra Derakhshandeh, Shlomi Dolev, Robert Gmyr, Andréa W Richa, Christian Scheideler,
and Thim Strothmann. Brief announcement: amoebot–a new model for programmable matter.
In Proceedings of the 26th ACM symposium on Parallelism in algorithms and architectures
(SPAA), pages 220–222, 2014.

15 Zahra Derakhshandeh, Robert Gmyr, Andréa W Richa, Christian Scheideler, and Thim
Strothmann. An algorithmic framework for shape formation problems in self-organizing
particle systems. In Proceedings of the Second Annual International Conference on Nanoscale
Computing and Communication, page 21. ACM, 2015.

16 Zahra Derakhshandeh, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and Thim
Strothmann. Universal shape formation for programmable matter. In Proceedings of the 28th
ACM Symposium on Parallelism in Algorithms and Architectures, pages 289–299. ACM, 2016.

17 Giuseppe A. Di Luna, Paola Flocchini, Nicola Santoro, Giovanni Viglietta, and Yukiko
Yamauchi. Shape formation by programmable particles. Distributed Computing, Mar 2019.
doi:10.1007/s00446-019-00350-6.

18 Giuseppe Antonio Di Luna, Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Giovanni
Viglietta. Line recovery by programmable particles. In Proceedings of the 19th International
Conference on Distributed Computing and Networking, ICDCN ’18, pages 4:1–4:10, New York,
NY, USA, 2018. ACM. doi:10.1145/3154273.3154309.

19 David Doty. Theory of algorithmic self-assembly. Communications of the ACM, 55:78–88,
2012.

20 Shawn M Douglas, Hendrik Dietz, Tim Liedl, Björn Högberg, Franziska Graf, and William M
Shih. Self-assembly of dna into nanoscale three-dimensional shapes. Nature, 459(7245):414,
2009.

21 Adrian Dumitrescu and János Pach. Pushing squares around. In Proceedings of the twentieth
annual symposium on Computational geometry, pages 116–123. ACM, 2004.

http://dx.doi.org/10.1137/100796534
http://dx.doi.org/10.1137/100796534
http://dx.doi.org/10.1007/s00446-019-00350-6
http://dx.doi.org/10.1145/3154273.3154309

A. Almethen, O. Michail and I. Potapov XX:39

22 Adrian Dumitrescu, Ichiro Suzuki, and Masafumi Yamashita. Formations for fast locomotion of
metamorphic robotic systems. The International Journal of Robotics Research, 23(6):583–593,
2004.

23 Adrian Dumitrescu, Ichiro Suzuki, and Masafumi Yamashita. Motion planning for metamorphic
systems: Feasibility, decidability, and distributed reconfiguration. IEEE Transactions on
Robotics and Automation, 20(3):409–418, 2004.

24 Sándor Fekete, Andréa W Richa, Kay Römer, and Christian Scheideler. Algorithmic found-
ations of programmable matter (Dagstuhl Seminar 16271). In Dagstuhl Reports, volume 6.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016. Also in ACM SIGACT News, 48.2:87-
94, 2017.

25 Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed computing by oblivious
mobile robots. Synthesis Lectures on Distributed Computing Theory, 3(2):1–185, 2012.

26 Kyle Gilpin, Ara Knaian, and Daniela Rus. Robot pebbles: One centimeter modules for
programmable matter through self-disassembly. In Robotics and Automation (ICRA), 2010
IEEE International Conference on, pages 2485–2492. IEEE, 2010.

27 Robert A Hearn and Erik D Demaine. PSPACE-completeness of sliding-block puzzles and other
problems through the nondeterministic constraint logic model of computation. Theoretical
Computer Science, 343(1-2):72–96, 2005.

28 Ara N Knaian, Kenneth C Cheung, Maxim B Lobovsky, Asa J Oines, Peter Schmidt-Neilsen,
and Neil A Gershenfeld. The milli-motein: A self-folding chain of programmable matter with
a one centimeter module pitch. In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1447–1453. IEEE, 2012.

29 Evangelos Kranakis, Danny Krizanc, and Euripides Markou. The mobile agent rendezvous
problem in the ring. Synthesis Lectures on Distributed Computing Theory, 1(1):1–122, 2010.

30 Othon Michail, George Skretas, and Paul G. Spirakis. On the transformation capability of
feasible mechanisms for programmable matter. Journal of Computer and System Sciences,
2019. doi:https://doi.org/10.1016/j.jcss.2018.12.001.

31 Othon Michail and Paul G. Spirakis. Simple and efficient local codes for distributed stable
network construction. Distributed Computing, 29(3):207–237, 2016. doi:http://dx.doi.org/
10.1007/s00446-015-0257-4.

32 Othon Michail and Paul G Spirakis. Elements of the theory of dynamic networks. Communic-
ations of the ACM, 61(2), 2018.

33 An Nguyen, Leonidas J Guibas, and Mark Yim. Controlled module density helps reconfiguration
planning. In Proc. of 4th International Workshop on Algorithmic Foundations of Robotics,
pages 23–36, 2000.

34 Paul W. K. Rothemund and Erik Winfree. The program-size complexity of self-assembled
squares. In Proceedings of the 32nd annual ACM symposium on Theory of computing (STOC),
pages 459–468, 2000. doi:10.1145/335305.335358.

35 Paul WK Rothemund. Folding dna to create nanoscale shapes and patterns. Nature,
440(7082):297–302, 2006.

36 Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. Programmable self-assembly in
a thousand-robot swarm. Science, 345(6198):795–799, 2014.

37 Masahiro Shibata, Toshiya Mega, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshimitsu
Masuzawa. Uniform deployment of mobile agents in asynchronous rings. Journal of Parallel
and Distributed Computing, 119:92–106, 2018.

38 Jennifer E Walter, Jennifer L Welch, and Nancy M Amato. Distributed reconfiguration of
metamorphic robot chains. Distributed Computing, 17(2):171–189, 2004.

39 Erik Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of Technology,
June 1998.

40 Damien Woods, Ho-Lin Chen, Scott Goodfriend, Nadine Dabby, Erik Winfree, and Peng Yin.
Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In Proceedings

http://dx.doi.org/https://doi.org/10.1016/j.jcss.2018.12.001
http://dx.doi.org/http://dx.doi.org/10.1007/s00446-015-0257-4
http://dx.doi.org/http://dx.doi.org/10.1007/s00446-015-0257-4
http://dx.doi.org/10.1145/335305.335358

XX:40 Pushing Lines Helps: Efficient Universal Centralised Transformations for Programmable Matter

of the 4th conference on Innovations in Theoretical Computer Science, pages 353–354. ACM,
2013.

41 Masafumi Yamashita and Ichiro Suzuki. Characterizing geometric patterns formable by
oblivious anonymous mobile robots. Theoretical Computer Science, 411(26-28):2433–2453,
2010.

42 Yukiko Yamauchi, Taichi Uehara, and Masafumi Yamashita. Brief announcement: pattern
formation problem for synchronous mobile robots in the three dimensional euclidean space.
In Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, pages
447–449. ACM, 2016.

43 Mark Yim, Wei-Min Shen, Behnam Salemi, Daniela Rus, Mark Moll, Hod Lipson, Eric Klavins,
and Gregory S Chirikjian. Modular self-reconfigurable robot systems [grand challenges of
robotics]. IEEE Robotics & Automation Magazine, 14(1):43–52, 2007.

	1 Introduction
	1.1 Our Approach

	2 Preliminaries and Definitions
	2.1 Nice shapes
	2.2 Problem Definitions

	3 Transforming the Diagonal into a Line
	3.1 An O(nn)-time Transformation
	3.2 Preserving Connectivity through Folding
	3.2.1 Formal Description

	3.3 Preserving Connectivity through Extending
	3.3.1 Formal Description

	3.4 An O(n logn)-time Transformation
	3.4.1 Formal Description

	3.5 An O(n logn) -time Transformation Based on Recursion

	4 Universal Transformations
	4.1 An O(n n)-time Universal Transformation
	4.2 An O(n logn)-time Universal Transformation

	5 Conclusions

