
On 1-factorizations of Bipartite Kneser Graphs

Kai Jin1[0000−0003−3720−5117]

The Hong Kong University of Science and Technology, Hong Kong SAR
cscjjk@gmail.com

Abstract. It is a challenging open problem to construct an explicit 1-
factorization of the bipartite Kneser graph H(v, t), which contains as
vertices all t-element and (v− t)-element subsets of [v] := {1, . . . , v} and
an edge between any two vertices when one is a subset of the other. In this
paper, we propose a new framework for designing such 1-factorizations,
by which we solve a nontrivial case where t = 2 and v is an odd prime
power. We also revisit two classic constructions for the case v = 2t + 1
— the lexical factorization and modular factorization. We provide their
simplified definitions and study their inner structures. As a result, an
optimal algorithm is designed for computing the lexical factorizations.
(An analogous algorithm for the modular factorization is trivial.)

Keywords: Graph Theory: 1-factorization ·Modular factorization · Lex-
ical factorization · Bipartite Kneser graph · Perpendicular Array.

1 Introduction

The bipartite Kneser graph H(v, t) (t < v/2) has as vertices all t-element and
(v− t)-element subsets of [v] := {1, . . . , v} and an edge between any two vertices
when one is a subset of the other. Because it is regular and bipartite, each
bipartite Kneser graph admits a 1-factorization due to Hall’s Marriage Theorem
[15]. (A 1-factor of a graph G is a subgraph in which each node of G has degree
1, and a 1-factorization of G partitions the edges of G into disjoint 1-factors.)
For the special case v = 2t+1, the graph H(2t+1, t) is also known as the middle
level graph and it admits two explicit 1-factorizations – the lexical factorization
[17] (see subsection 1.2) and modular factorization [10] (see section 4). However,
to the best of our knowledge, for decades it remains a challenging open problem
to design explicit 1-factorizations for the general bipartite Kneser graphs.

In this paper, we propose a natural framework to attack the open problem.
Briefly, it attempts to find a special kind of 1-factorizations called resolvable 1-
factorizations. We noticed that the lexical and modular factorizations and any 1-
factorization of H(2t+1, t) are resolvable. We also checked (by a C++ program)
that there are no resolvable 1-factorization for (v, t) = (6, 2). Therefore, we can
only expect for solving part of the open problem by using this framework.

As our main result, Theorem 1 states that finding a resolvable 1-factorization
of H(v, t) is equivalent to designing a special type of combinatorial designs,
called perpendicular arrays [5,7]. In particular, CPA(t, t + d, 2t + d), where d =

ar
X

iv
:1

70
4.

08
85

2v
7 

 [
cs

.D
M

] 
 3

 A
pr

 2
01

9



2 K. Jin

v − 2t. According to this theorem and by using the known perpendicular arrays
found in [26,28], we obtain the first resolvable 1-factorizations of H(v, t) when
t = 2 and t is an odd prime power or when (t, d) ∈ {3, 8}, {3, 32}. On the other
direction, we use the lexical and modular factorizations to obtain the first explicit
constructions of CPA(t, t+ 1, 2t+ 1), which are known to be existed in [19].

In addition to the construction of the new factorizations, we conduct a com-
prehensive study of the existing factorizations of the middle level graph men-
tioned above, which serves as part of an ongoing effort to solve the general case.

First, we unveil an inner structure of the lexical factorization, which leads
to not only the first constructive proof for the fact that the lexical factorization
is well-defined, but also an optimal algorithm for the following computational
problem: Given i and a t-element subset A, find the unique A′ such that (A,A′)
belongs to the i-th 1-factor of the lexical factorization. The case i = t+ 1 of this
problem was studied in [25]. For i ≤ t it becomes more difficult and a trivial
algorithm takes O(v2) time in the RAM model (where an atomic operation on
a word accounts O(1) time). We improve it to optimal O(v) time (in section 3).
(An O(v) time algorithm for this problem on modular factorization is trivial.)

Second, we propose an intuitive definition of the modular factorization (in
section 4), which establishes an interesting connection between this factorization
and the inversion number of permutations (section 5.3 of [18]). As it is simpler
than the original definition in most aspects, a few existing results about the
modular factorization become more transparent with this new definition.

Also, we prove properties called variation laws for the known 1-factorizations.
We will see the alternative definitions, inner structure, and variation laws are

important for understanding the existing 1-factorizations. They have not been
reported in literature and obtaining them requires nontrivial analysis.

1.1 Motivation & related work

A 1-factor of the bipartite Kneser graph is also known as an antipodal matching
in the subset lattice. It is strongly related to the set inclusion matrix introduced
in [30], which has connections to t-design in coding theory (see [3,12] and the
references within). See [25] for its another application in coding theory.

The 1-factorization problem of the middle level graph was motivated by the
middle level conjecture, which states that all the middle level graphs are Hamilto-
nian. It was hoped that people can find two 1-factors which form a Hamiltonian
cycle [17]. Yet after extensive studies for thirty years the conjecture itself was
settled by Mütze [21]; see also [14] for a recent and shorter proof and see [22] for
an optimal algorithm for computing such a Hamiltonian cycle. Moreover, Mütze
and Su [23] settles the Hamiltonian problem for all the bipartite Kneser graphs.

We give new applications of the 1-factorizations of H(v, t) in hat-guessing
games. We show that an optimal strategy in the unique-supply hat-guessing
games can be designed from a 1-factorization of H(v, t). To make the strategy
easy to play, such a 1-factorization must be simple or at least admit an explicit
construction. The details of this application are given in E due to space limits.



On 1-factorizations of Bipartite Kneser Graphs 3

1.2 Preliminaries

The subset lattice is the family of all subsets of [v], partially ordered by inclusion.
Let Pt denote the t-th layer of this subset lattice, whose members are the t-
element subsets of [v]. Throughout the paper, denote d = v − 2t. Let the words
clockwise and counterclockwise be abbreviated as CW and CCW respectively.

A representation of the edges of H(v, t). We identify each edge (A,A′) of
H(v, t) by a permutation ρ of t #’s, t 4’s, and d ×’s: the (positions of) t ‘#’s
indicate the t elements in A; the t ‘4’s indicate the t elements that are not in
A′ (recall that A′ has v− t elements); and the ‘×’s indicate those in A′−A. We
do not distinguish the edges with their corresponding permutations.

Denote [t#, t4, d×] as the multiset of 2t + d characters with t ‘#’s, t ‘4’s,
and d ‘×’s. Giving a 1-factorization of H(v, t) is equivalent to giving a labeling
function f from the

(
2t+d
t,t,d

)
permutations of [t#, t4, d×] to 1, . . . ,

(
t+d
d

)
so that

(a) f(ρ) 6= f(σ) for those pairs ρ, σ who admit the same positions for t #’s; and
(b) f(ρ) 6= f(σ) for those pairs ρ, σ who admit the same positions for t 4’s.

If (a) and (b) hold, for fixed i, all edges labeled by i constitute a 1-factor, denoted
by Ff,i, and Ff,1, . . . , Ff,(t+d

d ) constitute a 1-factorization of H(v, t).

An example of the labelling function that satisfies (a) and (b) is given in [17]:

The lexical factorization[17]. Let ρ = (ρ1, . . . , ρ2t+1) be any permutation
of [t#, t4, 1×]. Arrange ρ1, . . . , ρ2t+1 in a cycle in CW order. For any ρj that
equals #, it is positive if there are strictly more #’s than 4’s in the interval that
starts from the unique × and ends at ρj in CW order. The number of positive
#’s modular t + 1 is defined to be fLEX(ρ) (here, we restrict the remainder to
[t+ 1] by mapping 0 to t+ 1). See Fig. 1. It is proved in [17] that fLEX satisfies
the above conditions (a) and (b). We provide in section 3 a more direct proof
for this. The lexical factorization is {L1, . . . ,Lt+1}, where Li = FfLEX,i.

fLEX(ρ)=4 fLEX(ρ)=1 fLEX(ρ)=3fLEX(ρ)=2

Fig. 1. Illustration of the definition of fLEX. In the graph, the solid circles indicate
positive #’s. Note that the positions of #’s are identical in all the permutations drawn
here. As we see, the four permutations are mapped to different numbers under fLEX.

Note: The original definition [17] of fLEX(ρ) actually calculates the number of
nonnegative 4’s rather than positive #’s. For ρj = 4, it is said nonnegative if
there the number of #’s is no less than the number of 4’s in the interval that
starts from the unique × and ends at ρj in CW order. Nevertheless, it is clear
that the number of nonnegative 4’s is the same as the number of positive #’s.

Note: The original definition [17] use L0 to denote Lt+1. In this paper, however,
we choose Lt+1 instead of L0 to make it consistent with the case d > 1.



4 K. Jin

2 Construct “resolvable” 1-factorizations of H(v, t)

This section introduces resolvable 1-factorizations of H(v, t) and constructs some
of them using combinatorial designs called perpendicular arrays (defined below).

Definition 1. Assume {gA | A ∈ Pt} is a group of functions where gA is a
bijection from AC = [v]−A to [t+ d] for every A ∈ Pt. Assume γ is a bijection
from the set of all d-element subsets of [t+d] to 1, . . . ,

(
t+d
d

)
. We define a labeling

function fγ,g on the edges of H(v, t) as follows: fγ,g(A,A
′) := γ(gA(A′ −A)).

Note 1: Throughout, we use gA(X) to denote
⋃
x∈X gA(x) for any X ⊆ AC .

Note 2: Function fγ,g satisfies condition (a) trivially. Yet in most cases it does
not satisfy condition (b) and hence does not define a 1-factorization of H(v, t).

Definition 2. Let f be the labelling function of a 1-factorization of H(v, t). We
say f is resolvable if there are {gA | A ∈ Pt} and γ as mentioned in Definition 1
such that f(A,A′) ≡ γ(gA(A′ − A)). In this case, we call gA’s for A ∈ Pt the
resolved functions of f and we say the 1-factorization defined by f is resolvable.

Remark 1. Among other merits which make the resolvable 1-factorizations more
interesting than the general ones, a resolvable 1-factorization takes only (t+ d)
over

(
t+d
d

)
fraction of storing space comparing to a general 1-factorization.

The proofs of the following two lemmas are put into A due to space limits.

Lemma 1. 1. Any 1-factorization of H(v = 4, t = 1) is resolvable.
2. Any 1-factorization of H(2t + 1, t), including the lexical factorization and

modular factorization, is resolvable. (This claim is actually trivial.)
3. No 1-factorization of H(6, 2) is resolvable. (Will be proved by a program.)

As shown by Lemma 1, there could be H(v, t)’s without a resolvable 1-
factorization, hence we are not always able to design a resolvable 1-factorization
of H(v, t). Nevertheless, the first two claims of Lemma 1 and the results given
in the rest part of this section point out that for several cases we can do so.

Lemma 2. Given {gA | A ∈ Pt} and γ as above, the following are equivalent:

(i) function fγ,g(A,A
′) satisfies condition (b); and

(ii) When A1 6= A2 and (A1, A
′
1), (A2, A

′
2) are two edges in H(v, t), then gA1(A′1−

A1) = gA2
(A′2 −A2) implies that A′1 6= A′2.

By Lemma 2, it is independent with the choice of γ whether fγ,g(A,A
′)

defines a 1-factorization of H(v, t). Therefore, if we want to design a resolvable
1-factorization, the difficulty lies in and only lies in designing {gA | A ∈ Pt}.

By Lemma 2 and Definition 1, H(v, t) has a resolvable factorization if and
only if there exist resolved functions {gA | A ∈ Pt} such that for A1 6= A2,
gA1

(A′1 − A1) = gA2
(A′2 − A2) implies A′1 6= A′2. The following theorem shows

that finding such functions is equivalent to designing some perpendicular arrays.



On 1-factorizations of Bipartite Kneser Graphs 5

A perpendicular array [5,7] with parameters t, k, v, denoted by PA(t, k, v), is
a
(
v
t

)
× k matrix over [v], where each row has k distinct numbers and each set

of t columns contain each t-element subset of [v] as a row exactly once.

For d ≥ 0, a PA(t, t+d, 2t+d) is complete, hence denoted by CPA(t, t+d, 2t+
d), if each (t+ d)-element subset of [2t+ d] is also contained in exactly one row.

Theorem 1. H(2t+d, t) has a resolvable 1-factorization⇔ ∃CPA(t, t+d, 2t+d).

Proof. ⇒: Assume f is the labeling function of a resolvable 1-factorization of
H(v = 2t + d, t). Then, f(A,A′) ≡ γ(gA(A′ − A)) for some resolved functions
{gA | A ∈ Pt} and a bijection γ as mentioned in Definition 1.

We construct a matrix M over [v] as follows. For each A ∈ Pt, we build a

row (a
(A)
1 , . . . , a

(A)
t+d) in M , where a

(A)
i = g−1A (i) (which belongs to AC and thus

belongs to [v]). As Pt has
(
v
t

)
elements, the size of matrix M is

(
v
t

)
by k = t+ d.

We now verify that M is a PA(t, t + d, 2t + d). First, since g−1A is bijective,

a
(A)
1 , . . . , a

(A)
t+d are distinct and so each row of M contains k = t + d distinct

numbers. Next, for any t columns i1, . . . , it, we show that

{a(A1)
i1

, . . . , a
(A1)
it
} 6= {a(A2)

i1
, . . . , a

(A2)
it
} (1)

for any distinct A1, A2 ∈ Pt. Assume {j1, . . . , jd} = [t+ d]− {i1, . . . , it}.
Let A′1 = A1

⊎
{g−1A1

(j1), . . . , g−1A1
(jd)} and A′2 = A2

⊎
{g−1A2

(j1), . . . , g−1A2
(jd)}.

Clearly, gA1
(A′1−A1) = {j1, . . . , jd} = gA2

(A′2−A2), thus A′1 6= A′2 by Lemma 2.
Thus [v] − A′1 6= [v] − A′2. Because {j1, . . . , jd}

⊎
{i1, . . . , it} = [t + d], we

know AC1 = {g−1A1
(j1), . . . , g−1A1

(jd)}
⊎
{g−1A1

(i1), . . . , g−1A1
(it)}, which implies that

[v] − A′1 = {g−1A1
(i1), . . . , g−1A1

(it)}. Similarly, [v] − A′2 = {g−1A2
(i1), . . . , g−1A2

(it)}.
Altogether, {g−1A1

(i1), . . . , g−1A1
(it)} 6= {g−1A2

(i1), . . . , g−1A2
(it)}, i.e., (1) holds.

Next, we argue that M is a CPA(t, t+d, 2t+d). This reduces to proving that
each row of M forms a distinct (t+ d)-element subset of [2t+ d], which follows
from the fact that the row constructed from A is a permutation of AC .

⇐: Assume M is a CPA(t, t + d, 2t + d). First, we construct {gA | A ∈ Pk}.
For any row (a1, . . . , at+d) of M , assuming that AC = {a1, . . . , at+d}, define
gA(ai) = i for i ∈ [t+ d]. Obviously, each gA for A ∈ Pk is defined exactly once.

Below we verify that when A1 6= A2, equality gA1
(A′1 −A1) = gA2

(A′2 −A2)
would imply A′1 6= A′2. According to Lemma 2, this further implies that for
any γ as mentioned in Definition 1, fγ,g(A,A

′) is a labeling function satisfying
conditions (a) and (b), and hence H(2t+ d, t) has a resolvable 1-factorization.

Suppose to the opposite that gA1(A′−A1) = gA2(A′−A2) = {j1, . . . , jd}. As-
sume {i1, . . . , it} = [t+d]−{j1, . . . , jd}. Because gA1(A′−A1) = {j1, . . . , jd}, we
know gA1

([v]−A′) = {i1, . . . , it}, so [v]−A′ = {g−1A1
(i1), . . . , g−1A1

(it)}. Similarly,

because gA2
(A′ − A2) = {j1, . . . , jd}, we get [v] − A′ = {g−1A2

(i1), . . . , g−1A2
(it)}.

Moreover, because M is a PA(t, t + d, 2t + d) where {g−1A1
(i1), . . . , g−1A1

(it)} and

{g−1A2
(i1), . . . , g−1A2

(it)} appear in two rows of M in the columns indexed by
i1, . . . , it, these two sets are distinct. Thus [v]−A′ 6= [v]−A′. Contradiction. ut



6 K. Jin

2.1 Applications of Theorem 1

Lemma 3. 1. For t = 1, there is always a PA(t, 2t+ d, 2t+ d). (trivial)
2. [26] For t = 2 and an odd prime power 2t+d, there is a PA(t, 2t+d, 2t+d).
3. [28] For t = 3 and 2t+ d ∈ {8, 32}, there is a PA(t, 2t+ d, 2t+ d).

The following lemma is trivial and its proof can be found in A.

Lemma 4. Any t+d columns of a PA(t, 2t+d, 2t+d) form a CPA(t, t+d, 2t+d).

Lemma 4 points out a way to construct a CPA(t, t+d, 2t+d). Yet it is unknown
whether every CPA(t, t+d, 2t+d) can be constructed this way. We conjecture so.
If so, finding resolvable 1-factorizations reduces to finding PA(t, 2t+ d, 2t+ d)’s.

The following is a corollary of Lemma 3, Lemma 4, and Theorem 1.

Corollary 1. Graph H(2t+d, t) has a resolvable 1-factorization when 1. t = 1,
or 2. (t = 2 and 2t+d is an odd prime power), or 3. (t = 3 and 2t+d ∈ {8, 32}).

The constructions of PA(t, 2t + d, 2t + d) for those pairs of (t, d) discussed
in Lemma 3 are explicit and quite simple (see [26,28]). Also, our construction
of the resolvable 1-factorization of H(2t + d, t) using a CPA(t, t + d, 2t + d) is
extremely simple (as shown in the proof of Theorem 1). As a result, the resolvable
1-factorizations of H(2t+d, t) mentioned in this corollary are explicit and simple.

Perpendicular arrays have not been studied extensively in literature. In ad-
dition to the existence results mentioned in Lemma 3, there do exist PA(3, 5, 5)
and PA(t, t + 1, 2t + 1) (t ≥ 1) and some other perpendicular arrays. Yet the
construction of PA(t, t+ 1, 2t+ 1) (in [19]) is not explicit and thus not too useful
(regarding that we are only interested in explicit factorizations of H(2t+ 1, t)).
A PA(3, 5, 5) is also useless to us since 5 < 2× 3. Because a CPA(t, t+ d, 2t+ d)
automatically implies a resolvable 1-factorization of H(v, t), we hope that our
results motivate more study on the perpendicular arrays in the future.

Another application of Theorem 1 — construction of CPA(t, t + 1, 2t + 1). As
shown in Lemma 1.2, the lexical and modular factorization of H(2t + 1, t) are
both resolvable. The resolved functions of fLEX and fMOD will be demonstrated
in the next sections. Using these resolved functions and applying the proof of
Theorem 1, we can easily construct two CPA(t, t + 1, 2t + 1)s. Therefore, as
byproducts, we obtain (the first) explicit constructions of (complete) PA(t, t +
1, 2t+ 1) (note that [19] only showed the existence of PA(t, t+ 1, 2t+ 1)).

3 Revisit the lexical factorization

Recall fLEX in subsection 1.2, which is a labeling function of H(2t+ 1, t). In this
section, we first give {gA} of γ so that fLEX = fγ,g. Based on this formula we
then show that fLEX satisfies (a) and (b) and thus that it indeed defines a 1-
factorization. Moreover, by applying fLEX = fγ,g, we design optimal algorithms
for solving two fundamental computational problems about this factorization
(P1 and P2 below). Finally, we introduce a group of variation laws of fLEX.



On 1-factorizations of Bipartite Kneser Graphs 7

P1. Given A ∈ Pt and i ∈ {1, . . . , t + 1}, how do we find the unique A′ so that
(A,A′) ∈ Li? In other words, given number i and the positions of #’s in ρ
and suppose fLEX(ρ) = i, how do we determine the position of × in ρ?

P2. Given a A′ ∈ Pt+1 and i ∈ {1, . . . , t + 1}, how do we find the unique A so
that (A,A′) ∈ Li? In other words, given number i and the positions of 4’s
in ρ and suppose fLEX(ρ) = i , how do we determine the position of × in ρ?

3.1 Preliminary lemmas

The two lemmas given in this subsection are trivial; proofs can be found in B.

Given S = (s1, . . . , sv), the j-th (0 ≤ j < v) cyclic-shift of S is S(j) :=
(s1+j , . . . , sv+j), where subscripts are taken modulo v (and restricted to [v]).

Lemma 5. Given any sequence S of t of right parentheses ‘)’ and t + 1 left
parentheses ‘(’. There exists a unique cyclic-shift S(j) of S whose first 2t paren-
theses are paired up when parenthesized, and we can compute j in O(t) time.

Example 1. Assume t = 9, S = (1(2)3)4)5(6(7(8)9)10(11)12)13(14(15)16(17(18)19.
The unique cyclic-shift in which the first 2t parentheses are paired up is:

S(14) =

(
15

)
16

(
17

(
18

)
19

(
1
(2)3

)
4

)
5

(
6

(
7
(8)9

)
10

(
11

)
12

)
13

(
14

.

Definition 3. Given S = (s1, . . . , s2t+1), t of which are ’)’ and t+ 1 are ’(’. It
is said canonical if its first 2t parentheses are paired up when parenthesized.

Definition 4 (Indices of the 2t+ 1 parentheses). For any canonical paren-
theses sequence S, we index the t+1 left parentheses in S by 0, . . . , t according to
the following rule: The smaller the depth, the less the index; and index
from right to left for those under the same depth. Here, depth is defined
in the standard way; it is the number of pairs of matched parentheses that cover
the fixed parenthesis. Moreover, we index the t right parentheses in such
a way that any two paired parentheses have the same index.

For S(14) above, the depth and index are shown below (index on the right).


︸︷︷︸

0

()
︸︷︷︸

1

(
()︸︷︷︸
2

)
︸ ︷︷ ︸

1


︸ ︷︷ ︸

0

( ()︸︷︷︸
2

)
︸ ︷︷ ︸

1

()
︸︷︷︸

1


︸ ︷︷ ︸

0


︸︷︷︸

0

;


︸︷︷︸

3

()
︸︷︷︸

7

(
()︸︷︷︸
9

)
︸ ︷︷ ︸

6


︸ ︷︷ ︸

2

( ()︸︷︷︸
8

)
︸ ︷︷ ︸

5

()
︸︷︷︸

4


︸ ︷︷ ︸

1


︸︷︷︸

0

.

This definition of indices is crucial to the next lemma and the entire section.
For convenience, denote by depth(si), index(si) the depth and index of si.

Lemma 6. When S is canonical, for any sl = ( and sr =), there are more )’s
than (’s in the cyclic interval {sl+1, . . . , sr} if and only if index(sl) ≥ index(sr).



8 K. Jin

3.2 Finding resolved functions {gA} of fLEX

Parenthesis representation. We can represent any A ⊆ [v] by a sequence of
parentheses S = (s1, . . . , sv) where sx =′)′ if x ∈ A and sx =′ (′ if x /∈ A.
For example, A = {3, 4, 5, 9, 10, 12, 13, 16, 19} is represented by the S given in
Example 1 above. Notice that if A ∈ Pt, its associate sequence S contains t ’)’s.

Definition 5. Fix A ∈ Pt and let S denote its parentheses sequence. We abuse
index(sx) to mean the index of sx in the unique canonical cyclic-shift of S
(uniqueness is by Lemma 5). For any x ∈ AC (hence sx =′ (′), define gA(x) :=
index(sx) mod (t+ 1)(∈ [t+ 1]) (restrict to [t+ 1] by mapping 0 to t+ 1).

Because left parentheses have distinct indices, gA is a bijection as required.

Theorem 2. Let γ be the natural bijection from all the 1-element subsets of
[t+ 1] to [t+ 1], which maps {x} to x. Define {gA | A ∈ Pt} as in Definition 5.
Then, fLEX = fγ,g. In other words, fLEX(A,A ∪ {x}) ≡ gA(x) (x ∈ AC).

Proof. Build the parentheses sequence S = (s1, . . . , s2t+1) of A and the permu-
tation ρ = (ρ1, . . . , ρ2t+1) of [t#, t4, 1×] corresponding to edge (A,A ∪ {x}).
Recall that fLEX(A,A∪{x}) := p mod (t+1) ∈ [t+1], where p is the size of P =
{ρr = # | there are more #s than 4s in the cyclic interval (ρx+1, . . . , ρr)}. Ob-
serve that S can be constructed from ρ by replacing #,4,× to ’)’,’(’,’(’. So,
{sr =′)′ | there are more ′)′s than ′(′s in the cyclic interval (sx+1, . . . , sr)}, which
equals {sr =′)′ | index(sx) ≥ index(sr)} by Lemma 6 (indices refer to those in
the canonical cyclic-shift of S), has the same size as P , so index(sx) = p. Further
by Definition 5, gA(x) = index(sx) mod (t+ 1)(∈ [t+ 1]) = fLEX(A,A ∪ {x}).

Theorem 3. fLEX satisfies conditions (a) and (b).

Proof. Because fLEX equals fγ,g, applying Note 2 below Definition 1, this labeling
function satisfies condition(a). Below we prove that it also satisfies condition (b).

Define the dual of ρ, denoted by ρ∗, to be another permutation of [t#, t4, 1×]
which is constructed from ρ by swapping the 4’s with #’s. As illustrated in
Fig. 2, we have (i): fLEX(ρ∗) mod (t+ 1) + fLEX(ρ) mod (t+ 1) = t for any ρ .

Consider t+ 1 distinct permutations ρ0, . . . , ρt sharing the same positions of
4’s. Then, (ρ0)∗, . . . , (ρt)∗ share the same positions of #’s. Using condition (a),
fLEX((ρ0)∗), . . . , fLEX((ρt)∗) are distinct. So t− fLEX((ρ0)∗) mod (t+ 1), . . . , t−
fLEX((ρt)∗) mod (t+1) are distinct. So fLEX(ρ0) mod (t+1), . . . , fLEX(ρt) mod (t+
1) are distinct by (i), i.e., fLEX(ρ0), . . . , fLEX(ρt) are distinct. Thus (b) holds. ut

Fig. 2. fLEX(ρ∗) mod (t+ 1) + fLEX(ρ) mod (t+ 1) = t. The dashed line indicates ρ∗.



On 1-factorizations of Bipartite Kneser Graphs 9

Remark 2. In the original proof of Theorem 3 in [17], it proves the existence of
bijections gA’s (A ∈ Pt) such that fLEX = fγ,g, yet how to define such gA’s is
neither explicitly given, nor implicitly given. As we have seen in Definition 4,
giving this definition is not easy, even though the definition of fLEX is known.

There are two advantages of having explicit {gA}. First, the ideas we used
in defining gA could be useful in finding resolvable 1-factorizations for the case
v > 2t+1. Second, to solve P1 and P2 (in the next subsection), it seems necessary
to have an explicit definition of {gA} for the efficiency of computation.

3.3 Linear Time Algorithms for P1 and P2

Problem P1 admits a trivial O(t2) time solution as follows. Given the positions
of #’s in ρ and the number i, we can enumerate the position of the unique ×
among the remaining t + 1 positions and compute fLEX(ρ) in O(t) time, until
that the computed value is i. Problem P2 can be solved symmetrically.

Applying the results in subsection 3.2, we can solve P1 much more efficiently.
Briefly, using those indices of parentheses in Definition 4, we can compute fLEX()
for all permutations ρ0, . . . , ρt in which the positions of #’s are as given alto-
gether, and then find ρj so that fLEX(ρj) = i. See the details in Algorithm 1.

Input: A set A ∈ Pt and a number i ∈ [t+ 1].
Output: The set A′ = A ∪ {z} so that (A,A′) ∈ Li.

(Integer z indicates the position of × so that fLEX(ρ) = i.)
1 Compute the parentheses sequence S of A.

2 Compute the unique j so that the first 2t parentheses are paired up in S(j).

3 Compute the indices of all parentheses in S′ = S(j) according to Definition 4.
4 Find s′z−j =′ (′ in S with index (i mod (t+ 1)) and output A′ = A ∪ {z}.

Algorithm 1: Computing the unique A′ such that (A,A′) ∈ Li.

Theorem 4. 1. Given a canonical S′, we can compute the indices of all paren-
theses in S′ in O(t) time. Therefore, Algorithm 1 solves P1 in O(t) time.

2. An instance (A′, i) of P2 reduces to the instance ([v] − A′, j) of P1, where
i mod (t+ 1) + j mod (t+ 1) = t. Thus P2 can be solved in O(t) time.

The proof of Theorem 4 is trivial and is omitted due to space limits.

3.4 Variation laws of fLEX

We prove some variations laws of fLEX as summarized in Lemma 7, which are
comparable to the laws of modular factorization given below in Lemma 9. See B.1
for the details, including the definitions of ρ×�4, ρ×�#, ρ#�×, and ρ4�×.

Lemma 7 (Variation laws of fLEX). Restrict the remainder to [t+ 1] here.

When fLEX(ρ) 6= t+ 1, fLEX(ρ×�4) = fLEX(ρ#�×) = (fLEX(ρ)− 1) mod (t+ 1).

When fLEX(ρ) 6= t, fLEX(ρ×�#) = fLEX(ρ4�×) = (fLEX(ρ) + 1) mod (t+ 1).



10 K. Jin

4 Revisit the modular factorization

This section presents a new and simpler definition of the modular factorization.
When a number modulo t+1 in this section, the remainder is restricted to [t+1].

The modular factorization[10]. The modular factorization was originally
given by t+1 1-factorsM1, . . . ,Mt+1 whereMi was defined as follows. Consider
A ∈ Pt. Let ΣA indicate the sum of elements in A. Let y = (ΣA+i) mod (t+1)(∈
[t+ 1]). Then,Mi(A) := A∪{z}, where z is the y-th largest element in [v]−A.

Take t = 3, v = 7, and A = {2, 4, 6} for example:
For i = 1, we have y = 13 = 1 (mod 4) and z = 7. So M1(A) = {2, 4, 6, 7}.
For i = 2, we have y = 14 = 2 (mod 4) and z = 5. So M2(A) = {2, 4, 5, 6}.
For i = 3, we have y = 15 = 3 (mod 4) and z = 3. So M3(A) = {2, 3, 4, 6}.
For i = 4, we have y = 16 = 4 (mod 4) and z = 1. So M4(A) = {1, 2, 4, 6}.

Note 1. It is proved in [10] that Mi is a 1-factor for each i (1 ≤ i ≤ t + 1).
Moreover, it is obvious that all the 1-factorsM1, . . . ,Mt+1 are pairwise-disjoint.

Note 2. The origins of modular factorization are murky, said by the authors of
[10], who credited it to Robinson, who asked if it is the same as the lexical one.

Note 3. AssumeMi(A) = A′. We can compute A from i and A′ symmetrically.
Let x = (ΣA′+i) mod (t+1)(∈ [t+1]) where ΣA′ indicates the sum of elements
in A′. Then A = A′−{z}, where z is the x-th smallest element in A′ [10]. Thus,
the problems on modular factorizations analogous to P1 and P2 are easy to solve.

The original definition of the modular factorization above does not explicitly
give its labeling function. Such a labeling function will be needed in analyzing
the variation laws of the above modular factorization in Lemma 9 below and
hence we state it Lemma 8. However, our definition of the modular factorization
is not given by Lemma 8. The proof of Lemma 8 can be found in C.

Consider any permutation ρ = (ρ1, . . . , ρ2t+1) of [t#, t4, 1×]. For each i ∈
[2t + 1], the position of ρi is i. Let Oρ1 , . . . , O

ρ
t be the positions of t #’s in ρ

and T ρ1 , . . . , T
ρ
t the positions t 4’s. Denote by rank	4(ρ) the rank of × when

enumerating all 4’s and × in ρ from ρ2t+1 back to ρ1. So, rank	4(ρ) − 1 is the

number of 4’s with positions larger than the position of ×. Denote by rank	#(ρ)
the rank of × when enumerating all #’s and × in ρ from ρ2t+1 back to ρ1.

Lemma 8. The labeling function of {M1, . . . ,Mt+1} is given by fmod, where

fmod(ρ) := rank	4(ρ)−Σt
j=1O

ρ
j (mod t+ 1)(∈ [t+ 1]), or

fmod(ρ) := 1 +Σt
j=1T

ρ
j − rank	#(ρ) (mod t+ 1)(∈ [t+ 1]).

We now introduce a labeling function fMOD and proves that fMOD ≡ fmod+C
for some constant C. Thus we give an alternative yet equivalent definition of the
modular factorization, which is {FfMOD,1, . . . , FfMOD,t+1}.

Definition 6. Assume ρ = (ρ1, . . . , ρ2t+1) is any permutation of [t#, t4, 1×].
Arrange ρ1, . . . , ρ2t+1 in CW order. We count the number of tuples (×,#,4)



On 1-factorizations of Bipartite Kneser Graphs 11

#(×◯Δ)=3(mod 4)#(×◯Δ)=4(mod 4)#(×◯Δ)=5=1(mod 4)

fMOD(ρ)=3fMOD(ρ)=1fMOD(ρ)=2 fMOD(ρ)=4

#(×◯Δ)=6=2(mod 4)

Fig. 3. Illustration of the definition of fMOD. The four permutations drawn here share
the same positions of #’s, and they are mapped to different numbers under fMOD.

which are located in CW order within this cycle of characters (positions may be
inconsecutive) (such a tuple is an inversion when we cut the sequence at ×).
Taken modulo (t+1), the remainder, restricted to [t+1], is fMOD(ρ). See Fig. 3.

By Definition 6, we establish an interesting connection between the modular
factorization and the inversion number of permutations (section 5.3 of [18]).

Let ρ×→4 be constructed from ρ, which swaps × with its CW next 4.
Let ρ×→# be constructed from ρ, which swaps × with its CW next #.
Let ρ4←× be constructed from ρ, which swaps × with its CCW next 4.
Let ρ#←× be constructed from ρ, which swaps × with its CCW next #.

Lemma 9 (Variation laws of fmod and fMOD).

fMOD(ρ×→4) = fMOD(ρ#←×) = fMOD(ρ)− 1 (mod t+ 1), (2)

fMOD(ρ×→#) = fMOD(ρ4←×) = fMOD(ρ) + 1 (mod t+ 1). (3)

fmod(ρ
×→4) = fmod(ρ

#←×) = fmod(ρ)− 1, (mod t+ 1) (4)

fmod(ρ
×→#) = fmod(ρ

4←×) = fmod(ρ) + 1. (mod t+ 1). (5)

Lemma 9 is proved in C. Its corollary below is trivial; proof omitted.

Corollary 2. Because fmod and fMOD have the same variation law, there is a

constant C so that fMOD ≡ fmod + C. Specifically,

{
C = 0, t is even;
C = (t+ 1)/2, t is odd.

At last, we point out that the resolved functions of fmod or fMOD can easily
be deduced according to the original definition of modular factorization.

References

1. Aggarwal, G., Fiat, A., Goldberg, A., Hartline, J., Immorlica, N., Sudan, M.: De-
randomization of auctions. In: Proceedings of the Thirty-seventh Annual ACM
Symposium on Theory of Computing. pp. 619–625. STOC ’05, ACM (2005)

2. Aigner, M.: Lexicographic matching in Boolean algebras. Journal of Combinatorial
Theory, Series B 14(3), 187–194 (1973)

3. Bapat, R.: Moore–Penrose inverse of set inclusion matrices. Lin. Alg. and its App.
318(1), 35–44 (2000)

4. Ben-Zwi, O., Newman, I., Wolfovitz, G.: Hats, auctions and derandomization. Ran-
dom Structures & Algorithms 46(3), 478–493 (2015)



12 K. Jin

5. Bierbrauer, J., Edel, Y.: Theory of perpendicular arrays. Journal of Combinatorial
Designs 2(6), 375–406 (1994)

6. Butler, S., Hajiaghayi, M., Kleinberg, R., Leighton, T.: Hat guessing games. SIAM
Review 51(2), 399–413 (2009)

7. Colbourn, C., Dinitz, J. (eds.): CRC Handbook of Combinatorial Designs. CRC
Press, Inc, 2 edn. (2007)

8. Däubel, K., Jäger, S., Mütze, T., Scheucher, M.: On orthogonal symmetric chain
decompositions. CoRR abs/1810.09847 (2018)

9. Dershowitz, N., Zaks, S.: The cycle lemma and some applications. European Jour-
nal of Combinatorics 11(1), 35–40 (1990)

10. Duffus, D., Kierstead, H., Snevily, H.: An explicit 1-factorization in the middle of
the Boolean lattice. J. of Comb. Theory, Series A 65(2), 334–342 (1994)

11. Ebert, T., Merkle, W., Vollmer, H.: On the autoreducibility of random sequences.
SIAM Journal on Computing 32(6), 1542–1569 (2003)

12. Ghorbani, E., Khosrovshahi, G., Maysoori, C., Mohammad-Noori, M.: Inclusion
matrices and chains. J. of Comb. Theory, Series A 115(5), 878–887 (2008)

13. Greene, C., Kleitman, D.: Strong versions of Sperner’s theorem. Journal of Com-
binatorial Theory, Series A 20(1), 80–88 (1976)

14. Gregor, P., Mütze, T., Nummenpalo, J.: A short proof of the middle levels theorem.
CoRR abs/1710.08249 (2018)

15. Hall, P.: On representatives of subsets. Journal of the London Mathematical Society
s1-10(1), 26–30 (1935)

16. Jin, K., Jin, C., Gu, Z.: Cooperation via codes in restricted hat guessing games.
In: Inter. Conf. on Autonomous Agents and Multiagent Systems (2019)

17. Kierstead, H., Trotter, W.: Explicit matchings in the middle levels of the Boolean
lattice. Order 5(2), 163–171 (1988)

18. Kleinberg, J., Tardos, E.: Algorithm Design. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA (2005)

19. Kramer, E., Wu, Q., Magliveras, S., Trung, T.: Some perpendicular arrays for
arbitrarily large t. Discrete Mathematics 96(2), 101–110 (1991)

20. Ma, T., Sun, X., Yu, H.: A new variation of hat guessing games. In: Computing
and Combinatorics. pp. 616–626. Springer Berlin Heidelberg (2011)

21. Mütze, T.: Proof of the middle levels conjecture. Proc. of the London Mathematical
Society 112(4), 677 (2016)

22. Mütze, T., Nummenpalo, J.: A constant-time algorithm for middle levels Gray
codes. In: Proc. of the 28th Annual ACM-SIAM Symposium on Discrete Algo-
rithms. pp. 2238–2253. Society for Industrial and Applied Mathematics (2017)

23. Mütze, T., Su, P.: Bipartite kneser graphs are hamiltonian. Combinatorica 37(6),
1207–1219 (Dec 2017)

24. Neylon, T.: Notes on Raney’s lemmas. Tech. rep. (2015)
25. Ordentlich, E., Roth, R.: Low complexity two-dimensional weight-constrained

codes. IEEE Transactions on Information Theory 58(6), 3892–3899 (June 2012)
26. Rao, C.: Combinatorial arrangements analogous to orthogonal arrays. Sankhyā:

The Indian Journal of Statistics, Series A 23(3), 283–286 (1961)
27. Spink, H.: Orthogonal symmetric chain decompositions of hypercubes. CoRR

abs/1706.08545 (2018)
28. Stinson, D., Teirlinck, L.: A construction for authentication/secrecy codes from

3-homogeneous permutation groups. E. J. of Combinatorics 11(1), 73 – 79 (1990)
29. White, D., Williamson, S.: Recursive matching algorithms and linear orders on the

subset lattice. Journal of Combinatorial Theory, Series A 23(2), 117–127 (1977)
30. Wilson, R.: Incidence matrices of t-designs. Lin. Alg. and its App. 46, 73–82 (1982)



On 1-factorizations of Bipartite Kneser Graphs 13

A Proofs omitted in section 2

This appendix contains the proofs of Lemmas 1, 2, and 4.

Restatement of Lemma 1.

1. Any 1-factorization of H(v = 4, t = 1) is resolvable.
2. Any 1-factorization of H(2t + 1, t), including the lexical factorization and

modular factorization (as illustrated in Fig. 4), is resolvable.
3. No 1-factorization of H(6, 2) is resolvable.

3
2

1

4

4
3

2
1

4
1

2
3

4

1
2

3
1

4

32

3

2
3

1

2

4
1

2
3

4
1

2

3

44
1

2
3

4

1

Fig. 4. Top (bottom) shows resolvable functions for fMOD (fLEX) for v = 7, t = 3.

Proof (of claim 1 of Lemma 1). Consider any 1-factorization of H(4, 1). Assume
its labeling function is f . We shall find {gA | A ∈ P1} and γ so that f = fγ,g.

First, choose γ to be any bijection from the 2-element subset of [3] to [3].
Then, define g{1} as follows and define g{2}, g{3}, g{4} using a similar idea.

Observe that there must exist distinct numbers a, b, c so that f({1}, {1, 2, 3}) =
γ({a, b}) and f({1}, {1, 2, 4}) = γ({a, c}) and f({1}, {1, 3, 4}) = γ({b, c}. This is
because {f({1}, {1, 2, 3}), f({1}, {1, 2, 4}), f({1}, {1, 3, 4})} = {1, 2, 3} whereas
the preimages of 1, 2, 3 under γ are the three 2-element subsets of [3].

By choosing a, b, c as the values of g{1}(2), g{1}(3), g{1}(4) respectively,

fγ,g({1}, {1, 2, 3}) = γ(g{1}({2, 3})) = γ({a, b}) = f({1}, {1, 2, 3})
fγ,g({1}, {1, 2, 4}) = γ(g{1}({2, 4})) = γ({a, c}) = f({1}, {1, 2, 4})
fγ,g({1}, {1, 3, 4}) = γ(g{1}({3, 4})) = γ({b, c}) = f({1}, {1, 3, 4})

Therefore, it is always possible to find a group of {gA} such that f = fγ,g. ut

Proof (of claim 2 of Lemma 1). Consider any 1-factorization of H(2t + 1, t).
Assume its labeling function is f . Choose γ to be the natural bijection from all
the 1-element sets of [t+ 1] to [t+ 1], which maps {x} to x. We shall find {gA}
so that f = fγ,g. For any t-subset A of [2t+ 1], we define gA as follows.

gA(x) := f(A,A ∪ {x}) (∀x ∈ AC). (6)



14 K. Jin

Because f defines a 1-factorization, it satisfies condition (a). Therefore, when
x is taken over all elements in AC , function f(A,A ∪ {x}) would be taken over
all numbers in [t+1]. This means that gA is indeed a bijection from AC to [t+1].
Moreover, it is straightforward to see fγ,g(A,A ∪ {x}) ≡ f(A,A ∪ {x}). ut

Proof (of claim 3 of Lemma 1). We design a short C++ program which searches
all the resolvable 1-factorizations of H(6, 2) and H(8, 3) by brute force, which can
be downloaded at https://github.com/cscjjk/resolvable-1-factorization.

For H(8, 3), the program returns many solutions.
For H(6, 2), the program runs in less than five seconds and finds no solution.

This shows that there is no resolvable 1-factorization of H(6, 2).

We note that this claim is not so important for this manuscript because no
result is depending on this claim. So we only prove it by a C++ program. ut

Restatement of Lemma 2. Given {gA} and γ, the following are equivalent:

(i) function fγ,g(A,A
′) satisfies condition (b); and

(ii) When A1 6= A2 and (A1, A
′
1), (A2, A

′
2) are two edges in H(v, t), then gA1

(A′1−
A1) = gA2(A′2 −A2) implies that A′1 6= A′2.

Proof (of Lemma 2). Assume (i) holds. Proving (ii) is equivalent to proving that
for A1, A2, A

′
1, A

′
2 such that A1 6= A2 and (A1, A

′
1), (A2, A

′
2) are two edges in

H(v, t), equality A′1 = A′2 = A′ implies that gA1
(A′1 −A1) 6= gA2

(A′2 −A2).
Because condition (b) is satisfied by fγ,g whereas A1 6= A2 and A′1 = A′2 = A′,

we get fγ,g(A1, A
′) 6= fγ,g(A2, A

′), i.e., γ(gA1(A′ − A1)) 6= γ(gA2(A′ − A2)).
Further since γ is a bijection, gA1

(A′1 −A1) 6= gA2
(A′2 −A2).

Now we prove (i) from (ii). Assume (ii) holds. For any two distinct edges
(A1, A

′) and (A2, A
′) of H(v, t), we shall prove that fγ,g(A1, A

′) 6= fγ,g(A2, A
′),

namely, gA1
(A′ − A1) 6= gA2

(A′ − A2). Suppose to the opposite that gA1
(A′ −

A1) = gA2
(A′−A2), we get A′ 6= A′ according to (ii), which is contradictory. ut

Restatement of Lemma 4. Any t+ d columns of a PA(t, 2t+ d, 2t+ d) form
a CPA(t, t+ d, 2t+ d).

Proof (of Lemma 4). Suppose M ′ contains any t+d columns of a PA(t, 2t+d, 2t+
d) M . By the definition of perpendicular arrays, M ′ is still a PA(t, t+ d, 2t+ d).
Therefore, we only need to show that M ′ is complete.

Let Ai denote the set of elements in the i-th row of M among those t columns
which are not chosen in constructing M ′. Because M is PA(t, 2t + d, 2t + d),
sets A1, . . . , A(2t+d

t ) go through every t-element subset of [2t + d] exactly once.

Therefore, [2t+ d]−A1, . . . , [2t+ d]−A(2t+d
t ) go through every (t+ d)-element

subset of [2t + d] exactly once. However, the elements in each row of M ′ are
respectively [2t+ d]−A1, . . . , [2t+ d]−A(2t+d

t ). Together, M ′ is complete. ut

https://github.com/cscjjk/resolvable-1-factorization


On 1-factorizations of Bipartite Kneser Graphs 15

B Proofs omitted in section 3

Restatement of Lemma 5. Given any sequence S of t ‘)’s and t + 1 ‘(’s.
There exists a unique cyclic-shift S(j) of S whose first 2t parentheses are paired
up when parenthesized, and we can compute j in O(t) time.

Proof (of Lemma 5). Assume S is a sequence of v = 2t + 1 parentheses, t of
which are ‘)’s. We are interested in finding a cyclic-shift of S in which the first
2t parentheses can be paired up when parenthesizing.

Denote Hi = the number of ‘)’s − the number of ‘(’s in s1, . . . , si for each i.
Draw points {(i,Hi) | 0 ≤ i ≤ v} in the Cartesian plane, as shown in Fig. 5.

Select the highest point (j∗, Hj∗); for a tie, select the rightmost one.
When j 6= j∗ + 1, the cyclic-shift S(j) does not satisfy our requirement.

This is because when j 6= j∗ + 1, the one shifted from sj∗+1, which is a left
parenthesis, cannot be paired up. When j = j∗+ 1, the cyclic-shift S(j) satisfies
our requirement. This is simply illustrated in the figure. To complete, we point
out that index j∗ + 1 can easily be computed in O(t) time.

This lemma also follows from Cycle Lemma [9] or Raney Lemma [24]. ut

Restatement of Lemma 6. When S is canonical, for any sl = ( and sr =),
there are more )’s than (’s in {sl+1, . . . , sr} ⇔ index(sl) ≥ index(sr).

Proof (of Lemma 6). For each i (0 ≤ i ≤ 2t+ 1), denote
Hi = the number of ‘)’s− the number of ‘(’s in s1, . . . , si, and
H ′i = the number of ‘)’s− the number of ‘(’s in si+1, . . . , s2t+1.

To be clear, H0 = H ′2t+1 = 0. Trivially, we have:
Hi +H ′i = −1 (for all i). depth(sl) = −Hl − 1. depth(sr) = −Hr.
We need to discuss two cases depending on which one of l, r is smaller.

– Case 1: l < r. Let us count the number of ’)’s minus the number of ’(’s in
the interval sl+1, . . . , sr. This is given by Hr−Hl. Therefore, there are more
’)’s in this interval ⇔ Hr − Hl > 0 ⇔ −depth(sr) + depth(sl) + 1 > 0 ⇔
depth(sr) ≤ depth(sl)⇔ index(sr) ≤ index(sl) (when l < r).

– Case 2: r < l. The number of ’)’ minus the number of ’(’s in (cyclic) interval
sl+1, . . . , s2t+1, s1, . . . , sr is given by H ′l +Hr = −1−Hl +Hr. So, there are
more ’)’s in this interval ⇔ −1 − Hl + Hr > 0 ⇔ depth(sl) − depth(sr) >
0⇔ depth(sr) < depth(sl)⇔ index(sr) ≤ index(sl) (when r < l).

In either case, the lemma holds. ut

5 10 15 20 25 30 35 40

S=( ( ) ) ) ( ( ( ) ) ( ) ) ( ( ) ( ( ) ( ( ) ) ) ( ( ( ) ) ( ) ) 

5 13

Fig. 5. Illustration of Lemma 5.
This figure draws Example 1.

ρjρ1
ρi
◯X

Fig. 6. Illustration of variation laws
below. The dotted line indicates ρ×�4.



16 K. Jin

B.1 The full version of the variation laws of fLEX

Consider any permutation ρ of [t#, t4, 1×]. For any character 4 or # in ρ,
we say it is CW-balanced if there are equal number of 4’s and #’s in the

(cyclic) interval of ρ starting from × to this character in CW order, and
we say it is CCW-balanced if there are equal number of 4’s and #’s in the

(cyclic) interval of ρ starting from × to this character in CCW order.

The following lemma is the full version of Lemma 7.

Lemma 10 (Variation laws of fLEX).

1. fLEX(ρ) 6= t+ 1 ⇔ there is a CW-balanced 4 ⇔ there is a CCW-balanced #.

2. fLEX(ρ) 6= t ⇔ there is a CW-balanced # ⇔ there is a CCW-balanced 4.

3. When fLEX(ρ) 6= t+1, let ρ×�4 (ρ#�×) be constructed from ρ by swapping
× with the CW first CW-balanced 4 (the CCW first CCW-balanced #).
Then,

fLEX(ρ×�4) = fLEX(ρ#�×) = (fLEX(ρ)− 1) mod (t+ 1)(∈ [t+ 1]).

4. When fLEX(ρ) 6= t, let ρ×�# (ρ4�×) be constructed from ρ by swapping ×
with the CW first CW-balanced # (the CCW first CCW-balanced 4).
Then,

fLEX(ρ×�#) = fLEX(ρ4�×) = (fLEX(ρ) + 1) mod (t+ 1)(∈ [t+ 1]).

Proof (of Lemma 10). Without loss of generality, assume that ρ1 = ×. For each
i (1 ≤ i ≤ v), define the height of ρi as the number of #’s minus the number of
4’s in {ρ1, . . . , ρi}. (So, a # is positive if and only if its height is positive.)

Proof of Claim 1. Assume fLEX(ρ) 6= t+ 1. In this case there exists some # with
positive height. This implies that there exists a pair of (i, j) such that ρi = #
has a height 1 while ρj = 4 has a height 0, as shown in Fig. 6. Clearly, ρj is
a CW-balanced 4 while ρi is a CCW-balanced #. On the other direction, the
existence of a CW-balanced 4 or a CCW-balanced # implies the existence of a
positive #, which immediately implies that fLEX(ρ) 6= t+ 1.

Claim 2 is symmetric to Claim 1; proof omitted. ut

Proof of the equations in Claim 3 and Claim 4. Because the four equations are
symmetric, we only show the proof of fLEX(ρ×�4) = fLEX(ρ)− 1.

Without loss of generality, assume ρ1 = ×. Let ρi be the CW first # with
height 1. Let ρj be the CW first 4 with height 0, i.e. the CW first CW-balanced
4. As illustrated in Fig. 6, ρ×�4 is constructed from ρ by swapping ρ1 with ρj .
We shall prove that after the swapping, the number of positive #’s decreases by
1. This follows from three observations: (i) ρi = # is positive in ρ (with height
1) but not anymore in ρ×�4 (with height 0). (ii) For other #’s in ρ2, . . . , ρj ,
their heights drop by 1, but their positivity do not change. (iii) For the #’s in
ρj+1, . . . , ρ2t+1, their heights and positivity stay the same as before. ut



On 1-factorizations of Bipartite Kneser Graphs 17

C Proofs omitted in section 4

Restatement of Lemma 8. The labeling function of {Mi | 1 ≤ i ≤ t+ 1} is

fmod(ρ) := rank	4(ρ)−Σt
j=1O

ρ
j (mod t+ 1)(∈ [t+ 1]), or (7)

fmod(ρ) := 1 +Σt
j=1T

ρ
j − rank	#(ρ) (mod t+ 1)(∈ [t+ 1]). (8)

Proof (of Lemma 8). We first state two trivial observations:
(×’s position) +ΣjO

ρ
j +ΣjT

ρ
j = 1 + . . .+ (2t+ 1) = 0( mod t+ 1), and

(×’s position) + rank	4(ρ)− 1 + rank	#(ρ)− 1 = 2t+ 1 = −1( mod t+ 1).

By subtraction, rank	4(ρ)−Σt
j=1O

ρ
j = 1 +Σt

j=1T
ρ
j − rank	#(ρ)( mod t+ 1).

Therefore, the two definitions of fmod given in (7) and (8) are equivalent.
Next, we show that fmod is the labelling function of {M1, . . . ,Mt+1}. Re-

call that ρ represents the edge (A,A′) in the middle level graph, where A =
{Oρ1 , . . . , O

ρ
t } and A′ = {Oρ1 , . . . , O

ρ
t , the position of ×}. We shall prove that

(A,A′) ∈ Mfmod(ρ). By the definition of Mfmod(ρ), it reduces to proving that
the single element in A′ − A is the y-th largest one in [v] − A, where y =
(ΣA+ fmod(ρ)) mod (t+ 1) (y ∈ [t+ 1]). Namely, the unique × has rank y when
enumerating all 4’s or × in ρ in CCW; i.e., rank	4(ρ) = y mod (t + 1). This

holds since y = ΣA+ fmod(ρ) = Σt
j=1O

ρ
j + rank	4(ρ)−Σt

j=1O
ρ
j mod (t+ 1). ut

Next, recall the variation laws of fmod and fMOD in Lemma 9. Notice that (3)
and (5) are equivalent to (2) and (4) respectively. We now prove (2) and (4).

Proof (of (2)). We only need to prove fMOD(ρ×→4) = fMOD(ρ)− 1( mod t+ 1).
The other equation fMOD(ρ#←×) = fMOD(ρ)−1( mod t+ 1) in (2) is symmetric.

See Fig. 7. Denote by a the number of #’s between × and its CW next 4 in
ρ. Recall that fMOD(ρ) denotes the number of (×,#,4)-tuples which are located
in CW order within ρ (and then modulo t+1). So, fMOD(ρ×→4)−fMOD(ρ) = (t−
a)·1−a·t mod (t+1), which implies that fMOD(ρ×→4) = fMOD(ρ)−1 mod (t+1).
In calculating the difference between fMOD(ρ×→4) and fMOD(ρ), observe that
(i) for the #’s located CW between the 4 being swapped and ×, the number
of (×,#,4)-tuples related to each of them increases by 1; and (ii) for the other
#’s, the number of (×,#,4)-tuples related to each of them decreases by t. ut

a a 
ρ ρ×→Δ

Fig. 7. Illustration of the proof the variation law of fMOD function..

Proof (of (4)). By swapping × with its CW next 4, rank	4(ρ) decreases by

1. Further by (7), fmod(ρ) = rank	4(ρ) − Σt
j=1O

ρ
j ( mod t+ 1) decreases by 1.

Similarly, by swapping × with its CCW next #, rank	#(ρ) increases by 1. Further

by (8), fmod(ρ) = 1 +Σt
j=1T

ρ
j − rank	#(ρ)( mod t+ 1) decreases by 1. ut



18 K. Jin

D Explicit 1-factors of the bipartite Kneser graph

Although, most explicit 1-factorizations of the bipartite Kneser graph H(v, t)
have not been found, especially for v > 2t+1, two explicit 1-factors of H(v, t) are
known for a long time. To make the paper more self-contained, in this appendix
we briefly review the literature of these 1-factors and give their new definitions.

Definition 7. Assume A ⊂ [v] and |A| ≤ v/2. By the following two steps, we
can obtain a subset A′ which has equal size as A and is disjoint with A, and we
define it to be 	 (A).

Step 1. Write down all the numbers in [v] to a cycle from 1 to v in CW order.

Step 2. Enumerate each number a in A, find the CCW first number from a
that is not contained in A ∪A′ yet and add it to A′.

Note: The order of the enumeration in Step 2 does not matter. Take v = 10
and A = {1, 3, 8, 9} for example. In order 1, 3, 8, 9, the numbers added to A′ would
be 10, 2, 7, 6. In order 3, 9, 8, 1, the numbers added to A′ would be 2, 7, 6, 10.)

We define � (A) symmetrically (by changing CCW to CW in Step 2).

Recall that Pt denotes the t-th level of the subset lattice of [v], i.e., it contains
all subsets of [v] with t elements. For t < v/2 and A ⊂ Pt, define

γvt (A) := [v]− 	 (A) and γ′
v
t (A) := [v]− � (A). (9)

Obviously, γvt and γ′
v
t are two 1-factors of H(v, t), and they are disjoint.

Lemma 11. When v = 2t+ 1, we have γvt = Lt+1 and γ′
v
t = Lt.

Proof. We only show that γvt = Lt+1. The other equation is similar. Consider a
subset A ⊂ Pt. Replace all elements in A by # and all the elements in 	 (A) by
4 and the remaining element by ×. Clearly, this permutation is mapped to t+1
under fLEX, because no # is positive. This means A is mapped to [v]− 	 (A) in
Lt+1. Also, A is mapped to [v]− 	 (A) in γvt . ut

In the following, we review a 1-factor βvt of H(v, t) and prove that βvt = αvt .

D.1 Definition of βv
t introduced in [13]

First, we review the chain-decomposition of the subset lattice given in [13]. Re-
call the parenthesis representation introduced in subsection 3.2. The sequence
of parentheses can be parenthesized uniquely in the usual way, and there may re-
main several parenthesis unpaired. For example, in )1, (2, )3, )4, (5, (6, (7, )8, )9, (10,
“(2” is paired with “)3”, “(6” is paired with “)9”, and “(7” is paired with “)8”.
All the others are unpaired. Note that all the unpaired right parentheses always
occur to the left of the unpaired left parentheses.

Chain-decomposition of the subset lattice via parenthesizing[13]. Two
subsets of [v] are in the same chain, if and only if their associated parenthesis



On 1-factorizations of Bipartite Kneser Graphs 19

sequences contain the same paired parenthesis. Equivalently, suppose A ⊂ [v]
is associated with sequence S. Replace the leftmost unpaired ’(’ in S by ’)’
and assume that the new sequence corresponds to subset A′. Then, A′ is the
next member in the chain containing A. For the above example, the leftmost
unpaired ’(’ is (5, so A′ = {1, 3, 4, 5, 8, 9}. The entire chain in this example is
{3, 8, 9} → {1, 3, 8, 9} → {1, 3, 4, 8, 9} → {1, 3, 4, 5, 8, 9} → {1, 3, 4, 5, 8, 9, 10}.

Clearly, all chains in this decomposition are symmetric – if a chain con-
tains a member A, it must contain a member with size v − |A|. So, this chain-
decomposition implicitly defines an antipodal matching βvt between the antipo-
dal layers Pt and Pv−t for each t < v/2.

D.2 The equivalence between βv
t and γv

t .

Lemma 12. Assume t < v/2. We have βvt (A) = γvt (A) for any A ∈ Pt.

Proof. We shall prove that βvt (A) = [v]− 	 (A). We first prove it by an exam-
ple and then give the formal proof. Let PS(A) denote the parenthesis sequence
associated with A.

Example 2. v = 11, A = {1, 3, 4, 8, 9}. The sequence of parentheses associated
with A is:

PS(A) = )
1 (2 )3 )

4
(
5 (6 (7 )8 )9 (

10
(
11.

The unpaired parentheses are boxed for ease of distinction.
There are two unmatched right parentheses and three unmatched left paren-

theses. According to the definition of the chain-decomposition, in its symmetric
member β11

5 (A) we should replace the first unmatched left parenthesis by a right
parenthesis. So,

PS(β11
5 (A)) = )

1 (2 )3 )
4

)
5 (6 (7 )8 )9 (

10
(
11.

Then, let us also compute 	 (A) and [v]− 	 (A). (In the following, the
positions of boxes stay the same as above; they do not indicate the unpaired
parentheses.)

PS(	 (A)) = (
1 )2 (3 (

4
(
5 )6 )7 (8 (9 )

10
)
11.

PS([v]− 	 (A)) = )
1 (2 )3 )

4
)
5 (6 (7 )8 )9 (

10
(
11.

We see PS(β11
5 (A)) = PS([v]− 	 (A)). Therefore, β11

5 (A) = [v]− 	 (A).

For any i ∈ [v], we shall prove that (X) i ∈ βvt (A) if and only if i ∈ [v]− 	 (A).
We discuss two cases distinguished by whether i belongs to U , where U is the
set of unpaired positions of PS(A) (the positions are indexed by 1, . . . , v).

Case 1: i /∈ U . Then, the i-th parenthesis of PS(A) is paired. It will not
change within the chain containing A and βvt (A). Therefore, (I) i ∈ βvt (A) if and
only if i ∈ A. On the other hand, by the definition of 	 (A), it easily follows
that i ∈	 (A) if and only if i /∈ A. (In the example above, the paired number



20 K. Jin

3 in A will go to 2 in 	 (A), the paired numbers 8 and 9 will go to 6 and 7 in
	 (A). So i ∈	 (A) if and only if i /∈ A.) Therefore, (II) i ∈ [v]− 	 (A) if and
only if i ∈ A. Combine (I) and (II), we get statement (X).

Case 2: i ∈ U . Assume PS(A) has r unpaired right parentheses and l un-
paired left parentheses. For any sequence S with length v, let S(U) denote the
subsequence of S that are located at U . We state the following arguments about
the parentheses locating at U .

1. PS(A)(U) starts by r ‘)’s and is followed by l ‘(’s.
2. PS(βvt (A))(U) starts by l ‘)’s and is followed by r ‘(’s.

3. PS(	 (A))(U) starts by l ‘(’s and is followed by r ‘)’s.
4. PS([v]− 	 (A))(U) starts by l ‘)’s and is followed by r ‘(’s.

The first argument is according to the assumption of l and r. The second
follows by 1 and the fact that βvt (A) is the symmetric member of A in the chain
containing them. The third follows by 1 and the definition of the CCW-rotating-
subset. The last follows by the third. According to 2 and 4, we obtain (X) for
those i in U altogether. ut

D.3 Remarks and related work

Remark 3. According to Lemma 12, our definition of γvt essentially gives an
explicit definition of the antipodal matching βvt , which was previously defined
implicitly from the chain-decomposition.

In fact, [25] presented an even more explicit definition of βvt using Cycle
Lemma [9]. Based on their definition, they further showed that βvt (A) can be
computed in O(v) time and O(log v) space. We do not review their work in
depth in this appendix. (Note: we believe that [25] in fact discusses the other
1-factor γ′

v
t rather than γvt , but it is straightforward to extend their result to

the symmetric 1-factor γvt = βvt .)

An equivalent definition of the chain-decomposition A few years earlier
than [13], Aigner [2] proposed a greedy algorithm which can produce a match-
ing λt between two consecutive layers Pt,Pt+1. The v matchings λ0, . . . , λv−1
together describe a chain-decomposition of the subset lattice. Interestingly, [29]
pointed out that this decomposition is the same as the above one introduced in
[13] via parenthesizing. This was not mentioned in [13].

Yet Another definition of the chain-decomposition. Recently, another al-
ternative definition for the above chain-decomposition was proposed in [12]. How-
ever, their definition looks extremely complicated. We do not introduce it in this
manuscript.

Remark 4. The bipartite graph H(v, t) admits two disjoint 1-factors according
to the fact that it is Hamiltonian [23]. Recently, Spink [27] found out three or-
thogonal chain decompositions of the subset lattice, which implies three disjoint
1-factors of H(v, t). More recently, four orthogonal chain decompositions can be
found for v ≥ 60 [8].



On 1-factorizations of Bipartite Kneser Graphs 21

E Application: unique-supply hat-guessing games

Hat-guessing games have been studied extensively in a broad area due to their
relations to graph entropy, circuit complexity, network coding, and auctions
[1,4,6,11,16,20]. In this appendix we show applications of the 1-factorization
of the bipartite Kneser graphs in the following variant of hat-guessing game:

♠ Unique-supply hat-guessing game [16]. There are v hats, each with a
different color in [v] = {1, . . . , v} (so for each color there is only one hat supplied).
The hat guessing game is played by m players and one dealer (who is the nature).

– The dealer randomly places t hats to each player (assume v −mt = d > 0).

– Each player can observe those hats placed to any other player, but cannot
see and has to guess the t colors of hats placed to himself or herself.

– The guess is private between one player and the dealer – players are forbidden
to communicate during the whole game. Yet it is permissible for the players
to discuss a strategy before the game starts.

– Player i (i ∈ [m]) is allowed to guess gi times. A guess is correct if all the
t colors are correct. If any guess of any player is correct, all players (as a
team) win the game. All the parameters are given before the game starts.

Q. How can we design a strategy to achieve the optimal chance of winning?

Example 3. v = 3,m = 2, t = d = g1 = g2 = 1. If Player 1 observes b, she
guesses b mod 3 + 1. If Player 2 observes a, he guesses a mod 3 + 1. Then,
exactly one player guesses right. This strategy wins always and is optimal.

The answer for the two players case (i.e. m = 2) is as follows.

Graph Model. Let A, B respectively denote the set of colors placed to Player 1
and Player 2. Let A′ = [v] − B. The state of the game can be represented
as edge (A,A′) in H(v, t). Each player knows one node of the edge; Player 1
knows A′ and Player 2 knows A.

Upper bound. The uncertainty for each player is
(
t+d
d

)
. This is the degree of

each node. By one guess, a player has 1/
(
t+d
d

)
chance to win. Therefore, the

maximum winning probability is no larger than p = max{1, (g1 +g2)/
(
t+d
d

)
}.

Lower bound. Suppose a 1-factorization of H(v, t) labels each edge by a num-
ber in [

(
t+d
d

)
]. In the g1 +g2 guesses, by respectively choosing the edges with

labels 1, . . . , g1 + g2, the players win if the label of the edge (state) is in
[g1 + g2], which occurs with probability p.

Remark 5. To play this game, both players wish to have a simple and realistic
strategy that is easy to remember. This gives us a motivation to design an explicit
1-factorization of H(v, t). We also point out that our algorithm for solving P1
and P2 in section 3 find applications in this game, because the following task
arises in playing the game: Given A (or A′) and a number l ∈ [

(
t+d
d

)
], find the

unique A′ (or A) such that (A,A′) is labeled with l in the factorization.


	On 1-factorizations of Bipartite Kneser Graphs

